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About the conference ICAAM 2022.
Preface

This issue is a collection of 13 selected papers. These papers are presented at the Sixth International
Conference on Analysis and Applied Mathematics (ICAAM 2022) organized by Bahcesehir University,
Turkey, Institute of Mathematics and Mathematical Modelling, Kazakhstan, and Analysis & PDE Center,
Ghent University, Belgium. The meeting was held on October 31 — November 6, 2022, in Antalya, Turkey.
The conference is organized biannually. Previous conferences were held in Gumushane, Turkey in 2012; in
Shymkent, Kazakhstan in 2014; in Almaty, Kazakhstan in 2016; in Cyprus, Turkey in 2018 and 2020; in
Antalya, Turkey in 2022. The proceedings of ICAAM 2012, ICAAM 2014, ICAAM 2016, ICAAM 2018,
and ICAAM 2020 were published in AIP Conference Proceedings (American Institute of Physics) and in
some rating scientific journals. Proceedings of ICAAM 2022 will be published in the world-renowned AIP
Conference Proceeding Series. The main aim of the International Conferences on Analysis and Applied
Mathematics (ICAAM) is to bring mathematicians working in the area of analysis and applied mathematics
together to share new trends of applications of mathematics. In mathematics, the developments in the field
of applied mathematics open new research areas in analysis and vice versa. That is why, we planned to
found the conference series to provide a forum for researches and scientists to communicate their recent
developments and to present their original results in various fields of analysis and applied mathematics. This
issue presents papers by authors from different countries: Azerbaijan, Iraq, Russian Federation, Cyprus,
Turkey, Kazakhstan, Turkmenistan, Uzbekistan, Kyrgyzstan. Especially we are pleased with the fact that
many articles are written by co-authors who work in different countries. We are confident that such
international integration provides an opportunity for a significant increase in the quality and quantity
of scientific publications. Special thanks to Charyyar Ashyralyyev (Turkey) for their valuable assistance.
Finally, but not least, we would like to thank the Editorial board of the «Bulletin of the Karaganda
University. Mathematics series», who kindly provided an opportunity for the formation of this special issue.

Keywords: control, partial differential equations, hyperbolic-parabolic equations, integro-differential equations,
boundary value problem, Dirichelt problem, well-posedness, regular solutions, numerical methods and
solutions, difference scheme, involution, stability.

Guest-Editors: A. Ashyralyev and M. Sadybekov

January 09, 2023
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On the solvability of a nonlinear optimization problem with
boundary vector control of oscillatory processes

In the paper, the solvability of the nonlinear boundary optimization problem has been investigated for
the oscillation processes, described by the integro-differential equation in partial derivatives with Fredholm
integral operator. It has been established that the components of the boundary vector control are defined
as a solution to a system of nonlinear integral equations of a specific form, and the equations of this system
have the property of equal relations. An algorithm for constructing a solution to the problem of nonlinear
optimization has been developed.

Keywords: General solution, nonlinear optimization, boundary vector control, functional, optimal conditions,
property of equal relations.

Introduction

There are plenty of works [1-12], that are devoted to the study of nonlinear optimization problems
described by systems with distributed parameters. However, methods for solving nonlinear optimization
problems while minimizing a piecewise linear functional have not been sufficiently developed. This
article deals with the solvability of the problem of optimal boundary control of oscillatory processes
described by partial integro-differential equations with an integral Fredholm operator, while minimizing
a piecewise linear functional.

Consider the following nonlinear optimization problem where it is required to minimize the piecewise
linear functional:

T
Turltsa)swn(t. )] = [ [{V @) = @ + Vi (T,0) - 2 (@)} ot 1)
0 Q

T m
+ﬁ//2]uk(t,x)dazdt%min, B >0,
0 Q k=

1

on the set of generalized solutions to the boundary value problem

T
Vtt—AV:)\/K(t,T)V(T,a:)dT,ercR", 0<t<T, (2)
0
V(O,J}) = ¢1($)7 W(O,I’) = ¢2($)7 T € Q, (3)

*Corresponding author.
E-mail: akl7@rambler.ru
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E.F. Abdyldaeva, A.K. Kerimbekov, M.T. Zhaparov

ZO’U ;(t,m) cos(v, ;) +a(z)V(t,x) = (4)

= f(t,x,ul(t,a;), oy (t,x)), xzevy, 0<t<T.

Here A is the elliptic operator, v is a normal vector, emanating from the point x € ~; K(¢,7) is
a given function of H(D),D = {0 <t < T,0 < 7 < Thn(z) € Hi(Q),v2(z) € H(Q),&i(x) €
H(Q),&(x) € H(Q) are given functions; f[t, =, ui(t,x),...,un(t,z)] € H(Qr) is a boundary source
function; fu,[t, z,u1(t, x), ..., un(t,z)] # 0,Y(t,x) € (Qr),uwi(t,z) € H(Qr),i = 1,2,3,...,m; is a
control function, A is a parameter, and T is a fixed moment of time. @) is a region of the space R"
bounded by a piecewise smooth surface v; Q; = Q x (0,T].

The boundary value problem (2)—(4) has not a classical solution, with the above conditions imposed
on the given functions. Therefore, we use the concept of a generalized solution to the boundary value
problem.

With respect to the methodology of work [1], we give a definition.

Definition 1. The generalized solution to the boundary value problem (2)—(4) is called the function
V(t,x) € H(Qr) that satisfies the integral identity

/[(Vt(tw)‘l’(t,ﬂf)) — (V(t,2)®4(t,2))]2do =
Q

n

- / / V() 0t 2) — 3 ai(@)Va, (t2) 0, (1 7) — c(2)V (t,2)D(t, ) | dodt-+

ij=1

/ / It 21 (6, 2)s s it 2)] — @)V (£ 2)) O(t, 2)dadi+

to T
+// )\/K(t,T)V(T,:c)dT O(t, z)dzdt
t1 Q 0

for any 1 and to, 0 < t; <t <t < T, and for any function ®(¢,z) € C*(Qr), C?*'(Qr) is a space of
functions defined on the set Q7 and having a second-order derivative with respect to t, and the first
order in the variables x;, and satisfies the initial and boundary conditions in a weak sense, i.e. for any
functions ¢g (z) € H (Q), ¢1(x) € H (Q) the following relations hold

t—+0

tim, [ Vitz)on(e)de = [ vr(a)on(a)da,

The solution to problem (2)—(4) is sought in the form

6 Bulletin of the Karaganda University



On the solvability ...

V(t,z) = Z Vi (t) zn ().
n=1

Where V,,(t) = (V(t,2), zn(z)) = [V (t,2)2n(x)dz are Fourier coefficients, the symbol < -,- > is used
Q

for the scalar product in the Hilbert Space H(Q), z,(z) are eigenfunctions of the boundary value
problem [1]

Dy, (®(t,x), zi(x)) = Z aij(2)Py; (t, 7) 2k, () + () 21(2) P (¢, ) | do+
o \ii=1

+/a(m)zk(1:)<1>(t,x)dx :)\%/zk(az)q) (t,z) dx;
¥ Q

Gz (x) =0, ze~, [k=1,2,3,..].

Using Liouville method we easily prove that the Fourier coefficients satisfy the relations [2]

T t
1 no .
Vo(t) = /\/ — /sin A (t —7)K (1,8)dr | Vi (s)ds + 1y, cos Apt + % sin A, t+ (5)
0 0 "

t
1
+— /sin/\n (t—71)[falrut,...,unlldr; n=1,2,3,..,
0

where

ol ut, ..yupm] = /f[t, T, up (6, 2), ey U (E, )] 20 () d.
Q
We can rewrite equation (5) as the following equation:
t
Valt) = A [ Ko (8:5) Vo (9)ds + an ) (6)
0

where

¢
K, (t,s) = )\i /sin A (t — 1)K (7, 5)dT;
" 0

¢
n . 1 .

an(t) = Y1, cos At + qii sin Apt + " /sm)\n (t —=7) [fn [T, u1, ..., up]] d7.
n n 0

The solution of the integral equation (6) is defined by the following formula |2]

T
Vi(t) = /\/Rn (8, \) an (5)ds + an(t),
0

Mathematics series. Ne 1(109)/2023 7



E.F. Abdyldaeva, A.K. Kerimbekov, M.T. Zhaparov

where

n (L, 8, ) Z)\’ "Kni(t,s), n=1,2,3,... (7)
is the resolvent of the kernel K, (t, s), the iterated kernels are K, ;(t,s) defined by the formulas
T .
Ky (t,s) = gK" (t,n) Kni(n,s)dn,i=1,2,3,...,

foreachn=1,2,3, ...
Now we investigate the convergence of Neumann series (7). According to the following estimates

. T
TV .
Kosttos)? < (35 ) 00T [ K2s)ds vt e 0.7

T T .
i~ TKo\' ie
/ tsds<< ) (KoT) 1//1(2 dyds<< VO) (T)" 1,
0 0

we can easily prove that Neumann series converges absolutely for the values of parameter satisfying
following condition

A < n=123,..

o0,
\ / nﬁoo

The radius of the convergence increases when n grows. As the sum of an absolutely convergent series,
resolvent R, (t,s, ) is the continuous function. It is easy to check that the following estimates hold

T
VT, | [ K2(y, s)dy
Ry (t,5, )] < .

= N VKT

T T
KoT
/R,QZ (t,s,A\)ds = 5 //Kz(y,s)dyds: 0 5
J (An = [AIVET?)" ) ) (A = A VEK(T?)

Note that the Neumann series converges absolutely for values of the parameters satisfying

A1
VK,

for each n = 1,2, 3, ... Thus, we find the solution of problem (2)—(4) by formula

Al <

Vo) =S Va () :Z /R (t, 5, \) an (5) ds + an (1) | 20 (2). (8)

n=1 =
Lemma 1. The generalized solution of problem (2)—(4) which is defined by (7) and its derivatives

are elements of the Hilbert space H (Qr).
Proof. The proof is carried out by direct calculation and does not present any excessive difficulties.

8 Bulletin of the Karaganda University



On the solvability ...

Optimality conditions and a system of nonlinear integral equations

Since each vector control @ (¢, z) = (ui(t, ), ..., un (¢, x)) uniquely defines the solution of boundary
value problem (2)-(4), the control w(t,z) + Au(t, z) corresponds to the solution of the problem (2)-
(4) of the form V(t,z) + AV (¢, x), where AV (t,z) is the increment corresponding to the increment
AT(t, x) . According to the maximum principle [3—-6] we calculate the increment of functional (1)

Al (u) =1(u+ Au) —1I(u) =

T
= —/AH (t,z,w (t,x)u(t,x)) dt+/ {AVH(T,2) + AVA(T,2)} dz,
0 Q
where -
[t,z,V(t,z),w(t,z),u(t,z)] =w(tz)- f{tzutz))— BZ lug (t, ). 9)
k=1

Function w(t, x) is the solution of the following conjugate boundary value problem
T
wy — Aw = )\/K(T,t)w(T,x)dT,x €Q,0<t<T,
0

W(Tﬂ :L’) + 2[%(T7 (IZ‘) - 52(x)] = Oawt(TJ .CE) - Q[V(T7 IL’) - gl(x)] = 07‘7: € Q7
Gw(t,x) = Z aij(x)wy; (t, r) cos(v, ;) + a(z)w(t,z) =0,
1,

rey, 0<t<T.

We investigate the maximum of the function II[t,z,V (t,z),w (t,x) ,u] with respect the variables
U1, U2, ..., Um , assuming that the set of allowable values of each of them is an open set. Because of the
necessary condition of the extremum, we obtain the following relations from (9)

[, (.) = w(t, ) f,,.[t, =, Ut x)] — Bsignu,(t,r) =0, i=1,2,3,...,m.

Further, the second necessary condition of the extremum is determined [5-7] by the inequalities

AL <0, Ay > 0,..., —1WA, >0, k = 1,2,3,...,m, according to the Sylvester criterion, where
Ai are the diagonal determinants of the Hess matrix
pretilf . pERp
r(I,a) =
B g . pEEm)p

Thus, the components of the optimal vector control #°(¢, z) should be found from relation (8), taking
into account the second necessary optimality condition. We rewrite condition (8) in the form

signuy (t, ) signug(t,z) signu,, (t, )
fultzat,@)] 7 f,lt e alt )] S 1ty 2, 0(t, )]

According to the second necessary condition of extremum and the theorem on implicit functions, we
have the following relations

w(t,z) =0 =p =0

= g(t,x).

up(t, ) = grlt, =, 9(t,x), B). (10)

Mathematics series. Ne 1(109)/2023 9



E.F. Abdyldaeva, A.K. Kerimbekov, M.T. Zhaparov

The unknown function g(¢,x) in (9) is defined as a solution to the following equation

g(t,x) = wit,x, f(t,z,01(t,z,g(t,x),B), ..., om(t,x,g(t, z), B))] = W]g(t, x)] (11)

which it is a Fredholm nonlinear integral equation of the 2nd kind with respect to g(¢,x), where the
integral has double non-linearity with respect to the function g(¢,z). The solvability of a nonlinear
integral equation (11) is studied by the method of contraction operators. Let go(t,x) is a solution of
the equation (11). Substituting this function into (10) we find the desired optimal controls

ug(t,x) :Qﬁk[ta%go(t,l’),ﬂ], k=1,..,m.

Next substituting the found values of these controls into (5), we obtain the value of the optimal
processes

T
o0 o
Vo) =3 Ve (B (@) =Y )\/Rn (t,5,0) a2 (5)ds + @ (¢) | 20 (2),
n=1 n=1 0
where
¢
0 ¢2n 1 0
a,(t) =11, cos Ay, t+)\—smx\ nt + . sin Ay, ) [fo [1oul, . uly]] dr.
n n 0

Substituting the found values of the optimal control and optimal processes into the functional (1), we
find the minimum value of the functional (1)

T

J [u(l](t,:c), // VO T,z)—& (LL‘)]Q + [Vto (T,x) — & (x)]Q} dz+

0

+/80/T/iu (t, )| dzdt,

The found triple { (@’ (¢,2)),V°(t,x),I (u’ (t,x))} is determined as the complete solution of the
nonlinear optimization problem.

Conclusion

Solving the problem of the minimization of the piece-wise linear functional is a difficult problem.
Therefore the results received in the paper have great scientific value. The developed solving procedure
of the formulated problem is constructive and useful in applied problems.
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12 Kerimbekov A.K. The optimal vector control for the elastic oscillations described by Fredholm
integral-differential equations / A.K. Kerimbekov, E.F. Abdyldaeva // Springer Proceedings in
Mathematics and Statistics. — 2019. — 275. — P. 14-30. https://doi.org/10.1007/978-3-030-
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E.®. A6ubuitaesal, A K. Kepimbexkos?, M.T. 2Kanapos®

L Kvipevis- Typin «Manacy ynueepcumemi, Biwxker, Koipevizcman;
2 Koipewis-Peceti Cnasan yrusepcumemi, Biwkek, Kvipeuscmar;
3 Kvipenia memaexemmix meznukaivs yrusepcumemi, Diwkex, Kvpevscman

Tepbeamesti mpoliecTepai MeKapaJblK BEKTOPJIBIK dacKapyMeH
CBI3BIKTBIEMEC OHTAaMJIaHIbIPY ecebOiHiH MIeNIiMi TypaJibl

Maxkanaga @pearoabpM UHTETPAJIIBIK, OMEPATOPHIMEH WHTETPAJIBI-TuddEepEeHNNAIbIK Aepbec TeHIeYIep
apPKbLJIbI CUIIATTAJIFAH TepOEIMEJIi POIeCTePi IIeKapaJIbIK, BEKTOPJIBIK OaCKAPYMEH ChI3BIKThIEMEC OHTaM-
JIaHJBIpY ecebiHiH rmmremriMiiri 3eprresnred. [llekapasblk BEKTOPJIBIK, OacKapyIblH, Kypamaac OesikTepi
HAKTBI TYPJEri ChI3bIKThIEMEC MHTETPAJIILIK TeHJEY/Iep YKYHWeCiHIH menrimi peTiHje aHbIKTAJJIATBIHbI YKOHE
OyJ1 >KYiieHiH TeH IeyJepi TEH KATBIHACTBHIK, KACUETKE Me eKEHIIr aHbIKTa abl. ChI3BIKThIEMEC OHTANIAHIBIDY
eceObiHiy memiMia Kypy aJropuTMi »KacaJjijibl.

Kiam cesdep: KanubLIaHFaH IMENIiM, CHI3BIKThIEMEC OHTANIAHIBIPY, NIEKAPAJBIK BEKTODJIBIK, OAKBLIAY,
GbYHKIIMOHAJIIBI, OHTAMJIBIIBIK IIAPTTAPHI, TeH KATHIHACTHIH KACUETI.
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D.0. Aoapuimaesal, A.K. Kepumbekos?, M.T. 2Kamapos?

! Kwipewiscro- Typeukuti ynueepcumem <Manacs, Buwxer, Koipzvizcman;
2 Kuipewzcko-Poccutickuti. Crassmckutl yrnusepcumem, Buwxex, Kvpeviacman;
3 Kuipewiscruti 2ocydapemeenmiil mezruveckud ynueepcumem, Buwrers, Kvupevzcman

O Pa3pemmMoOCTH 3a a9 HeJIMHEITHOI OIITMMMU3allun IIPpUu I'PaHUIHOM

10

11

12

BEKTOPHOM YIPaBJEHUN KOJIEOATEIbHBIMU ITPOIECCaAMU

B crarne ncciieroBana pazpenmMocTb 331891 HEJTMHEHHON ONITUMU3AINH P TPAHNIHOM BEKTOPHOM yIIPAB-
JIEHUH K0JIeOaTeIbHBIMY IIPOIIECCAMU, OIIUCHIBAEMbBIMH UHTEI'PO-1uddepeHInaIbHBIMI YPABHEHUSAMY B YaCT-
HBIX ITPOU3BOIHBIX C MHTErPAJIbHBIM ortepaTopoM PpenrosibMa. YCTAHOBIEHO, YTO KOMIIOHEHTBI TPAHITYIHOTO
BEKTOPHOT'O yIIPABJIEHUS OIIPEIEsIEHbl KaK PEIIeHNe CUCTEMbl HEeJIMHEHHBIX WHTErPAJIbHbIX YPaBHEHU CIie-
nudUIECKOr0 BUIA, U yPABHEHUs 3TOHM CHCTeMBbI 00J/1a/Ial0T CBOMNCTBOM PaBHBIX OTHoIIeHWi. Pazpaboran
AJICOPUTM ITOCTPOEHUSI PEIIECHUST 3a/Ia9i HEeJIMHEHHON ONTUMUBAIINHN.

Kmouesvie caosa: 060BIIEHHOE pelteHre, HeJINHENHAS ONTUMHU3AINs, TPAHNIHOE BEKTOPHOE YIIPaBJIEHUE,
GbYHKITMOHAJ, YCJIOBUAS ONTUMAJIBHOCTH, CBOMCTBO PABHBIX OTHOIIEHUN.
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Asymptotic behavior of solutions of sum-difference equations

In this study, we present an investigation of the asymptotic behavior of solutions of sum-difference equations.
Based on some mathematical inequalities, we have obtained our results. The obtained results can apply to
some fractional type difference equations as well.
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operator.

Introduction

In alignment with the extensive interest in the research of difference/differential equations which
has demonstrated high potential for real life applications, the determination of qualitative behavior of
solutions of them have also received significant attention amongst researchers [1-16].

In [15], the authors have investigated the positive solutions of the following equation

cA%y(t) =dt+a)+ f(t+a,z(t+ a)),
y(O) = Co,

where 0 < a < 1, ¢A® is Caputo-like delta fractional difference operator, d is a positive sequence.
The authors consider the some particular cases of y(t) for the above equation. In [16], the authors have
studied the nonoscillatory solutions of the following fractional difference equations

cA%y(t) =e(t+a)+ ft+a,z(t+a)),
y(O) = €0,

where 0 < a < 1, ¢ A® is Caputo-like delta fractional difference operator. Considering some particular
cases of y(t), they have obtained some nonoscillatory solutions for the equation.
Motivated by the idea in [12-16], in this article, we study the oscillatory behavior of the following
difference equations of the form
{ Ay(t) =e(t+a) -3 (t—s—1)Vk{t+a,s+a)f(s+a,y(s+a)) )
y(0) = co,

where t e Nj_, 0 < a <1, N, ={t,t+1,t+2,...}, f: Ny x R —» R, k and e are sequence. By a
solution y(t) of Equation (1), we mean a real-valued sequence y satisfying Equation (1) for ¢t € Ny,
with ¢y € Nj. A solution y of Equation (1) is called oscillatory if it has arbitrarily large zeros, otherwise
it is called nonoscillatory. Equation (1) is called oscillatory if all of its solutions are oscillatory.

*Corresponding author.
E-mail: hadiguzel@subu.edu.tr
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1 Background materials

In this section, we present some background materials.

Definition 1. [17] The generalized falling function is defined by

T(t+1)

t(")_i
Tt—r+1)

for any ¢, » € R for which the right hand-side is defined. Here I' denotes the Euler’s gamma function.
We also use the standard extensions of the domain of this rising function by defining it to be zero
whenever the numerator is well defined, but the denominator is not defined.

Lemma 1. [18] Assume that § > 1 and v > 0, then

[t(—’Y)]ﬁ F(l + 5’7) t(—/B’Y)’ te Nl-

A1 +7)

Definition 2. [19] Assume y : N, — R and v > 0. Delta fractional sum of y is defined by

t—v
—y 1 v
Aa y(t) = T (l/) Z(t -8 1)( l)y(s)v t € Ngyo.

Lemma 2. [20] Let p € R\ {...,—2,-1,0}, a € R, v > 0 and (t — a)* : Na+p — R. Then,

I(p+1)

v (B
Actult =)™ = 5005

atp (t—a)#*) fort e Natputv-

Lemma 3. [16] Let0<a§1,p>1,p(a—1)+1>0and’y:2—oz—%.Thenonehas

t—s—1)P P >(t—s—1+a+p(l—a)—1)rP

and
()PP > (s p(a—1)+ )PP

where
teNpands e {l-(pa—p),2—(pa—p), - ,t—=2—(pa—p)}.

Lemma 4. |21] Assume that X and Y are nonnegative real numbers, then
XF—(1-k)YP—kXY* 1 <0, for 0<k<1,

where the equality holds if and only if X =Y.

Lemma 5. [22] Assume that m and x be nonnegative sequences and ¢ be a nonnegative constant.

If
z(t)<c+ > m(s)z(s) fort>0.
s=0

Then, the following inequality holds

t
x (t) < cexp <Zm(s)> , fort>0.
s=0

Mathematics series. Ne 1(109),/2023 15



H. Adiguzel, E. Can

2  Main results

We assume that there exist positive sequences a, h,m and v > 0, 0 < § < 1 are real numbers such
that

0 <k(t,s) <a(t)h(s) forallt > s >0 (2)

and

0<yf(ty) <t 'm(t)|y°** for all y # 0 and ¢ > 0. (3)

Furthermore, there exist real numbers M; > 0 and M such that

la(t)] < My (4)
and for every T'> 0
1 t—a 1 t—«o
—Mggliggftge(s+a)Sliﬁgptge(s+a)§M2. (5)

For the sake of convenience, we denote

t—1l—a
g1 (1) :== Z (t—s—1) D (s 4+ )0V 10 (s 4 @) m 10 (s + ) K0 (s 4+ @),
—1—

S «

where v is a postive sequence.

Theorem 1. Assume that ¢ be a conjugate number of p > 1, p < 1/(1—a),y=1—a+1/q and
the conditions (2)—(5) and

limsup ¢1 () < o0

t—o0

hold. Then every nonoscillatory solution of Equation (1) satisfies

lim sup < 00

t—o00

ly(®)]
t

Proof. Assume that y be a nonoscillatory solution of (1), say y (t) > 0 for all t € Ny, where ¢ is a
postive integer. Let

ti—1—«
ki :=max {|f(t,y(t))] : t € Ny} > 0 and ko := k1 Z (t1 —s — 1)@ Vs +a)>0.

s=1—a
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From Equation (1) and our conditions, we have

t1—1l—«
Ayt) =e(t+a)— 3 (t—s— D@Dkt a5+ a)f (5 +a,y(s + a))
s=l-«
t—1—«a
SN s DOkt s+ a)f (s 4 oy(s + @)
s=t1—«
t1—1—a
<et+a)+ Y, (—s—1)VE(t+a,5+0a)|f(s+a,y(s+a))
s=l—«
t—1—-«
+ Y (t—s-1D Dkt +a,s+a)|f(s+ay(s+ )
s=t1—«
t1—1—«
<eltta)tkat+a) Y (h—-s—-1)Vh(s+a)
s=l—«
t—1l—a
+a(t+ ) Z (t—s—1)@b (s+o<)(7_1)h(s+a)m(s+a)y5(s+a)
s=t1—«
<e(t+a)+ kea(t + «)
t—1—-«
tat+a) Y {(t —s— 1)@ D (54 )07V
s=t1—«
X (h(s+a)m(s+a)y5(s+a) —v(s+a)y(s+oz))}
t—1—-«
+a(t+a) Z t—s—1)D(s+a)" Vo(s+a)y(s+a).
s=t1—«
) olsta 1/(6-1) )
Setting X = h'/% (s + a)ml/3 (s + )y (s), ¥ = (Grmesidigre;)  and 8 = 6, then using

the above lemma, we deduce that
his+a)m(s+a)y’ (s+a)—v(s+a)y(s+a) < Ao 0 (s+a)m1 7 (s + ) K7 (s 4+ ),
where A\; = (1 — 6) 6%/ (1=9) Hence we have

Ay(t) <e(t + a) + koM,

t—1—«
+ MM Z (t—s—1)D(s+ a)w*l) V170 (s ) mM1 0 (s 4+ a) B0 (s + @)
s=t1—«
t—1—a
+ M, Z t—s—1)D(s+a) 0 Vos+a)y(s+a).
s=t1—«

Summing both sides from ¢; to t — 1 and interchanging the order of the summation, we get

t—1

AL Myt
y(t) <y (t) + ko My (t— 1)+ D e(s+a) + =——gi (t)
s=t1
Mt t—1l—«
+ = Z t—s—1)D(s+a)0Vos+a)y(s+a).
« s=t1—«
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That is

t—1—-«
YOS A+ ST (s = 1) s+ )0 D u (s a)y (s + ), (6)

s=t1—«

where Ay =y (t1) + koM (t — t1) + ES 4 e(s+a)+ %gl (t) . By applying the Holder’s inequality
and lemmas, we have

tza:l (t—s—1) V(s +a) 0 Du(s + a)y(s + a)
s—tl_ia_l , Y i 1/q
< [ _Z ((t —5— 1)(0‘_1)) ((s + oz)(w_l)) ] [ _Z v(s + a)y?(s + Oz)}

1/p  t—(pa—p+1)

- [(F(l —pa+p))<F(1 —m+p)>

72— a) P2 — ) [8212(;”;,) ((t —5— 1)(pa—p)> ((3)(1?7—13) )} 1/p
t—a—1 1/q
[ _Z vi(s+ a)yl(s + oz)}

and then we have

t—a—1
S (t— 5 — 1@ D(s +a)0Du(s + a)y(s + )
s=t1—«

[T —pa+p)\ (TQL—py+p) )] (ro—p+1) () - e ‘ 1/q
< ( 02 o )( TG ) [A e (1) )} L;av (s +a)y (s+a)}
_ _<F(1 — pa —i—p)) I'l—py+p) ] —1)+1] P — 1/p

72 - a) 72 —7) Fp('y +pla—1)+2]
t 1 1/q
Uq(8+04) W(s+a)|

t—a t—a—1 1/q

Z (t—s—1)Ds+a) 0 Dm(s + )z (s +a) < Ny [ Z vi(s+a)yl(s+a)|

where

Llp(y—1) +1]
Clp(y = 1) + p(a — 1) + 2]

1
_[(FA=pa+p)\ (TA—-py+p)
Nl_[( IP(2 — a) )( TP(2 — ) >

Thus (6) becomes

1

K.t t—a— 1/q
Z/()<A2t+1[ Z Us + a)yl(s + a)

i

where, in view of the hypothesis of the theorem, Ag is an upper bound for

—1
y(tl) k'QMl (t—tl) 1 ¢ )\1M1
i " *ZG(SWLOZ)‘F g1 (1)

s=t1
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and K1 = M7 N;7. Then we have

t—a—1 1/q

y (1) Ky

TS Ayt D> (s +a)y(s + a)
s=t1—«

Hence we get
t—a—1 1/q\ ¢
y()\? Ky
<t> < | A2+ o SZtZI:_a vi(s+a)yl(s+ )

By applying the elementary inequality (A + B)? <2971 (A9 4 BY) for A, B > 0, we have

qt ~1
w(t) <2971 AL 4 2071 ( - ) vq(s + a)yi(s + a)
s=t1—
q t—a—
_ _ +a)\?
— 94 lAq 2q1 1 q..q y(s
5+ 5 Z (s +a)vi(s+ ) Teta
s=t1—«
t—a—1
— 94-1 44 g—1 ﬁ N a(
207 AT + 2 - Z (s+a)vi(s+ a)w (s + a),

where w (t) = y? (t) /t9. If we apply the Lemma 5, we have the following result

t
lim sup M < 00.
t—o0

This completes the proof.
Theorem 2. In addition to the hypothesis of Theorem 1, suppose that

lim a(t) = 0.

t—00
If for every p € (0,1) we have

t—1

pt + Z e(s+ a)

s=1—«

lim inf = 00,
t—o0

t—o00

t—1
= —00, limsup [,ut— Z e(s+ a)

s=1-«
then Equation (1) is oscillatory.

Proof. Let y be a nonoscillatory solution of (1). Then we may assume that y (¢) is eventually positive
for all t € Ny, where g is a postive integer. Proceeding as in the proof of the above theorem, we have
the following inequality

t—1
y () <y(tr) + koM (t—t1) + Ze(s—l—a)
s=t1
t—a—1 1/q
MMyt Klt
() 9(
+ o 91 ( Szl:av s+a)yl(s+ a)

From our conditions, we can make M; as small as we please by increasing the size of t; if necessary.
And also considering Theorem 1, we have

s <yl)— 3 elsta)+ Y els+a)+ o (7)
=1
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where 7' > 1. Taking infimum and limit as ¢ — oo in (7), respectively. Then we obtain a contradiction
with the fact that y (¢) is eventually positive of Equation (1). The proof when y (¢) is eventually negative
is similar.

3  Conclusions

In this study, we present an investigation of the asymptotic behavior of solutions of sum-difference
equations. Based on some features of the discrete calculus and mathematical inequalities, we have
obtained our results. The obtained results can apply to some fractional type difference equations as
well. If we consider

1
E(t+o,s+0) = ——

I(a)’
1 t—a (1)
e(t+a)=yo+ (o) (t—s— (s + )
8:1 —a
we may write from Equation (1) that
t—a
Ay(t) = yo Z (t—s—1) " Vg(s+a)—fls+ayls+a))], 0<a<l.

s:l e

It is not difficult to see that this equation is equivalent to the fractional difference equation. Here, one
can notice that the obtained results can be rewritten for the fractional difference equations.
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Caxapus xoadanbarv, 2vinvimdap yrnusepcumemi, Caxapus, Typrus
AMBIpBIMIAaPAbIH, KOCBIHIBICHI TE€HJIEeYJIepiHiH MIeNIiMIepiHiH,
ACUMIITOTUKACBHI
MakaJjaga »KyMbICTa afbIPBIMIAP/bIH KOCHIHIBICHI TEHJIEYJIEPIHIH IMIeNiMIEePIHIH aACUMIITOTHKAJIBIK, ©3re-

PYiH 3epTTey YCHIHBLIFaH. ByJ1 HOTHMXKeIep Keibip MaTeMaTHKAaJIbIK, TEHCI3IIKTep HEri3iHIe aJIbIHFaH. AJIbI-
HFAH HOTHUXKeJepi OeJiek TunTeri Keitbip muddepeHInaiapK TeHIeyaepre 1e KOIIanyFa 0oIa bl
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Kiam cesdep: acuMITOTHKA, OCHMILIALUS, OGEHOCIMIUIAIMS, albIPbIMABIK, TeH ey, KamyToHblH GeJekTi
AfBIPBIM/IBI OIIEPATOPHI.

X. Amurysen, E. 2Kan

Vuusepcumem npuxaadnoixr nayx Caxapvs , Caxapos, Typuyus

AcumMmnToTHKA pelneHunii ypaBHEeHUIT CyMMbI pa3HOCTe

B craTbe MBI IpesicTaBIeHO HCCIEIOBAHIE ACUMIITOTUYECKOTO IIOBEJEHNSI PEIIEHNil YPaBHEHNUN CYMMBI Pa3-
Hocreil. Ha ocHOBe ompenesieHHBIX MaTeMaTUYECKUX HEPABEHCTB HAMH IIOJIYUYEHBI PE3YJIbTATBI, KOTOPbIE
MOKHO TIPUMEHHUTb M K HEKOTOPBIM Pa3HOCTHBIM YPABHEHHUSAM JAPOOHOTO THIA.

Kmouesvie cao6a: aCUMOTOTAKA, OCIIAJLIANNS, HEOCIUIISIINS, PA3HOCTHOE yPABHEHUE, OMEpaTop APOOHOH
pasHoctu KamyTo.
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On convergence of difference schemes of high accuracy for one
pseudo-parabolic Sobolev type equation

Difference schemes of the finite difference method and the finite element method of high-order accuracy
in time and space are proposed and investigated for a pseudo-parabolic Sobolev type equation. The order
of accuracy in space is improved in two ways using the finite difference method and the finite element
method. The order of accuracy of the scheme in time is improved by a special discretization of the time
variable. The corresponding a priori estimates are determined and, on their basis, the accuracy estimates
of the proposed difference schemes are obtained with sufficient smoothness of the solution to the original
differential problem. Algorithms for the implementation of the constructed difference schemes are proposed.

Keywords: pseudo-parabolic equation, difference schemes, finite difference method, finite element method,
generalized solutions, a priori estimates, stability, convergence, accuracy.

Introduction

Applied problems of engineering and technology lead to the solution of pseudo-parabolic Sobolev
type equations. By pseudo-parabolic equations, we mean all high-order equations with a first-order
time derivative of the following form

0

o7 () + B(w) =0,

A(u) and B(u) are elliptic operators, generally speaking, the nonlinear ones [1]|. They refer to constitutive
equations. Such problems arise in many fields of modern science. For example, problems in the physics
of semiconductors, plasma physics, hydrodynamics of stratified and filterable liquids, the theory of
“creep” of structural elements, etc. For example, the equation of waves in thin layers of liquid on the
surface of a rotating globe (Rossby waves in oceanology) has the following form [2]

0 0
—A —u=—f(x,t t 1
8t 3u+68§62u f(l‘, )7 (JT, )GQTa ( )
where Ag = 88—52 88722 + 88—;2 is the three-dimensional Laplace operator, § is constant, and the equation
1 2 3
of pseudo-parabolic type has the following form [1]:
(A3U_u)t+A3u+ﬂu = —f((l?,t), (.’L‘,t) € Qr. (2)

This equation describes the filtration process in a fractured porous fluid. The equation of moisture
transfer in soil can be added to these equations [3]

up = Lu + f(:Uat)’ (CE,t) € Qr, (3)

*Corresponding author.
E-mail: dutebaev_ 56@mail.Tu
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P
where Lu = Y Lyu, Lou = % (ka(x)a—“> +%% (k:a (1:)8371;) Mathematical models of nonstationary

0T q
a=1
processes in anuniaxial ferroelectric semiconductor lead to initial-boundary value problems for pseudo-
parabolic equations of the following form [3]:

0 9%u
e (Azu —mu) + a1 (Agu — y1u) + Blp =—f(x,t), (z,t) € Qr. (4)
L3

Here Ag = 86722 + 88—;2 is the two-dimensional Laplace operator, v; = 1/7“621, b1 = 4dras + aq, o > 0 is
1 2

constant (I = 1,2), rg = /T?/(4we’ng) is the Debye screening effect (Debye radius), e is the absolute
value of the electron charge, ng is the unperturbed particle density, Qr = {(z,t) : z € Q, t € (0,7},
Q= {ac = (3}1, xg,{L‘g) 0<zp <y, k= 1,2,3}.

The above equations are supplemented with initial and various boundary conditions, for example,
local ones - classical boundary conditions and nonlocal ones, where, instead of classical boundary
conditions, a certain relationship is specified between the values of the sought-for function on the
boundary of the domain and inside it. General questions of unique solvability and analytic properties
of such problems were studied in [1-6].

Recently, more attention has been paid to numerical methods for solving the above equations. In
particular, in [1,2|, problems of type (1)—(4) were reduced by some transformation to two equations
(one contains differentials in time, the other contains differentials in space) and then these equations
were solved by the finite difference method using quasi-uniform grids. Difference schemes built on quasi-
uniform grids have the second-order of accuracy in time and space variables, with sufficient smoothness
of the solution to the original differential problem. Similar problems were studied in [7-10], where high-
order Sobolev type equations with a second-order time derivative were considered. High-order accurate
schemes of the finite element method were constructed and investigated with minimal requirements for
the smoothness of the solution to the original differential problem. Difference schemes for an equation
with nonlocal boundary conditions were studied in [11-15], where difference schemes of the first and
second orders of accuracy were investigated.

The knowledge of the laws and features of non-stationary processes plays a primary role in the
development and improvement of technological processes, technical installations and devices in a
number of industries; this determines the relevance of research in the above areas. This implies the need
to construct and search for numerical methods of high accuracy (more than the second accuracy) for
various non-stationary initial-boundary value problems, including pseudo-parabolic equations. However,
numerical methods have their limitations in terms of stability, accuracy, and economy. Therefore, the
problem of determining the optimal method is an urgent issue.

In this article, we consider the construction and study of high-accuracy difference schemes of
boundary value problems for equation (4). Here, the initial-boundary value problem for this equation
is first approximated in spatial variables by the finite difference method and the finite element method;
then, for the resulting system of ordinary differential equations, the second-order finite difference
method and the fourth-order finite element method (constructed and investigated in [7]) were used.

1 Statement of the problem

Consider equation (4) with the following initial and boundary conditions
w(x,0) = up(z),r € A =Q+ T, (5)
u(w,t) = ut),z € T =9Q,t € (0,T]. (6)

As already mentioned, instead of boundary condition (6), one can consider any classical boundary
conditions. In addition, nonlocal boundary conditions can be considered. At that, the matrices of
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difference schemes may turn out to be asymmetric but with the methods of linear algebra, they can
be symmetrized, for example, by the bordering method [16].

Let us formulate a generalized statement of problem (4)—(6). Function u(ac t) € W5 (Q), is called a
generalized solution of the problem, for each ¢t € [0, 77, it has derlvatlve i € L2[0,T] and satisfies the
following relations almost everywhere on [0, T:

as (dléi%) + az(u(t), V) + ar(u(t), ) = (f(t),9), w(0) = uo,¥(x) € H, @)

where

3 2
az(u,?) = — // (Z Uz, U +’yluz9> dz, az(u,?) = —aq // (Z Uz, Vs —1—711“9) dx,

al(u719) = _51 // Ux3191»3d517,
Q

u = u(t) is the function of abstract argument ¢ € [0, T] with values in H. Here W, (Q2) is the Sobolev
space vanishing at the boundaries, where scalar product and norm are defined as follows:

(u( // (m” 23: aii O )dx
s 22,23) gy = // (u +Z (axm) )

cs |lulli < as(u,u) < Csllullf, ez Jullf < as(u,u) < Collullf, 0 < ar(u,u) < Crlullf,

It’s obvious that

where co, c3, C1, Co, C3 are the positive constants. Constant ¢; depends on (1, co depends on ag, 71,
and c3 depends on 7.
The existence and uniqueness of the solution to this problem were studied in [2].

2 Discretization in space

Let us construct the subspace Hp, C H that approximates H. Consider the following two cases.
The first case corresponds to the approximation of equation (4) in spatial variables by the method
of finite differences. Let us introduce a grid uniform in each direction w; = Wy, X Wp, X Wy, , in
Q where @y, = {xm =i, im = 0, N,y hm = /N }, m = 1,2,3. Here @, = wp + 4. We
o

define the subspace Hj, = Wy (wy), the space of grid functions v(z1, 79, 73) with norm Hv||% =

N1 N2 N3
337> hihahs [( )2+ (ve,)? + (vg,)%| < M, where the constant M does not depend on hy, hg, hs.
i1 19 13

Here v = U(ilhl, ’iQhQ, ighg).

Uz, = [U(ilhl,ighg, i3h3) — U((il — 1)h1,i2h2,i3h3)] /hl,

vz, = [v(i1h1,i2h2,i3h3) — v(i1hi, (i2 — 1)h2,i3h3)] /ha,
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vz, = [V(i1hy, i2he, i3hs) — v(i1hy,iohe, (i3 — 1)h3)] /has,

(¢}
W (wp) is the space of grid functions that vanish at the boundaries.

Approximating the expressions for a,,(u,®) on the grid by the corresponding quadrature formulas
N1 N2 N3
al (up,vp) = S, > Y. hihohsupz,, vnz,,, we proceed from (7) to the definition of an approximate
i1=112=113=1
grid solution:

al <duc}llt(t)”9> + ab(un(t),9) + af (up(t),9) = (fa(t),9), VI(x) € Hp, (8)

up(0) = o, (9)
Relations (8), (9) correspond to the following Cauchy problem for the function wy(t):

duy, (t
D 4 gunt) = ). un(0) = o (10)
where
D= (A1 +A+A3)+mE, A=ai(Ar + Ay +711FE) + BiAs, (11)

Ay = —Ya,7,, M =1,2,3, y is the value of the function at a fixed node, x = (i1hy,izhe,i3hs),
Yoz, = (Y((31 + 1Ry, ioha,ighs) — 2y(ivhi, igha, ishs) +y((i1 — 1)h,d2ho,i3hs))/ hi,

Yaozs = (Y(i1ha, (iz + 1)ha,izhs) — 2y(i1h1,iaha, izhs) + y(i1h1, (i — 1)ha,i3h3))/ b3,
Yuszs = (Y(i1h1,izha, (i3 + 1)h3) — 2y((i1h,izha, ish3)) + y(i1h1,izhe, (i3 — 1)h3))/ hi.

Here upg = Ppup(x) is the interpolant of the initial condition, P, is the projection operator
Ph H — Hh and fh(t) = th($,t).

Difference operators D and A approximate differential operators Asu — y1u and oy (Agu — yu) +
31 0*u/dx% with second-order approximation errors.

The second case corresponds to the approximation of equation (4) in spatial variables by the

M
finite element method. Let Hp, C H be the set of elements of the form ¥, = > P (x). Here
m=1

{®,, = @m(x)}%zl is the basis of piecewise polynomial functions that are a polynomial of p degree on
each finite element [17]. Let us give an example of a basis based on third degree polynomials. To do
this, we introduce a partition of the domain  into N1 x Ny x N3 parallelepipeds

Qijr ={(i —h)h1 <21 < ihy, (j —1)he <2 < jho, (k—1)hs <3 < khs},

i=1,Ny, j=1,Ng, k=1,N3, hpm=1ln/Np, m=1,2,3.

Let us choose the following system of basis functions:

iji(x1, 22, x3) = wi(x1)pj(x2)pr(ws), i=1,N1—1, j=1,Npo—1, k=1,N3—1,

where ¢;(z) is the basis function built on the basis of the Bs - spline [7]. In this case p = 3. Then the
approximate solution can be represented as a bicubic spline:

N

Op(z1, 22, w3,1) = > ap(t)pp(a1, z2, 73), (12)
k=1
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where @ (21,72, 23) = @i(z1)p;(x2)pr(zs), i = L,N1 —1, j = I,No—1, k = 1,N3—1, and N =
(N7 — 1)(N> — 1)(Ns — 1).
The stiffness matrices corresponding to operators D, A are calculated as follows:

D = {as (1, 0m) N1 » A= {a2 (@1, 0m) Wiy + {01 (91, 0m) Hmes -

When choosing a polynomial of a degree no less than three, at each finite element in spatial variables,
we have the third order of accuracy in spatial steps.
In both cases
D*=D>0, A*=A>0.

In what follows, for simplicity of notation, in (10), u € Hy, is used instead of uy, i.e., problem (10)
is written in the following form

Di+ Au = f, u(0) = uo, (13)
where 4 = du/dt.

8  Time discretization

Here we also consider two cases of approximation. Let discrete function y approximates a continuous
function wu.

The first case. Let us introduce grid w, = {t, =n7, n=1,2,..., 7> 0} in time t. Then we
approximate problem (13) by the following difference scheme

Dy + Ay = ¢, 4 = ugp, y" € Hy, (14)

where g = (§ —y)/7, y = y" = y(tn), § = y"™ = y(tn +7), ¥ = 0§ + (1 — 0)y. Here D and A are
defined according to (11), and o is some arbitrary real parameter ¢ = f = f (x,t, +7/2).

It is known from the theory of difference schemes [18] that the approximation error for scheme (14)
is:

Y =012+ |h?) for o = 0.5, p = O (1 + |h|?) for 0 # 0.5, |h|* = h? + h2 + h2.

The second case consists in discretizing problem (13) by the finite element method connecting the
values "1, §", y"*1, " that approximate % (t, +7), D (t,), up(tn + 7), up(tn), respectively.

Such a scheme was constructed in |7] and it has the form:

Dy, — vAy + Ay®) = o1, Dy + ady, — BAY"D) = ¢, (15)

tinl tnt1

where oy =L [ f(t)dt, oo = L f FO (5108 + s998)dt, 51 = 15y — 35/3, s1 = 140y — 3500./3,
t

9 = 1/2, 08 = (1~ ) (€~ 1/2), € = (1~ to)/7.

The initial conditions for (15) are specified as follows: in addition to the natural condition y° = uy,
it is necessary to specify y°. For this, from the system of equations (13), at ¢ = 0, we determine
g = D7H(fY — Aug) and set §° = 1, therefore, the initial conditions for (15) have the form:

y° =g, 3° = DH(f° — auy). (16)

From the calculated values of ¢"*!, g™, 4"+, 4", it is possible to restore the approximation to

up(t) for any t € [t,, tht1], n = 0,1, ... by the following formula:

y(t) = y ol (t) + 9" () + y" T op (8) + T el (2).
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Here offy(t) = 26 =362+ 1, ¢y (t) = 367 — 267, oy (t) = 7(€% — 262 +€), 1y (t) = 7(&7 — €2), £ = .
Combining the approximation in space and time, we consider four methods for solving problem

(4)-(6):

e Scheme 1° — difference approximation of the second order of accuracy in space (11) and time (14);

e Scheme 2° — approximation of the FEM with bicubic elements in space (12) and time (14);

e Scheme 3° — difference approximation of the second order of accuracy in space (11) and the FEM
scheme in time (15), (16);

e Scheme 4° — approximation of the FEM with bicubic elements in space (12) and the FEM scheme
in time (15), (16).

4 Stability and accuracy

Let us analyze the stability and accuracy of the selected schemes. It is known [18], that schemes
(14), (15) are stable under the following conditions

D>0, A=A*>0, D>T1A/2. (17)

Let us check the fulfillment of conditions (17). It is seen from (11) that D = D* > 0, A = A* > 0.
The last condition (17) takes the form

A+ A+ A3+’71E—g [a1(A1 + A2+ E)+ B1As] > 0.

To satisfy it, it is enough that

7‘§2max<1 1). (18)

a1’ By
This condition is interesting because the time step is not related to the space step and is determined

by the parameters o1, (1 of the problem. Thus, the following theorem holds.

Theorem 1. Under condition (18), the solution of scheme 1° converges to a sufficiently smooth
solution of problem (4)-(6) and the following accuracy estimate holds

ly(t) = w4 + [y () —we (D)l p < M (7™ + [h]™2), (19)

where (|9, = /(D9,7) = [l wi(w,y> 1914 = vV (A9, 9) = 92, | (s, are the norms in the space of
grid functions Hy, y; = (y"*' —y™) /7, m1 =1, ma = 2 for 0 = 0.5 and m1 = 2, my = 2 for o # 0.5.
Let us formulate a result on the stability and accuracy of scheme 2V.

Theorem 2. Under condition (18), the solution of scheme 2° converges to a sufficiently smooth
solution of problem (4)-(6) and the following accuracy estimate (19) holds m; =1, mg = 3 for 0 = 0.5
and m; = 2, mo = 3 for o # 0.5.

Now let us investigate the accuracy of scheme (15), (16). Let 2" = " — u"™, 2" = ¢ — 4", where
u™ = u(ty). Then scheme (15), (16) satisfies the relations
Dz — vAZ + Az(05) = P, YDz + aAz — BA05) = e, 20 =0, =0,

the approximation error is
7'4 1% 7'4 v 5
Du +-—Au + O(1),

U1

3840 720
2
Yo = (a+B -4+ [(a+38—1)A-(3y—20)f| +0(r).
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Hence, if the following conditions are met

at+B=7 a B, v= (), (20)

then ¥ =2 = O (7‘4).

To prove the convergence of the two-layer vector scheme (15), (16), we reduce it to a three-layer
scheme separately for y and its derivative 5. When operators D and A are permutable, i.e., DA = AD,
the following estimate is obtained |7|

lun(t) = u(t)l 4 + lune(t) — w ()]l p < M7,

Let us w = DY/2y, w = D24 instead of y, . Note that (DI/Q)* = D2 > 0 and the inverse operator
D12 = (D1/2)" > 0 exists.
After obvious transformations from (15) we obtain
ﬁwt - th + Aw(©®) = »1, 'yf)wt + ozgwt — ,Bgu')((w) = o,

21
w® = DY2y, @ = DY2(f0 — Aug), (21)

where &1 = D120, $y = D™1/2¢p,, D=E, A=DY2AD"/2 1t is clear that D = D* > 0, A =
A*>0and D A= AD. Consequently, there is no need for the permutability of operators D and A.
Then, eliminating from (21) first ), and then  and adding them, taking into account (16), we obtain
the following three-layer difference scheme

Biw"™! + Bow™ 4+ Bsw"™ ! =7F,, n=1,2,..., where w°, w! are given, (22)
~2 T i 72 72
By =~D +§(7—5)AD— ZB—OW A7,
By =2vD?* + <25 + 2ozfy> A2,
Hn2 T in 7 72
Bs =~D —5(7—5)1413— 2 B—av) 4%
~ T\ ~ ~ ~ T\ o ~
Fo = (vD - £8A) @7 + Az — (vD + 264) 17! — v A",
Equation (22) can be rewritten in the canonical form:
Ewg + TQEUJB + Aw = F, where yo, y1 are given, (23)
and operators in (23) have the following form:

B =17(By — Bs) = 7(y — B)AD = 7aAD,

—_ 1 ~ 2 -
R25(31+B3)=7D2— <T45—067) A%,
Z:

B{+ By + B3 = 4’)/(52 + 04112),

. ~n—1

_ P + &) T~
= 'yDgZ;‘j — 51‘1# + 'yAgpgi.

Bl

R =R

s

Hence it is clear that, B'=B> 0, =A>0,
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Now, based on the results of the theory of difference schemes [18], we check the fulfillment of the
stability condition for the three-layer difference scheme (23)

1
R>-A. (25)
4
A straightforward computation ensures that (25) holds if the following conditions are met

T <2/\/B. (26)

Condition (26) always holds if (20) is satisfied. Then, based on the results of the theory of difference
schemes [18,19], we establish the validity of the following theorem.

Theorem 3. Under condition (26), scheme (23) is stable in Hy by the initial data and by the
right-hand side, and its solution satisfies the following estimate

n
2 oz , 1 = 112
"% < 5+ 5 7 [ Fellgr (27)
k=0
From inequality (27), returning to the variable y and taking into account the definition of operators
A, B 'and F in (24), we obtain the estimate

197170 < o + D

B

(0%

7= |2k

Vg 171l 515

o 28

oh+ gt (28)
2

EERIPS:
v P
’ -1
D1 af AD
where M is a constant independent of 7 and h.
Let us apply the obtained estimate to assess the error of scheme (23). The z = y — u error satisfies

the equation Pz; + 72Rzgy + Az = 1), where ¢ = F — (Eu; + 72Ruz, + Au). Hence, the following
estimate

Y k
fonl e < ol + Mg (< Lollote]

e

B
Ta 2

Q

T \/ZTﬁng’tHZf)l

is valid for z.
Here 11, 19 are the errors in the approximation of the vector scheme (15).

Eliminating z and /z\, from relation (21), we can arrive at an equation of the form (23) for Z = ¢ — .
Then we obtain [|2"|| 7, = [[u" — y"|| 7 = O(7*) and [|2"]| 7, = [|[&" — §"| 1. = O(7*) at the point of
time t,, n = 1,2... . Therefore, based on estimate (28), under the conditions of (20), we obtain the
convergence of scheme (15) to the solution of the original problem wu(t,) € C°[0,T] with the fourth
order, i.e.,

ly(tn) = ulta)ll zo + 9(tn) = i(tn)ll 7 < M7™.

Therefore, for the error ||y(t) — u(t)||, Vt € [tn, tn+1], n =0, 1,.... the following result holds.

Theorem 4. Let the stability conditions (26) be satisfied. Then, if u(z,t) € C%[0,T], then scheme
(15), (16) converges to the solution of problem (13) and the following accuracy estimates are valid for
its solution:

ly(t) = w®)ll 7 < M7%, [l§(t) = a(t)l| 32 < M7*, Vt € [0,T].
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The second estimate of Theorem 4 is obtained using the results of Theorem 3 for the derivative Z.

To estimate the accuracy of schemes 3% and 4°, it is necessary to obtain an estimate of the error
z = up — u. Using the technique of such an estimate in the theory of difference schemes [18] of the
theory of the finite element method [17], we formulate the following results.

Theorem 5. Under condition (26), the solution to scheme 3% converges to a sufficiently smooth
solution of problem (4)-(6) and the following accuracy estimate holds

ly(t) = u(®)ll, < M(v* + h?).

Theorem 6. Under condition (26), the solution of scheme 4% converges to a sufficiently smooth
solution of problem (4)-(6) and the following accuracy estimate holds

ly(t) —u(®)ll, + 9(t) — @), < M(r* + h?).
5 Schemes with skew-symmetric operator

Let us investigate the stability by the initial data and the right-hand side of scheme (15), (16) with
operators D* = D > 0, A* = —A, and write it in the canonical form

BY,+AY =0; Y =(y,7), (29)

~ T _ -
5o D+ 3A 71:1 . A= A 0 )
aA 7D — 5B8A 0 —pBA
To prove stability by the initial data of scheme (29), we use the results of [20]. To do this, we take
a = 72/12 and represent the operator B in the form B = D + AC, where

b= ( o= (2 .
aA  ~D 0 5
Then, for the stability of scheme (29), on the basis of the results of the theory of difference schemes

[20], it remains to check the fulfillment of condition C*D + DC > D. This condition is met if a >
0, v > 0. Thus, taking into account (18), we arrive at the following statement.

Theorem 7. If the conditions o > 0, 8 > 0, ~ > 0, are satisfied, then scheme (29) is stable by the
initial data and the right-hand side in Hp and the following estimate

where

k
i < 1Y0ll5+ > Ikl
k=0

is true.

Based on this estimate, likewise in the previous sections, we obtain the accuracy of scheme (15),
(16) with the skew-symmetric operator A, i.e. the results of Theorems 1, 2, 5 and 6 are also valid for
scheme (29).

6 Algorithm for the implementation of the scheme (21)

Consider one of the possible algorithms for implementing the scheme (21). We rewrite it as

A N A A
MW + mig = @1, Ma1W + Mo = P2, (30)
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where

mi1 =D + 5147 mig = —vA, mao1 =aA, moy=~yD — 55/1,

- ~ T 7. ~ = ~ TR .
o1 =71 + (D — 514) w— yAW, ¢ = TP + aAw + (fyD + 5&4) w.
To calculate the integrals 7 and (2, we can use the Simpson quadrature formula.

Taking into account the permutable operators A and 15, we exclude w from equation (30):
A
Cw = F. (31)

Here C = yD? + 5y — B)AD — (%5 - 04’7) A2 F = maay — miagho.
Equation (31) can be solved either directly by inverting the operator C, or by factoring it

C=~vC1Cy =7 {52 — (=1 + xg)T/T]j) + :1:1:627'2112} , Cp = (D — kaA) , k=1,2.
Then, equation (31) is solved using the following algorithm:
MOTT = F, Cotd = . (32)

A
After determining & from (32), the solution of w is calculated, for example, from the equation
~ - A ~

(w - gﬁA) W = o — AW .

The scheme (14) is implemented as follows:
(D+o1Ay" " =[D— (1 -0)TAly" + 79, n=0,1,2,..,

0
Y = UpQ.

Remark. It is possible to prove the stability of scheme (15), (16) with variable operators A = A,,,
D = D, for example, in norm A,,. It is required that the operatorA,, be Lipschitz-continuous in t.

Conclusions

The methods of a high degree of accuracy for solving the first boundary value problem for a pseudo-
parabolic equation of a special form are developed and investigated in this article. These methods
are based on finite-difference and finite-element approximations in space and time. The stability and
convergence of the constructed methods are proved, and the accuracy estimates are obtained. An
algorithm for the implementation of the finite element method was developed. Other pseudo-parabolic
equations given in the introduction, as well as other types of similar equations, are investigated likewise.
We can study problems with other local and nonlocal boundary conditions.

The system of ordinary differential equations obtained by spatial approximation may turn out to
be rigid. A separate study will be devoted to this issue and numerical modeling, where, based on the
algorithm for implementing the method developed here, it will be tested on exact solutions in the form
of a Fourier series and the constructed methods will be compared with other methods. In addition, on
the basis of a computational experiment, the convergence rates of the method along the spatial and
temporal directions will be checked, as well as visualizations, which confirm these theoretical results.
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M. M. Apunos!, JI. Yrebaes?, M. M. Kazemmb6erosa?, P.I11. dpamos?

1 .
M.yawkbex amovindazvr O36excman yammok yrusepcumemi, Tawxenm, O36excman;
2Bepdax amwmdaen. Kapakasnax, memaexemmir yrusepcumemi, Hywic, O36excman

CoboJieB TUNITI TIceBAOIIAPab0JIAJIBLIK, TeHAEY1 YIIH YKOFaphbl
JRJIJTIKTET1 allbIpMAaIlbLIIBIK, CXeMAJIAPBIHBIH, XKTHAKTBIJILIFBI TYPaJIbl

CoboJieB TUITI TICEBIONAPAOOIAIBIK, TEHIEY] YIIIIH YAKBIT IIEH KEHICTIK OOMBIHIIA YKOFaphl J2JIIIKTEr] aKbIp-
JIBI afBIPBIMJIBIK, 9JIiCI MEH aKbIPJIbl 3JEMEHTTED 9ICIHIH OPTYpJI albIPhIMJIBIK, CXeMaJapbl YCHIHBIJIFAH
2KoHe 3eprresireH. Kenicrikreri 1ok TOPTIOIiH apTTHIPY €Ki 2KOJIMEH, aKBIPJIbI A BIPBIM/IBIK, CXEMACHI 2KOHE
aKBIPJIbI 9JIEMEHTTED CXEMAChl MEH KY3€re aChIPbLIIbI. YaKbIT OOMBIHINA Ti30EKTiH JOJIIriHIH *KOFaphl TOP-
TibiHe yaKbIT allHBIMAJIBICBIH apHAibl ipikTey apKbuLIbl KOoJ »keTkisinren. Twuicti anpuopibik Garasayiap
2KoHe OJIapIbIH HerisiHze 6actankpl qudOEpeHITHAIBIK, €CENT] MENTyIiH *KeTKITIKTI TericTiriMeH yChbIHbI-
JIFAH afibIPBIM/IBIK CXeMAJIAPBIHBIH JJIIITiHIH 6araaapsl aablHAbl. KyphlraH albIphIMIBIK, CXeMaJIapBIH iCKe
achIpy aJITOPUTM/IEP] XKy3ere achbIPbLIIbI.

Kiam cesdep: mceBmonapabosIaIbIK, TEHJEY, albIPBIMIBIK CXeMaJjiap, aKbIPJIbl aflbIPBIMIAP 9JTiCi, aKbIPJIbI
9JIEMEHTTED OJIiCi, alPUOPJIBIK barasiayaap, TYPAKTBLIBIK, KIHAKTHIIBIK, TIJIIIK.

M. M. Apunos!, JI. Vrebaes?, M. M. Kasumberosa?, P.I11. SIpiamos?

! Hayuonaavruti yrusepcumem Yabexucmana umenu M. Yayebexa, Tawkenm, Yabexucman;
2 . .
Kapaxaanaxckuti eocydapemeennoti yrusepcumem umernu Bepdaxa, Hykyc, Yabexucman

O cxoamMOCTH Pa3HOCTHBIX CXE€M ITOBBIIIIEHHON TOYHOCTH AJISI OJHOTO
ICEeBA0NaPadOoIMYIECKOT0 YPaBHEHNSI COD0OJIEBCKOIO THUIIA

IIpenaoxkensb! u nccIeqOBAHbBI PA3INYHBIE PA3HOCTHBIE CXEMBI METOIA KOHEUYHBIX PA3HOCTEN U METO/Ia KOHEY-
HBIX 3JIEMEHTOB BBICOKOTO MOPSIIKA TOYHOCTH IO BPEMEHU U IO IIPOCTPAHCTBY JIJIA IICEBIOIapa00IIMIECKOTO
ypaBHeHUsT cO60JIeBCKOro Tuma. 11oBbINEHNEe TOPsIKA TOYHOCTH 10 MPOCTPAHCTBY OCYINECTBJIEHO JIBYMSI
crrocobaMm: MEeTOOM KOHEYIHBIX PA3HOCTEH W METOIOM KOHEUYHBIX JIEMEHTOB. BBICOKUIT MOPSIOK TOYHOCTH
CXeMBbI TI0 BPEMEHHU JOCTHUTHYT 3a CYET CIENUAJbHON AUCKPETU3AIUU BpeMeHHO# mepeMenHoi. [losyuenst
COOTBETCTBYIOIIIVE AIIPUOPHBIE OIIEHKH, U HA UX OCHOBE OIIEHKN TOYHOCTHU IIPEJJIOZKEHHBIX PA3HOCTHBIX CXeM
MIpU JTOCTATOYHON TJIAJKOCTH PEIeHHsI UCXOMHON muddepeHImaabHoi 3a1a4un. Peann30BaHbl aaropuTMbl
BBINOJIHEHUA MOCTPOEHHBIX Pa3HOCTHBIX CXEM.

Karouesvie crosa: mceBaonapaboOIMIecKoe ypaBHEHHE, PA3HOCTHBIE CXEMBbI, METOJI KOHEYHBIX PAa3HOCTEH,
METO/T KOHEYHBIX 3JIEMEHTOB, OOOOIIEHHBIE PEIIEHNs], AIIPUOPHBIE OIIEHKH, YCTOWIMBOCTD, CXOJIUMOCTh, TOY-
HOCTb.
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On the hyperbolic type differential equation with time involution

In the present paper, the initial value problem for the hyperbolic type involutory in ¢ second order linear
partial differential equation is studied. The initial value problem for the fourth order partial differential
equations equivalent to this problem is obtained. The stability estimates for the solution and its first and
second order derivatives of this problem are established.

Keywords: involutory type hyperbolic equation, stability, Banach space.

Introduction

Delay differential equations are universal phenomenon applied their models in engineering systems
to behave like a real process [1-6].

Involutary differential equations have been studied in several papers [7—11]. In the paper [10], the
boundedness of the solution of the initial value problem

y'(t) = f(t,y(t),y(u(t)), t € I = (—o0,00), y(to) = vo, ¥'(to) = yo

for the second order ordinary differential equation with involution was investigated. Theorem on
stability estimates for the solution of the initial value problem for the second order ordinary linear
differential equation with involution was proved. Finally, theorem on existence and uniqueness of
bounded solution of initial value problem for the second order nonlinear ordinary differential equation
with involution was established. Presently, spectral questions of differential equations with involution
were studied in papers [12-20].

Delay hyperbolic differential equations have been investigated in several papers [21-25|. Partial
differential equations with involution terms have deeply different properties of solutions then without
involution terms [26,27|. Therefore, it is important to study properties of partial differential equations
with involution.

In the present paper, the stability of the solution of the initial value problem for the hyperbolic
type time involution partial differential equation

% — QUgy (1, 2) — bugy (—t,z) = g(t,x), t, x € 1,
(1a)
u(0,z) = ¢(z), uw(0,2) =¢(z), z el

is investigated. Here, g(t,z) (t,x € I), ¢(z) and ¢ (x) are given smooth functions. The stability estimates
for the solution and its first and second order derivatives of this problem are established.

*Corresponding author.
E-mail: aallaberen@gmail.com
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1 Stability of problem (1a)

Theorem 1.1. Assume that g(¢, x) is a continuously differentiable and bounded function and g(0,z) = 0
and ¢(x) is a twice continuously differentiable and bounded function and #(x) is a continuously
differentiable and bounded function and |b] < a,a € (0,00). Then, for solutions of problem (la) the
following stability estimates hold:

sup [u(t, )] < My(a,8) | sup o(a)| + / ()| dy + / / 9y, )| dydz | | (1b)

teel
—00 —00

sup |u(t, z)| + sup |ug(t,z)| < Mi(a,b) [sup|gpm(:n)|

t,xel t,xel zel
+sup [¢(z +sup / lg(y, =)|dy| , (1c)
xel
sup |ug(t, )| + sup |uge(t, )| + sup |u(t, )|
txel txel txel
< M>(a,b) lsuplwm(x)\ + sup [tz ()| + sup !g(t,x)!] : (1d)
xel xzel txel

Proof. Problem (1a) can be written as abstract initial value problem

dtg) + aAu (t) + bAu (—t) = g(t), t € I,

u(0) = ¢, u'(0) =9

in a Banach space C(I) of all continuous and bounded functions f(z) defined on I with norm
1fllcery = sap | f(z)].
zel

Here, positive operator A defined by the formula
Au = —u"(z)

with domain D(A) = {u:u(z), v"(x) € C(I)}, g(t) = g(t,z) and u(t) = u(t,z) are known and
unknown abstract functions defined on I with values in C'(I) and ¢ = ¢(z), ¥ = ¥(z) are unknown
elements of C'(I). Now, we will obtain the initial value problem for the fourth order differential equation
to problem (2a) under smoothness conditions of solution. Differentiating equation (2a), we get

3u —t) =
d t?gt) aAu (t) bAu,( t) = gi(t),
d*u —t) =
dtit) + aAu” (t) + bAU" ( t) gtt(t)' (3)

Using these equations and initial condition and equation in problem (2a), we get

u(0) =, W'(0) = v,
W (0) = — (a+b) Ag,
W (0) = (—a+b) A¢ + gy(0).
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Putting —t instead of ¢ in equation (2a), we get

u(—t) + aAu (—t) + bAu (t) = g(—1). (4)

Applying equations (2a), (3) and (4), we get

4u 2u
ddtit) + aAddtst) +bA [—aAu (—t) — bAu (t) + g(—t)] = gu(t),
2u
bAu (—t) = 4 dt2(t) —aAu (t) + g(t)

From these equations it follows equation

4 2 2
d uit) +(1Ad u2<t) —CZA _d Uz(t) —aAu(t) +g(t) —b2A2u (t) — —bAg(—t) +gtt(t)
dt dt dt
or
4 2
L) 4 04T | (a2 1) 420 (1) = adg(t) — bAg(—) + gu (1)

Then, we have the following initial value problem for the fourth order abstract differential equation

Tu) L 2gALHO 4 (a2 — 1) A%u(t) = F(8),

F(t) = aAg(t) — bAg(—t) + gu(t), t € I,

(5)
u(0) = ¢, w(0) =9, v’ (0) = = (a+b) Ap,
u”(0) = (—a + b) Ay + g.(0).
Now we will obtain solution of the initial value problem (5). It is easy to see that
d*u (t) d?u (t) 9 L9\ 42 d? d?
o +2aA T2 T (a® = b%) A%u(t) = (dt2+(a— |b|)A) (dtz—i-(a—i-|b\)A>u(t).
Therefore, problem (5) can be written as abstract initial value problem
(& + (a+ b)) A) () = v(t), u(0) = ¢, w/(0) =,
2
(4 + (a= o) A4) v(t) = F (1),
(6)

F(t) = aAg(t) — bAg(—t) + gu(t), t € I,

v(0) = (=b+[b]) Ap,

v'(0) = (b+[b]) AY + ¢'(0)

for the system of second order abstract differential equations in a Banach space C(I). Problem (6) can
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be written as initial value problem

PULE) (04 b)) g () =0 (), £, 7€,

u(0,7) = ple), wl0,2) = b(x), x €T,
% - (a - |b|)uxx (t7$) = F(t,x),

F(t,fL’) = _agaix(tvx) + ngl‘(_tax) + gtt(t,l’), ta T e -[7

U(va) = (_ ‘b‘ + b) (P:L’x(x)v

L 0(0,2) = (= [b] = b) Yuu(z) + ¢'(0,2), x €T

for the system of hyperbolic equations. Applying Dalambert’s formula, we get

:B+\/GT|()‘t
o(z + /a+ |blt) + ¢(x — \/a + |blt) 1
u(t,x) = + d
(t,x) 2 2v/a+ 0] P(§)dE
z—/at|blt
t x4/ a+|b|(t—7)
+/ —[b| +b ¢££(§+\/a—\bT)Jr@gs(E—\/a—le)dng
a+ |b| 2
ol
t z++/a+|b|(t—7) E++/a—|b|T

1

_ _ bl + b) Yax(N)dAdedr

/ 4v/a? — b2 / / (
0 z—/at|b|(t—7) E—+/a—|b|T

t x4/ a+|b|(t—7) E++/a—|b|T
1 /
NI - 0, \)dAded
/ 4va? — b2 / / g0, A)dAdedr
0 a+|b (t T)E— \/77'
; wtJat () - E4y/a (D)

1
—— F(p, N)dX\dpdédr.
/4\/(12—172 / / / (p, A)dAdpdtdr
0 Varbl(t—r) O &=\/a=tl(r—p)

= D1t x) + Jot, ) + J3(t, x) + Ja(t, @),

where
a++/a+[b]
() = P ESTETIO + o~ QHW)*N;TW [ vie -
t x4/ a+|b|(t—T)
nita) = | 2—lbl++|bb| / sosg(€+\/a—7lblf);sogg(€—\/WT)d§dT,
w—/a+[bl(t—7)
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; a+y/atb](t—7) E++/a—[b]7
1
_ [ bl + b) ax (N)dAdédr,
D= [m= [ [ Gl
a—/at]bl(t—7) E=/a—blr
. v /atlbl(t=r) 7 &+y/a=pl(r—p)

/ . a2 / / / F(p, \)dA\dpdédr

g—/atpl(t—7) O e—\/a—]b|(r—p)

¢ z++/a+|b|(t—7) E++/a—|b|T
1 /
TR - 0, \)dAdEdr.
/ 4v/a? — b? / / g0, Aydrdedr
0 Vatbl(t—7) E—/a—b|r

Now, we will estimate Ji(t,z), k = 1,2,3,4, separately. First, we start with estimates for Ji(t,z).
Applying the triangle inequality and formula (7), we get

|J1(t, z)| < Mi(a,b) {Supso |+/|¢ dy}

|J1’t(t,$)‘ ) ‘Jlﬁ(tax)’ < Mll(aa b) |:SUII) |§0m($)’ + SuII) W(x)|] )
e xe

’JLtt(t’x)’ ) |J1,t1‘(t7x)| ) ‘Jl,a:m(ta .I')‘ S Mlll(a7 b) |:SUI? ‘90$$<x)’ + SuII) |¢£B(x):|
Te e

for any ¢, x € I. Second, we will estimate Ja(¢,z). We have that

Jo(t,z) = b= b [<x+ a+|b|t)

2¢7
o (v = Va+Tlt) — ¢ (v + Va—Plt) — ¢ (2 = va— blt)] -

Applying the triangle inequality and formula (7), we get

| J2(t, )| < Ms(a,b) Sup lp()]
xre

[J24(t, @), [Joa(t, )| < Ma(a,b) sup oz ()],
xe

[t @)l [ 200 (8 2] [ T200 (t, 2)] < Ma(a, B) SUP |02z ()]

zel
for any ¢, x € I. Third, we will estimate J3(t,z). We have that

Jg(t,x)z/%[w(x+ at bt —7) + a+|b|7)+¢(:c— a+|b|(t—7-)—\/a+]b|7->
0

—z/;(ac— @+ [B|(t — ) + a—]b[7>+¢<x—|— a—i—]b[(t—f)—\/a—\bT)]dT. (8)

Applying the triangle inequality and formula (8), we get

Js(t, )| < Ms(a,b) / () dy,
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|‘]3,t(t7x)| ) |J3,x(t7 :E)‘ < M3(a7 b) SUI}) |w(1")‘ )
xe

‘J3,tt(t7x)| ) ‘J3,t513(t7 ‘/L‘)‘ ) |J3,xz(t7x)| < M3(a7 b) SUII) W]x(x”
S

for any ¢, x € I. Fourth, we will estimate Jy(t,z). We have that

t :D+\/(T|b‘(t_7—) T 5-}—\/(1—7‘!)‘(7—7’)

Talt,z) = 4\/a21ﬁ / / / / (—agan(r, A) + bgan (— 1, A)] dAdrdédr

O z—/atpi(t-7) O e=\/a=o|(r—)
¢t Tty atbl(t—7) 5 E+y/a—[b](T—7)
1
I o (1, NdNdrdédT
4m/ / / / g AJdrde
0 o—\fatppl(t—r) O g—y/a—]p|(r—r)
atr/at[b|(t—7) E++/a—b]7

t
1 /
+—— 0, \)dAdédr.
4?2—1)2/ g'(0,\)d\dEdr
0 4 a+|b|(t77)£fﬂ‘r
Applying formulas
r &+ya—[bl(t—7)
2a 2b
/ / [—aga\ (7, A) 4+ bgan (—r, \)] dAdr = ng(ﬂ ) — T\I)\g(_77 )s
O e—y/a—[p|(r—r)
- ey plr-n) £+/aTolr
[ amovdar=2va=Taro - [ Jona
0 e—\/a—b|(r—) €—/a—[b|r
we get

. t T+ a+|b|(t—T7)
a
e — —g(T,
2\/a2—b20/ / [w/a— Tk
z—+/a+|b|(t—7)
t T+y/at[b|(t—7)

1
_i_i
2va? — b? / /
0 g /at|b|(t—T)

Applying the triangle inequality and formula (9), we get

J4 (t, l‘) =

€) dédr

- \/ab—illﬂg(_ﬂg)]

a — [blg(r, €)dédr.

a(t, )] < Mi(a,b) / / 19(y, )| dyd,

—0o0 —O0

[Jaalt,2)], [ Jaa(t,2)| < Ma(a,b)sup / 9y, 2)| dy,
xTre

‘J4,tt(ta l‘)| ) ’J4,t$(t>x)‘ ) |J4,:L‘a?(t7x)| < M4((1, b) Sup[ |g(t,x)|
t,x€

for any ¢, x € I. Combining the estimates for Ji(t,x),k = 1,2, 3,4, we obtain estimates (1b)-(1d).
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2  Conclusion

In the present paper, the initial value problem for the hyperbolic type time involution linear partial
differential equation is investigated. The equivalent initial value problem for the fourth order linear
partial differential equations to the initial value problem for this second order linear partial differential
equations with involution is presented. The stability estimates for the solution and its first and second

order derivatives of this problem are proved.
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YaKbITThl THBOJIIOIASJIBI TUIIEPOOJIAJIBIK TUIITI AuddepeHIaIabIK

46

TeHJIey >KalbIH/Ia

Maxkanana exiurni perti gepbec TYBIHIBLIAPIAFH! t CBI3BIKTHIK, TEH Iy Ier] TUIepOOoIaIbIK TUIITETT WHBOJIIO-
NUSTBIK, TeHAEeYAiH Oactankbl ecebi 3eprreseni. Teprinmt perti mepbec TYBIHABLIBI TEHIAEYIEP VIIIIH OCHI
€CeITiH, SKBUBAJEHTTI OacTankbl ecebi ajblHbl. 2Korapblja aTajfaH eCenTiH ImermiMidiH, OipiHIm KoHe
eKIHIII PeTTi TYBIHIBIIAPBIHBIH, TYPAKTBLIBIK, Oafaayaapbl AJTbIH b

Kiam cosdep: MHBOJTIONUSLTBIK, TUIITI TUIIEPOOJIAJIBIK, TEHIEY, TYPAKTHIIBIK, BaHax KeHIiCTiri.

. Ampipasnsies’ 23, A. Amsipassies?, B. JIMOXaMM
A A ambles 23 AL A asnbles?, B. AGnamvoxammen!

! Viueepcumem Bazvewezup, Cmambya, Typuus;
2 Poccutickuti yrusepcumem dpyoicvs napodos, Mockea, Poccus;
3 Mnemumym Mamemamuky & MamemMamuseckozo modesuposaru, Armamst, Kazaxcman;
4 Typrmencrutl 2ocydapemeenmoili apTumesmypro-cmpoumers s uncmumym, Awrabad, Typxmerucman

O muddepennuasbHOM ypaBHEHUN TAIIEPOOJINYIECKOTO TUIMA C
WHBOJIIOINEN 110 BpEMEHU

B crarbe U3y4vYeHa HaYaJIbHad 3ada4a [1Jid WHBOJIOTUBHOI'O YPaBHEHUA rnnep6om/1qec1<oro THOAa B t JU-
HEHHOM YpaBHE€HUHN B YaCTHBIX IIPOU3BOAHBIX BTOPOIr'O IOPAIKA. Honyqua SKBUBAJIEHTHas 3TOM 3aJa4e
HadaJiIbHad 3a/a4a JIJId ypaBHeHI/IfI B 9aCTHBIX IIPOU3BO/IHBIX YE€TBEPTOI'O IIOPAIKA. YcTaHOBJIEHBI OIICHKIN
yCTOI‘/'I‘II/IBOCTI/I pereHnsa U ero IMpou3BOAHBIX IIEPBOT'O M BTOPOT'O IIOpAIKa yKa3a,HHOI71 BBIIIIE 3aJa4U.

Karouesoie caosa: TUIepOOINIECKOE YPABHEHIE HHBOJIIOTHBHOIO TUIIA, YCTONYMBOCTH, HAHAXOBO IIPOCTPAH-
CTBO.
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Numerical solution of the boundary value problems for the parabolic
equation with involution

In this work, we study two boundary value problems for involutary parabolic equation with the first and
second kind conditions. We propose absolute stable difference schemes for numerical solutions of these

boundary value problems. Actually the stability estimates for solutions of difference schemes are proved.
Later error analysis for the numerical solution of both difference schemes are illustrated by test examples.

Keywords: involution, parabolic, finite difference scheme, stability estimate, boundary value problem.

Introduction

It is well known that various models in physics can be reduced to a parabolic equation with delay
and involution. Time delay and involutary parabolic equations with local and non local boundary
conditions have been investigated by several researchers [1-17].

1 Finite differences for involutary parabolic equation with Dirichlet condition

We consider boundary value problem for parabolic equation with involution and Dirichlet condition
as follows

u(t, ) — (a(@)us(t, ), + du(t,z) + q (= (a(x)w(—t, 2)), + du(—t,z)) = f(t,z),
tel, ze(0,0),

u(0,2) = ¢(x), z €[0,1],

[ u(t,0) =0, u(t,l)=0, tel.

Here and in future a, ¢ and f are given smooth functions and § and ¢ are known numbers such that
a(x) > ag >0, Vx € (0,1), 6, |q| <1, [ = (—00,00).

1.1 Stability of differential problem
Denote by WZ(0,1), the Sobolev space of all functions v(z) defined on [0, 1] equipped with norm

1 1
2 l 2

l
2
oo = | [ @) +{ [0 @] as
0

0
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Theorem 1. Let ¢ € W2(0,1) and f(t,x) be continuously differentiable on I x [0,]. Then, for the
solution of initial boundary value problem (1) the stability estimates

o
super [[u(t, ), 0, < M(5) [||90HL2(0,1) + ) a0 dS] ;
super [[ue(t, )l £y 0.0) + suPrer [lue(t, ) llwz o, < (2)

< M(9) [”SOHWg(o,l) HIFO oo+ S 100 dS]

hold, where M (4) does not depend on both functions ¢ and f.
Proof. One can write problem (1) in the abstract initial value problem

u(t) + Au(t) + g Au(—t) = f(t), t €I,
(3)
u(0) = ¢.

Here A = A7 is a self adjoint positive definite operator in H = Ly(0,[) which is defined by formula
Au(z) = = (a(z)uy (1)), + du(z) (4)
with the domain D(A) = {u € W(0,1) |u(0) =0, u(l) =0 }, ¢ = ¢(z) is given element of H and

f(t) = f(t,z) is a given abstract function. The proof of Theorem 1 is based on the stability of abstract
problem (3) and positiveness and self-adjointness of the abstract operator A defined by (4).

1.2 Stability of difference problems

Let [0,1], = {xn =nh, 0 <n < M} be grid space. Denote by Loy = Lo [0,(],, Hilbert space of
grid functions p"(z) = {p”}é\/l defined on [0, ], equipped with norm

|

To the operator (4) we assign the difference operator by formula

1
2
2

= > ‘ph(w)‘

z€[0,1],,

Ajph (@) = — (a(@)ph(@)) +6p" ()

acting in the space of grid functions p"(z) = {p”(x)}é\/[ and satisfying the conditions p =0,

p™ =0, where

R . PRk
p%:T7 1<i< M, pﬁ:T,ngSM—l.

In the first step of discreatization we get the following Dirichlet problem
h z, h x, h(__ _ fh
ut(t,x) + Afu(t, ) + qAju"(—t,x) = f"(t,x), t € I,

uh(0,2) = o"(z),x € [0,1],,.
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In the second step of discreatization one can construct the first order of accuracy difference scheme

uh xT —’LLh T
SO | Azuh() + ATl (x) = fR(@), fi(x) = it ),
ty=Fkr, ke Z, xe [0,1,, (5)

uf(z) = "(x), z € (0,1,

and the second order of accuracy difference scheme

h( )_uh7 ( ) T €T
M %(Ahuk( ) + qAful  (x)) + %(Ahuk nes )‘*’th“}ikH(ﬂC)) =

h h .
= k+%(37) =f (tk+%7x)7 tk+% = (k+ 5) T

tr=kr,ke Z, xe [0,1],,

uf(z) = "(x), x€ [0,1],.

Theorem 2. Let T and h be sufficiently small positive numbers. Then, for the solution {u,};(m)}ioooof
difference schemes (5) and (6) the stability estimates

g ol <360 [l + 5 I, |

keZ
h_ . h
sup kot L iz < (7)

fe=tia fkl

< M) [kuwgh I + S

Lap ]
are valid, where M (J) does not depend on 7, h ¢ and f.
Proof. Difference schemes (5) and (6) can be rewritten as the following abstract difference schemes

UZ_UZ—l + A h A h _ rh kLeZ
p huk+q AU _fk;7 € 4,

(8)
up =¢"
and
up—up_, LA uh Al l A A® h
S g (Apug +gApuly ) + 5 (Apufl_y +aAful ) = fk+%’ o)
9

ke Z, ug = ",

correspondingly. So, the proof of Theorem 2 is based on the stability of the difference schemes (8) and
(9) on the positive definiteness and self-adjointness of the operator A" in the Hilbert space Lyy,.
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2 Finite differences for involutary parabolic equation with Neumann condition

Let us take boundary value problem for parabolic equation with involution and Neumann condition
as follows

(w(t,z) — (a(z)us(t, x)), + oult,z) + q (— (a(x)u(—t, x)), + ou(—t,x)) = f(t,x),

tel, xe€(0,0),
(10)
u(0,2) = ¢(x), z €[0,1],

[ uz(t,0) =0, uy(t,l)=0, t€l.

Theorem 3. Let ¢ € W2(0,1) and f(t,x) be continuously differentiable on I x [0,1]. Then, for the
solution of initial boundary value problem (10) the stability estimates (2) hold.

Proof. One can write problem (10) in the abstract initial value problem (3), where A = A” is a
self adjoint positive definite operator in H = L2(0,1) which is defined by formula (4) with the domain
D(A) = {u e W§0,1) |ugy(0) =0, uy(l) =0}. So, the proof of Theorem 1 is based on the stability
of abstract problem (3) and positiveness and self-adjointness of the abstract operator A defined by (4).

To the operator (4) we assign the difference operator by formula

Ajp" (@) = = (a@)ph(@)) +0p"(@),

acting in the space of grid functions p(z) = {p”(m)}g/j and satisfying the conditions p? = 4p! — 3y,
pM=2 = 4pM-1 _3p)M  where

% i—1 k+1 k

L 1<i<M, pﬁ:%,ongM—L

S
After discreatization one can construct the following difference schemes
h

u :c—uh x
Al L Agul (@) + g ATl (2) = f(@), fR() = f(t ),

T

th=kr, ke Z, x € [0,1],, (11)

uf(z) = "(x), = € [0,1],

and
h

u (w),uh7 (z) x T T x
s % (Ahuz(f’f) + thu}ik(x)) + % (Athq(iU) + th“EkH(l‘)) =

T

- 1?+%($) = fh(tk%,m), bptl = (k+3) 12)
te=kr, ke Z ze [0,1,,

uf(z) = "(x), v € [0,1],.

Theorem 4. Let 7 and h be sufficiently small positive numbers. Then, for the solution {uZ(x)}ioooof
difference schemes (11) and (12) the stability estimates (7) are valid.

Proof. Difference schemes (11) and (12) can be rewritten as the abstract difference schemes (8) and
(9), correspondingly. So, the proof of Theorem 2 is based on the stability of the difference schemes (8)
and (9) on the positive definiteness and self-adjointness of the operator A” in the Hilbert space Loy,
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8 Numerical implementation

In this section we will consider test examples with the first and second kind boundary conditions.

3.1 Test example for first kind boundary condition

Test example 1. Consider boundary value problem for parabolic equation with involution and
Dirichlet condition

(urlta) — (2 + cos(@)us(t,2)), + ult,) — (2 + cos(@))us(~t,2)), + u(~t,a) = f(t,2),

f(t,z) =costsinz, t € (—m,x), z € (0,7),
(13)
u(0,z) =0, x € [0, 7],

[ u(t,0) =0, u(t,l) =0, t € [-m ]
Here and in future we define sets of grid points as follows
[—m, 7] x [0, 7], = {(tr, ;) : ty =k, =N <k<N, 2;=ih, 0<k<M, NT=n, Mh=rmn}.

By using Taylor decomposition in two points

u(ty) —u(tp_1) = 7u'(t) + 0(7’2), (14)
u(te) — u(ty_,) = %u’(tk) + %u’(tk,l) +o(r?), (15)
u//(xn) _ u(xn-l—l) - 2u(xn) + u(xn—l) + O(h2), (16)

h2

we present the first order of accuracy difference scheme in ¢

n o __,n n+l_ n—1 n+l_ n—1
B U (24 cos(ay)) Sk e Q;LQ’Z—W’“ + sin(zy,) A b — + ul—

T

n+l_2unk+unfl n+1 n—1

— (24 cos(an)) T sin(@,) g uty, = R = F (b wn),
ty =kr, —-N+1<k<N, (17)

u) =0, uM =0, k=0,+1,£2,...,£N,

ug =0, vp=nh, n=0,1,.... M
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and the second order of accuracy difference scheme in ¢

up —upy o (2tcos(wn)) ((upt=2upiupmt o wlfT-2ul i uptuny
T B 2 h2 + h2 + 7 T

psinGen) (utlougTt w1y
2 2h 2h

_ (2+00;(2n)) <“Z+i2“]§21+“21 + U”ti12U’;§+1+unki1> +
(18)
+Sin(2xn) (%ﬂ;}:ﬂ?_i + “z:i12_hu7—bk-1-1) + “Z—lJFQUT—Lk-H —
_ ¢k - 1 — - <k<
f(t,H_%,:v), tk+§ (k+2)7, ty, =k, —N+1<k<N,
u) =0,uM =0, k=0,£1,42,..., &N,
uy =0, z, =nh, n=0,1,..., M.
Later, system of equations (17) and (18) can be rewritten in the matrix form as follows
ApUn1 + ByUp + CnUn—l-l = Rpp, n=1,..,M —1,
(19)

Up=0, Uy = 0.
Here R is identity matrix. For solving (19) we apply modified Gauss elimination method by formula
U, =0a,Upy1+Bn, n=M-—-1,...,1,0, (20)

where o is matrix with zero elements and vector 5y with zero elements, matrices «,, and vectors 3,
are defined recurrently by

Qp = (Bn + Ananfl)_l Ana

Bn = (Bn + 1471047171)71 (R@n - Ay /anl) , (21)
n=1,.,M-1.
Error is calculated by formula

Error(N,M) = oy AX ‘u}c — u(ty, ;)

, (22)

where uﬁg and u(tg,z;) (k = 0,+1,...,+£N, i = 1,..., M) are values of solution of difference scheme
and differential problem at point correspondingly. Table 1 shows that if numbers N and M increase by
factor 2 then the values of errors decreases by a factor of approximately % for the first order difference
scheme (17) and  for the second order of accuracy difference scheme (18).
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Table 1

Error analysis for test example (13) with Dirichlet condition

N = M | 1st order difference scheme | 2nd order difference scheme
10 0.531 8,35x1072
20 0.351 2,88%x1072
40 0.208 7,36x103
80 0.115 1,92x107°
160 6,09%x10~2 5,01x10~2
320 3,13x10 2 1,28x10~*

3.2 Test example for second kind boundary condition

Test example 2. Consider boundary problem for involutary parabolic equation with Neumann
condition

(ue(t, ) — ((2+ cos(x))ug(t,x)), + u(t,z) — ((2+ cos(x))uy(—t,z)), + u(—t,x) = f(t,x),

f(t,x) =costcosz,t € (—m,7m), z € (0,7),

(23)
u(0,2) =0, = € [0,7],
ug(t,0) =0, ug(t,l) =0, t € [—m, 7).
By using (14), (15), (16) and
UI(O) _ —u(xg)+4u}f§:1)—3u(mo) + 0(]12),
' (m) = U(Qfoz)—4“(ié»171)+3u($M) + o(h2),
one can get the first order of accuracy difference scheme in ¢
( n _,mn n+1_ n n—1 n+1_ n—1
ML (24 cos(an) T o sin(ag) St o+ up—
n+l_ n n—1 n+l_,  n—1
— (2 + cos(wn)) I gin(a,) S o, = fR

W) =up, uf =u T k=0,+1,4£2, ..., +N,

ug =0, vp=nh, n=0,1,.... M

54 Bulletin of the Karaganda University



Numerical solution of the boundary value problems ...

and the second order of accuracy difference scheme in ¢

Uk R (eos(ea) (i —2updup £ gn
T - 2 A2 + RZ U

n+1_ n—1

. +1 n—1 n n
sin(zy,) [ up ' —up U_p —U_p uptuly
+— < 5% + 5% + 57—+

_|_(2+0025(xn)) <u2+%_2“]§2—1+“21 + until_zu%§+1+“nki1> +
(25)
(2—sin(z,)) [(whii—up_y | wiii—ul up_4ult,
+ 5 ( k 12h k—1 + k+12h k+1 _|_ k—1 5 k+1 —
= fh(thr%,x), tpyl = (k+3)7 ty=kr, -N+1<k<N,
3u) =du} —u?,3u) = 4wt — Tk =0,£1,42,..., £N,
[ ug =0, zp =nh, n=0,1,..., M.
System of equations (24) and (25) can be written in the following forms
ApUp—1+ B U, + CnUnJrl = RSOTL’ n=1,.,M—1,
(26)
Up =U1, Uny = Unr-1,
and
AyUn—1+ BoU, +CoUpy1 = Rpp, n=1,..,. M —1,
(27)

3Uog =4U; — Uy, 3Upy = 4Upn—1 — Up—2,

correspondingly. For solving (26) we use formula (20), where ap = R is identity matrix and vector
Bo has only zero elements, matrices «,, and vectors 3, are defined by (21). Errors are computed by
formula (22). Let us move to (27). We seek solution (27) in the form (see |18, 19])

Un =anUps1 + BUpy2+vn, n=M—-2,M —1,...,1,0.
Here auxiliary matrices «ay,, 8, and vector v, are calculated by formulas

an = —Dp(An + Crfn-1), Bn =0,

Yn = Dn (Ron — Cn Yn-1),

Dp=Bn+Chan 1), n=0,..,M-2,

ag=3R, Bo=—3R, a1 =ER, f1=—2R, yo=m = 0.

At the same time formulas for unknown Uj; and Ups—q are given in [19].
Table 2 shows that if numbers N and M increase by factor 2 then the values of errors decrease by
a factor of approximately % for difference scheme (24) and 1 for difference scheme (25).
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10

11

12

13

14

15

16

Table 2

Error analysis for test example (23) with Neuman condition

N = M | 1st order difference scheme | 2nd order difference scheme
10 0.619 8,41x1072
20 0.414 2,91x1072
40 0.253 7,41x1073
80 0.144 1,95x107°
160 7,77Tx1072 5,03x107%
320 4,05x1072 1,30x10~7
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aBoaonusibl napadoJIaiblK TeHAey YIIH IIeTTIK ecenTepaiH,
CaHJBIK HIENTiMi

MakaJrazia GipiuIi >KoHe eKiHIm THMTI mapTTapbl 6ap dBOIIONMSILIK TapaboJIaJIbIK, TEHEY/IiH eKi MeTTIK
ecenrrepin 3eprrenred. OChI METTIK €CenTep/Ii CAHIBIK, TYP/Ie eIy YIIiH abCOTIOTTI TYPAKTHI affbIPBIMIBIK,
CXEeMAJIaphl YCHIHBLIFAH. ANRBIPBIMIBIK, CXeMaJapbIHbIH, MIENiMAePIiHiH TYPaAKThUILIFBIH Haraiay ic »Ky3iH-
ne mostesiieH . EKi affbIpbIMIBIK CXeMACBhIHBIH CAH/BIK IIEITIMIHIH KAaTeJiKTepiH ojlaH opi TaJijiay ChIHAK,
MBICAJIIAPBIMEH KEJITipiJreH.
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YucsienHoe perieHne KpaeBbIX 33/1a49 JJIs ITapadoImIecKoro
YPaBHEHUsI C MHBOJIIOIINE

B crarpe nccimemoBann Be KpaeBble 33/1a9u 1T 9BOJBBEHTHOTO MapabOJIMIeCKOTO YPABHEHUS C YCJIOBU-
sIMH II€PBOTO U BTOPOro poza. IIpesozkeHbl aOCOIOTHO YyCTONYNBBIE PA3HOCTHBIE CXEMBI JIJIsl HNCJIEHHOT'O
peleHust TUX KpaeBbIxX 33 1a4. PaKTHUIECKN JIOKA3aHbI OIEHKH YCTOWYUBOCTH PEIICHUN PA3HOCTHBIX CXEM.
Jagpuefnnii aHAJIN3 MOT'PEINTHOCTEH YMCJIEHHOTO penreHnsi 00enX PA3HOCTHLIX CXEM MPOUJIIIOCTPHPOBAH
TECTOBBIMH IIPUMeEPaMu.

Karouesvie ca06a: MHBOJIIONHS, TapaboJia, KOHEYHO-PA3HOCTHAST CXEMA, OIlEHKa YCTONYMBOCTH, KpaeBasl 3a-
nadJa.
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Solution of heat equation by a novel implicit scheme using block
hybrid preconditioning of the conjugate gradient method

The main goal of the study is the approximation of the solution to the Dirichlet boundary value problem
(DBVP) of the heat equation on a rectangle by developing a new difference method on a grid system
of hexagons. It is proved that the given special scheme is unconditionally stable and converges to the
exact solution on the grids with fourth order accuracy in space variables and second order accuracy in
time variable. Secondly, an incomplete block factorization is given for symmetric positive definite block
tridiagonal (SPD-BT) matrices utilizing a conservative iterative method that approximates the inverse of
the pivoting diagonal blocks by preserving the symmetric positive definite property. Subsequently, by using
this factorization block hybrid preconditioning of the conjugate gradient (BHP-CG) method is applied to
solve the obtained algebraic system of equations at each time level.

Keywords: Heat equation, implicit scheme, hexagonal grid, stability analysis, symmetric positive definite
matrix, approximate inverse, incomplete block factorization, block hybrid preconditioning, conjugate gradient
method.

Introduction

For many mathematical models, especially partial differential equations (PDEs), their analytical
solutions are not available. Therefore, for computing the approximate solutions economical and stable
numerical algorithms based on effective theoretical results are getting more important as more advanced
computers are designed.

Among some numerical methods for approximating the solutions of PDEs, the finite difference
method is a widely used approach and the construction of stable and time efficient schemes are essential.
Recent advances in finite difference methods for solving PDEs include [1-7].

More then a half century ago, in 1967, the approximation of the pure diffusion equation

ou_ oo
ot 0x? 023

on regular hexagonal grids was analyzed by giving two implicit difference schemes, defined on three
layers with 21-point and on two layers with 14-point both with fourth order accuracy in space and
second order accuracy in time [8].

Since then, the applicability of the hexagonal grids in many branches of science has been investigated.
Among them is the research on eligibility of the icosahedral-hexagonal grids in meteorological applications.
Finite difference schemes on a spherical geodesic grid were given to integrate the barotropic vorticity
equation [9,10]. Further, the hexagonal grid was extended to the integration of the primitive equations
of fluid dynamics [11-13|. Later, an integration scheme of the primitive equation model by using on
icosahedral-hexagonal grid system with an application to the shallow water equation was given [14].
Additionally, for the simulations of oscillations in shallow circular basins, finite difference techniques

*Corresponding author.
E-mail: suzan.buranay@emu.edu.tr
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on the irregular grids were analyzed [15]. Furthermore, hexagonal grids were used for the simulation
of atmospheric processes [16].

Nowadays, the investigation of triangular and hexagonal system of grids has gained more interest
in engineering, applied sciences, computer science, natural sciences and in environmental sciences.
Such as the numerical solution of boundary value problems of PDEs using finite difference method
in convection diffusion equation [17], in the Laplace equation [18], and in the heat equation [5], and
derivatives of the solution to the heat equation [6,7|. Additionally, hexagonal grids were also used in
finite volume method [19]. For digital image processing and graph processing, some examples include
[20] where digitized rotations of 12 neighbors on the triangular grid were given by considering more
general setting especially the midpoint, the corner points and the edge midpoints as rotation centers.
Also, in [21] the bijectivity of the digitized rotations for the closest neighbors in rectangular, triangular
and hexagonal grids were compared. In addition, the firefighter problem, which is an iterative graph
process, was studied on hexagonal grids in [22]|. For hydrologic modelling, we mention the study by
[23] in which a watershed delineation model using the hexagonal grid spatial discretization method
was developed.

The contributions of this work can be summarised as: the DBVP of the heat equation

2 2
?;;:w(g;% ((?);g)—bu+f(x1,xg,t), (1)
given on a rectangle D where w > 0, b > 0 are constants is considered. A new difference method of order
of convergence O (h4 + 72) with 14-point on two layers constructed on hexagonal grids is proposed.

Here, the increments in the variables x1 and zo are denoted by A and @h accordingly and 7 denotes
the increment in time. Further, the unconditional stability of the given scheme is shown. Furthermore,
for SPD-BT matrices an incomplete block matrix factorization algorithm is developed. At each stage of
the recursion for approximating the pivoting diagonal block matrix inverses, the constructed algorithm
uses a two step iterative method with very high rate of convergence (order 33 see [24]). It is proven that
at each iteration the pivoting diagonal block matrix and its approximate inverse are symmetric positive
definite (SPD) matrices. Subsequently this factorization and the pivoting block approximate inverses
are used to precondition the conjugate gradient method [25], which we call block hybrid preconditioning
of the conjugate gradient (BHP-CG) method.

1 DBYVP of the heat equation and discretization

We take the rectangle D = {x = (z1,22) : 0 < 21 < a1,0 < 2 < az}. We denote its sides by vj,

4 —
j =1,2,3,4 and its boundary by S = |J vj, so that D = DUS is the closure of D. Let Q7 = Dx(0,T),
j=1
and indicate the lateral surface by Sy = {(z,t),z € S,t € [0,7]} and the closure of Q7 by Qp. We
consider the DBVP of heat equation in (1)

ou 0*u  O%*u

Fn = w((?ﬁ_'—(?a;%) —bu+f($1,$2,t) on Qr, (2)
w(zy,22,0) = @ (21,22) on D, (3)
u(zy1,z2,t) = ¢ (x1,22,t) on Sy, (4)

where w > 0 and b > 0 are constant. In this study, further investigations are given with the assumption

that DBVP in (2)—(4) has the unique solution u from the Holder space CS;Q’H% (Qr),.0<a<l.
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1.1 Implicit scheme on rectangular grids

First we consider the classical rectangular grid approximation of the problem (2)—(4) when the
a az

value of the constant b = 0 in Equation (2). We take the step sizes h; = oA and hy = i where, M;
and Mo are positive integers. Further, the set of rectangular grids on D is defined as

D"t = {p = (21,29) € D i 2y = Lihy, 1; = 1,2,..M; — 1,i = 1,2}.

Let SM-"2 be the set of rectangular grid points on S and Dhuhe = Dhuheyy §hhe Further let,

T
Yr = {tk:k"T, T:M, ijl,...,M/},

T
¥, = {tk:kT,T: k::(),...,M/}.

i
Also

DMhzy = phuhe oy — {(x,t) cx e D2t e ’yT} ,

spte = gty = {(a1) we S ten, )

The following unconditionally stable 14-point implicit method on rectangular grids is considered [26].
Rectangular Difference Problem (RDP)

Tup, = walAlu Liwd—oy) Aluh -+ wagAzukH +w(l—o09) AQUZ’T
+wh21+h2A1A2uhT + B on Dbz (5)
upr = @(z1,22),t=0o0n Dhlth, (6)
uny = ¢ (x1,22,t) on SH"2 (7)
where
1 h? 1 R
NS e T 1
Ty — u(zy, ot + 7 )—u(zl,xg,t)’
T
A = [u(x1 4 hi,22,t) — 2u (21, x2,t) + u (X1 — h1,T2,1)] /h%,
AguF = [u @y, w3 + hayt) — 2u (1,72, 1) + u (21,22 — ha, 1)] /B3,
5 — fk+2+h fP02+h%A fk+2,

1 ~ 4
and flli:_Q = f(z1,72,t + ). The scheme has the order of accuracy O (‘h‘ +7’2) . Here,
V/h? + h3 and we denote the system (5)—(7) by

K\ UM = KyU* + 7FF (8)

where K 1 I?Ng are real block tridiagonal matrices with 5 nonzero and 9 nonzero diagonals, respectively.
The vector F¥* is computed from the initial and boundary function values and the heat source function

3
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1.2 Nowel implicit scheme on hexagonal grids

Let Ny be a positive integer and h = a1 /Ny > 0. For the ease of explanation of the new scheme we
assume that ay is multiple of v/3. Using the step size h we assign a hexagonal grid on D and denote
this set by D" as

V3(p+q)

h
2 Y

Dl = {x—(xl,xQ)GD:xl—p;qh, To =
p=1,2,.., q=0+£1+2 1.

Further DP is the closure of D". In addition, Fp is the center and P;,i = 1, ..., 6 are the neighboring
points in the pattern Patt (Py) of the hexagon. The set of interior nodes are categorized as regular

and irregular hexagons. Those hexagons with Patt (Py) € D" are called regular and those with a
center Py that lies % units away from the boundary are called irregular hexagons. The set of irregular
hexagons with a left ghost point are denoted by D** and those with a right ghost point are presented
by D**. Also, D** = D*" U D*" and D" = D"\ D*". Table 1 presents the function values of u,
f and the second order pure derivatives of f. In this table, if Py € D**~. then the value of 5 = 0
and if Py € D*"™"~, then 5§ = a;. Besides k + 1,1 = 0, %, 1 denote the time levels t = (k+1)7 for
k = 0,1,..., M’ — 1. Furthermore, the numerical solution on hexagonal grid system is presented by
Up " p 1 = 0,...,6, and at boundary points by uiﬁ’lpA, when t = (k+1)7, for k = 0,1,.... M" — 1.
Figure 1 illustrates the irregular hexagons and the exact solution at the center and the neighbouring
points of the pattern at ¢ = k7 and (k + 1) 7 time levels.

Table 1
Notations used to denote the function values.
ul;gjl =u(x1,T2,t +7) ullitll = u(s, 2, t + 1)
u%z:u(xl—%,xg—kéh,t—kﬂ, f{{f :f(irl,xg,t—l—%)
upy = u(x1 — h,x2,t +7) fe, = f(Ez2,t+7)

k+1 ~ -
u’}jlzu(ml—%,xg—éh,t—i—ﬂ fp,’ = f(5,z2,t+ %)

upt =@+ 5w — Pht+1)  fE, = (5 32,1)

1
k+1 _ 2 ckt3 _ 9%f
Ups =ulz1 +h, 22, b +7) Oy fpy * = 927 |(21,20,t4+3)
J@o,t+ 3
1
k+1 _ h V3 2 cktg _ 8%f
P =u(@1+ 5,02+ Fht+7) 8I2fp0 T 093 (g mg 1+ T)
T2t g

kel
Uy

Figure 1. The illustration of the irregular hexagons and the solution for two time echelons.

Also on the hexagon system of grids we present the set of hexagonal grids on S by S" and the sets
Dh/}/T = DhX’yT:{(ﬁL',t)l'eDh, tE’}/T},

sh = thiT:{(:c,t):meSh, te@},
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present interior, and lateral surface nodes respectively. Let D*~, = D*" x v D"y, and D*"~, =
D*"™h x v, C D"y, and D*hy, = D*h~_ U D*y, also D%y, = D"~ \D*"v,. Figure 2 shows the
hexagonal grid covering of the rectangle D for three time levels t — 7,t and ¢t + 7, on which the ghost
points are denoted by red colour.

t+T

Figure 2. Hexagonal grid covering of the rectangle D for three time echelons t — 7,¢ and ¢ + 7.

We propose the next difference problem on hexagon system of grids to approximate the solution of the
DBVP in (2)-(4).
Hexagonal Difference Problem (HDP)

or Tu];;tl = A1 u’;fb _+ 9t on D%y (9)
OF ultt = A} _uf .+ Epro+9? on Dy (10)
up, = @(x1,m2) ont=0, Dh, (11)
up, = ¢(x1,22,t) on Sk (12)

k=1,2,...M' — 1, where

k+3 kit k+3

o= i g (et (13)

1 h2 1 k+

2 _ k+1 k
vt o= 96Tw(f _fPA)_(G )fPA2+f 2
k+3 k+3
+Eh2 (agl fr, 2+ 02, fp, ) : (14)
6
3 2w 3 1 w b
1okl [ 20 2% 9 ket v b k+1 1
Oh.ru (47 TR >“P0 * (247 32 " 48> Z;UP ’ (15
6
3 2 3 1 w b
A ub == —-= —Zp)uk — - — K 16
hyrt (47 h? 8 )uP0+ 247 T 312 T 18 ;“P (16)
17 Tw 17 1 w b
2 k+1 _ W iy k+1 - = . t
Ohru <24r HETERPT >“Po * (247 32 48> (u(s +n,22,t 4 7)
3 3
+u(s, x2 + 7h,t +7) 4 u(s,ze — \Q[h,t + 7‘)) ,
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1 2w b V3 V3
= (o 2 S+ L2 8 a0 — L0t
Ehn ¢ < 67 + o2 72) <gz§(s, T + 5 hyt+7) + (5, z2 5 + T))

~ 3 > 3
3677' + 9? - 72) <¢(3,$2 + \é»}%t) + (ﬁ(S,.Z'Q - {h’t)>

- S 3 2o,
18 R 48wr | 36 192w> oS, 22t +7)
1 8w A% b R

( 1 8  h*% b h%b?
s, t
<18¢ on?  18wr 36 192w> 08,22, 1),

2k k
= — = ———b + |l —+ - — + —h,t
A ru <24T 3h? 48 ) Py (247 3h? 48) <u(s’x2 27 )
3
+u(s, xg — —fh,t) +u(s+ n,aa,t)) ,

and
if Py € D*™y,, then s=h, 5=0,n= %
ifPOGD*thYTa thens:al—h,gzal,nz—%-

2 Analysis of HDP (9)-(12)

First we analyze the approximation order of the special scheme in HDP (9)—(12).
Theorem 1. The scheme HDP (9)—(12) has the approximation order O (h* + 72).

Proof. Let (x1,x2,t + 7) and (21, z2,t) € D"y, be the centers (Pp) of the hexagons at time moment
(k+ 1) 7 and k7 respectively for k = 0,..., M’ — 1. From Equation (9) and using (13), (15) and (16)
for regular hexagonal grids the scheme is

k+1 k k+1 k
3Unrpy ~ Uhrky 1 3 Uh,r,p, ~ Yh,r P,
4 T 24 4 T
=1
w 6 w 6
_ k41 o k1
= 352 R T 302 > b rp, — 6ul . p,
=1 =1
6 6
_ﬁz K+l 3, k4l _ﬂzk _ 3
48 h,7,P; 8 h,7,Py 48 uh,‘nPi ) h,7,Py
=1 =1
kg Lo a0 ks | g2 ki3
+fp, 2+ Eh 03, fp, * + 03, [p, : (17)
For the irregular hexagons the following approximations are used for 1 = 2,5
g g g app )
2
k1 k h* k1 8 k41 okt L opi
W 7.p, T U, P, 970 U Pa T 3Uhr Py T Unrp T 3Uhr P
2
Y = I L8k ok
3 kTP 9o, h,7,Pa 3 h,7,Pa h,7,Po
1 1 h2b
k k k+1 k
“3Unr Py T gUhr P T (uh,T,pA T “h,r,PA)

h% g+l
—5Fpa + O (B + 122, (18)
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1 1

k+1 k Y k+1 Wk
Unrp; ~ Yhep T Ty T 3P T glhT P

8 uFH L o L

+3 hTPA+ hTP0+3 hTPz1+3h P
8 uF h?b (i
3 Up,r,py T T( Uhr, Py ~ )
(f’““ fh,) + 0O (bt +h?r). (19)

Hence, the scheme (10) is obtained by substituting (18) and (19) in (17). Consequently, the error
function €p, r = uy » — u satisfies the next difference problem

Ohsent = Ajgeh.+¥f on DMy (20)
Oh entt = AR el .+ U5 on Dy, (21)
ehr = Oont=0, Dh (22)
enr = 0on Sh, (23)
where
Vo= A ut -6 T (24)
Uh = A} —6) W+ By o+ 42 (25)

and ¢!, 9?2 are as given in (13), (14) respectively. Using Taylor’s expansion around the point (xl, X9, t + %)
we obtain W§ = O (h* + 72) and W5 = O (h* 4 72).

Next, we analyze the stability for the special scheme in HDP. At every time stage using standard
ordering the hexagon points in D"+, are labeled as E;,j=1,2,...,N . Thus, all hexagon centers have
the neighboring topology denoted by the following set

Sk = {(4,7) : if the grid E; € Patt (E;), i #j,1 <1, <N}, (26)

exhibiting the sparsity structure of Inc € RN*Y called the incidence matrix with entries

_ | 0if (4,5) ¢ Sk,
[InC]ij_{ 1if (4, )GS;J

Further, the scheme in HDP can be put in the subsequent matrix form

K\ UM = KUY + 7 FF (27)
where, K1, Ky € RN*N are given as
T

K = (51 n h2 YT s ) (Sl S ) (28)

bh?
S1 = Dl—l——lnc SQ—B‘F*C (29)

B = Dy— ,[ D —I
2 = 3ine, C = 3~|—48 ne. (30)

Also the computed values of f in (13), (14) and the values of ¢ and ¢ in HDP (9)—(12) are presented
by the vector F*" € RYN. Further, Dy, Do, D3 are diagonal matrices with entries

3 Oh
[Dl]J] { % if E] c D*h'%- y J 1a25"'7N7
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2 if Ej € D%y,
[D2l;; = { Tif Bj € D*hy,

_ le GDOh’YT .
[D3]]] _{ ﬁ le GD*h"YT , 7=12,..,N,

accordingly. The stiffness matrix K, at the (k 4 1)th time level and the coefficient matrix Ko at the
kth time level both have 7 nonzero diagonals. Next we analyze the properties of the derived matrices.

Lemma 1. a) Sy in (29) and the matrices B and C' in (30) are SPD matrices. b) K7 in (28) and So
n (29) are SPD matrices.

Proof. a) Using (26) if E; € Patt(E;) for ¢ # j, 1 < 4,5, < N this implies that E; € Patt (E;)
giving Inc’ = Inc. Thus, Si, B, and C are real symmetric matrices hence the eigenvalues of Sy, B
and C' are real. Hexagonal grid is connected grid in the rectangle D thus, by using (30) it can be easily
shown that the matrix B has positive diagonal entries, i.e. b;; > 0, ¢ = 1..., N and it is irreducibly
diagonally dominant matrix. Further, the matrices S1, and C' also have positive diagonal entries and
are strictly diagonally dominant matrices [27] therefore, S, B and C' are SPD matrices. b) From (29),
since the sum of two SPD matrices is also an SPD matrix, S5 and K7 are SPD matrices.

»J=12,.,N,

Theorem 2. The constructed scheme HDP on hexagon system of grids is stable for any h > 0 and
7 > 0 and the approximate solution uy, » converges to the exact solution u with O (h4 + 7'2) of accuracy
on the hexagonal grids.

Proof. From Lemma 1, the matrix S7 is an SPD matrix hence invertible. The linear system (27)
can be written as

(I s (S1)” Sz) Ukt = (I 2 ~(51)7! 52) Uk +7(5)" FY, (31)

where I € RV*N is the identity matrix. On the other hand using (28)—(30) we can express the matrices
S1,C and Sy as linear combination of the identity matrix I and the matrix B as:

1 1 1 1 bh? 1 bh?
Sl_I—gB, C’_§I—EB, Sy = 2[+<1—) B. (32)

Because (Sl)_l So commutes and S; and S are symmetric implies that (Sl)_l S9 is also a symmetric
matrix. Since the product of two SPD matrices that commute is also an SPD matrix [27, 28| gives

s ((51)*1 52) > 0.Let A = (1 + 97 (5! 52) obviously A is an SPD matrix. Let A = (1 — ez (s~ 52) .

(A—lﬁ)T — AAl = (1—7(51) 152) (I+—(Sl) 152)_1

h? 2
- det <I+LZ;(51)_152> ( _%(Sl)_ S2> Adj (I+ﬁ(51) 1S2>
_ <I+ 72 (S1)” 1Sz>’1 1= det <[+ °,§1(51)—152> (I+ % ()71 Sz)

wT -1 : wT 1
<h (Sl) SQ) Adj <I + (51) 52>:|

- (1+ A 52> (I -5 T (s 52) — A4, (33)
Thus A~ *4 is a symmetric matrix, then there exists an orthogonal matrix P and a diagonal matrix D
with diagonal entries of eigenvalues A4 ((51)71 Sg) so that

(1+ (S0 152) - (I+ﬁD>]3
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and

(1+ (s 52)_1 = pT <1+ %f)f P.

Thus,

(1+%5 (50 L) (1Y LS s) =B (1+95D) PP (1~ “TD) P,

~ ~1
that is, the matrix A=1A4 is similar to (I + “’TD> (I -5 ) Hence, from (33)

" [(I+°}g5)‘1 (1_3;5)”

0 157 52)

|aa], = o(a7A) = max

wT
< . mm o ((S)*ls)) <1f0rﬁ>0 (34)
h2 N s 1 2
and from Gerchgorin’s circle theorem we have
0< A (B) < 4. (35)

From (32) and (35) and on the basis of Lemma 1 that Ky = 51 + $7.52 is an SPD matrix we have

1 1 wr  br
K, = <1+Tb>j+<_8+i12_16>3

A (K1) = A (51+h25)

1 1 wr  br
( +2Tb)+( 8+h2 16)/\5( )

—1 -1 -1 1
= < —
p((Kl) ) <<Sl+h25) <S1+h25) ,
where s = min {1 + %Tb, % + %bT + 4‘”} then
K —1H < <2 36
H( 1) 2 < ( )
Next using (34) and (36) by induction results,
o], = flaal floe], + ~fleo ], |7
2 2 2 2
k *
< [|U°]], +2 HF’f H . 37
< 23 o, @)

The error function e, » satisfying (20)-(23) can also be given in the matrix form (31) as

(1+ 55 (571 8) il = (12

= (ST Sa) (5N (38)

h

where €11 ¢ and ¥ € RY and U*" involves the truncation errors given in (24), (25). Thus, on the

basis of Theorem 1 and using (24), (25) and (37), (38) we obtain
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Here, ¢ is a positive constant independent of h and 7. The matrix A~'A4 is a normal matrix since it
is also a symmetric real matrix. The inequality in (34) is sufficient as well as necessary for stability
from the Von Neuman condition for stability [29]. Therefore, the unconditional stability of the implicit

k+1
scheme (9), (10) follows from (37). Let ’8}:7__

_ k1| _ || k+1 :
= max ’5 ‘ = |le , then by using
C Divnfi=(einyry | T [l

(39) and norm concordance we get

H k1] <

Eh,T

ekHH < (h4 + 7'2) .

C 2

Therefore, the order of accuracy of the approximate solution uy, , to the exact solution u is O (h4 + 7'2).

3 Incomplete block matriz factorization and preconditioning of an SPD-BT matrix

In this section, for a real block matrix K € RN*N of block size n x n, the inequality K >, 0 defines
that K is symmetric positive semi-definite (SPSD) matrix and K >4 0 denotes that K is a symmetric
positive definite (SPD) matrix. Analogously, A =5 B (A >4 B) denotes A — B =50 (A — B =5 0).
Further, for a symmetric matrix K, A\; (K) denotes the kth eigenvalue of K ordered in increasing order
and Apin and Apge are the minimum and maximum eigenvalues respectively.

3.1 Block incomplete decomposition algorithm and analysis

We consider symmetric positive definite block tridiagonal (SPD-BT) matrix

Kii Kip - 0
o K-271 Koo Ko3 , (40)
: . . Kn—l,n
0 te Kn,nfl Kn,n

of n x n, block size. Additionally, the nonzero blocks may be dense and K, is of size n, x ng (1 <
np, g < n) which includes the case where all or some K, , are scalar entries of K and main diagonal
blocks K, , are square matrices. We consider approximate factorization of K = LU — (@) in block matrix
form of a lower block triangular matrix L and an upper block triangular matrix U. We repartition the
matrix K into 2 x 2 block form and initially for s = 1, take K1) = K

)l
K6 = [ Bt Rie (41)
K2f1 K;Q

(s)

i

(

J

where K fsl) is the current pivot and Ki(;) is of order n %) for 1,7 = 1,2 and ngs) >> ngs)
(s)

ny’ =nsfors=1,2..n.

Xn , also

For M —matrices the two-step iterative method for approximating the pivoting diagonal block
inverses with rate of convergence 33 was given in [24]. Algorithm 1 approximates the inverse of the
pivoting diagonal block matrix of a block tridiagonal matrix K >4 0, analogous to the two-step iterative
method in [24] however, is modified in the choice of the initial approximate inverse Z(()S) at every stage
s. Further, Algorithm 2 gives incomplete block factorization of a SPD-BT matrix K, (see also [27] for

incomplete block decomposition techniques of matrices with special structure).

Algorithm 1. Modified two-step iterative method (MTSIM) for approximate matrix inversion.
Require: The predescribed accuracy € > 0.
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Ensure: [ is the identity matrix and ms; = 0, 1, ..., is the iteration at stage s. Also,

R —

ms

- K7 and QRY)) = RE) + (R,(;*LZ)Q :
w(r) = (RE) -+ (RE) and r(r) = ()"

1. Initial step

B = A (Kﬁ) (Kfl))T>

()"
my = 0 Z(s>:(K1 ) and RS = 1 — K% Z§”
S ; 0 s ) 0 1,10 -

2. Prediction and correction steps:

While ‘ R,({Z <e<l1ldo
Step2(P)
29 = 20 [T+ RG]
CR)
RS1+% = I- Kfffzgz+%,
Step2(C)
(s) _ 7 (s) (s) (s)
2. = 29, [z 1o <Rms+é> [z T+ <Rms+%> [z T <Rm+)]” ,
R$1+1 = I—- Kf?ZSEH, increase mg by one.
End while.
3. Terminating step: Z(*) denotes the matrix Zfi% obtained for performing m} iterations.

Algorithm 2. Incomplete block matrix factorization of K > 0.
Require: s =1 and KM = K.
1. Partition K(®) as in (41).
2. While s <n do
find the approximate inverse Z() of K {81) using the Algorithm 1.

Ensure: K©®) is an approximation of K(®) factored as
~ (s) (s)
RE _ 1o — [ r0 ] [ Ky Ky ] ,

where, K+ = k(%) — k{8 70 g5).
4. End while.
5. The matrix L in the final approximate factorization of K is block lower triangular matrix with
diagonal blocks being identity matrix and the sth column of its lower triangular part is formed by
K(S) 7(s)

2,1 :
6. The matrix U is block upper triangular with block diagonal matrix {Kill), Kﬁ), v K{ﬁ)} and the

sth row of its upper triangular part is formed by K fSQ)
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Lemma 2. Let K be an SPD-BT matrix and Kfl) be the pivoting diagonal block at stage s of the
Algorithm 2. If K\*) =, 0, then R';)

S

=s 0 for every ms = 0,1, ..., and
p (R((]s)) < 1,
R - ()T

where p (R(()s)) is the spectral radius of R(()s) =1- KSI)Z(()S).

T
Proof. For m, = 0 we have RS = I — K{\ 2" = 1 LK) (K{)) " andif K{*) -, 0, it follows

that R(()S) is symmetric matrix and

a(RE) = - by <K§;> (k

which gives p (R((]s)) <1 and R((]s) s 0. Further, from Step2(P) we get

2
RY | = 1-K¥)z [I+R£,i> + (R;?) }
ms+§ ) S S S
3
- ()" (42)
Also from the Step2(C) in Algorithm 1 using (42) we get
ar® ) = &9 1 (rY ) = (7)) + (r)" (43)
ms+% o ms+% ms+% o Ms Ms ’
2 4
® - (g® © ) — (g’ 4 (r)"
\I](Rms+%) B (Rms+é> i (Rms+%) - (R”“) + (Rms) ’ (44)
4 12
(s) _ (s) _ (p®
F(Rms-&-%) - (Rms+§) <Rm) (45)

Using (42)—(45) at the Step2(C) for the residual error RSL)SJA we obtain

RY ., = I-K¥z%

B () (s (s) (s) (s)

- e ron() oo () o (2]
33 33m5+1

= () =)

Thus, R7(72+1 >=s 0 because R(()S) =s 0.

Theorem 3. Let K be an SPD-BT matrix and K(*) be the matrix obtained at stage s of the
Algorithm 2. If Kfl) =5 0 then

KNz =27 K and K20 = 200 K, (46)

’ ms+§
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and ZS)+1 ~s 0, and 7 )+1 = 0 satisfying

~1
(Kffl)) s Z$2+1 s Z7(72+l s Z;ﬁgz > 0, (47)

2

(s) (s)

for every ms = 0,1,..., where Z ! and Z (s ) 41 are the approximate inverse of K’ 11 obtained by

s

Step2(P) and Step2(C) in Algorithm 1.
Proof. The proof of (46) follows from induction. Using Algorithm 1 for ms = 0 and from Step1(I)
gives Z(g = 1 (K (s)> . Since K fl) is a symmetric matrix we get

=3
S S S 1 S T 1 S T S S S
K2 = 6k (14) = ok (i) K = 280K

Assume that the proposition is true for m that is Kfsf Z,g,fz = Zr(;fz Kfsl) then for ms+ 1 at the Step2(P)
gives

2
KA., = s [+ ()]
2
= 2 |1+ R+ (R AL
= ZS2+%K{f1). (48)
Also using (42)—(45) and (48) at the Step2(C) gives the second equation in (46).
The proof of (47) also can be given using induction. For mgs = 0 from Stepl(I) gives Z(gs) =

T
ﬁ <K {sl) ) and from the assumption K f 1) > 0 implies that Z(()S) =5 0. Assume that the proposition

is true for mg that is Z;{fz s 0 then from Lemma 2 using that Rﬁii =5 0 at the Step2(P) and using
(46) gives

[ (m)] (#2)"

2
= 2z [I+R§,§Z + (BS) ] =29 . (49)
sT3

/N\
3%
+
NI

N———

S
|

Next using (42)—(45) and (49) at the Step2(C) and from (46) results

T
(Zfi)H) = [I +Q (R(S) ) [I+ v (R(s) ) [I 4T (R(S .
s ms+ 2 ms+§ ms—+
_ 29 (50)

From (49) and (50) we conclude that Z(S)+ , and A )+1 are also symmetric for ms+1 and from Step2(P)

N
~_
—_
| I
| I
)ﬂ
/&\
3=
+
S~

and Step2(C) we get Zf:.Z—i-% =5 0 and Z(S)+1 >s 0. Further from (46) Z ﬁ,szﬁ,il and Zy({fz (R,&Z) are

symmetric matrices. Thus, yields ZTS»SLQR,(S)S s 0 and Zy({fz (Rgl) =5 0. From the Step2(P) results

2
(20, -20) = o (zmg+ 2 (r2))
ms+3 s s s s s

M (Z8IRE) + M <z;;g (R )2> >0

Y
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giving ZS)+1 = Z,(sz Analogously, using (42)-(45) at the Step2(C) results z )+1 = Z(S)+:l . Denoting
5T Mst3
the error by E(Sz = (Kﬁ) — éf) at sth stage from K£ 1) ~s 0 we get (Kf 1))7 >s 0 and using that

Zés) =5 0 (for ms = 0) we get E(() ) is symmetric matrix. Further, it follows that

A <E(()s)) _ Ks (s )) > Mnin <<K§31)>1> + Ak (—Z(()S))
1 F
FON

= /3O

Thus E(gs) =5 0. Assume that for mg the proposition Equz =5 0 is true then using K {81) Eq({:z = Rg{il we
obtain

_ () (s) (s) (s)
= 29, 1o <Rm8+;) [I+\If (Rmﬁé) [Hr <Rm>m ,

From Lemma 2, R,(;iz =5 0 and from (46)

B RY) = RYEL),

T T T
pnl) ()" = mm) () (£42)
— i R R G = (B EGRS),
that is Ef{fz Rﬁii is normal. Thus from Theorem 3 in [30]

s . o) 32
E7(nZ+1 = E7(n2 <R£n)5> = 0. (51)

Theorem 4. Let K be an SPD-BT matrix. If Algorithm 2 is used then K =, 0 and the inequality
(47) holds at every stage s of the recursion.

Proof. The proof follows by induction. Assume that K >, 0 and is block tridiagonal matrix and

Algorithm 2 is used. From the assumption K(!) = K is an SPD matrix and particularly K%l) =5 0,
hence Theorem 3 implies that the inequalities in (47) holds true for s = 1. Assume that K (%) >, 0 then

it follows that K Z-(j) =5 0 for : = 1,2 and are regular and,

S(s) (S) K(J) <K(5)) K(s) =1,2,1 ?é Js (52)

27, ]z”

exist and Si(s) =5 0,7=1,2. Since K& =, 0s0 is (K(S))_l. Further, from Theorem 3 the approximate
-1
inverse Z(®) of Kﬁ) satisfies <K{51)) =5 Z() and Z(®) =, 0 and from Algorithm 2

(100" = (83 2ORE) = xee e

Using (52) and (53) follows K+1) =, 0, and (47) hold true for s + 1.
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Theorem 5. Let K be an SPD-BT matrix of n x n block size. If Kﬁ), s = 1,2,...,n are the

)

diagonal pivoting blocks of K(®) at stage s = 1,2, ..., n obtained by the Algorithm 2, then the sequences

-1
{ZSZH}, obtained by Algorithm 1 converge to (Kﬁ) , s = 1,2,...,n, respectively in Euclidean
matrix norm ||-||, when m, — oo with 33 order of convergence and the inequality
33ms+l T
-1 HR(()S) 2 (KESD
H (k)" = 2 2
1,1 ms+1|| = (s) ’
1T
2

holds true at the sth stage.

T
Proof. By taking the initial approximate inverse Z(()S) =& (K fsl) ) the proof is analogous to the
proof of Theorem 4 in [24].

3.2 Block hybrid preconditioning of the Conjugate Gradient method

We consider the linear system Ku = b where, K >4 0 is a block tridiagonal matrix of the form
(40).

Theorem 6. Let K be an SPD-BT matrix of n x n block size. If K{SI), s = 1,2,...,n are the

)

diagonal pivoting blocks of K®) at stage s = 1,2,...,n obtained by the Algorithm 2, and Z) are
the corresponding approximate inverses obtained by Algorithm 1 by performing m? iterations, then
Z(S)Kfl) are SPD matrices and

s s 1+¢
r(29K) < 7 (54)

-1
where, K (Z(S)KSD = (Z(S)Kfl))
1 is the predescribed accuracy in Algorithm 1.
Proof. On the basis of Theorem 3, we have Kfl)Z(s) = Z(S)K{fl) for every s = 1,2,...,n and

Z) =, 0. Theorem 4 implies that K fsl) s 0 thus the product of two commuting symmetric positive

is the condition number of Z(S)Kfl) and 0 < e <

o
2 2

definite matrices is also symmetric positive definite we get Z(S)Kﬁ) >s 0. Next, since I — KSI)Z(S) is

symmetric matrix and Algorithm 1 gives HI - K fsl)Z (s)

< g, yielding
o

p(1-K020) = |1- k20| <|1-K120|| <e<1.
Therefore,
|22 | <=,
giving
1—e< HK{?}Z<S) ,S1+e (55)
Also . . )
H (29K17) - H (1-1-29K()) e (56)

so from (55) and (56) follows (54). (57)
Theorem 6 shows that Z() may be used as approximate inverse preconditioners for K {81) for s =

1,2, ...,n. Algorithm 3 gives the BHP-CG method for solving Ku = b based on the CG method in [25].
In this algorithm incomplete block factorization LU of K is used as implicit preconditioner while the

(

approximate inverses Z(®) are used as explicit preconditioners for K 151) for s=1,2,...,n.
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Algorithm 3. BHP-CG method.
Ensure: the construction of L and U by using the Algorithm 2.
Require: [ = 0 and ug as an initial guess, rg = b — Kuyg.
Require: p_1 arbitrary and o9 = 0.

1. While “‘fé""oo <n<1ldo
2. Solve the <éoystem LUz = r;. For the solution of the block lower triangular system Lw; = r; where

w; = Uz forward substitution works since the diagonal blocks of L are identity matrices. Then for the
solution of the block upper triangular system U z; = wy, the preconditioned CG method is used to solve

the block subsystems with the explicit preconditioners Z (5) for the matrices K fs)

.If 1 > 1 then compute o7 = (21, LU z) / (z1-1, LU z;_1).
. Else 09 = 0.
. End if.

.pr =z + o1 and ap = (2, LUz) [/ (pi, Kpr),

U = w + ogpp and Ty =1 — g Kpy.

. End while.

. Let I* be the iteration number performed, in 1-8 then %« is the approximate solution satisfying

I oo
. ="

© 00 ~J O Ut = W

‘ oo

4 Numerical investigation
We take D = {(xl,xg) 0<z1 <1,0< 22 < @}, for t € [0, 1] and the prediscribed accuracy ¢ in
Algorithm 1 is taken as 5 x 107°. Also in all tables C PUs stands for Central Processing Unit time in

seconds and ptl stands for per time level wherever they appear. Let in addition, the following notations
be used in this section where K is the matrix in (27) and K is as given in (8).

Mﬁ P Mﬁ p denote the newly developed HDP and classical RDP.

N (MEL), N7 (ME L) denote the size of the matrices K; and K.
Prehm (ML), Pret™(ME L) are the preconditioning time of K; and K.
Con™™(ME ), Con™™(ME ) are the condition number of K; and K.
CTMﬁP, CTM{ir denote the CPUs ptl for the method Mﬁp and Mﬁp.

TCTMﬁP,TCTMﬁP denote the total C PUs required by the method Mﬁp and Mﬁp for solving the
problem on ¢ € [0, 1].

neg means that C'PUs is less than one millisecond.

We present the function e, , defining the error on the grid points D"~y., by eM{ip(h7) obtained

ME (h,T)

from the application of the method Mﬁ p - Similarly we use € to show the error function ¢y, »

obtained by the method Mﬁ p on the grid points D".h2~ In addition, the convergence order of the

Mathematics series. Ne 1(109)/2023 73



S.C. Buranay, N. Arshad

methods Mﬁp and Mﬁp are

[EEEER

H
RMiip = logy 0 ,
HgMﬁP(Q*(u+1)727(A+2))H
o0
R stMﬁP(Z_“»Q_A)
RpMitp — logy oo

HgMﬁp(zme),zf(Mm) H ’
o0

respectively, where p, A are positive integers.

4.1 Test problem: Example 1

ou *u Q%

a, 7+7+f(x1,x2,t) on QT7
ot Ba:% 81'%
u(21,72,0) = 0.0728% 403257 + 1 on D,
u(zy,x2,t) = wv(x1,x2,t) on Sp,
f(z1,20,t) = (3 + %) 272 cos (t3+%> —et
—(6+a) (5+ ) (0.07217* + 0.3257)
v(z1,22,t) = 0.0725T 0325 4 sin(312) + e,

where v is the exact solution. Table 2 shows the CTMiir, CTMiir and the error norms HgMﬁp(huT)

H ME p(hr)

[e.9]

for h = 27# u = 4,5,6,7,8 when 7 = 272 X\ = 6,8,10,12,14 and the order of

o
convergence ?RMﬁP, RMiip for Example 1 when o = 0.8. Table 3 shows the same quantities by using

the methods Mﬁp and Mﬁp when o« = 0.01. These tables indicate that both methods have fourth
order convergence in spatial variables and second order convergence in time variable.

On the other hand the second and fifth columns of these tables show the computational time
CTMiir and CTMiir required for the method Mﬁ p and Mﬁ p respectively. By analyzing the values
of CTMiir and CTMiir we conclude that the proposed method is more economical in computational
time per time level when the BHP-CG method given in Algorithm 3 is applied to solve the derived
systems. This conclusion is also supported by the results given in Table 4 which demonstrates the
number of grid points in the stiffness matrices N7 (M) and N*7(ME ), the preconditioning times
Prehm (ML) and Pre™™(ME L), the condition numbers of the preconditioned matrices Con™™ (M1 ,)
and Con™T (M) and the total computational time required in seconds TCT Miip and TCTMiir of
the methods Mﬁ p and Mﬁ p respectively for Example 1 when oo = 0.8.

Further, when h = 276 and 7 = 2710 for o = 0.8, the grid function ‘EMﬁP(2_6’2_10)’ presenting the
errors in absolute values at four time stages ¢t = 0.25,0.5,0.75,1 by the method Mﬁp are shown in

9| at the same

Figure 3 for Example 1. Analogously, Figure 4 demonstrate the function ‘gMﬁP(TﬁQ

time levels and (h,7) pair and « value obtained by the method MF ,.
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Table 2
Results by the methods M{l, and M, for Example 1 when o = 0.8
(h,T) cTMiip HEMﬁP(h‘T) wpMiir  orMiip HEMﬁP(hv"') RMiip
272 neg 4T9389E — 5 neg 426584E — 5
(27°,27%)  0.047 2.62266F —6  3.9992  0.047 2.66787TE —6  3.9991
(27%,271%)  0.156 1.63922E —7  3.9999  0.234 L66749E —7  3.9999
(277,27"%)  0.641 1.02449E —8  4.0000 1.016 1.04224E —8  3.9999
(27%,271) 2,578 6.40304E — 10  4.0000 4.312 6.51384E — 10 4.0000
Table 3
Results by the methods M{l, and M%, for Example 1 when a = 0.01
(h,7) cTMiip HEMﬁP(h‘T) wpMiir  orMiip HEMﬁP(hv"') RMiip
2727 neg AT9389E — 5 neg 2.98695E — 5
(27°,27%)  0.047 2.62266F —6  3.9994  0.047 1.86757E — 6 3.9994
(27%,271%)  0.188 1.63922E —7  3.9999  0.219 L16726E —7  3.9999
(277,27"%)  0.64 1.02449E —8  4.0000 1.016 7.29597E —9  3.9999
(27%,27'") 25 6.40298E — 10  4.0000 4.25 4.56001E — 10  3.9999
Table 4

Computational efficiency comparison of MY, M, for Example 1 when o = 0.8

(h, T) (274’276) (275’278) (276’2710) (27772712) (278,2714)
N (M) 233 977 4001 16193 65153
NMT (M p) 225 961 3969 16129 65025
Pre™™ (Milp)  neg neg 0.063 0.36 2.797
Pre"™(Mfp)  neg neg 0.062 0.359 2.625
Con™™(M{ip)  0.99997 0.99993 0.99989 0.99986 0.99983
Con™™(M{ip)  0.99991 0.99988 0.99987 0.99985 0.99981
TCTMiiP 0.61 9.09 194.84 2659.03 42582.52
TOTMiir 0.70 11.83 272.91 4258.53 71073.79

‘gmzp(fﬁ-fm)

Figure 3. The grid function |eMiir2™*27")| when t = 0.25,0.5,0.75, 1 by M, for Example 1.
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“C“MSP(TE 27

t=0.25 100

‘gm@(rﬁrm)

Figure 4. The grid function eMiEp(27°27) when t = 0.25,0.5,0.75,1 by Mﬁp for Example 1.

4.2 Test problem: Example 2

ou 0*u 0%

EA X t
ot 8w% + a$% u+f(x17$25 ) on QTa
a7 37 _
u(zy,22,0) = 5:616 +zy +1on D,
u(z1,z2,t) = wv(x1,x2,t) On S,
/o ) 8725 (%) L1472 147
1,2 = — | —tizsin — =z — =z
b 12 72 1 36 2
1 37 37
+0.5 (53316 + x5 + cos <ti’;)> ,
37 37 37
v(xy,x9,t) = §:E16 + x5 + cos (tﬁ),

where, v is the exact solution. Table 5 demonstrates the CTMiip ) TCTMiir and the error norms for
h=2"pu=4,506,78 when 7 = 272 X\ = 6,8, 10, 12, 14 respectively, and the order of convergence

RM{ip for Example 2. Figure 5 shows the absolute error function ‘5M1511P(276727w) for time values

t =0.25,0.5,0.75, 1 obtained by the given method Mﬁp for Example 2.

Table 5

Results by the method M{l, for Example 2

(h,7) crMiir  pOTMiP HeMﬁPW) RMiir
(27527%)  neg 0.61 2.378442F — 5

(275, 2—82 0.047 9.907 1.543029F — 6 3.9462
(27%,271%)  0.172 207.547 1.015411E —7  3.9256
(277,27"%)  0.735 2904.99 6.623985E — 9  3.9382
(27%,27")  2.829 50743 4.251592E — 10 3.9616
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{5

Figure 5. The grid function eM{ip(27%27 | when t = 0.25,0.5,0.75,1 by Mﬁp for Example 2.

5  Conclusion

On a hexagonal system of grids, a novel implicit method is developed for approximating the solution
to the DBVP of the heat equation (2)—(4) on rectangle. Further, by using the modified two-step
iterative method, block hybrid preconditioning of the conjugate gradient method is given. The obtained
theoretical and numerical results demonstrate that the given implicit method is economical since it is
computationally time efficient. We remark that in Section 2, the given implicit scheme on hexagonal
grids was studied in the dissertation [31].
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C.K. Bypanait', H. Amasn?

HITvevie XKepopma menisi ynusepcumemi, Pamazycma, Typrus;
2Payp Jdenwmaw yrusepcumemi, Huxocus, Typrus

Tyiiingec rpa/iueHTTEP J/IICIH OJOKTHI-rUOpUATI KaiiTa miapTrayra
KOJIJaHAa OTBIPHII, YKaHA alfiKbIHEMeC cxeMa OOMBIHIIIA
KBLTYOTKI3TINITIK TeHAEYiH IerTy

BepTTeyain HEri3ri MakCaThl — aJITHIOYPHIIITAPALIH TOP KYHEeCciHIe KaHa albIPBIMIBIK, 9/IICIH 2Kacay apKbLIbI
TIKTOPTOYPBIIITAFbI XKBIITYOTKI3MIITIK TeHeyinin Iupuxiie merTik ecenTepain MentiMin »KybIkTay. By ap-
Hallbl CxeMa CO3Ci3 TYPAKTHI KoHE KEeHICTIKTIK alfHbIMAJIbLIAp OONBIHINA TOPTIHII J9JIIK PETi KOHE YaKBIT
afHBIMAJIBICHI OOMBIHIIIA €KIHII J2JIIIK peTi 6ap TopJap/arbl HAKTHI IIEIIMIe XKaKbIH AN THIHBI JOJIEJIICH/TI.
Exinmminen, Toabik emec G/IOKTHIK (haKTOPJIAHIBIPY CHUMMETPHUSIIBI OH AHBIKTAJFAH OJIOKTBHIK, YIIOYPBIIITHI
MaTpHUIAJIAp YIIiH CAMMETPHUSJIbI OH, aHBIKTAJIFaH KACHETTI CAKTall OTBIPHIN, aiHAJIMAJILI JUATOHAJIBILI OJI-
OKTap/IblH, Kepi >KarblHA >KYBIKTAUTHIH KOHCEPBATHUBTI WUTEPAIUSIJIBIK, 9JIICTI KOJJaHA OTBIPBII OepijreH.
Bonamaxkra dpakTopaasapipy OGJIOTBIHBIH KOMEriMEH AJIBIHFAH aJIreOpaiblK, TEHIEYIep *KYMeCiH op yakbIT
JeHTeiHIe enTy VImiH TYHiHIec TpaIneHTTep oIiCiHin rubpuaTi KaiiTa mapTTaysl KOJTIAHBLIAIbL.

Kiam cesdep: XKbUIyoTKI3riINTIK TeHEyl, aflKbIHEMEC CXEeMa, AJITBIOYPBIIITH TOP, TYPAKTBUIBIKTHI TAJIIAY,
CHMMETPUSLIBI OH AHBIKTAJFaH MAaTPHUIA, KYBIKTAJFAH KePi, TOJBIKEMEC OJIOKTHI (paKTOPJIAHIABIPY, OJIOKTHI-
ruOpuATI KaiiTa mapT KO, TYWIHIEC IPaJueHTTep 9IiCi.

C.K. Bypanaii', H. Aman?

L Bocmorno-cpedusemmomoperutl yrusepcumem, Pamazycma, Typyus;
2 Vnusepcumem Payda Jenkmawa, Hukocua, Typyua

Pelnnene ypaBHeHHS TEIJIOIIPOBOIHOCTHU 110 HOBOM HESIBHOI cXeMe C
MCIIOJIb30BaHNEM OJIOYHO-TMOPUIHOIO IIPe100yCJIOBINBAHNASA METO/IA
COIIPSAXKEHHBIX I'PAANEHTOB

OCHOBHOI! TIEJIBIO MCCJIEIOBAHUS SIBJISIETCS AMMIPOKCUMAITUST PEIeHns KpaeBoit 3amadn /upuxie ypaBHeHUs
TEIJIONPOBOIHOCTH HA MPSIMOYTOJIbHUKE IyTeM pa3pabOTKN HOBOT'O PA3HOCTHOI'O METO/A Ha CETOYHOU Ch-
cTeMe IIECTUYTOJIBHUKOB. JloKa3aHO, 4TO JaHHAs CllenuasbHas cxeMa 06e3yCJIOBHO yCTONYNBA M CXOIUTCS K
TOYHOMY PEIIEHUIO Ha CETKAaX C YeTBEPTHIM HOPSIKOM TOYHOCTH IO IIPOCTPAHCTBEHHBIM IIEPEMEHHBIM U BTO-
PBIM HOPSIIKOM TOYHOCTH 10 BDEMEHHOM! 1epeMeHHo. Bo-BTOpBIX, HemoHast 6109Has1 haKTOpU3aIus JaHa
JJIsl CUMMETPUYHBIX TOJIOKUTEIHLHO OIPEJIEJIEHHBIX OJIOYHBIX TPEXIUArOHAJBHBIX MAaTPHUIL C HUCIIOJIH30Ba-
HHEM KOHCEPBATUBHOTO UTEPATUBHOTO METOA, KOTOPBI AIITPOKCUMHUPYET OOPATHYIO CTOPOHY TTOBOPOTHBIX
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JIUArOHAJIBHBIX OJIOKOB, COXPAHSs CUMMETPUYHOE IIOJIOXKUTEILHO OIpeJIeJIEHHOEe CBOUCTBO. B naspHeliniem
C IIOMOIIBIO 9TOro HJI0Ka (haKTOpU3AIMH IPUMEHEHO MMOpH/IHOE Peo0YCIOBINBAHIE METO/IA COIPSIZKEH-
HBIX TDPAIMEHTOB JJIsi PEIIeHNs MOy YEHHOM aarebpamdecKoil CHCTeMbl yPABHEHUN HA KaXKJOM BPEMEHHOM
YPOBHe.

Karoueswie carosa: ypaBHEHUE TEILJIONPOBOIHOCTH, HEsIBHASI CXeMa, TE€KCAIOHAJIbHAS CETKA, AHAJIN3 YCTOWYIN-
BOCTH, CHMMETPUYHAS TIOJIOKUTETBLHO OIpeeieHHAsT MATPUIA, TPUOJINKEeHHAss 0OpaTHast, HEloJHasT 0104~
Has paKTopU3aIns, 0JJOUYHO-TUOPUIHOE TIPEI00YCIIOBINBAHUE, METOI, CONIPSIXKEHHBIX I'PAJIMEHTOB.
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A remark on Schottky representations and Reidemeister torsion

The present paper establishes a formula of Reidemeister torsion for Schottky representations. The theoretical
results are applied to 3—manifolds with boundary consisting orientable surfaces with genus at least 2.
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Introduction

It is well-known that the representation varieties are important in many branches of mathematics
and physics. For instance, let 3 be a compact Riemann surface of genus at least 2, Teichmiiller space
Teich(X) of X is the space of deformation classes of complex structures on it. By the uniformization
Theorem, it is the space of hyperbolic metrics, namely Riemannian metrics on 3 with Gaussian
curvature constant (—1). Furthermore, Teichmiiller space of ¥ can be interpreted as discrete faithful
representations of the fundamental group 7 (X) of the surface to PSL(2, R). It is well-known that some
certain geometric structures on 3 can also be identified as certain surface group variety [1-6] and the
references therein.

Representation varieties have a large number of applications in many branches of mathematics and
physics such as in 3—manifold topology (in Bass-Culler-Shalen theory [7, 8], in A-polynomial [9], in
hyperbolic geometry [10], in Casson invariant theory [11]), in Yang-Mills and Chern-Simons quantum
field theories [12,13], in skein theory of quantum invariants of 3-manifolds [14,15|, in the moduli spaces
of flat connections, holomorphic bundles, and Higgs bundles [16].

Reidemeister torsion(R-torsion) is a topological invariant and was introduced by K. Reidemeister
[17]. Using this invariant, he classified 3—dimensional lens spaces. W. Franz extended the R-torsion and
classified the higher dimensional lens spaces [18]. R-torsion has many applications in several branches
of mathematics and theoretical physics such as topology [19], differential geometry [20], representation
spaces [21] dynamical systems [22], 3-dimensional Seiberg-Witten theory [23], algebraic K-theory [24],
Chern-Simon theory [13], knot theory [24], theoretical physics and quantum field theory [13]. See Refs.
[25] and [26] and the references therein for further information.

Real symplectic chain complex is a algebraic topological instrument and was introduced by E.
Witten [21]. Combining this and R-torsion, he evaluated the volume of several moduli space of
Rep(X, G), which is the set of all conjugacy classes of homomorphisms from the fundamental group
m1(2) of a Riemann surface ¥ to the compact gauge group G € {SU(2),SO(3)}.

In paper [27], we considered the set Rep(X, G) of G—valued representations from the fundamental
group 71 (X) of the surface ¥ to the exceptional groups Go, Fy, and Eg. We proved the well-definiteness
of R-torsion of such representations. We also established a formula for computing R-torsion of such
representations in terms of the well known symplectic structure on Rep(X, G), namely, Atiyah-Bott-
Goldman symplectic form for the Lie group G. Then, we applied to G—valued Hitchin representations.

*Corresponding author.
E-mail: fatihezenci@gmail.com
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In paper [28], we investigated G —valued representations of free or surface group with genus > 1 for G €
{GL(n,C),SL(n,C)}. We also established a formula for computing R-torsion of such representations
in terms of Atiyah-Bott-Goldman symplectic form for GG. Moreover, we applied the obtained results to
hyperbolic 3—manifolds.

In the present paper, we prove a formula of R-torsion for Schottky representations. The theoretical
results are applied to 3—manifolds with boundary consisting orientable surfaces with genus at least 2.

1 Preliminaries

In this section, we provide the necessary definition and basic facts about the topological invariant R-
torsion and the symplectic chain complex. For further information the reader is referred to [21,25,26,29]
and the references therein.

Let C, = (0 — C,, % Chog— - —>Cy g Cy — 0) be a chain complex of finite dimensional vector
spaces over the field C of complex numbers. For p = 0,...,n, we denote the kernel of J,, the image of
Op+1, and the pth homology group of the chain complex C, by Z,(C), B,(C), and Hy(Cy), respectively.
From the definition of Z,(C,), B,(Cy), and H,(C,) it follows

0 — Z,(Cy) = Cp - Bp_1(Cx) — 0

and
0 — By(Cy) = Z,(Cy) - Hp(Cy) — 0.

For p = 0,...,n, if ¢y, by, and h, are bases of C)p, B,(Cy), and Hy,(C,), respectively and if
by, + Hy(Cy) = Zp(Cy), sp + Bp—1(Cyx) — Cp are sections of Z,(Cy) — H,(Cy), Cp, — Bp_1(Cs),
respectively, then with the help of above short-exact sequences we have the basis b, U ¢, (hy,) Usy,(by—1)
of Cy. Here, L denotes the disjoint union.

Let c,, by, hy, £, and s, be as above. Then, R-torsion of the chain complex C, with respect to
bases {c,})_o, {hp}y_o is defined by

n n e _1\(p+1)
T (C*, {Cp}o v{hp}o) = H [by U £y (hy) U sp(by-1), Cp]( D )
p=0

where [e, f,] denotes determinant of the change-base-matrix from basis f, to e, of C,.

R-torsion does not depend on the bases b, and sections sy, £, [24].

Let c;), h; be also bases of C), Hp(C,), respectively. Then, the following change-base-formula is
valid [24]:

n ¢ c (=P
T (Cu{eyly b)) = H (H) T (Cu. {ep)g - {hp}g) -

Let .
0— A, — B, 5 D, — 0 (1)

be a short-exact sequence of chain complexes, and let cpA, cf , ch , h;‘, hf , and hpD are bases of A,

By, Dy, Hy(Ay), Hy(By), and Hp(D,), respectively. Let us consider the corresponding Mayer-Vietoris
long-exact sequence of vector spaces

O oo Hy(A) 75 Hy(B,) 2% Hy(D) 2% Hy y(A) — -+

associated to short-exact sequence (1). Note that Cs, = Hp(Dx), Cspr1 = Hp(Ax), and Cspyo0 = Hp(By)
then we can consider the bases hpD , hpA, and h{f for Csp, C3p41, and Csp40, respectively.
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Theorem 1. [24] Suppose c;‘, cg, ch, hﬁ, hf, and h]lg) are as above. Suppose also [cf, c;;‘ D cé)} =

+1, where j ((’:;5> = CE. Then, it follows

T (B {ef )y {02 }y) = T (A {c}) {np}y)
< T (De{ef Yy (0710) T (O femh™ 10K™)

Theorem 1 yields the sum-lemma.

Lemma 1. Assume Ay, D, are chain complexes of vector spaces and c]‘;‘,

of A,, Dp, Hy(A,), and H,(D,), respectively. Then, the following equality

D A D
¢, , by, and h)’ are bases

T(A. © Dy, {c; Ue )5, {hy U }E) = T(As, {e) )5, {hy }6)T(Dx, {e)}5, {1y }5)

is valid.

The proof of Lemma 1 can also be found in [30].
(Cy, Ox, {wig—«1}) is said to be C—symplectic chain complex of length g, if

0,
1C:0=5Cp=3Cypq — - — Cop— = Ch i\ Cy — 0 is a chain complex of length ¢, where
g =2 (mod 4),

2 forp=20,...,q, wpg—p : Cp x C4—p, — C is a 0—compatible non-degenerate anti-symmetric
bilinear form. Namely,

Wp,q—p (Opt+1a,b) = (_1)p+1wp+1,q*(p+1) (a; Og—pb)

and

wp,q—p(a,b) = (_1)p(q7p)wq—p,p(ba a).

From the fact that ¢ = 2 (mod 4) we have wy 4—p(a,b) is (—1)Pwg—p p(b, a). From d—compatibility
of wy q—p We obtain the non-degenerate pairing [wy q—p| : Hp (Cy) x Hy—p (Cy) — C.

For the rest of the paper, if the C—symplectic chain complex (Ck,Ox,{wsq—+}) is clear, then
A (hy, h,_p) is the determinant of the matrix of the non-degenerate pairing

[wp,g—pl + Hp (Cx) x Hyg—p (Cx) = C

in the bases h;,, h,_,.
Assume C, is a C—symplectic chain complex of length ¢ and c,, c,—, are bases of Cp,, Cy—p,
respectively. We say w—compatible, if the matrix of w, 4, in ¢p, c4—p is equal to the k£ x k identity

matrix Idgyx when p # ¢/2 and ( (;gl I(()im ) when p = ¢/2, where k = dim C), = dim C;_,, and
—1Urx] Ixl
2[ = dlqu/2

For computing R-torsion in terms of intersections pairings, we have the following result suggests a
formula. Namely,

Theorem 2. [31] If (Ck, Ox, {ws,g—+}) is @ C—symplectic chain complex with the w—compatible bases
cp, p=0,...,q and if h,, is a basis of H, (Cy),p=0,...,q, then the following formula holds:

(a/2)-1 (—1)4/2

‘T (C*,{Cp}g7{hp}g)‘ = H ’A(hmhqu”(_l)p \/|A (hq/2vhq/2)‘ : (2)
p=0
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In case h;, = h,_, = 0, the convention 0 = 1.0 is used and hence A(hy,h,_,) = 1. Let us also note
that equation (2) can be improved as:

(g/2)-1 uyp (—1)4/2
(C*v{cp}ov{hp}o H A hpahq p) A(hq/2vhq/2) : (3)

p=0

For details of (3), we refer the reader to [28; Remark 2.4|. See 27,28, 30|, for further applications of
Theorem 2.

2 Main results

Let X be a closed orientable surface of genus at least 2 with the universal covering 3. Let G be the
Lie group PSL(2,C) and G be the Lie algebra of G with the non-degenerate symmetric bilinear form
B. Here, B is the Killing form.

Assume p : m1(2) — G is a homomorphism from the fundamental group 71(X) of ¥ to G. Let E, =
5 x G/ ~ be the corresponding adjoint bundle over . Here, (21,1) ~ (22, t2), if (z2,t2) = (y-21,7-t1)
for some v € 7 (X), the action of v in the first component by deck transformation (- x; = 7y (z1))
and in the second component by the adjoint action (v -1 = Ad,y)(t1) = o (7) t10 ().

Let K be a cell-decomposition of ¥ for which the adjoint bundle F, is trivial over each cell and K be
the lift of K to the 3. Denote by Z [r1 ()] the integral group ring. Let C, (K;Gag,) = Cx (IN(, Z) ®G/ ~,
where for all v € m1(X), o®t ~ vy-0®~-t, the action of v by the first component is by deck transformation

and in the second is by adjoint action. We have the following chain complex:

81 ®id

0 — Co (K;Gaa,) 2 €1 (K;Gaa,) 22 €y (K;Gaa,) — 0. (4)

Here, 0, denotes the usual boundary operator. Denote by H. (K ;GAd Q) and H* (K G Adg) the homologies
and cohomologies of the chain complex (4), respectively, where C* (K :g Ad,_,) denotes the set of Z[m1(X)]-

module homomorphisms from Ci (IN( ; Z) to G. See [25] for details and unexplained subjects.
Clearly, for conjugate o,0' : 7 (X) — G ie. o () = Ap(.)A™! for some A € G, we have
isomorphic C, (K G Adg) and C, <K 0 g Adg,). Similarly, the corresponding cochains C* ( K;G Adg) and

c* (K ;g Adg/) are isomorphic.

Consider chain complex (4). Assume {e?}fnp is a basis of C}, (K;Z). For j = 1,...,m,, fix a

m. ~
lift € of €. Then, ¢, = {6?} 4 pl of Cp (K;Z) is a Z[r(X)]—basis. Assume A = {ap}{MY is a

B—orthonormal basis of the Lie algebra G. Namely, the matrix of the form B equals to the 1dent1ty
matrix of size dim G. Hence, we obtain a C—basis ¢, = ¢, ®, A of C), (K; gAdg) . We call such a basis
a geometric basis for C, (K; gAdg) .

If ¢, = ¢, ®, A and hy are respectively the geometric basis of C), (K ; Q’Adg) and a basis of

H, (Z; gAdg) , then T (C* (K; QAdQ) Aep @ A}ZZO , {hp}129:0> is said to be the R-torsion of the triple
K, Ady, and {hy}>_,

Theorem 3. |28; Theorem 3.1] If ¥, K, o, ¢, = ¢, ®, A, and h,, p = 0,1,2, are as above, then
T (C’* (K;Gaq,) » {cp ®, "4};:0 , {hp}izo) does not depend on the basis A, lifts €7, conjugacy class of
0, and the cell-decomposition K.

From Theorem 3, we have the well-definiteness of R-torsion of such representations, and hence we
write T (X, {hp};:o) rather than T (C* (K:Gaq,) » {cp ®, .A}Z:O , {hp};%:o)'
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Assume 3, K, G, G, 0, ¢, = ¢, ®,.A are as above. Let us consider the dual cell-decomposition K’ of

. corresponding to the cell-decomposition K. Consider the lifts K and K’ of K and K’ , respectively.
For ¢ = 0,1, 2, we have the intersection form

('7 ')z‘,2—i : Ci (K§ gAdg) X Cg_i (K/; gAdg) — C (5)

defined by (01 ® t1,00 ® t2)z’,2—z’ = Zyem(z) o1.(yeo2) B(t1,yety).Here, “.” denotes the intersection
number pairing, the action of v on g9 by deck transformation and on ¢, is by the adjoint action.
Using the anti-symmetric, d—compatible (-, -); 2—;, we have the non-degenerate anti-symmetric form

[, ']i,27i : H; (E; gAdg) X Hoy_; (E; QAdQ) — C. (6)

Note that if D; = C; (K; gAdg) @ C; (K’;gAdg) , and if we consider the bilinear form w;2—; : D; X
Dy_; — C defined by extending the intersection form (5) zero on C; (K; gAdg) x Cy_; (K; gAdQ) and
C; (K’; gAdQ) x Co_; (K/; gAdg) , then D, becomes a C—symplectic chain complex. Note also that the

bases ¢; of C; (I? ; Z) and ¢, of C; (1?7 ; Z) corresponding to ¢; result an w—compatible basis for D,.

Kronecker pairing (-,-) : C* (K;Gaa,) X Ci (K;Gaq,) — C is defined by (0,0®,t) = B(t,0(c)). It
has natural extended to (-,-) : H (E; gAdg) x H; (Z; gAdg) — C.

Recall the cup product U : C* (K; gAdg) xCJ (K; gAdg) — Ot (i, (C) is defined by (0; U 0;) (0i45) =
B (0; ((7i45)tront) » 05 (i) paci)) - Here, oiqj is in C’iﬂ(IN{;Z) and K denotes the lift of K to %
0; : C; (I?, Z) — G, 0;:Cj (I?, Z) — G are Z[m(X)]-module homomorphisms. This yields the cup

product 4 ' o
—p: C"' (K;Gaq,) x C7 (K;Gaq,) — C"7 (K;C)

with natural extension
—pt H (%;Gaq,) x H (2;Gaa,) — H™ (5;0),

where [01] ~B [9]] = [«9@ ~B 0]] .
Using the isomorphisms by (6) and the Kronecker pairing, we get the Poincare duality isomorphisms

PD: H; (%;Gaa,) & Ho—i (2;Gaa,)” = H* ™" (5;Gaq,) -
For ¢ =0,1,2 we have the

H?>7H(%;Gaq,) % H'(%6aa,) —2 H2(3;0)
TPD TPD O T
Hi (%:0a0,) x Hai(3:Gaq,) 25 C
Here, C — H?(3;C) sends 1 € C to the fundamental class of H?(X;C) and the inverse of this is

integration over X.
Clearly, we have the following pairing

Qi,2—z‘ . I{Z (E, gAdg) X H2_i (Z, gAdg) 3 H2 (E, C) é) C. (7)
;1 is called Atiyah-Bott-Goldman symplectic form for G on the representation variety Rep(X, G).

In [28], we established a formula for computing Reidemeister torsion of representations in terms of
Q1,1 Atiyah-Bott-Goldman symplectic form for the Lie group G. More precisely,
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Theorem 4. [28; Theorem 3.2] Let ¥, K, K', ¢ be as above. Let ¢, and ¢, be the corresponding
geometric bases of C), (K;QAdg) and C) (K’;gAdg), respectively, p = 0,1,2. If h, is a basis of
H, (E; QAdQ) , p=0,1,2, then the following formulas are valid

A (hg, hy)
VA (hy,hy)’

) 2\ _ 0 /FRLET)
11. T (2, {hp}p=0> = 1€e2 W

Here, A (hy, hy_,) is the determinant of the matrix of (6) in h, and hy_,, A (hg, ha) = |A (hg, hy)| €%,

where i =y/—land — 1< <7. ¢ (h2_p, hp) is the determinant of the matrix of (7) in h” and h2~?,

and h” denotes the Poincare dual basis of H?(X;Gaq,) corresponding to hy, of H,(¥;Gaq,), p=0,1,2.

Note that in case Hj (Z; gAdg) and thus Hy (E; gAdQ) are zero, by Theorem 4 we get

T (5, (b} = ie?

T(5,{0,h1,0}) =i v/A (by, hy) =i /3 (], h0).
3 Applications

Schottky representation and Thurston symplectic form

Before stating our application, let us recall Thurston symplectic form. For more information and
unexplained subjects, we refer [32] and the references therein.

Let Xy, g > 2, be a closed orientable surface. We say that A\ C ¥, is a geodesic lamination, if it is
closed and also consists of disjoint complete geodesics without any self-intersection points, called leaves
of A (see Figure 1 (a)). We say that the geodesic lamination X is mazimal, if the complement 3, — A
consists of finitely many ideal triangles, that is, triangles with vertices at infinity (see Figure 1 (b)).

2

(a)

Figure 1. (a) Geodesic lamination with 3 closed leaves (b) Maximal geodesic lamination with 3 closed
leaves and 6 infinite leaves spiraling towards closed leaves.

Let A C X, be a geodesic lamination and G' be an abelian group. A G—valued transverse cocycle o
for A is a function from the set of all transverse arcs to the leaves of A to G so that ¢ is finitely additive
and invariant under the homotopy of arcs transverse to A. To be more precise, o(k) = o(k1) + o(k2),
when the arc k transverse to leaves of A is decomposed into two subarcs ki, ko with disjoint interiors,
and o(k) = o(k’) when the transverse arc k is deformed to arc &’ through arcs transverse to the leaves
of the geodesic lamination A (Fig. 2). Let us denote the group of G—valued transverse cocycles for A
by H (A;G). In the case A is a maximal geodesic lamination and G = R, C, or R/27Z, H(X\; G) is
isomorphic to G976 [33]. For example, by using a (fattened) train-track ® C 3, carrying the lamination
A, one gets the isomorphism H(\;R) = R69-6,
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k K

—_ ko -
AN

L ko -

Figure 2. The arcs k and k" are transverse to the leaves of lamination . The arc k is deformed to &’
through arcs transverse to the leaves of the geodesic lamination. Moreover, k is splitted into two
transverse subarcs ki, ko with disjoint interiors.

Recall that a train-track ® C ¥, is composed of finitely many “long” rectangles e, ..., ey, called
edges of @, foliated by arcs parallel to the “short” sides and meeting only along arcs (possibly reduced
to a point) lying in their short sides. Furthermore, each point of the “short” side of a rectangle is also
contained in another rectangle, each component of the union of the short sides of all rectangles is an
arc, as opposed to a closed curve, and finally since the closure ¥, — ® of the complement ¥, — ® has
a certain number of “spikes”, corresponding to the points where at least 3 rectangles meet, it is also
required that no component of ¥; — ® be a disc with 0,1 or 2 spikes or an annulus with no spike.

Note that foliating the edges of the train-track ® by using the short sides, we get a foliation of ®,
and the leaves are called the ties of ®. The finitely many ties where several edges meet are said to be
the switches of ®. If a tie is not a switch, then it is called a generic tie. If A lies entirely in the interior
of ® and if, moreover, the leaves of A are transverse to the ties of ®, then A is said to be carried by ®
(Fig. 3). We refer [34] for constructions of a train-track.

Figure 3. Locally a train-track carries a geodesic lamination.

Suppose ® C ¥, is a train-track. A real-valued function from the set of edges of ® is called an edge
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weight system for @, if it satisfies the switch relation. Namely, for each switch s of ®, let eq,..., e, be
the edges adjacent to one side of s and let e,41,...,¢ep4q be the edges adjacent to the other side, we
have >0, a(e;) = Z? +§ 1@ (ej) . Let us denote the real vector space of all edge weight systems for ®
by W (®;R).

Let A C Y, be a geodesic lamination carried by the train-track ®. Consider the injective map
associating each transverse cocycle o € H(A;R) to the edge weight system a, € W (®;R) defined by
a, (e) = o (ke) . Here, ke is a tie of e. In the case of maximal lamination A, the map is an isomorphism
H(NR) =W (P;R) [33].

One can arrange the train-track ® so that at each switch s of ®, there are one incoming edge e
touching the switch s on one side and two outgoing edges eleft, right touching s on the other side,
where as seen from the incoming edge ™ and for the orientation of the surface 3, e branches out to
the left and e?ght branches out to the right. Thurston symplectic form on W(®) is the anti-symmetric
bilinear form wrpyrston : W(®;R) x W(®,R) — R defined by
ety g ( etight

ht ;
left) b ( el

a
wThurston a, b Zdet

where the summation is over all switches of ®.

By using the isomorphism H(\;R) = W(®;R), we have the Thurston symplectic form wrhurston :
HAR) x H(AMR) — R As is well known that wrpyston 18 an algebraic intersection number and is
independent of ® [32,34].

Recall that Teichmiiller space Teich (£,) of the surface X is the space of isotopy classes of complex
structures on 3,. By The Uniformization Theorem, it is the space of isotopy classes of Riemannian
metrics with constant Gaussian curvature (—1), that is, hyperbolic metrics on ¥4. One can also identify
it with the space of conjugacy classes of all discrete faithful homomorphisms from the fundamental
group m1(3,) to PSL(2,R). With the help of a maximal geodesic lamination A C ¥, and sending to
each hyperbolic metric m € Teich(X,) the corresponding shearing cocycle o,, € H(A;R), F. Bonahon
embedded Teich(X,) as an open cone C(A) C H(A;R) [32]. If k is an arc transverse to A, the shearing
cocycle o, (k) measures the “shift to the left” between the two ideal triangles in H?/g,, (71 ()
corresponding to the components of ¥, — A containing the endpoints of k. Here, o, : m (£4) —
PSL(2,R) is the discrete faithful representation associated to m.

Recall that for a homorphism ¢ : m; (£,) — PSL(2, C), there is the following commutative diagram

H' (2351(2,0)pg,) % H'(Zis1(2.0)ag,) —3 H?(55C)
pD pD O I (8)

Hy (Sgis1(2,C)pg,) % Hi (Sgisl(2,C),g,) e ¢

Here, C — H? (3,;C) is the isomorphism sending 1 € C to the fundamental class of H? (X,;C).
Recall also that

V J
wpsta) B (Sgisl(2,C)pg, ) % H' (Tg381(2.0)pg, ) =F H2(S4:C) ¥ C

is called Atiyah-Bott-Goldman symplectic form for PSL(2, C) [35]. It is known that wpgy,2,c) is related
with the Goldman symplectic form on Teich(3,)

- J;
Woldman | H (EQ;EI(Q,R)AdQ) x H! <Zg;5[(2,R)AdQ> I H2(S,:R) F R
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Here, Bg is the Killing form of the set sl (2,R), which is 2 x 2 trace zero matrices over R.
In [31], considering the isomorphism T,Teich (¥,) = H(A;R), which is obtained by the real-
analytical parameterization of F. Bonahon [32] and complexfying wrhurston, it was proved that

WPSL(2,C) = 2wT- (9)

Here,

wr: H (N C) x H(\C) = C (10)

is the complexfied Thurston symplectic form.

For more information and unexplained subjects, we refer the reader to [31] and the references
therein.

For a fixed g > 2, let us consider the free group Fy with generators X = {z1,...,24}. The set
Hom (F,, PSL(2,C)) of all homomorphisms from Fg to PSL(2, C) can be identified with PSL(2, C)? by
considering the map ¢ — (0 (x1),...,0(zyg))-

Let x (Fg, PSL(2,C)) be the quotient Hom (Fy, G) //G. As is well known that x (Fg, PSL(2,C))
naturally has the structure of an algebraic variety and it differs from the set theoretical quotient
Hom (F4, PSL (2,C)) /PSL (2,C) only at reducible points, namely, representations whose images fix
a point on C [36]. Let D (Fg,PSL(2,C)) and &£ (Fg, PSL(2,C)) denote respectively the set of all
discrete, faithful representations and those of representations with dense image in PSL(2,C). It is
well known & (Fg, PSL (2, C)) is not empty and open, D (Fg, PSL (2, C)) is closed and outside of these
representations in x (Fg, PSL (2, C)) has measure zero [37| and the references therein.

Let A;,B;, i = 1,...,g, be 2g disjoint closed (topological) disks in OH? and let ~1,...,7, €
PSL(2,C) be the Mébiiis transformations of the Riemann sphere C so that +; (A;) is the closure of
the complement of B;. The set {v1,...,7,} generate a free discrete group of rank g, called a Schottky
group. The representation g obtained by x; — ~; is in D (Fg, PSL(2,C)). Let S (Fq,PSL(2,C)) be
the set of Schottky representations. As is well known that S (Fg, PSL(2,C)) lies in the interior of
D (F,, PSL (2, C)) [38].

In [39], Y. Minsky proved the existence of an open set M (Fq, PSL(2,C)) of x (Fg, PSL(2,C))
which is strictly larger than S (Fg, PSL (2, C)) and on which Out (F,) acts properly discontinuously.
We have

Theorem 5. Let Fy denote the fundamental group m (Hy) of handle body Hg of genus g >
2 with boundary ¥4, and let M denote the double of Hg. Suppose A C 3, is a fixed maximal

geodesic lamination and ¢ € M (Fy, PSL(2,C)) is such that g o r € Teich(X,). Let hfg be bases
for H; (Fg;sl(Q,C)Adg), i = 0,1,2,3. Then, there exist basis h;vl and h?" of H; (M;s[(Q,C)AdQ)
and Hy, (Ey?s[(27C)AdQOT> ,j=0,1,2,3, k= 0,1, 2, respectively so that Reidemeister torsion of the

corresponding Mayer-Vietoris long exact sequence H, in these bases is 1. In addition, the following
formula holds:

3 — (2g551(2,0))
T <Fg’ {hfg}o> = eg(_ﬁo—i—ﬁ_gl) D I w— vV Qr.

Here, iy = dim Hy (M;s1(2,C) 4y, ) , b, is a basis of Hy (Sg;s0(2,C) 4y, ) © Hy (Sgi81(2,C) 4., )

oor
such that T (C. (3;81(2,C) 5y, ) @ Cs (Tgis1(2,C) gy, ), {091 }) is equal to 1, [, by* @ by |
= Hh?’l,hlzg ® hlzg} eV=101 Here, (Xg:81(2,C)) is x (X4) dimc sl (2,C), Qr is determinant of the

matrix of the symplectic form (10) in the basis h @ /—1 b, b is the basis of H();R) associated with
the isomorphism obtained by the embedding Teich (X,) < H(A;R)[32], and h! is the Poincare dual

Mathematics series. Ne 1(109)/2023 89



F. Hezenci, Y. Sozen

basis of H! (Zg;sl (2, C)Adgor) corresponding to hlzg. Here, 7 : 1 (£4) = m1 (F) is the homomorphism
obtained by the embedding >, — F,.

The proof of Theorem 5 is based on combining Theorem 4 and [28; Theorem 4.2], and the above
results, using the commutative diagram (8), Eq. (9), and the definition of wpgy,2,c)-

Let us now apply [28; Theorem 4.3|. As is well known that for a compact orientable 3—manifold
H, the holonomy representation of the complete hyperbolic structure Hol : my(H) — IsomtH? =
PSL(2,C) can be lifted to a representation Hol : m (H) — SL(2,C) [40]. It is also well known that
there is a one-to-one correspondence between the lifts and spin structures on H. Considering one of the
lifts and composing one of a finite dimensional representation V' of SL(2,C), we get a representation
o :m1(H) — SL(V). Recall that for every positive integer n there is a unique irreducible representation
V,, of SL(2,C) of dimension n, namely, (n — 1)-th symmetric power of the standard representation
Vo = C2. Considering V;, and all above, we get g, : 71 (H) — SL(n, C).

Let H be a compact orientable non-elementary hyperbolic 3—manifold with a boundary consisting
of £ surfaces X4, ..., %, of genus at least 2, and n > 2. Recall that H is non-elementary if its holonomy
is an irreducible representation in PSL(2, C).

In [40; Theorem 0.1], P. Menal-Ferrer and J. Porti prove that the inclusion OH C H induces

an injection, H' (F;s1(n,C) 5, ) = H' (0Hssl(n,C) 4y, ) with dim H' (H:sl (n,C) 4y, ) = (1/2)
dim H*! (8H;5[(n, C)Adgn) , and an isomorphism H? (H;s[ (n, C)Adgn) ~ [? (8H;5[(n, C)Ad9n> )

Theorem 6. Assume X4, H, M, G, G, o, hI,;I, hi/[, and hjzgi are as above. Then, the following formula
is valid:

= Sy L -
T (Hv {hII;I}i) = eg(_’80+£ﬂ_2521 0, ) HA (hlzgi’hlzgz) 1/4

=1
= T (A TT s (e i)
=1

DI
Here, [h(l)zlzgi,hlzgi ® hlzg’} = ’ [h(l)zlzg",hlzgi ® hlzgll VI (Xg,) — mi(H) denotes the
homomorphism obtained by the embedding ¥, — H, 8y = dim Hj (M; g Adg) and hgfgi is a basis of
0,3,
H; (Egi;gAdgori) @ H; (Egié gAdQOTZ_) so that T (C* (ZgﬁgAdgori) @ C, (Egi;gAdeJ ’{hl,l 91}) =1,

h7 is the Poincare dual basis of H’ (Egi; gAngri) corresponding to the basis h?g" of Hj (X4,5G 44 .

oor;

The proof of Theorem 6 is based on considering the short-exact sequence
l
0~ & C. (243 Gader, ) = Cv (HiGag,) & C (H Gag,) = Cu (M; Gag,) = 0
i=

and combining [28; Theorem 4.1] and [28; Theorem 4.3].
Combining these and Theorem 6, we have

Theorem 7. Considering n = 2 and for ¢ = 1,..., ¢, fixing a maximal geodesic lamination \; C ¥,
if g9 : m (H) — SL(2,C) is such that g9 o r; € Teich (Zgi) ,i=1,...,¢, applying (ii) of Theorem 5,
and using the notation there, we get

14

o (1, ) e T gl [
b 0 s .
=1
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Here, Q; is the matrix of the complex Thurston symplectic form wr : H (A;; C) x H (A;;C) — Cin
the basis h* ® +/—1 h?, and h?? is the Poincare dual basis of H7 (Zgi;sl (2, (C)Ad@w) corresponding to
h?gi, and b’ is the basis of H()\;; R) associated with the isomorphism obtained by the real analytical

embedding Teich (3y,) — H (A\i; R) [32]. Here, r; : w1 (3g,) — 71 (H) is the homomorphism obtained
by the embedding ¥, — H.
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®. Xezermxnu', 51. Cozen?

! Mosooice yrnusepcumemi, Jozdoce, Typrusa;
2 Xadorcemmene yrnusepcumemi, Awxapa, Typrus

IHTorTku kepcetisimi meH PeiiameiicTep OypaJybl KallbIHIa €CKEPTY

Maxkamnana [TlorTku kepceriiimi yiria Peitameiicrepain 6ypasty opMyaachkl aHbIKTAJIFaH. Te0pUsIIbIK HOTH-
JKeJiep 2-7IeH KeM eMeC TeKTi barapjaHfraH OeTTep/leH TYPaThIH KUEKTI 3—KenbeiiHeepre KOIJaHbLIa b

Kiam cesdep: lorrku kepcerismimi, Peiinmeiicrep Gypasiysl, kepcerisiMuing Kenbeitnenepi, Arbu-Borra-
Tonaman cummekTuka bk popmacel, TepCTOHHBIH CUMILIEKTHKAJIBIK, (DOPMACHL.

®. Xesemxu', 1. Cozen?

! Viueepcumem Jiosdorce, Joadorce, Typuus;
2 Vuueepcumem Xadocemmene, Ankapa, Typuus

3ameuanue o npeacrapiaeHnax lllortkm n kpy4denun Peitngemeiictepa

B craTtbe ycranosnena dpopmyna kpydenus Peitnmemeiicrepa st mpeacrasiennit [Ilortku. Teopernyaeckne
Pe3yJIbTaThl IPUMEHEHBI K 3—MHOroo0pasusM C KPaeM, COCTOSIIIUM U3 OPHEHTUPYEMBIX IIOBEPXHOCTEN pO/Ia
He MeHee 2.

Kmouesvie crosa: mpencrasienns [1lortku, kpyuenne Peitnemeiictepa, MHOrooOpa3ue mpeacTaBIeHU, CHM-
mwiekTuvyeckass popma Areu-bBorra-longmana, cumiuiektudeckas dpopma Tepcrona.
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Minimizing sequences for a linear-quadratic control problem with
three-tempo variables under weak nonlinear perturbations

The paper deals with the construction of minimizing sequences for the problem of minimizing a weakly
nonlinearly perturbed quadratic performance index on trajectories of a weakly nonlinear system with three-
tempo state variables. For this purpose, the so-called direct scheme for constructing an asymptotic solution is
used, which consists in immediate substituting the postulated asymptotic expansion of the solution into the
problem conditions and constructing a series of optimal control problems (in the case under consideration,
linear-quadratic ones), the solutions of which are terms of the asymptotic expansion of the solution of the
original nonlinear control problem. An estimate is obtained for the proximity of the optimal trajectory to
the trajectory of the equation of state when some asymptotic approximation to the optimal control is used
as a control. An example is given that illustrates in detail the proposed scheme for constructing minimizing
sequences.

Keywords: three-tempo variables, nonlinear optimal control problems, asymptotic estimates, minimizing
sequences.

Introduction

Mathematical models of many real processes contain multi-tempo fast variables. In review [1], there
are 74 links to publications devoted to the study of such models.

Difficulties of using numerical methods for solving differential equations with quickly changing
variables are well known. Therefore the employment of asymptotic methods is sometimes more preferable.
The most popular method for asymptotic solving optimal control problems is constructing an asymptotic
solution of problem following from control optimality conditions [2-4]. Another method, the so called
direct scheme, consists of immediate substituting a postulated asymptotic solution into the problem
condition and receiving a series of problems for finding asymptotic terms. The second approach allows
to establish non-increasing of performance index values, if a next optimal control approximation is
used, and gives the possibility to use standard programs for solving optimal control problems for
finding asymptotics terms. For two-tempo systems, it is presented, for example, in [5,6].

The direct scheme was applied in [7,8] for asymptotic solving an optimal control problem with weak
nonlinear perturbations in a quadratic performance index and a linear state equation of the following
form:

T
Poi Jiu) = /0 (1/2(w(t, &Y W (B)w(t, ) + u(t, o) Rt)ut, o)) + F(w(t, &), ult,e). £,2)) df — min,
(1)

dw(t,e) _ At)w(t,e) + Bt)u(t,e) + ef(w(t,e),u(t,€),t,e), t € [0,T], (2)

E(e) o

w(0,¢) = w’. (3)

*Corresponding author.
E-mail: kurina@math.vsu.ru
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Here e is a non-negative small parameter, " > 0 is fixed, the prime means transposition;
w(t,e) = (z(t,e),y(t,e), z(t,e)"), z(t,e) € R™, y(t,e) € R™, z(t,e) € R™, u(t,e) € R™;
(12 G &)
E(e) = diag(ILy,,eln,,% 1), I, is the identity matrix of order n;, f = (f', f, f), f € IR™,
1 @ B3) @) _
B=(B,B,B), B: R"™ — R™, i = 1,3; all functions in (1), (2) are sufficiently smooth with

respect to their arguments; for all ¢ € [0, 7] matrices W (t), R(t) are symmetric, moreover, W (t), R(t)
and S(t) = B(t)R(t)"!B(t)" are positive definite.

The matrices A3 and Agg — A23A§31A32 are assumed to be stable. Here and further A;;, 4,7 = 1,3,
mean matrices from a block representation of a matrix A with number of rows and columns n1, ne, ns.

The rigorous justification of applying the direct scheme method to problem (1)—(2) is presented
in [8]. The proof of estimates of the proximity between the exact solution and asymptotic one for the
control, state trajectory and performance index value is also given. Moreover, this paper contains the
proof of non-increasing performance index values when some new asymptotic approximations to the
optimal control are used.

The construction of minimizing sequences is very important for approximate solving optimal control
problems. Some facts concerning such sequences are given, for instance, in [9; 18,22].

It should be noted that any illustrative examples are absent in [7, 8], though any example is
very useful for understanding, in general, not simple algorithm of constructing minimizing sequences
for problem (1)—(3). Such example is given in the present paper. A statement on estimate of the
proximity between the optimal trajectory and a trajectory of system (2), (3), when some asymptotic
approximation to the optimal control is used as control, is also proved here. In comparison with [8],
some additional minimizing sequences are considered.

Some results of this paper were presented at the ICAAM 2022 [10].

This paper is organized as follows. For convenience, when considering an illustrative example,
we present in the next section the algorithm of the direct scheme applied to problem (1)—(3) and
give explicit formulas from [8] for linear-quadratic optimal control problems, solutions of which are
asymptotic terms for a solution of problem (1)-(3). In section 2, we give some theorems on estimates
from [8] and the proof of one theorem on an estimate of the proximity of the optimal trajectory to a
trajectory of system (2), (3) under a special choice of the control. The last section is devoted to the
detailed study of the first order approximation for an asymptotic solution of an illustrative example.
A table containing values of the performance index for terms of constructed minimizing sequences is
given.

1 Formalism of direct scheme method with explicit forms of problems for finding asymptotics terms

Following to the A.B. Vasil’eva’s boundary function method [11], a solution of problem (1)—(3) is
sought in the form
1

I(t,e) =0t e) + Y _(ILd(7i,€) + Qi €)), (4)
i=0

where 9(t,e) = (w(t,e),u(t,e)"), 7 = t/et, oy = (t —=T)/e'!, i = 0,1. Each term from (4) has
an asymptotic expansion according to non-negative integer powers of the small parameter ¢, i.e.
I(t,€) = 35087 05(t), i (7i,e) = Y550 /M), Qid(0s,6) = Y5506/ Qijd(0i). Here, 9;(t) are
regular functions and II;;9(7;), Qi;9(0;) are boundary functions of exponential type in neighborhoods

t =0 and t = T respectively.
For any sufficiently smooth function G(w(t,¢),u(t,€),t,e) we will use the notation G(9(t,¢),t,¢)

Mathematics series. Ne 1(109),/2023 95



G.A. Kurina, M.A. Kalashnikova

and the asymptotic representation

1
G(¥,t.e) =G(t.e) + > _(ILG(r,€) + QiG(0i,¢)), (5)
=0

é(t,z?) = G(ﬁ(t,€), t,€) = ZjZO €jéj(t), HOG(TO,«S) = G(E(ET@, ) + Ho’ﬂ(To, ) ET0, 6) -
— G(V(eTo,€),eT0,€) = Z]>0£'HOJG( 10), I1G(71,€) = G(I(®1,€) + MpV(emy, €) +
+ H179(7'1,€),€27'1,6) — G(ﬂ(é‘ T1,E ) + Hoﬁ(&"i‘l, ) 627'1,6) = 2]208 Hlj ( 1), Q()G(J(),8) = G(E(T‘F
50‘0,5) + Qol?(O‘o,aE),T + €09, € ) — G(’L9(T + €09, ¢ ),T + 600,6) = ZjZO EonjG(Uo), QlG(Ul,E) =
G(T+e2%01,¢)+Qod(eor,e) + Q1 (o1, ¢), T+e%01,6) —GI(T +e201,¢) +Qod(eoy, €), T+e%01,¢) =
ijo £/Q1;G(01).

The first step of the algorithm of the direct scheme method consists of the substitution of expansion
(4) into problem condition (1)—(3) taking into account (5). Equating in the transformed expressions
for (2),(3) terms of the same powers of ¢, separately depending on ¢, 7;, g;, ¢ = 0, 1, we obtain relations
for defining asymptotics terms. Whence, in particular, it follows that

Eqillgow(m9) = 0, E1llypw(r) = Eilljyw(m) = 0, E1Qeow(oo) = 0,
E1Qiow(o1) = E1Quw(o1) = 0, Exlljpw(m) =0, ExQow(or) = 0.

With the help of passing in the integrals from the expressions depending on 7;, 0;, i = 0, 1, to integrals
over the corresponding intervals [0,400) and (—o0,0], in the transformed integrand from (1) the
functional J.(u) is written in the form

Je(u) => €. (6)

Jj=0

Analyzing the structure of coefficients J; with even and odd indices separately, five linear-quadratic
optimal control problems P;, I1;; P, Q;; P, i = 0,1, solutions of which are terms of asymptotic solution
of problem (1)-(3), are formulated in [8]. Further, the explicit formulas for these problems will be
given.

Let us introduce the following notation:

E,\ = diag(1,,,0,0), Ey = diag(0, I,,0), E3 = diag(0,0, I,,),
¢(0,t,¢) = A(t)w(t, ) Bt)u(t, ) +ef(w(t e),ult ), t,e),
p(0, .t €) = W(thw(t ) — A()'¢(t,e) + e(Fu(V,t, €)' — fu(V,t, €)Y (t,€)),
X0, ¥,t,€) = R(t)u(t,e) — B(t)9(t,€) + e(Fu(d, t,e)' — fuld,t,6) ¢, €)).

The coefficient with &/ in an expansion of a function w = w(e) in a series in powers of £ will be
denoted by w; or [w];. The k-th partial sum of a series will denoted by upper wave and the low index
k,ie wp = Z?:o eJw;. The hat and the low index k in a function notation will be mean that the
function is calculAated with the functional argument equal to the k-th partial sum of the corresponding
expansion, e.g., fr(t,e) = f(U(t,€),t,¢). Functions with negative indices will be considered equal to
Zero.

In the following expressions with p and x in the performance indices of the formulated linear-
quadratic optimal control problems we take v(t,e) = 372 el (1;(t) + (By + By 4+ E3)(ojp(mo) +
Q()jl/)(O’o)) + (€2E1 + EEQ + Eg)(Hljw(Tl) + Qljw(Ul))), where ¢j, Hijw(Ti); Qijw<0i)> 7 = 0, 1, are
costate variables in problems ﬁj, IL; P, Qi; P, i = 0,1, respectively.
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Regular functions 9;(t), t € [0,7T7], are solutions of the following problems

T
o ) P
Pj: Jj(uj) = wi(T) E1(Qoj—1y¥(0) + Qi(j—2)%(0)) + /(wj(t) (§W(t)wj (t)+
0 (7)
dip; 4 (t dip 1 ~ .
el - B P gy (R 0) + Ry 4,9 e in
dw, (t dw;_1 (t dw;_o(t) ~
E wjt( ) | g, T dtl( )4 ngfdf() = [(t, 2); (8)
Eyw;(0) = Fyiw®, j =0, E(w;(0) 4 Iojw(0)) =0, j =1, ©
By (w(0) + Iojw(0) + Iiw(0)) = 0, j > 2.
The boundary functions Ily;9(7), 70 € [0, 400), are solutions of the problems
+oo
_ g
Moy Moy (o) = (o) (W (O)Tegro) + g1yl )y — B D))
0
Hloju(m) (5 ROoju(ro) + [ 1) (ro,2));)) dro — in,
(10)
4 dy (i
(51 + ) Ty gy DY) i )]+ (B 4 BT )y, (1)
Ig;z(400) = 0, Ea(w;(0) + Hojw(0)) = Exu’, j =0, (12)
By (w(0) + Iojw(0) + Iw(0)) = 0, j > 1.
The boundary functions Qo;9(00), o9 € (—00, 0], are solutions of the problems
Qoj P : Qo J(Qoju) = Qojw(0) Ex(¢;(T) 4+ Q1(j—1y%(0))+
0
1 ~ dQo(;—
+ [ (Quiwlon) GW D)Quw(a0) + Qo p(on.e)]; - &WH (13)

+Q0ju<‘70)/(%R(T)QOjU<UO) +[Qo(j-1)X(00,€)];)) dog — min,

05U

dQojw(oo) +E3dQ0(jfl)w(‘70)
dO’o dUo

(E1 + EQ)onw(—OO) = 0. (15)

The boundary functions IT;;9(71), 71 € [0,400) are solutions of the problems

(E1 + E») = E1[Qo¢(00,€)]j-1 + (B2 + E3)[Qog(00,€)];,  (14)

+oo
Iy, P 1y J (Tju) = /(Hljw(Tl)/(;W<0)Hljw(Tl) + [ﬁ1(j71)/?(7'17€)]j)+
0 (16)
Hlygu(n) (GROM u(m) + [Ty, 2))) dn - min,
dnléz(ﬁ) = Er[[11¢(71,€)]j-2 + Eo[Tlip(11, €)]j-1 + E3[llip(11, €)]y, (17)
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0 , _
(El + EQ)Hljw(+OO) = O, Eg(@](()) + HO]'UJ(O) + Hljw(O)) _ {OES;U; i = 0, (18)
The boundary functions Q1;9(01), o1 € (—00, 0] are solutions of the problems
0

QP+ Q1 (Quju) = Qujw(0)' Es(;(T) + Qoj1b(0)) + / (Qljw(O'l)/(%W(T)Qljw(al)‘F

o (19)
Qg9 + Q”u(al),(%R(T)QU“(UI) + [Qu-1)x(01,)];)) don — min,

C%wl(al) = E1[Q1¢(01,¢)]j—2 + Ea[Q1¢(01,¢)]j-1 + E3[Q1¢(01,¢)];, (20)
Q1w(—o0) = 0. (21)

2 Asymptotic estimates

Let eigenvalues of the matrix < é/? s Sj’g p ) are different for all ¢ € [0,T] (condition I from [8])
33 —As3

and the same condition is satisfied for the matrix .
A S A S A S B A So3’ "

( S ) _ ( S ) ( S ) ( e, S ) (condition T from [3]).
Under these conditions, the following Theorems 1-3 have been proved in [§].

Theorem 1. Solution ¥(t,e) of problem P. for sufficiently small ¢ > 0, ¢ € [0,T], satisfies the
inequality B
[9:(t,€) = Dnlt,e)|| < ce™ .

Here and further c is a positive constant independent of ¢, €.
Note a slip of the presentation of Theorem 1 in [8], namely, the condition II for this theorem has
been formulated inside of the theorem proof.

Theorem 2. For sufficiently small € > 0, the following inequality for the performance index is valid
Jo () — Jo(uy) < g2,
Theorem 3. For sufficiently small € > 0, the following inequalities are valid

Js(a*(n—l)) 2 Ja(a*(n—l) + Enﬂ*n) =
Z Je(ﬁ*(nfl) + En(ﬂ*n + Hopus + QOnu*)) P Ja(a*n)7 n =1

If an addition to u,(,_1) is non-zero, then the corresponding inequality is strict.

Here the notation us, j = n,n — 1 is used for the j-th order approximation for the optimal control
Use.

Denote by w = w(t, ) a solution of problem (2)-(3) at u = Uy, and dw = dw(t,e) = wy(t,e) —
w(t,e), du = du(t,e) = ux(t, &) — Usn(t, e).

Under proving Theorem 2 in [8], the estimate for dw(¢, ¢) has been used without the rigorous proof.
The proof of it will be given below, i.e. we will prove the following.

Theorem 4. For sufficiently small € > 0, the inequality
1w(t, )| < ee™* (22)

is fulfilled.
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Proof. It follows from (2), (3), that dw satisfies the system

S(a)cmii(f’g) = A(t)ow(t,e) + B(t)du(t,e) + e(f(wi(t, e), us(t, €),t,6)—
—f(wa(t, ) — ow(t,e), u(t, ) — du(t,e),t,¢e)),
dw(0,e) = 0.

In view of Theorem 1
Gutt, )| < cem . (23)

Write out the problem for dw = (d2/,y’,2’)" in the form

(1)
ﬁs—f = Ay (t)ox + Apo(t)oy + A13(t)dz + B(t)ou + e(é)(éw, Su,t,e), 62(0,e) =0, (24)
doy (2) @)
e~ = An(t)oz + Azn(1)dy + Az(1)0z + B (t)ou + e g (dw, du, . €), 0y(0,¢) = 0, (25)
(3)
52% = As31(t)ox + Ase(t)dy + Ass(t)dz + B(t)ou + 5(3)(610, Su,t,€), 62(0,¢) =0, (26)

i (4) (1) _
where (é)(éw,éu,t,s) = e( f (W, us, t,€) — f(we — 0w, uy — du,t,e)), i =1,3.
For brevity, the arguments ¢, € are dropped in some of the last relations.
3)
Using the fundamental matrix U (¢, s,¢) of the system

dz
272 = As(D)Z 2
e 33(t)Z, (27)

we write out the problem (26) in the integral form

1 (3) (3)
dz(t,e) = / U(t,s,e)(As1(s)dx(s,e) + Asa(s)dy(s,e) + B(s)ou(s,e)+
0

g (28)
(3)
+e g (dw(s,e),0u(s,e),s,¢))ds.
(3)
Due to stability of the matrix Ass(t) the matrix U (¢, s,e) has the estimate [10; 69]
3) ®(t — s)
HU(t7375)|’ < cexp(— )7 (29)

2

where 0 < s <t <7 and here and further e is a positive constant independent of ¢, €.
In the following, we will denote functions, appearing under transformations of problems (24)—(26)

(4) _

and satisfying the next two conditions 1) and 2) by h (dw,t,€), i = 1, 3. Specific forms of these functions
are omitted since they are insignificant for the proof.

1) For any g > 0, there exist such constants A = A(q) and g9 = €o(q) that, for [[dws|[c, - < A,
i=1,2,0<e<¢gg

(@) (4)

H h (511]1, t, 6) —h ((5’11)2, t, 5)” < QH(Swl - 5w2HC[0,T]a
(4)

2) || h(o>t7€)” < C€n+l.
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3) (3) (3)
In view of (27), taking into account that U (¢,s,¢) = U (t,e)U (s,€)~ !, we have

8(5)(15 ) (3) (3) d%)( )(3)
2 3 S, 3 _ 2 —1 5, 3 —1 _
gy =€ U(t,e)U (s,¢) 0 U (s,¢)

3) (3) (3) (3)

= —U(t,s,6)As3(5)U (5,6) U (s,6) ' = = U (t,5,€) Az3(s).

It follows from here that )
3
(3) oU (t,s,e)
Ut = g1
(1,5,6) = —* 2

Substituting this expression into (28), then integrating by parts the terms, containing dx and dy, due
to the initial values dy(0,¢), 0x(0,¢) and the estimates (23), (29) we obtain

Azz(s) 7 (30)

®)
S2(t ) = —Agg(t) " Ay ()82, €) — Ass(t) "L Ao (£)Sy(t,e) + h (dw, t, ). (31)

In view of the last expression, we get from (25) the problem

5% = (Ag1(t) — Agz(t) Az (t) LAz (1))0z + (Aoz(t) — Ao (t) Ass(t) ™t Asa(t))dy+ -
2)

+ h (0w, t,e), dy(0,e) = 0.

2
Using the fundamental matrix U (¢, s, ) of the system

e—— = (Aga(t) — Ags(t) Ass(t) " Asa(1))Y,

we write out the problem (32) in the integral form
1 [ 1 (2)
dy(t,e) = 8/ U (t,s,e)((A21(s) — A23(s)Ass(s)” " As1(s))0x(s,e) + h (dw, s,¢))ds. (33)
0

2)
Due to stability of the matrix Agg(t) — Ags(t)Asz(t) "L As2(t) the matrix U (¢, s,¢) has the estimate
[10; 69).
et —s)

(2)
10t 5,2)] < cexp(-=2

), 0<s<t<T. (34)
Analogously to (30) we get the relation

(2
(2) €8U(t,s,5)

Ult,s,e) = — 5 (Aga(s) — Agg(s)Ass(s) ' Asa(s)) .

Substituting this expression into (33), then integrating by parts the term containing dz, due to the
initial value dz(0, ) and the estimates (23), (34) we obtain

Sy(t,e) = —(Aga(t) — Ags(t)Ass(t) ™ Asa(t)) ™ (Aa1 (t) — Ags(t) Ass(t) " Az (£))dx(t, e)+

2) (35)
+ h (0w, t,¢e).
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Substituting the expressions (31), (35) into equation (24), we obtain the problem of the form

déx

(1)
—r = C(0)dz + h(dw,t.e), 5(0,€) = 0. (36)

The explicit expression for C(t) can be easy written taking into account (24), (31), (35).
(1) (1)
The fundamental matrix U (f,s) of the system % = C(t)X is bounded, ie. |U(t,s)| < c.

Therefore, writing the problem (36) in an integral form, we get

1)
dx(t,e) = h(dw,t,e).

So, from the last relation and (31), (35) it follows that system (24)—(26) can be written in the form
dw = h(dw,t,¢e), (37)

where h satisfies to the conditions 1) and 2).

If we take in condition 2) ¢ < 1 then h willbe a contraction mapping in Clo,1)- According to the
contractive mapping principle, equation (37) has a unique solution, and this solution can be found by
the method of successive approximations.

In view of condition 2) and Lemma 3 in [8] we obtain the provable estimate (22).

The proof of Theorem 3 in [8] is based on the following theorem on the structure of coefficients J;
in (6) proven in [§] .

Theorem 5. The sum jj +111(j—1)J +Q1(j—1)J of the performance indices in problems Fj, 1) P,
Q1(j—1)P is obtained by transforming the coefficient Jo; in expansion (6) and dropping terms, which
are known after solving problems Py, I P, QorP, k = 0,7 — 1, II11 P, Q1,P, k = 0,7 — 2. The sum
IIp;J + QojJ of the performance indices in problems Ilp; P, Qo;F is obtained by transforming the
coefficient Jy(;11) in expansion (6) and dropping terms, which are known after solving problems Py,
k=0,7, IL;;P, QuxP,i=0,1, k=0,7 — 1.

Similarly, using Theorem 5, we can establish some generalization of Theorem 3.

Theorem 6. For sufficiently small € > 0, {u*(n,l)} and the sequence with terms, obtained by
supplementing to 1, (,_1) one or several terms from the expansions (4) for the optimal control u, with
e™ are minimizing.

Detailing, {t(,—1)} and the sequence {ty(,—1)+&"Usn }, {Us(n_1)+E " Montis }, {Us(n—1)+"Qonts },
{ﬂ*(n—l) + Enﬂlnu*}y {’lj*(n—l) + €nQ1nu*}7 {ﬁ*(n—l) + En(ﬁ*n + HOnU*)}y {a*(n—l) + 5n(ﬂ*n + QOnU*)}7
{ts(n—1) + " (Wsn + Mipus) b, {Ua(n1) + " (Wsn + Quauis) by {ti(n_1) + " (Honts + Qontia) }, {tsn—1) +
Sn(HOnu* +H1nu*)}7 {a*(n—l)+5n(HOnU*+Q1nU*)}7 ey {a*(n—l)+5n(ﬂ*n+HOnu*+Q0nu*)}7 {a*(n—l)_'_
" (Usn +Tlonus +Tlnus) }, {x(n—1) + €™ (Wsn +Montse +Q1ntis) }5- o {Us(n—1) + €™ (Wsen +on s +Qonis +
Mipus) }y -1y + €™ (Usn + Hopus + Qontis + Q1) } are minimizing.

8 Illustrative example

Let us consider the problem P. with n; =1, u = ((%L), (222, (EL))’, (’lZJJ) € R, i=1,3, of the form

Je(u) = /1(
0

1 (3

(z(t,e)? +y(t, &) + z(t,e)? + u)(t, )% + (73)(t, £)? + u)(t, £)%)+

N

(38)

vea(t, )W (te) + ey(t, )W (t, 2)) dt — min,
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dxgt’ &) ate) + Wit e),
adygt’ )yt o)+ Dt ey + Wit ), (39)
£2 dzgt’ &) _ _it,e) + Wit e) + eyt ),
x(0,e) = y(0,¢) = 2(0,¢e) = 10. (40)

By setting ¢ = 0 in (38)—(40), taking into account the equalities IL;pz(7;) = 0, @ = 0,1, we obtain
degenerate problem Pj:

1
1 P ¢ ¢ ® ‘
/ 2+ To(t)? + Zo(t)? + U (t)? + To(t)? + uo(t)?) dt — min,
o 0
dZo(t (1)
D) — (1) + 1), Fo(0) = 10,
(2)

0 = —7o(t) + wo(?),
_ 3)
0= —Zo(t) + Tio(t).

The form of this problem follows also from (7)-(9) with j = 0. It is not difficult to find the solution

To(t) = 2a((V2 + l)e‘/ﬁt (V2 1)6_\/5(':_2))’ %)0( £) = 2afe V2t _ \/i(t—2)>7

where a = 5/((vV/2 — 1)62*/5 +V2+41),
_ _ 2 ®3)
Uo(t) =Zo(t) = wo(t) = wo(t) = 0.

Using (10)—(12) at j = 0 and taking into account that ITpox(79) = 0, we write out problem IlpgP
in the following form:

+o00o
1 (1) 2) (3)
Moo (Toou) = 2 / (Hooy(70)* + Moo2z(70)* + Moo u (10)* + Moo U (7o) + o ' (70)?) dro — ﬂnln
oou
0
dIl T (2) B
0330(0) = —Tlooy(0) + oo (10), Fo(0) + ooy (0) = 10,

3)
0= —HooZ(To) + Hoo u (7‘0).

Using (13)—(15) at 7 = 0 and taking into account that Quox(o¢) = 0, we write out problem Qoo P
in the following form:

0

Qo0J (Qoou) = Qooy(0)7o(1) + % / (Qooy(00)* + Qooz(00)? + Qoo(ilt)(Uo)Q-F

—00

(2) (3) .
+Qoo U (00)? + Qoo U (00)%) dog — min,

Qoou

dQooy(00)

(2)
p; = —Qooy(0o0) + Qoo u (00),
o0

0=—Qouoz(00) + Qoo(g)(ao)a
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Qooy(—00) = 0.

In this example, ¥;(t) = (£;(t),7;(t), ¢;(t))’ means a costate variable for the problem Py, I;;1)(7;) =
(IL;;€ (), m(mi), ;¢ (3))" is a costate variable for the problem II;P, and Qi¢(0;) =
= (Qi;€(04), Qijn(0i), Qij¢(04)) is a costate variable for the problem @Q;; P, i =0, 1.

Using (16)—(18) at j = 0 and taking into account that ITjpxz(m) = Iijpy(1) = 0, we write out
problem II;gP in the following form:

+oo
1 1 2 3 .
H10J(H10u) = 3 / (Hloz(T1)2 + Hlo(u)(71)2 + H1o(u)(7'1)2 + Hlo(u)(T1)2) dm — II_Inln,
10U
0

dIl gz (T (3)

71(3 ) _ —Io2(m1) + o w (1),
T1

fo(O) + HOOZ(O) + I1;02(0) = 10.

Using (19)—(21) at j = 0 and taking into account that Qoz(o1) = Quoy(o1) = 0, we write out
problem (19 P in the following form:

0

Q107 (Q1ou) = Q102(0)(o(1) + Quo¢(0)) + % / (Qio02(01)* + Qlo(llé)(01)2+

—00

2 3
+Q10(U)(01)2 + Qlo(u)(al)Q) do; — glin,
ou
dQuoz(1)

(3)
y = —Q102(01) + Qio u (01),
01

Qloz(—oo) =0.

Taking into account the solution of problem Pg and solving problems ILio P, Q;oP, i = 0,1, we get
the zero order approximation of an asymptotic solution of problem (38)-(40) of the form (4).

1) (1)
Zo(t,e) = To(t), Golt,e) = Wo(t), Jolt,e) = 10e~V22,

2) ®)
Tolt,e) = 10(1 — V2)e V22 Zy(t,e) = 10e V2 To(t,e) = 10(1 — V2)e V2,

Further, in the expressions of problems for finding asymptotics terms of the first order approximation
we take into account the found asymptotics terms of the zero order approximation. We omit zero terms,

: . ) 3) _ _ 1) (3) (1) ()
in particular, wo(t), wo(t), yo(t), Zo(t), oo u (10), oo w (70), ooz(10), 1o w (71), 10 w (71). Note,
that problems QuoP and (Q19P have the zero solution.

Using (7)—(9) at j = 1, we write out problem P; in the following form:

1
Lwn:/Q@mf+mw%wwf+$@%dﬁw+ﬁw%+mw$m+muﬁ%»ﬁagp
0
dx;t(t) =71(t) + (ﬂll)(t), 71(0) + p12(0) = 0,

_ @)
0=-7:1() +m(),

0=—-%(t) +%?(t).
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Using (10)—(12) at j = 1 and taking into account that Ilpox(79) = 0, we write out problem Il P
in the following form:

—+o00
1 (1) (2) (3)
o1 J (Hpru) = / (§(H0156(7'0)2 + To1y(70)? + Ho12(70)? + o1 ' (10)? + Moy u (19)* + Toy w (70)%) +
0
(1) (3) )
+1p12(70) oo w (7o) + Ilo1 w (7o) (Tlooy(70) — Hoon(70))) d1o — Inin,
o1u
dITp12(9)
_— = H =
dTQ 0, 01$(+OO> O,

dIl T (2) _
(273_/0( 0) = —Ho1y(70) + o1 u (70), ¥1(0) + Io1y(0) + 11%(0) = 0,

(3)
0 = —Ho12(70) + o1 w (7o) + Hooy (7o)
In view of (13)-(15) at j = 1, problem Qq; P is defined by the relations

0
Q0 (Qor) = QO (1) + 5 [ @ua(on)? + Qury(on)? + Qorz(o0)? + Qon w00+
+Qo1(12t)(0'0)2 + Q01(Z)(00)2) dro — Din,
dQ(S:O(UO) =0, dQ(;géao) = —Qo1y(o0) + Q01(12L)(00),
(3)

0= —Qo12(00) + Qo1 u (0p),

Qorx(—00) = Qo1y(—00) = 0.

Taking into account that II;;x(m) = 0, in view of (16)-(18) at j = 1, problem II;; P is defined by
the following way:

“+00

1 ¢! (2) (3) .
Iy J(Iu) = 3 / (Hlly(71)2 + H112(71)2 + 111 U (7'1)2 + 111 u (7'1)2 + 11w (7’1)2) dr — i,
11U
0
dlly y(7)
——— =0, II =0
dr , Ty (400) )
dlli1z(T (3) _
1;7_1( 1) _ —Ily12(m1) + Mg o (71), Z1(0) + o1 2(0) + 112(0) = 0.

Using (19)—(21) at j = 1 and taking into account that Q112(c1) = 0, we obtain problem (11 P in
the form:

0

QuJ(Quiw) = Q112(0)(¢1(1) + Qui¢(0)) + % / (Quy(o1)* + Qu12(01)* + Qn(llt)(ﬂl)2+

—0o0

(2) (3) .
+Q11 U (01)* 4+ Q11 1 (01)%) doy — gun,
11u
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d
6216;21’/1(01) =0, Quy(—o0) =0,
dQEZWI) — _Quz(o) + Quil(1), Quiz(—o0) = 0.
01

Solving problems Py, II;; P, Q;1 P, i = 0,1, we get the first order approximation of asymptotic
solution of problem (38)—(40):

Z1(t,e) = To(t,e) —ea((2 + \fg)teﬁt (2 \/i)te—\/?(t—Q))’
(é)l(t,&') _ (%)O(t’s) _ 5@((2 + \/§_|_ \/it)e\/it ( \f _ \/’t) Va(t— 2))
&) (2)
n(t,e) = o(t,e), %1@,5) = 50(75,5),
Z1(t,e) = Zo(t,€) + e5((—V2 + 1)e V2/E 1 (2 — 1) V2/E,

(3) (3)
u(t,e) = uolt,e) + 55(—(\/§+ 1)6—\/5'5/5 + (2\/5 _ 3)6—\/51&/52)_

The exact solution of problem (38)—(40) was calculated by means of Maple 2022.

The exact solution and asymptotic approximations to the solution of problem (38)-(40) at ¢ = 0.25
are presented in Figures 1-6, where the black line denotes the exact solution, the yellow line means the
solution of the degenerate problem, the red line — the zero order approximation and the green one — the
first order approximation. Please note that the degenerate and the zero order asymptotics solutions

1
for the trajectory z(t, ) and the control (u) (t,e) are equal, the zero and the first order approximations

2
for the trajectory y(t,e) and the control (u)(t, g) are the same.

Values of the performance index J.(u) corresponding to the optimal control u, and it’s approxima-
tions wg, up, u1 are presented in Table. We give here three decimal points using ordinary rules of
approximating. From this table it is seen that for a less values of € there is a better proximity between
values of the performance index for asymptotic approximations to the optimal control and it’s minimal
value and J.(ug) > Jo(up) > Jo(u1) > Je(us), this corresponds to Theorems 2, 3.

02 04 0.6 08 1 02 04 2 08 1
:

. (1) . (2)
Figure 1. Control wu (t,¢). Figure 2. Control wu (¢,¢).
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— 0.5+

0 02 04 06 08 1

r

3
Figure 3. Control (u)(t,e). Figure 4. Trajectory x(t,¢).
0.7
0.4

034

0.2

0.1+

T T T T i
0 02 04 0.6 0.8 1 —0.1+
1

Figure 5. Trajectory y(t,e). Figure 6. Trajectory z(t,¢).

Table
Values of the performance index

IS5 Je (ﬂo) Je (’170) Je (’171) Je (u*)
0.25 76.413 | 74.184 | 72.268 | 72.200
0.125 | 79.716 | 78.991 | 78.559 | 78.555
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YInKapKbIH/IbI aifHBIMAJIbLIAP MEH 9JICi3 0eiiChI3bIKTHI aybITKYbI 0ap
CBHI3BIKTBIK-KBaJIPATTHIK 0acKapy ecernTepi YIIiH MAHIMYM/IAY b
TizbeKTep

Maxkasia yIIKapKbIHIBI Kyl affHBIMAJIBLIAPBl 6ap 9JICi3 GEeMCHI3BIKTHI YKYHEHIH TPAeKTOPUSIAPBIHIA OJI-
Ci3 GEMChI3BIKTHI aybITKY KBaJIPATTBIK, Calla KPUTEPHUiiH a3aiTy ecebi yIIiH MUHUMUBAIUJIBIK, Ti30eKTep-
Ol Kypyra apHajraH. bys jkaraaiiia menriMHiH aCHMITOTUKAJBIK, bIIbIPAYBIH €CEITiH MapTTapbliHa, TiKe-
Jielt aybICTBIPYIAH XKoHe MIentiMaepi 6acTankbl 6efiChI3BIKTHI 6acKapy eceOiHiH MenTiMiHiH aCHMITOTHKAJIBIK,
BLIBIPAY BIHBIH, MYIIeepi GoJIbi TabblIaThIH THIML 6acKapy ecenTepidin yiipiH (KapacThIPbUIBII OTBIPFAH
JKaraiia ChI3BIKTBI-KBAIPATTLIK) KYPYZaH TYPATHIH IIENIMHIH aCUMITOTHKAJBIK KYDPBIIBICHIHBIH TiKe-
Jielt cxeMachbl KOJJAHbLIAAbI. TuiMzai Gackapyra Keibip aCHMIITOTHKAJBIK KYBIKTayIbl OacKapy PpeTiHe
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nafiajgaHraH Ke3Je THUIMJIi TPaeKTOPUSIHBIH KYH TeHJIeyiHIH TPaeKTOPHUsCHIHA >KaKbIHIBIFbI OarajlaHaIbl.
Munnmymaaymsl Tiz6eKTepai KYPY/AbIH CXeMAaChIH erzKeif-Terskeiyli KOpceTeTiH MBICAJ KeJITipiireH.

Kiam cesdep: yIIKapKbIH/IBI aflHBIMAJBLIIAD, THIMIL OGacKapy/IblH OeiiChI3bIKTHI ecerTepi, aCHMITOTUKAIIBIK,
GaraJjiayiap, MUHIMYMIAYIIBl Ti30eKTep.

I''A. Kypmna'?, M.A. Kamamuankosa®
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MuHuUMU3UPYyIoMNie Nocjae0BaTeJbHOCTI JIJIs
JMHENHO-KBaAPAaTUIHON 334241 yIIPABJEHUSA C TPEXTEMIOBbBIMU
nepeMeHHbIMU 1 CJIAObIMU HEJIMHEMHBIMU BO3MYIIIEHUSIMU

CraTbst TOCBSIINEHA TOCTPOSHUIO MIHUMU3UPYIONINX TTOCIEI0BATETLHOCTEN /I 3a1a9l MUHUMU3AIIAN CJIa-
60 HEJTMHENHO BO3MYIIEHHOTO KBAJPATUIHOTO KPUTEPU KAIECTBA HA TPACKTOPUAX CIa00 HEJIUHEHHOHN cu-
CTEMBI C TPEXTEMIIOBBIMY IIEPEMEHHBIMU COCTOSTHUA. [Ipy 9TOM MCIIOIb30BaHa TaK HAa3bIBaeMasl IIPsIMasi CXe-
Ma IIOCTPOEHUA aCUMIITOTUKH PEIIeHNs, 3aKII09aIONIAsACA B HEIIOCPEACTBEHHOU ITOJCTAaHOBKE IIOCTYJIMPYEMO-
IO ACUMIITOTUYECKOT'O PA3JIOZKEHUSI PEIIEHUs B yCJIOBUS 33291 U IIOCTPOEHUH CEPUH 3a]1a9 ONTUMAJJIBLHOTO
yIpaBJIeHUs (B paccMaTpuBaeMOM CiIydae nHHeﬁHO-KBaﬂ\paTW{Hbe), pellleHnsI KOTOPBIX ABJAIOTCA YJIEHAMU
ACUMITOTUYECKOTO PA3JIOKEHUsI PEIIeHUsT UCXOJIHOW HeJIMHEHHOU 3aja4un yrpaBienusi. [lomydena oreHka
OJIM30CTH OUTUMAJBLHON TPAEKTOPUU K TPACKTOPUU YPABHEHUs COCTOSHUS I[PU WCIOJb30BAHUU B Kade-
CTBe yIpaBJIE€HUsI HEKOTOPOI'0 ACUMIITOTHYECKOTO TTPUOJIMKEHHUSI K ONITUMAaJIbHOMY yipassenuto. [Ipusejen
IpuMep, OeTaJbHO UJIIIOCTPUPYIOMIUNA IIPEJIO’KEHHYIO CXeMY IOCTPOEHHsI MUHUMHUIHUPYIOMUAX IIOCJIEI0BA-
TEeJIbLHOCTEN.

Karoueswvie caosa: TpexXTEeMIIOBbIE II€PEMEHHEBIE, HeJIMHEHbIE 3aa9i OIITUMAJIBHOTO YIIpABJICHUA, aCUMIITO-
TUYIECKHUE OLICHKW, MUHUMU3UDPYIOIINE I10C/I€10BaTEJIbHOCTH.
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An optimal control problem for the systems
with integral boundary conditions

In this paper, we consider an optimal control problem with a «pure», integral boundary condition. The
Green’s function is constructed. Using contracting Banach mappings, a sufficient condition for the existence
and uniqueness of a solution to one class of integral boundary value problems for fixed admissible controls
is established. Using the functional increment method, the Pontryagin‘s maximum principle is proved.
The first and second variations of the functional are calculated. Further, various necessary conditions for
optimality of the second order are obtained by using variations of controls.

Key words: integral boundary conditions, singular control, optimal control problem, existence and uniqueness
of the solution.

Introduction

Boundary value problems with integral conditions last few decades became one of the intensively
studied classes of the problems of mathematical physics. These problems included different problems
with two-, three-, multiple and non-local boundary value problems [1-3|. One of the reasons that make
these problems so actual is that they have a strong relation with various fields of applications (see, for
example [4, 5| and references therein).

There exist many works devoted to investigation of the systems with local conditions and finding
necessary optimality conditions of first and second orders [6-10]. For such problems with integral
conditions we refer to [11-15].

Various type optimal control problems for the systems with boundary conditions are considered in
[16-22] and with integral boundary condition in [16, 17|, where the first order necessary conditions are
obtained. In some cases, when the first order optimality conditions are “degenerated”, i.e. are fulfilled
trivially one has to try to obtain second order conditions.

Another direction in investigation of the optimal control problems with multipoint and integral
boundary conditions is developing the numerical methods. For the first-order ordinary differential
equations such problems are studied in [23, 24].

In this paper, optimal control problem is investigated, when the state of the system is described
by differential equations with integral boundary conditions. The existence and uniqueness of solutions
to the boundary value problem is investigated. The first and second variations of the corresponding
functional are calculated. Optimality conditions of first and second order are obtained applying the
method of variations of the controls.

*Corresponding author.
E-mail: sharifov22@rambler.ru
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An optimal control problem ...

Problem Statement

Consider the following system of differential equations with an integral boundary condition

%f:f(t,x,u(t)),ogtST, (1)
/ m( el 2)
u(t) e Ut 0,T], (3)

where z(t) € R"; f(t,x,u) is n-dimensional continuous function; C' € R" is a given constant vector
and m (t) € R™ "™ is n X n matrix function; u is a control parameter; U € R" is bounded set.
The problem is: to minimize the functional

T
J(u) = (z(0),z(T)) —I—/O F(t,z,u)dt (4)

on the solutions of problem (1)—(3).

The following assumption is accepted: the scalar functions ¢ (x,y) and F (t,z,u) are continuous
with respect to their own arguments and have continuous and bounded first order partial derivatives
with respect to x, y. As a solution of problem (1)-(3) corresponding to the fixed control u (t) we consider
absolutely continuous on [0, 7] function x(¢t) : [0,7] — R™. The space of such functions is denoted as
AC([0,T],R™). C([0,T], R™) stands for the space of continuous functions on [0, 7] which gets values
from R". It is obvious that this is a Banach with the norm ||lz[|c 1) = max|z(t)|, where || is the

(0,T]

norm in space R".

As admissible controls we consider the functions from the class of bounded measurable functions
with the values from the set U C R". We call the pair consisting of admissible control and the
corresponding solution of (1), (2) an admissible process.

Thus the admissible process {u (t),z (t,u)} that is a solution to (1)-(4), subject to (1)-(3), is said
to be an optimal process, and u (t) — an optimal control.

The existence of an optimal control in problem (1)—(4) is also assumed.

Ezistence of solutions of boundary value problem (1)—(3)

Let’s set the following conditions.
H1) Let det B # 0, where B = fo t)dt.
H2) f:]0,T] x R" x R" — R" is a contlnuous function and there exists the constant K > 0

lf(t,z,u) — f(t,y,u)| < K|z —y|, t€]0,T], z,y€ R",uel.
H3) L=KTM < 1,
L m(r)dr,0<t<s
— — 0
where M—Og’%)g(THM(t,s)H, M (t,s) —{ lf Pdrs<t<T.

Theorem 1. Under the condition H1) the function z(- ) E AC ([0,T], R™) is an absolutely continuous
solution to problem (1)-(3) iff

T
z(t) = B~C —l—/o M(t,7)f(r,z(7),u(T))dr. (5)

1f T)dr, 0<t<s,
HereM(t,S):{ lj“)m dr, s<t<T.
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Proof. It is obvious that if = z(+) is a solution to (1), then

2(t) = 2(0) + / £(s,2(5),u(5))ds, (6)

for t € (0,7), where x (0) is an arbitrary constant. To determine x (0) we suppose that the function
given by (6) satisfy (2), i.e.

T t
Bm(O):C’—/O m(t)/o f(r,z(7),u(r))drdt.

Since det B # 0 we have

T t
z(0) = B_lc—B_l/O m(t)/o flr,z(r),u(7))drdt. (7)

Considering in (6) the value of z (0) determined by equality (7) we get
T
z(t)=B"C +/ M(t,7)f(r,z(T),u(T))dr.
0

By this way we reduced boundary value problem (1)—(3) to the integral equation (5). It is easy to check
that the solution of integral equation (5) also satisfies (1)—(3). Theorem 1 is proved.
Introduce the operator P : C'([0,T], R") — C ([0,T], R") as

T
(Pa)(t) = B-1C + /O Mt 1) (7, (), u (7))dr. (8)

Theorem 2. Within the conditions H1)-H3) for any C' € R™ and for each fixed admissible control,
problem (1)—(3) has a unique solution that satisfies the following relation

T
z(t) = B~C —l—/o M(t,7)f(r,z(7),u(7))dr. 9)

Proof. Let C' € R™ and u (-) € U be fixed. Consider the mapping P : C ([0,T], R") — C ([0,T], R")
defined by (8). It is obvious that the fixed points of the operator (Pz)(t) are the solutions of (1)—(2).

To prove that the mapping P has a fixed point we apply the Banach contraction principle. For any
v,w e C([0,T], R™) we have

T
[(Po)(t) = (Pw)(t)] < /0 [M(t,5)| - [f(s,0(s),u(s)) = f(s,w(s),u(s))]ds <

< KTN [[o() ~wO)llcory > t€10.7],

or
||Pv — Pw||C[07T] < Liv— w”(J[O,T} :

The last relation shows that P is the contraction in the space C ([0, 7], R™). Thus, based on the principle
of contraction operators one can state that P has a unique fixed point at C ([0, 7], R™). It means that
integral equation (9) or boundary value problem (1)-(3) has a unique solution.

Theorem 2 is proved.
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Derivation of Pontryagin’s maximum principle

Here we assume that U is closed set in R". To obtain the necessary conditions for optimality one
should analyze the variation of the objective functional caused by some control impulse [7] i.e. one must
calculate the increment formula that obtained from Taylor’s series expansion. It is important to give
a definition of the conjugate system that allows one to determine the dominant term that leads to the
necessary condition for optimality. For the sake of simplicity, it is expedient to construct a linearized
model of system (8), (9) in some small neighborhood.

Let {u,z =z (t,u)} and {t = v+ Au, T =z + Az = x (t,4)} be two admissible processes. Introduce
the boundary value problem for problem (1)—(3):

Ai = Af (o), te[0,T),

T
/ m (1) A (1) dt = 0,
0

where Af (t,z,u) = f(t,Z,a) — f(t,z,u) stands for the total increment of the function f (¢, z,u).
Then we can represent the increment of the functional as

T
AJ (u) =J(a) —J (u) =Ap (z(0),z (1)) —I—/O AF (z,u,t)dt.

Consider the non-trivial vector-function 1 (t), v (t) € R™, and numerical vector A € R™. Then the
increment of the functional (4) can be written as

T
AJ (u) =J (@) —J (u) = Ap(x(0),z (1)) —l—/o AF (z,u,t)dt+

+/OT<1/J(t),Am'(t)—Af(t,x,u))dt+<>\,/0Tm(t)Ax(t)dt>.

Making standard operations for the increment of the functional we obtain the formula

T T
AJ(u):—/O AgH(t,w,x,u)dt—/o <AQW,Ax(t)>dt+

+ﬁ<%+m/(t),\+¢(t),Ax(t)>dt+<[%—w(O)] ,A$(0>>+

+ < [6%) ty (T)] , Az (T)> + s

where

H (t,2,z,u) = (Y, f (t,z,u)) — F (t,z,u),

T
i = —/ or ([|Az (t)|) dt + oy ([|Az (o) ||, [Az (t1)]]) -
0

Let the vector function 1 (¢) € R™ and vector A € R™ be a solution of the following conjugate
problem
V(1) = —HEREY () A, € (0,T],
(11)
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Then, formula (10) takes the form

T T
AJ(u)——/O AgH(t,w,x,u)dt—/o <AgW,A$(t)>dt+ng. (12)

Taking as parameters the point 7 € (0,7, number € € (0, 7], vector v € U and variation interval
(1 — e, 1) from [0, T] we consider needle-shaped variation of the admissible control. Then needle-shaped
variation of the control uw = u (¢) may be given by the relation

veU, te(r—e1]C[0,T], >0,

ﬂzus(”:{ w(t), té(r—erl (13)

To obtain the necessary optimality condition from the increment formula (12) one have to show that
on the needle-shaped variation @ (t) = u. (t) the state increment A.x (t) has the order ¢.
Since,

T
Az (t) = /0 M (t5)[f (5,3 () + Az (), (5)) — f (5,2 (5) it ()] ds+

T
+/ M(t,s) Ao f(s,2(s),u(s))ds.
0
The last implies that
T
e O < (107 [ 18af (b (1) u @) .
0

which proves the hypothesis on response of the state increment caused by the needle-shaped variation
given by (13)
Az (t)| < Le, t€[0,T], L= const > 0.

This also implies that for @ () = u. (¢) the relation

[ (a2 o)) dtt (18 (0]) = o)

holds true, where
Acz(t) =z (t,us) — x (t,u) ~ e.

It means that according to (12) the variation of the functional caused by the needle-shaped variation
(13) can be written

Acd (u) =J (ue) — J (u) = =AyH (8,9, z,u).c+o(e), ve U, s€l0,T]. (14)

Note that in the last expression, the mean value theorem was used.

Formula (14) with respect to the estimate for ||A.x| implies the necessary optimality condition in the

form of the maximum principle for the needle-shaped variation of optimal process {u®, 2" = z (t, uo)}.
Theorem 3. (Pontryagin‘s maximum principle). Assume that the admissible process {u® 2% =

z (t,u’) is optimal for problem (1)—(4) and ¢ (¢) is a solution to problem (11) calculated on the

optimal process. Then, inequality

AH (s,d}o,xo,uo) <0, foreveryv e U, (15)

is valid for all s € [0,77] .
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Remark. If the function f is linear with respect to (z,u) and the functions, F, ¢ are convex with
respect to x (0), = (T'), and z (), respectively, then maximum principle (15) is both necessary and
sufficient optimality condition. This fact can be easily obtained from the formula

T T
AT (u) = /0 AH (b4, u) dt + o, (| Az (0], [ Az (T)]) + /0 or (lz ()] dt

where o, > 0, op > 0.
The second order formula for the increment of the functional and variation of the functional

Let us suppose that the scalar functions ¢ (x,y) and F (¢,z,u) are continuous over their own
arguments and have continuous and bounded partial derivatives with respect to x,y and u up to second
order, inclusively. Let U be an open set in R" and {u,z = z (t,u)}, {t =u+ Au, T=x+ Az =z (t,0)}
be two admissible processes.

Under the above assumptions increment formula (12) turns to

= = Jo (P N (t) )t - § f (A () FHGEE A (t) ) dt-

4 2 z,u T,u
—fOT<Au(t) OLLLL) 4 LAY (1) PHEL2 A (1) ) dt+

/ 2 / 2
+1 (az (0) 28+ A0 (T) gy A z(0))+
(16)
1 / 82@ / 82@ ~
Take Au (t) = edu(t), where € > 0 is small enough number, du (¢) is some piecewise continuous

function. Then the expression AJ (u) = J (a) — J (u) for the fixed functions u (), Awu(t) will be a
function of the parameter . If the representation

AJ (u) =edJ (u) + %5252J (w) + o (%) (17)

holds true, then &.J (u) is called the first, §2J (u) the second variation of the functional. To get an
obvious expression for the first and second variations we have to select in Az (¢) the principal term
with respect to €.
Let
Az (t) = edx (t) +o(g,t), (18)

where 0x (t) is the variation of the trajectory. Obviously, such a representation exists and for the
function dx (t) one can obtain an equation in variations. Using the definition of Ax (t) we get

T
x(t) = / M(t,7)Af(r,2(7),u(T))dT.
0
Using the Taylor formula, we get:

Of (1,z,u)

T r, U
cin () +oe.t) = [ 0 (0r) { L2 () 4 ofe, 4 215

5 du + o1 (g, 7‘)} dr.

If to consider that the last formula is true for any € we have

/ Mt {3"0(?“)5 (7) +Wau(t)}d7. (19)
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Equation (19) is called the equation in variations. Obviously, (19) is equivalent to the following nonlocal
boundary value problem

_Of (t,z,u) af (t,x,u)
0z (t) = e dx (t) + 50 du(t), (20)
/T m (t) 6 (1) dt = 0. (21)
0
Any solution of (20) may be written in the form
oz (t) =@ (t)ox (0) + P (t)/ o1 (1) W&u (1) dr, (22)
0

where @ (t) is a solution of the equation

de(t)  Of (t,x,u)
dt Ox e (),

o (0) = E.

Let the solution of (20) determined by equality (22) satisfiy (21). Then for the solutions of problem
(20), (21) we obtain the explicit formula

/GtT Txu)é(r)dT, (23)
where
B (t)B _1f0 T)dT®~ () 0<s<t
G(t’s)_{ ® ) B! [Tm(r)®(r)drd~ (r), t<s<T

Blz/OTm(t){)(t)dt

Considering (18) in (16), we obtain

sf<"’H“‘”“‘ 5u(t)>dt—522{

2 X, u
[<5$’(t)78 H(gj; : ),5:17(t)> +
2 (o' (6) AL, sa(t)) + (o' () LR u() )] i

/ 9% / 82

2 2
— (02 (0) gy + 02 (T) 555, 02(T) ) } + o(e?).

Using (17) from the last we get

5. (u) = — /OT <M“’8‘W,5u(t)> dt
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Ju) = = Ji [0 PG, 600)) +
2 (o (1) ZHER, sa(t) ) + (o' (6) G0, su(t) )] i+
2 2
+ <5x'(0)—a§(5§2 + A (T) gy (5:1:(0)> +

+ <5x'(0)% + 82/ (T) 520, 0a(T )> .
Derivation of Legendre-Klebsh conditions
It follows from (17) that the conditions
§J(u?) =0, 62J(u") >0 (24)

are fulfilled on the optimal control u (¢).

From (24) it follows that
T o ,0 ,0
OH (t,¢", z% u?) B
/0 < - Ju(t) ) dt = 0.

Hence the validity of the equality

H(t, 9" 20 u°)
ou
can be proved along the optimal control that indeed is the Euler equation. From (24) we obtain the
validity of the following inequality along the optimal control

T = = Ji [{00' () ZHGL= 5w(r)) +

+2 (3 () PHERE ba(t) ) + (o' (6) G2 Gu(t) )| di+

=0, te[0,T] (25)

2 2
+(62/(0) 528 + AT (T) g 82(0) ) +

2 2
+(02(0) sy + 00/ (T) 5z 02(T) ) 2 0.

Inequality (26) is an implicit necessary optimality condition of first order. Since the verification of
the last conditions require heavy calculations their application meets difficulties.

To obtain more effective optimality conditions of the second order, we use (23) in (26) and introduce
the matrix function

2 2
R (7—7 S) = -G’ (07 T) 63([;32G <O7 S) -G (T7 7—) %G (07 S) -

~G'(0,7) %G (T,5) = G'(T,7) 5225G(T,) + [ G (t,7) GHG (t,5) dt.

(1)°
It allows us to obtain the following terminal formula for the second variation of the functional
J'f(r,zu of (s,x,u
(w) = = { Iy i (0un) LEELR(, ) 252, Gu(s) ) drds

+ T <5/u(t)%, 5u(t)> dt

+ 2f0 fo < %G (t,s) W, 5u(s)> dtds} )
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Theorem 4. Let the admissible control u (¢) satisfy condition (25). Then in order to this function
be optimal in problem (1)-(4), the inequality

82J( {fo fo < 78 f(guxu)R(T, S)L(SIU) ou(s )>d7'ds
+J§<&mﬂ@ﬂ%%&@ﬁmw>ﬁ+ (27)

+2 fOT fOT <5u’(t)782H(§;’gf’u)G (t,s) 73f(§f’"),5u(5)> dtds} >0

should be fulfilled for all du(t) € Ly[0,T].

The analogy of the Legandre-Klebsh condition for the considered problem follows from condition
(28).

Theorem 5. The inequality holds true

V/3211(97¢(9)=$(9)=U(9))
ou?

over the optimal process (u(t),z(t)) for all v € R" and 6 € [0,T].
Proof. To prove the theorem, we calculate the variation of the control

v<0 (28)

v telh,0+¢)
ou(t) {o tEl0,0+e) (29)
where € > 0, v is some r-dimensional vector.
By virtue of (23) the variation of the corresponding trajectory is
dz(t) = a(t)e + o(e, 1), t€[0,T], (30)

where a (t) is a continuous bounded function.
Substituting variation (29) into (27) and selecting the principal term with respect to € we obtain

0+¢

2J(u)=— [ v’agH(t’wgif(t)’u(t))”dt +ole) =
0
C e /82H(9 ¢(8i$(9)7u(9)) v+ 01 (6)

From this using condition of (24) the Legandre-Klebsh criterion (28) is obtained.

Condition (30) is the second order optimality condition. It is obvious that when the right hand
side of system (1) is linear with respect to control parameters, condition (28) also degenerates, i.e. is
fulfilled trivially.

If for all € (0,T), v € R" the relations

OH(0,4(0), 2(0), u(0)) L PH(6,9(6),2(0), u(6))
ou ou?
hold true then the admissible control u (¢) is said be a singular control in the classic sense.

Theorem 6. Assume that the control u (¢) is the singular in the classic sense. Then for optimality

of u (t)

=0, v =0,

{fo fo <8ft:ru (t S),W>dtd3+
(31)
2 [ I (PG ), g duds v <0
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should be fulfilled for all v € R™.

Condition (31) is an integral necessary condition of optimality of the controls singular in the classic
sense. One can obtain various type necessary optimality conditions by taking the special variation of
various forms in formula (30).

Conclusion

In this paper, the optimal control problem is considered when the considered system is described
by the differential equations with integral boundary conditions. The existence and uniqueness of
the solution is proved for the corresponding boundary value problem. The first and second order
increment formulas of the functional are obtained. Various necessary conditions of optimality of the
first and second order are obtained. Of course, such type existence and uniqueness results and necessary
conditions of optimality hold under the same sufficient conditions on nonlinear terms of the system of
nonlinear differential equations (1), subject to multi-point nonlocal and integral boundary conditions
type of

T J
m(t)z(t)dt+ Y Bja(t;) =C,

where B; € R" " are given matrices and

J
det | B+> B;| #0,
j=1

here, 0 < t; < t9 < ... <ty <T for controls singular in the classic sense. Selecting special variation in
different way in formula (30) we can get various necessary optimality conditions.
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M./Ix. Mapaanos, 9.A. IHlapudos,

Ozipbatiorcar ¥ammolk evtavim axademuacoinoi, Mamemamura otcone mexanuka urncmumymo, Baxy, Osipbatiotcan;
Baxy memaexemmix ynusepcumemi, Baxy, Osipbatiorcan

Nurerpasapl 1meKapaJblK, MapTTapbl 6ap >Kyiiesep yoiiH TAiMJIi
backapy ecebi

Maxkanana «Ta3a» UHTErpaJsIbl MeKapaJsIbIK MapTIeH THiM Il 6ackapy ecebi kapacToipbuiran. ['pus dyHKIIN-
SCBI KypbUIFaH. BaHaxThIH KBICHII OeifHe ey TPUHINITIH KOJIJaHa OTHIPHII, OeKITiITeH PYKCAT eTiireH 6acka-
Py Ke3iHJe MHTerpaJsiIbl MIeTTiK ecenTep/iiH, Oip KJIaChIHBIH, MIENIIMHIH 6ap OOJIYBIHBIH YKETKIJIKTI IIapTh
MEH 2KAJIFBI3ABIFBI aHBIKTAJIAbI. DYHKIMOHAJABIH aybITKYBI diciMeH [loHTpATruHHiH, MaKCUMyM HPUHITAII
npJtesiaeH . @yHKITMOHAJIBIH OipIHIM >KoHe eKiHIIN BapualsIapbl ecernTe/ireH. backapy bl Bapualsiia-
PBIHBIH KOMETrIMeH eKiHI peTTi THIMIUTIKTIH opTypJ/ii KaXKeTTi IapTTapbl aJbIH/IbI.

Kiam cesdep: mHTerpaabl MEKapasblK, MapTTap, epekine backapy, THiMal backapy ecebi, memimMHuin 6ap
JKOHE 2KAJIFBI3 OOJIYbI.

M./ I:x. Mapmanos, f.A. [Mlapucdor

Hnemumym mamemamuru u mexaruxy Hayuonaavnot axademuu nayx Azepbatiosicana, Baxy, Asepbatioocan;
Baxuncrkuti 2ocydapemeennoti yrHusepcumem, Baxy, Asepbatidocan

Ba,u;aqa OIITUMAJIBHOT'O yIIpaBJICHAA [IJId CUCTEM C MHTErpaJibHbIMHA
r'rpaHnMYYHbIMM YCJIOBUAMMA

B crarpe paccMmoTrpena 3a1ata ONTHMAIBHOTO YIIPABIEHUS C « IUCTHIM» HHTETPAIBHBIM TPAHUYIHBIM YCJIOBU-
eM. ITocrpoena dyuknus 'prna. C nmoMoIpo IpuHIMIIA CKUMAOIIX oTobparkeHuii Banaxa ycraHoBieHO
JOCTATOYHOE YCJIOBUE CYIIECTBOBAHUS U €IUHCTBEHHOCTU PEIIEHUSI OJTHOTO KJIACCa MHTEIPAJIBHBIX KPAEBbIX
3a7a4d npu (PUKCUPOBAHHBIX JOMYCTHUMBIX yIpaBieHusix. MerogoMm mpuparienuii OyHKIMOHATA JOKA3aH
npuHimn MakcumyMma llonrpsiruna. Berauciiensr nepsasi u Bropasi Bapuanun dyHkiuonasa. C IOMOIIBIO
BapuaIuii ypaBaeHUil TOJyIeHbl PA3INIHbIE HEOOXOIMMBbIE YCIOBHUS ONMTUMAJIHFHOCTH BTOPOTO TOPSIIKA.

Karouesvie crosa: UHTEerpaJibHble I'DaHUYIHbI€ yCJIOBUA, 0cobbIe yupaBJIeHHUd, 3a/a9a OIITUMAJIbHOTO YyIIpaB-
JIeHUd, CylIleCTBOBaHNE U €IMHCTBEHHOCTH PEIleHUd.
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Solving Volterra-Fredholm integral equations by natural cubic spline
function

Using the natural cubic spline function, this paper finds the numerical solution of Volterra-Fredholm integral
equations of the second kind. The proposed method is based on employing the natural cubic spline function
of the unknown function at an arbitrary point and using the integration method to turn the Volterra-
Fredholm integral equation into a system of linear equations concerning to the unknown function. An
approximate solution can be easily established by solving the given system. This is accomplished with the
help of a computer program that runs on Python 3.9.

Keywords: Volterra integral equation, Fredholm integral equation, spline function.

Introduction

Integral equations can be used to express a variety of mathematical physics topics. Some of these will
be examined and treated explicitly as examples. It would be nearly impossible to compile a list of such
applications. To say that integral equations play a role in practically every area of applied mathematics
and mathematical physics is an understatement; because, the literature on integral equations and their
applications is extensive.

Many researches have been conducted in recent years, with the results revealing the interaction
of Fredholm integral equation, Volterra integral equation, Volterra-Fredholm integral equation, and
numerical solutions of these three types of the integral equation.

The linear Volterra-Fredholm integral equations (VFIEs) of the following type were taken into
consideration in this work:

T b
u(z) = f(z) + )\1/ K(z,t)u(t)dt + )\2/ L(z,t)u(t)dt, (1)

where the functions f(z), and the kernels K (x,t) and L(z,t) are known L? analytic functions and Ay,
Ag are arbitrary constants, z is variable and u(z) is the unknown continuous function to be determined.
Numerous applications in the fields of physics, fluid dynamics, electrodynamics, and biology include the
use of these equations. These integral equations are a reduction of several boundary value formulations
using Neumann, Dirichlet, or boundary conditions. Additionally, they offer mathematical models for
the spread of an epidemic as well as a host of other physical and biological problems.

Since the analytical solution to VFIEs generally does not exist outside of special cases, the numerical
method is the most successful and efficient way to solve these issues. In order to solve VFIEs, a
number of numerical and approximative techniques have been developed, including the linear and
quadratic spline functions by Salim, et.al. [1,2], Taylor polynomial by Yalcinbacs and Sezer [3];
Yalcinbas [4], the least square method and Chebyshev polynomials by Dastjerdi and Ghaini [5].

*Corresponding author.
E-mail: karwan.jwamerQunivsul.edu.iq
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Also, Lagrange collocation method by Wang [6], Series solution, successive approximation method and
method of successive substitutions by Saeed and Berdawood [7], trigonometric Functions and Laguerre
Polynomials by Hasan and Sulaiman [8], Touchard Polynomials (T-Ps) method by Al-Miah and Taie
[9]. Some iterative numerical methods by Micula [10], Taylor polynomial by Didgara and Vahidi [11].
For additional information, the reader might turn to the following references and the references given
there: (Jerry [12], Atkinson [13], Lange and Herbert [14], Kaminaka and Wadati [15], Ladopoulos [16],
Corduneanu [17], Saeed and Aziz [18] and Jaber and Alrammahi [19]).

Equation (1) will be studied in this work using the natural cubic spline function. The rest of this
paper is structured as follows. Our approach is introduced in Section 2 for solving Equation (1). We
examine various numerical examples proving the viability of our method in Section 3. Some conclusions
will be made in Section 4.

1 Description of the method
In this section, we solve Equation (1) by using the quadratic spline function (Cheney and Kincaid

[20], Saeed et. al. |21]). The unknown function u(x) in (1) is approximated by the quadratic spline
function S(x). In the interval [z;, z;11], the quadratic spline function is defined by the following formula:

Si(x) = Ai(2)S; + Bi(x)Siy1 + Ci(z)S; + Di(x)Si, 1, (2)

where A;(x) = 1-37 40 1o (o) " Bilo) = 1-Ai(a), Cilo) = et b () = =tist)emt)

and h = 41 — x; for all i = 0, 1 - ,n — 1. Now substituting (2) in (1) and letting = = x;, we get
z; b
S = fit )\1/ K(@i)S(®)+ % [ L 0S(0de
IT2 pain

Fl@) + M Z / K (24, 0)[A;(1)S; + Bj(t)Sje1 + C;(1)S} + D;(1)S))dt

=0 J

+/ Z K(l’i, t) [Ai_l(t)SZ’_1 + Bi_l(t)SZ’ + C’iSZ{,l + Dl(t)S;]dt]
Ti_1

1 T2 Tn=b
+ Ao / (SUZ, )So( )dt + / (l‘l, )Sl( )dt + -+ / L(Ii, t)Sn_l(t)dt]
To=0a x1 Tn—1
Jj=t—2
IJ+1 , ,
flai) + M E:/ K (24, t)[Aj()S; + B;(t)Sjs1 + Cj(t)S; + D;(t)S) )t

+/ Z K(ml, t) [Az;l(t)sz;l + Bifl(t)si + Ci‘s’z{—l + Dz(t)S;]dt]
T

+ A2 [/“‘1 L(zi,t)[Ao(t)So + Bo(t)S1 + Co(t)Sh + Do(t)S]dt

+/m(%nmmﬁ+&@$+a@ﬂ+m@$w+m

x1

+ / " LA (0501 + Baa (0050 + Corr (G (0)S',_, + Dy — l(t)sé]dt] |

Tn—1
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By computing the integrals in the above equation using the trapezoidal rule, we get

i—1
h h
Si=fi+ 5(/\1K,‘0 + )\QLZ'())SO + hZ(/\lKij + )\QLZ‘j)Sj + §(A1Kii + )\QL“‘)Si,
Jj=1

(3)

fort=0,1,--- ,n.
In this way, Equation (3) constructs a system of linear equations concerning to the unknown function
S;. Briefly, this system can be rewritten as follows:

CcS=F (4)
where
So fo
S h
s=|"|. r=|"]. c=[a a o Coor Cal,
Sn In
i 1— %Loo i [ _)\ZhL01 ]
—2(2M K19 + Ao L1o) 1— (BN K1 +2X2 L)
o — 2 (X1 K20 + A2 Lag) o —2(3\1 K21 +2X2La1)
0= | —2(AKs0 + A2Lgo) | V= —h(M K31+ Aala) |2
| —5 (M Ko + A1 Lno) | —h(M K1 + AoLn1)
[ —AohLgs i i *)\ZhLO(n—l) ]
—B(2X2L12 — A1 K1) —AohLy(n_1)
1-— Q(A1K22 + 2XaL92) _)‘QhLQ(n—l)
Co= | _np C
2= —5(3)\1K32 + 2/\2L32) ’ ’ n—1 = )
: 1= 2(MK(n_1)(n-1) + 222 L(n—1)(n-1))
| —h(MKn2 + AoLy2) | — 2N EKn-1) + 222 Ly (1))
and
_ —%Lon -
*%Lln
_Nghp,
C, = 2
—2 L 1)
_1 - %()\1 (K’rm + )\QLnn)_

In the sequel, using a standard rule to the resulting system yields an approximate solution of

Equation (1) as S;(x) given by Equation (2).

2 Numerical examples

In this section, we present three examples to illustrate the efficiency and accuracy of the proposed
method. The computed errors e; are defined by e; = |u; — S;|, where w; is the exact solution of Equation
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(1) and S; is an approximate solution of the same equation. Also we compute Least square error (LSE)
which is defined by formula = > (u; — S;)? and all computations are performed using the Python

prograim.

Ezxample 1. Consider the linear Volterra-Fredholm integral equation

u(z) =

LU2

2

Tx

— - 424

2

/Ox u(t)dt + /01 xu(t)dt.

The exact solution to this equation is given by u(x) = x + 2.

Table (1) demonstrates LSE obtained from applying our method to Example (1) for n = 5.

The Numerical Results for Example (1) with n =5

X; Uq Sz |u1 — Szl \ui — SZ|2

0 2 2 0 0

0.2 |22 2167670 0.323298 0.00104522
0.4 | 2.4 | 2.369779 0.302205 0.00091328
0.6 | 2.6 | 2.533617 | 0.06738252 0.00454041
0.8 | 2.8 | 3.0875551 | 0.2875513 0.08268795

1 3 | 3.0788111 | 0.0788111 0.00621119
LSE 9.5398050 x 1072

Ezxample 2. Consider the linear Volterra-Fredholm integral equation

u(z) = 2c08(z) — 1+ /O "o — ()t + /0 " u(tydt.

The exact solution to this equation is given by u(x) = cos(x).

Table (2) demonstrates LSE obtained from applying our method to Example (2) for n = 5.

The Numerical Results for Example (2) with n =5

0 1 0.9020653 0.0979346 9.59119752 x 103
£ 0.8090169 0.80093654 | 0.00808045 6.52937193 x 1077
2?” 0.3090169 0.38139274 | 0.07237575 5.23824911 x 1073
%’r —0.3090169 | —0.15642311 | 0.15259389 2.32848948 x 102
4?” —0.8090169 0.8466296 0.0376126 1.41470781 x 1073
s —1. —0.9488828 0.0511172 2.61296767 x 103
LSE 4.22073106838 x 102

Example 3. Consider the linear Volterra-Fredholm integral equation

5

x
u(z) = 10 + 223

b
2 10

1'2

2

3z

T 1
/O(w+t)u(t)dt+/0 (z — t)u(t)dt.

The exact solution to this equation is given by u(z) = 223 + 1.

Table (3) demonstrates LSE obtained from applying our method to Example (3) for n = 5.
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Table 3
The Numerical Results for Example (3) with n =15
z; u; Si lui — Si u; — Sif”
0 1 0.9320698 0.0679302 0.00461451
0.2 | 1.016 | 0.91835798 | 0.09764202 0.00953396
0.4 | 1.128 | 0.99225104 | 0.13574896 0.01842778
0.6 1.432 | 1.24719269 | 0.18480731 0.03415374
0.8 | 2.024 | 1.83381163 | 0.19018837 0.03617162
1 3 2.72882412 | 0.27117588 0.07353636
LSE 1.76437975899 x 10!
Table 4
LSE for different values of n for Examples (1)—(3)
LSEn 10 20 30 40 50

Example 1 | 2.02193681 x 1072 [ 5.21316981 x 10> | 2.36837446 x 10~> | 1.348919901 x 10~ > | 8.7012926 x 10~ *

Example 2 | 3.03911660 x 107> | 1.87835246 x 10~ 7 | 3.79028932 x 10~ ° | 1.24158506 x 10" | 5.28945050 x 10~ °

Example 3 | 1.95064939 x 102 | 2.31413450 x 10~ ° | 6.752544397 x 10~ 7 | 2.82826976 x 10~* | 1.44203795 x 10~ *

3 Conclusion

In this paper the cubic spline function is used to solve linear Volterra-Fredholm integral equations,

and it is a powerful numerical approach. The numerical results in the present section demonstrate that
the proposed method can successfully tackle the Volterra-Fredholm type problem. Table (4) shows that
the proposed method has extremely good stability; as n increases, the error decreases at first and then
stabilizes. We also conclude that we have high accuracy when the exact solution is a trigonometric
function. The present method can be easily extended to systems of Volterra-Fredholm integral equations
and systems of Volterra-Fredholm integro-differential equations. The current method may be simply
extended to Volterra-Fredholm integral equations and Volterra-Fredholm integro-differential equations.
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Boabreppa-®pearosbM mHTErpajaablK TeHJeyepiH KyOThIK,
crTaifH-yHKIUACHIMEH TIETITy

MakaJsaga Taburu KyOTBIK CILTaiiH-(DyHKIMSICHIH KOJIJIAHBII eKiHmi TekTi Bosbreppa-®pearonbm apasiac
WHTErpaJIJIbIK, TeHJIeYJIePIHIH caHbIK mremrimi Tabblirad. ¥ CHIHBLIFAH 9/iC epKiH HyKTee b6esricis dyHKIs-
HBIH TabUru KyOTHIK CITaiH-QyHKIMSACHIH KOJIIaHyTa »Kone Boapreppa-PpearobyM nHTErpaiablk TEHAEYin
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Oesriciz yHKIUsIFa KATBICTBI ChI3BIKTHIK TEHJIEYJIEp »KyHeciHe TypJeHIipy VIIH HHTerpajiay SJiCiH KOoJI-
JaHyFra HerizzesnreH. Byur xKyiteHi miemnry apKpuUIbl XKybIK, Ientivi Taby onait. Byran Python 3.9-ma »xymbic
icTeHTIiH KOMIIBIOTEPJIK OargapiaamMa apKbLIbl KOJI »KEeTKi3iaei.
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Pentenne naTerpaapubix ypaBaeHunii Boabreppa-®pearoabma c
IMMOMOIIHIO €CTECTBEHHOI KyOu4deckoii crijiaifH-yHKIIun

B craTpe ¢ ucnospzoBannem yHKINN HATYPAJIBHOIO KyOMYECKOTO CIJIaiiHa HAMIeHO UHUCJIEHHOE pelleHne
CMEIIaHHBIX MHTErpaJbHbIX ypaBHeHu#t Bonbreppa-Ppenronmbma Broporo poja. [Ipemiaraembrit MmeTos oc-
HOBaH Ha IPUMEHEHNH eCTECTBEHHON KyOndecKoil crutaitH-pyHKIMY HEN3BECTHOM (DYHKITNN B IPOU3BOJILHOMN
TOYKE U METO/Ia HHTEIPUPOBAHUS /Il IPe0OPa30BaHUs NHTErPAJILHOrO ypaBHeHus Bosbreppa-Ppenroiasma
B CHCTEMY JIMHEHHBIX yPaBHEHUI OTHOCUTETLHO HEM3BECTHON dyHKImY. [1pubnkeHHOe perenne Jerko mo-
JIyYUTD, PEIIUB JAHHYIO CUCTEMY. DTO JOCTUTAETCS C IOMOIIBI0 KOMIIBIOTEPHOH MporpamMmbl, paborarorei
na Python 3.9.

Kmouesvie caosa: nHTErpasibHOE ypaBHeHre Bosibreppa, nHTerpaiibHoe ypasHenune Ppesrosnbma, CrjiaiH-
bYHKITHS.
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Numerical method to solution of generalized model Buckley-Leverett
in a class of discontinuous functions

A new numerical method is proposed for solving the generalized Buckley-Leverett problem, which describes
the movement of two-phase mixtures of Bazhenov bed sediments in a class of discontinuous functions. To
this end, we introduce an auxiliary problem that has advantages over the main problem, and using these
advantages, an original finite difference method to solve of the auxiliary problem is developed. Using the
suggested auxiliary problem, a solution which expresses exactly all physical characteristics of the problem
is obtained.

Keywords: generalized Buckley-Leverett problem, auxiliary problem, finite differences method in a class of
discontinuous functions.

Introduction

We consider the following problem in the upper half of the Euclidean R2 (z,t) space

ou(z,t)  Op(u(x,t)) B
ot + O — ¢ (u(z,t)) =0, (1)
u(x,0) = up(x),z > 0, (2)
u(0,t) = ui(z),t >0, (3)

where ¢(u) and 9 (u) are known functions according to argument u and have the following properties:

e p(u), Y(u) and ¢'(u), ¥'(u) are continuous functions, and they are bounded for bounded u, and
¢©"(u) does not change its sign,

e p(u) >0 and ¢'(u) > 0 for u > 0, and the argument u has values such that the function (u)
becomes zero at these points,

e ¢'(u) is bounded function for u > 0.

Here, up(z) and u;(x) are given functions satisfying the condition ug(0) # u1(0).

In the case of 1 (u(z,t)) = 0, the problem (1)—(3) is used to solve many problems in hydrodynamics,
including the qualitative characteristics of the mechanism of compression of oil with gas or water in a
porous medium, which is called the Buckley-Leverett model in the literature [1]. It has been proven
that when the initial and boundary functions are incompatible (for the initial-boundary problem) or
the initial profile has a decreasing part with respect to the spatial coordinate (for the initial value
problem), the jump points, locations of which are not known beforehand, occur in the solution of the
problem [2-9]. In other words, there is no classical solution for the problem under consideration, and
the question of the uniqueness of the solution remains open. For this purpose, criteria for the uniqueness

*Corresponding author.
E-mail: bahaddin.sinsoysal@qgedik. edu.tr
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of the solution and robustness of the jump are proposed in [4,6,8,10,11]. In the theory of hyperbolic
equations, the stable jump motion in a problem is called a discontinuity disintegration problem and
has been widely studied in the literature, as specified in [2,3,5,8,12,13], etc.

There are conservative finite volume methods of practical importance, which are based on dividing
the spatial domain into intervals (also called «finite volumes» or grid cells), and establishing certain
approximations to the integral of the flow over each of these volumes in [10, 11, 14-18], etc. Also,
Godunov-type finite difference algorithms were developed considering the properties of the analytical
solution in [13].

In [19], a method in the class of discontinuous functions was proposed to find an analytical solution
of the problem (1)—(3), and using this method, a finite difference algorithm was established that
accurately expresses all the properties of the physical processes of the problem in [20].

In the case of 1 (u(z,t)) # 0, the problem (1)—(3) is called generalized Buckley-Leverett problem
in a physical sense and differs from the classic Buckley-Leverett problem in that the trajectory of the
jump does not coincide with the characteristics, and the discontinuity jump approaches zero as time
values increase [21].

In [21], the dynamics of chemical and physico-chemical changes in a multi-phase and multi-component
oilfield after exposure to thermogas was investigated by means of a mathematical model, where the
process of injecting hot water into the reservoir containing hydrocarbons was specifically discussed.
Usually, this type of impact method is applied to an oilfield (Bazhenov-type deposit) including kerogen
containing oil in a bound state. Such deposits have a layered structure in which oil is located in the pores
as well. Permeable non-productive strata alternate with productive impermeable strata. Mathematical
modeling of deposits with such a structure in the non-isothermal mode becomes even more complicated.

The purpose of the thermal impact mechanism is to inject a certain amount of hot fluid such as
hot water into the reservoir in order to increase the reservoir temperature, and then to displace oil by
water at the common contact interface. This can also release trapped oil and isolated pores. During
treatment with hot water injected into the reservoir, some additional amount of oil is released into the
pore volume, which affects the regime of the displacement of oil by water. Ultimately, it leads to an
increase in the flow rate of light crude oil trapped in the reservoir.

Since the filtration process is slow, the deformation of the bed can be neglected. On the other
hand, the movement happens so quickly that it is possible to ignore the conductive heat transfer as
the essential mechanism of heat transfer is convection.

More interesting problems arise in investigating the role of spatial structures in the creation and
evolution of living organisms in molecular biology [22]. When studying this type of problem, ¢ (u(z,t))
in Eq. (1) represents the convective flow function of the reaction component, and ¢ (u(z,t)) represents
the kinetics of the reaction. If dp(u(x,t))/dz is a strictly non-linear function, then jumps occur in the
solution of the problem, in which case such solutions are understood as weak solutions.

In this study, we consider problems with source terms that do not include delta functions that
typically converge to zero throughout most of the region, ignoring the existence of very thin reaction
zones that occur dynamically as part of the solution. Such source terms are often expressed in delta
functions, but their positions and strengths are often not known in advance.

In this article, in order to show what behaviors are expected from the process, problem (1)—(3) is
handled only mathematically, with respect to wave propagation, without considering the mechanism
of any chemical reaction. In general, soft solutions found by the characteristics method do not enable
us to explore the dynamics from the beginning of the process to the end.

As it is known that, the solutions of problem (1)—(3) has the points of discontinuities locations
of which are unknown beforehand. Existence of the points of discontinuities in the solutions involves
difficulties in applying the classical numerical methods to that equations [19]. The necessity to work
with discontinuous functions and to find a solution that can accurately express the dynamics of the
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process require the creation of sensitive numerical methods in the class of discontinuous functions.

1 Finding the analytical solution

For the sake of simplicity, we will first consider the Cauchy problem for Eq. (1). We can easily get
the solution of problem (1), (2) by the method of characteristics. For this, if we search for the solution
of problem (1), (2) in the closed form V(¢,z,u) = 0, we reach the following quasi linear equation in
accordance with the V' function

ov ov ov
WS e Sl =0, @

The system of characteristic equations for (4) is

dt dx du

1 ¢ )

From here, the following system of equations is obtained

{%:ww

The first intermediate integrals for the system (5) are
)du du
=T — , ca=t— | —/. 6
5% o) )

According to the general theory, for an arbitrary continuously differentiable function F', the general
solution of problem (1), (2) is written as F'(¢1,c2) =0 or

x—/¢ w)du = f t—/¢ (7)

where the function f is any continuously differentiable function. Expression in the form of (7) is called
soft solution.

To check the effectiveness of the proposed method, and to find a clear expression of the analytical
solution, instead of Eq. (1), the following equation

ou ou
a—l—ua—x—u(l—u) 0 (8)

is considered in the special case of p(u) = % and 1(u) = u(1l — u). In this case, Eq. (8) is called the
Burgers equation with a robust source in hydrodynamics. For Eq. (8), the expression in (6) and (7)
take the following form

cao=z+In(l—u), cc=——c¢

and
t

:U—{—ln(l—u):f(%—et)

respectively. Here, f is any continuously differentiable function. Considering the initial condition (2),
the soft solution of problem (1), (2) is obtained as

u(z,t) = e (1 —u+ue ug(Ine”(1 —u+ue™"). (9)
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By a simple calculation, it is verified that the function u(z,t) given by (9) is a soft solution of problem
(1), (2). In a special case if it is assumed ugp(z) = e, then expression (9) takes the following form

u(z,t) = e ¥,
Also, it is easily shown that function (9) satisfies Eq. (8). In other words, function (9) is a soft solution
of Eq. (8).
When the second equation of system (5) is considered
d
di: = u(1 - u), (10)

it is seen that the constant functions v = 0 and v = 1 are equilibrium solutions. This equation, called
the logistic equation, describes the growth of population and is also applied to the growth of bacteria,
fruit flies and flour beetles, etc. [22]. It can be shown that v = 0 is an unstable equilibrium point, and
u = 1 is a stable one. The initial condition u(z,0) just indicates a non-regular spatial distribution.
Solution of Eq. (10) is
u(§) = %(1+tanh%), E=xz— Dt

and this becomes a piece-wise continuous function from zero to one rapidly, regardless of the initial
profile. To see the subsequent evolution of the solution, it is sufficient to consider the Riemann problem
with a jump from 0 to 1 or from 1 to 0. In the Burgers equation without source function, the jump line
moves with velocity D = 1/2 for wiry = 1 and upigne = 0. Then the source term is identically equal
to zero, and therefore, has no effect on the solution of the problem. An interesting situation occurs if
et = 0 and upigne = 1, in which case the Burgers equation converts the jump in the initial profile
into a rarefaction wave.

2 Finite differences in a class of continuous functions

Firstly, let’s divide the interval [a, b] into n equal parts by means of the points x;, (j = 0,1,2,...,n)
and by setting h, = (b—a)/n, (i =0,1,2,...,n) that is, ; = a+ jh,. In a similar way, let’s divide the
interval [0,7) into time layers by means of points ¢, = kh., (k = 0,1,2,...), where h, > 0. Here a, b,
and T are given real numbers. Thus, we have constructed two one-dimensional grids over the intervals
[a,b] and [0,T), respectively

wh, ={xj =a+ jhy, hy=(b—a)/n, (j=0,1,2,...,n)},

wh, = {ty = khy, h.>0, (k=0,1,2,..)}.

Eventually, we cover the region by a uniform grid 5, = wp, X wp,.

The need to work with discontinuous functions and find a solution that can accurately express
the dynamics of the process requires the creation of a sensitive numerical method in the class of
discontinuous functions. Now, we can study the techniques in discretizing the differential problem.

To find the numerical solution of problem (8), (2), let us include the following operator

A() = %(3'3).

It is clear that this operator has an inverse denoting by A~!(.), which differs from it by a constant.
Applying the operator A~1(.) to both sides of the Eq. (3) we get

A1 @;‘) + A7t <;%Zf> — A (u(1 —u)) = A7H0).
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Let A=1(0) = h(t), from here we have Ah = 0. The last equation is written as

Ly u?
a/gt +5 - A7 (u(1 —u)) = h(t), (11)

where h(t) € A7Y0) = ker A = {h(t) € C[0,00) : Ah = 0} is any function. We introduce the

following transformation

A+ h(t) = oz, ). (12)
From (12) we obtain
u(z,t) = A(v(z,1)). (13)
Substituting the relations (12) and (13) in Eq. (11), we get
ov(x,t 1 z
E?t ) + §(u(x,t))2 — a/ u(f,t)(l — u(f,t))dﬁ =0. (14)
The initial condition for Eq. (14) is
v(z,0) = vo(x). (15)

Here the function vg(z) is any continuously differentiable solution of equation A(U(x, O)) = u(x,0),
which is
dvo(z)

dx

We will call the problem (14)—(15) as an auxiliary problem. In accordance with [19] and [23]| we consider
this special auxiliary problem in order to determine the weak solution of the problem (8), (2).
The auxiliary problem has the following advantages:

= ug(z). (16)

e The differentiability property of the function v(z,t) is of a higher order than the differentiability
property of the function u(z,t),

e The function u(z,t) may be a discontinuous function, as long as it is an integrable one,

e Algorithms built to calculate the function u(x,t) do not require the derivative of u(z,t) with
respect to any variables.

Theorem 1. If the function v(z, t) is a solution of the auxiliary problem (14), (15), then the function
u(z,t) = A(v(z,t)) is a weak solution of the main problem (8), (2).

Proof. To prove the theorem, it is sufficient to apply the operator A directly to the Eq. (14) and
consider the expression in (13).

The construction of finite difference algorithms

We will apply two finite difference schemes for Eq. (14) using explicit and implicit schemes.
Ezxplicit scheme : Firstly, let us discretize Eq. (14) as follows

Vi Vi
’““7 Ufk—ahz Ujk(1=Ujp) =0
or
‘/Yi,k+1:‘/;'7k—TUiyk{U ( +ah>}+mhz Uik(1=Ujp), §=1,2,.,n=1; k=0,1,2,... (I7)

where h and 7 are steps of the grid for  and t variables, respectively.
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The initial condition for (17) is
Vio =wo(z;), §=0,1,2,..,n.

Here, vg(x) is the grid function corresponding to the continuous function found from Eq. (16). The
validity of the following equality can be easily shown as

Vik+1 — Vici k41
Uipy1 = . .

Implicit scheme : Now let’s write an implicit scheme for problem (14), (15). For this, let’s write
equation (14) as a finite difference equivalent as follows

1 i—1
Vikt1 = Vig — Ui ki1 [Uz’,kzﬂ (5 + ah) + ah} + TOéthle‘,k—i-l(l —Ujpt1),
i=12..nk=0,1,2,..

We can obtain the solution of the last system of nonlinear algebraic equations by applying Newton’s
method.

Computer tests

In order to compare the solutions found by the finite difference algorithm we proposed solutions
in the literature, as ug(x) function e~* is accepted. The calculation results are shown in Figures 1-3
accordingly.

U0
°
&

Figure 1. The source function.

vix,t)

Figure 2. Graph of the solution of problem (14), (15) at 7" = 1.5.

136 Bulletin of the Karaganda University



Generalized Buckley-Leverett Problem ...

Figure 3. Graph of the function u(z,t) = A(v(z,t)).

3 Conclusion

The results obtained in this paper can be listed as follows:

An original method in the class of discontinuous functions is proposed to find the numerical
solution of the Cauchy problem for the first order nonlinear partial differential equation with a
nonlinear source function.

The special auxiliary problem of which the differentiable properties of the solution one order
higher than the differentiable properties of the main problem is introduced.

Using the advantages of the auxiliary problem the efficient numerical algorithms are suggested
in a class of discontinuous functions. The obtained solutions express the all physical properties
accurately.
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B. Cuncoiican', M. Pacynos?, P. Mckenneposa?
L Cmambyna T'edux ynueepcumemi, Cmambya, Typrus;
20sepbatiorcan Yammuk evuvim axademuactinoity Mynati srcone 2as3 unemumymuo, Baxy, D3ipbatisrcan
Y3imicTi pyukiusaaap kJjaacekiHgarbl bakim-JleBeperTiH >KaJanblIaHFaH
MOJIEJIiH HIEIIYdiH CaHJbIK 9iCi

Baxkn-JleBeperTiH kanmblaanran ecebiH MIENTYIIIH KaHA CAHIBIK OJIiCI YCBIHBUIBI, OJ1 Y3LmicTi (yHKIm-
sytap KaachlHAArbl baskeH KabaTbhIHBIH €Ki (a3alibl KOCIAJAPBIHBIH, KO3FaIbIChIH cunarTaiasl. Our yimix
HeTi3ri ecenTeH apTHIKIIBLIBIFLI 6ap KOMEKII ecell eHTi3i//Ii KoHe OChl DACHIMIBIKTAPIbIH KOMETriMeH KO-
MEKIII eCenTi IMIeNTy YIIH aKbIPJIbl aflbIPBIMJBIK TYITHYCKA 9ici 93ipsensi. ¥ ChIHBLIFaH KOMEKII eCeITiH
KOMETriMEeH eCeITiH 6apJIblK, (PU3UKAJIBIK, CAITATTAMAJIAPHIH J9JT KOPCETETIH IIeTM aJIbIHIbI.

Kiam ceadep: Bakin-JleBeperrin, xKasmnblianran ecebi, KOMeKIIi ecelr, y3iIic DyHKIUIAPHI KJIACHIHIAFBI
AKBIPJIBI AfBIPBIMIBIK, 9IiC.
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B. Cuncoiican', M. Pacymnos?, P. Vckeneposa?

L Cmambyaveruti yrusepcumem Ieduxa, Cmambya, Typyua;
2 Unemumym nemu u 2aza Hayuonaionot axademuu nayx Asepbatiocana, Baxy, Asepbatidocan

YucneHHbIid MeTo/ pereHns obobIenHoii moaenan Bakim-JIeBeperTa

10
11
12

13

14

B KJIacce pa3pbIBHBIX PYHKIINI

IIpenyiosken HOBBIM YMCJIEHHBIN MeTOJ, pelreHust 0600meHHoi 3amadn Bakim-JleBeperTa, onuchbIBaronmumii
JBH2KEHUE JBYX(]a3HbIX cMecell OTJIOXKEHHH 0aKeHOBCKON TOJIIN B KJacCe Pa3pbIBHBIX (MyHKIWA. s
9TOr0 BBEJIEHA BCIIOMOTaTe/IbHAS 38/1a49a, UMEIOIIast TPENMYIIECTBA [TEPE]T OCHOBHOM, M C TIOMOIIBIO JaHHBIX
MIPUOPUTETOB pa3paboTaHa OPUTHHAIBHBIA METOJ, KOHEUHBIX PA3HOCTEN JMJis PEIIeHus BCIIOMOTATEIbLHOMN
3asaun. C MOMOIIBIO NPEJJIOKEHHOM BCIIOMOIraTeIbHOM 3a/[a49i [IOJIyY€HO PeIlleHue, TOYHO BBhIParKaloliee
BCe (PU3NYECKUE XaPAKTEPUCTUKU 38, Ia 1.

Karouesvie crosa: 0bobiennas 3agada bakiu-JleBeperra, BcnoMmoraresnbHas 3a7a4da, METO KOHEYHBIX Pa3-
HOCTEH B KJIACCe Pa3PhIBHBIX (DYHKITUIA.
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On one solution of a periodic boundary value problem for a
hyperbolic equations

In a rectangular domain, we consider a boundary value problem periodic in one variable for a system
of partial differential equations of hyperbolic type. Introducing a new unknown function, this problem is
reduced to an equivalent boundary value problem for an ordinary differential equation with an integral
condition. Based on the parametrization method, new approaches to finding an approximate solution to an
equivalent problem are proposed and its convergence is proved. This made it possible to establish conditions
for the existence of a unique solution of a semiperiodic boundary value problem for a system of second-order
hyperbolic equations.

Keywords: boundary value problem, hyperbolic equations, algorithm, parametrization method, approximate
solution.

Introduction

Boundary value problems for hyperbolic equations arise when studying the processes of transverse
vibrations of a string, longitudinal vibrations of a rod, electrical vibrations in a wire, torsional vibrations
of a shaft, gas vibrations, etc. [1-3].

To date, well-known methods are used to solve the problems under consideration, such as the
Fourier method, the method of successive approximations, methods of function theory, variational
methods, numerical methods, etc. [4-9]. This makes it possible to obtain various solvability conditions
for boundary value problems for hyperbolic equations and construct analytical or approximate solutions
[10-16].

In [17-20], such problems were solved by introducing functional parameters. Using this method,
sufficient conditions were obtained for the correct solvability of nonlocal boundary value problems for
systems of hyperbolic equations with a mixed derivative in terms of the initial data, and algorithms
for finding their solutions were proposed. Based on the equivalence of the correct solvability of a
boundary value problem with data on the characteristics for systems of linear hyperbolic equations
and the correct solvability of a two-point boundary value problem for a family of systems of ordinary
differential equations, a criterion for the correct solvability of the problem under study is established.

In this paper, we propose an algorithm where, in contrast to works [18-21|, there is no need to
find the Goursat or Cauchy problem at each step of the algorithm. In addition, when compared with
the algorithm proposed in [22-23], this approach is more simplified. But despite this, the approximate
solution is more accurate. The main characteristic of this algorithm is the effective verifiability of
the conditions for their applicability and the ability to use it to find solutions with a given accuracy.
This approach can be applied to problems of the third and fourth orders [24, 25| and obtain verifiable
conditions.

On Q = [0, X] x [0,Y] the semiperiodic boundary value problem is considered

02z 0z
920y —A(x,y)%JrB(fv,y)erf(w,y), (z,y) € Q, (1)

*Corresponding author.
E-mail: OrumbayevaN@mail.ru
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2(0,y) = »(y), yel0,Y], (2)
2(z,0) = 2(z,Y), xze€]0,X], (3)

where (n x n) - matrices A(z,y), B(x,y), n-vector function f(x,y) are continuous on 2, n-vector
function ¢(y), is continuously differentiable on [0, Y], there is a condition of agreement ¢(0) = ¢(Y),
n
12z, y)|| = max |zi(z, y)|, [|A(z,y)|| = max Zl |aij (2, y)|.
i=1,n i=1n j=
Let C(Q2, R™) be the spaces of functions z :  — R™ which are continuous on €.
The function z(z,y) € C(Q, R"), with partial derivatives %{;’Jy) e C(Q,R"), % e C(Q,R"),

%ﬁ;’y) € C(Q, R") is called the classical solution to the problem (1)—(3), if it satisfies the system (1)
for all (x,y) € Q and boundary conditions (2), (3).

2 Main results

We introduce the functions u(z,y) = %, to find a solution and the problem (1)-(3) we write

as
ou

oy Az, y)u+ B(z,y)z(z,y) + f(z,y), (z,9) €Q, (4)

u(z,0) =u(x,Y), x€]0,X], (5)

x

2(@,y) = o(y) + / ul(é,y)de. (6)

0

Problems (1)—(3) and (4)—(6) are equivalent in the sense that if the function z(z,y) is a solution to

problem (1)—(3), then the pair (u(z,y), 2(z,y)) will be a solution to problem (4)-(6), and vice versa,

if the pair u(x,y), z(x,y) is a solution to problem (4)—(6), then z(x,y) will be a solution to problem

(1)~(3).

To solve problem (4)—(6) we will apply the parameterization method. For the step h > 0: Nh =Y

N

we partition [0,Y) = J [(r —1)h,rh), N = 1,2, .... In this case Q is divided into N parts. By wu,(z,y)
r=1

we denote the restrictions of the functions u(z,y) on Q, = [0, X] x [(r — 1)h,rh), 7 =1, N. Then

problem (4), (5) will be equivalent to the boundary value problem

Ouy
5y = A yyn(e.y) + By)s(ny) +f@y), @y) €0 r=TN, ()
ul(way) — lim UN(CB,y) =0, z¢€ [OvX]v (8)
y—Y -0
Im  us(z,y) = ust1(z,y), z€[0,X], s=1,N—-1, (9)
y—sh—0
zr(z,y) = o(y) + /ur(f,y)da (z,9) €Qr, r=1,N. (10)
0

where (9) is the condition for the continuity of functions in the internal partition lines. Problems

(1)=(3) and (7)—(10) are equivalent. If z(z,y) - solution of problem (1)—(3), then the system of
its restrictions z(z, [y]) = (z1(z,y), z2(x,y), ..., 28 (2, y)), w(z, [y]) = (ui(z,y),ua(z,y), ..., un(z,y)),

where u,(x,y) = W? r =1, N will be a solution to problem (7)—(10).
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By Ar(x) we denote the function w,(x,y) for y = (r — 1)h, i.e. \.(z) = uy(z, (r — 1)h) and make a
replacement v, (z,y) = u,(z,y) — \-(z),r = 1, N. We get an equivalent boundary value problem with
unknown functions A, (x):

‘?;Z = A(z,y)vr(z,9) + Az, y) A (2) + B(z,y)20 (2,9) + f(2,9), (2,9) € Q,r =L, N, (11)
vp(z,(r—1)h) =0, z€][0,X], r=1,N, (12)
A(x) — An(z) — y_l}{/rl_ovN(x,y) =0, z€]0,X], (13)
As(z) + yﬁlisrfrlliovs(x,y) —Ast1(z) =0, z€]0,X], s=1,N—-1. (14)
alog) =)+ [uEndt [A©d @y e, r=TN. (15)
0 0

Problems (7)-(10) and (11)—(15) are equivalent in the sense that if the system of pairs {u,(z,y),
zr(z,y)}, 7 = 1, N, is a solution to the problem (7)—(10), then the system {\.(z) = u,(x, (r — 1)h),
ve(x,y) = ur(z,y) — ur(z, (r — 1)R), 2z-(x,y)}, » = 1, N, is a solution to the problem (11)-(15), and
vice versa, if the pair {\.(x),v.(7,9),2(z,y)},r = 1,N, is a solution to problem (11)—(15) , then
{\(2) +vr(2,9), 20 (z,y)},7 = 1, N, will be a solution to problem (7)-(10).

Problem (10), (11) at fixed A.(z), v (x,y), 2z-(x,y) is a family of Cauchy problems for ordinary
differential equations, where z € [0, X], and is equivalent to the integral equation

o) = / Al m)or () + / Al m)dn - M) + / (B(a,m)z(x.m) + f(a,m))dn. (16)
(r—1)h (r—1)h (r—1)h

Passing to the limit at y — rh — 0 in (16) and substituting into (13), (14) instead of lirhn Ovr(l’,y),
t—rh—

r =1, N, their corresponding right-hand sides for unknown functions \,(z),r = 1, N, we get a system
of functional equations:

Y Y
A(z) = Aw() - / A, n)on(,m)dn + / Al n)dn - An(z)+
(N=1)h (N—1)h
Y
b [ B + g = o
(NZ1)h

sh sh
M(z) + / A, m)os(z, n)dn + / A, m)dn - As(2)+

(s—1)h (s—1)h
sh
+ / Be,n)zs(en) + fem)ldn — Asr(@) =0, s=T,N L.
(s—=1)h

We write the resulting system of equations in the following form

Q(z,h)\(x) = =G (x,h,v) — F(x,h, 2), (17)
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where

_ 2h
0 I+ [ A(z,n)dn ... 0 0 7
h

(N-1h
0 0 oo I+ [ A(x,n)dn -1
(NZ2)h

Nh

— [ A(z,n)vn(z,m)dn
(NZ1D)h
h

gA(x,n)vl(x,n)dn

B 2h
G(z,h,v) = [ Az, n)ve(z,n)dn ’
h

(N—1)h

[ Az, n)vn-_1(z,n)dn
(N=2)h

Nh

- f [B(:L‘an)zN(xvn) +f($,77)]d77
(N=1)h

1B ) (an) + F(e,m)ldn

F(xz,h,z) = h

[B(x,n)22(2,n) + f(z,n)]dn

(N=1)h

f [B(xan)zN—l(:U’n)+f(xa77)}d77
(N2)h

I is an identity matrix of dimension n.

To find a solution to a system of three functions {\.(z),v.(z,y), z-(x,y)}, r = 1, N, we have a
closed system consisting of equations (17), (16), (15).

Suppose that the matrix Q(z, h) is invertible for all = € [0, X].

Taking 27(«0) (z,y) = ¢(y), r = 1, N, as the initial approximation, we find the solution of the boundary

value problem (11)—(15) as the limit triple sequences {)\gk) (x), k) (z,y), 2P (x,y)},
k=1,2,..., determined by the following algorithm:
A) Assuming that z,.(z,y) = zq(nk_l) (z,y), r =1, N, we find k—th approximations /\ﬁ’“) (z), Uﬁk) (z,9)

r =1, N, as the limit of sequences )\gk’m)(:v), vﬁk’m)(:c, y)r=1,N, m=0,1,2,..., defined as follows:

AED () = AED (), o0 (2, y) = o D(a,y),

AR () = —[Q(, b)Y (G(:c, hyv &™) 4+ F(x, b, z(k_l))),
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Yy Yy
oD (g y) = / A, oo™ () + / A, m)dy - AED () +
(r=1)h (r—1)h

Yy
+ / [B(x,n) 2% (z,n) + f(z,n)]dn,
(r—1)h
)

m-+1 ( 7('k7m+1)( (k)

those. pair system sequence {Aﬁk’ x,y)}, for m — oo converges to {/\sk) (x),vr ' (x,9)},

r=1,N,
B) The functions zﬁk) (xz,y),r =1, N, are determined from the relations

x),v

x

2B (a,y) = oly) + / o (€, y)de + / A (6)de.
0

0

The conditions of the following statement ensure the feasibility and convergence of the proposed
algorithm, as well as the unique solvability of problem (11)—(15).
Theorem 1. Let (nN x nN) matrix Q(z, h) be invertible for all x € [0, X] and the inequalities

D [Q(z, MM < v(=, h); 2) q(a,h) = ha(z)( 1+ v(m,h)hoa(m)> <p<l,

where a(z) = sup ||A(z,y)||. Then there is a unique solution to problem (11)-(15) and fair assessments
ye(0,Y]

a) max |A\i(z) = AV (2)] + max  sup [of(x,y) — ol (@, y)|| <
r=1,N r=1,N (z,y)€Q,

< o5 exo [ ote.maeac ) [ ote.magmax{d mae ol ma 17l
0 0

b) max sup |z (z,y) — zﬁ”(ﬂ%y)ll <

r=1,N ye[0,Y]
< [ max [[]A*(€) = AD(©)]ld¢ + [ max  sup v} (€, y) — vV (€, y)lde,
r=1,N r=1,N (z,y)eQ,
0 0
where 3(x) = S[%py} |B(z,y)|l, 0z, h)= l—q%x,h)h<1 +7(z, h) + a(z)y(z, h)h>-
ye b

Proof. Under assumptions about the data of the problem, the inequalities take place

|G, b, v)|| < a(x)h max  sup v, (z,y)]],
1=1,N ye[O’Y]

1E (2, by p) || < hB(x) max  sup ||z, (z, )| +h max ||f(z,y)].
I=1,N ye[0,Y] (z,y)eR

The following estimates follow from the algorithm:

max A0 ()] gwm,h)h(ﬁ(xm)max{ max_o(y), max |f<x,y>||},
r=1.N y€[0,Y] (z,y)eQ

max sup va«l’”(x,y)llSh<1+oz(x)7(w7h)h>(ﬁ(w)+1)max{ max_lo(y), max uf(x,y)n}.
r=1,N y€[0,Y] y€[0,Y] (z,y)EQ
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The following estimates follow from the algorithm:

max [\ (z) = ALY (@) < a(@)y(z, h)h max sup [ol"D (2, y)]),

r=1,N r=1,N y€[0,Y]

max sup [[vl"?(z,y) — v (z,9)|| < q(z,h) max sup [0V (2,y)|.

T:LN ye[()?Y} T:17N yE[O,Y]

Let’s establish the inequality

max A" (z) — A (2)|| < @)y (@, h)h max sup [T (2,y) — o™ (2, )],
r=1,N r=1,N y€[0,Y]

max sup [l (2, ) — oL (2, 4)]] <

r=1N yel0,Y]

< ha(@)[1 + a(@)y(z, A)A] max sup [0 D(z, ) — o) (, )| <
r=1,N y€[0,Y]

< g(z,h) max sup |Jol"™ D (z,y) — ol (2, y)]].
r=1,N ye[O,Y]

By virtue of the inequality ¢(z, h) < 1, the sequences pim T (x,y) converge uniformly as (z,y) € €, to

s )(l’ y) and the convergence of the sequence of systems of functions AlLmF2) (x) to functions Agl)(a@)
continuous on z € [0, X] for all r =1, N.

max A7) (2) — A (@) <
r=1,N

max AN (2) = ALY (@)]| 4 4 max A (@) = A (@) <
r=1,N r=1,N

<D la(z. Wl a(z)y(z, h)h max sup oD (z,y)],

= r=T,N ye[0,Y]

max sup [lo"" ) (2, y) — oM (z, y)|| <

r=1,N y€[0,Y]
< max sup [[ol"™ (2, y) — oD (@ )| 4+ max sup [Jolh? (2, y) — oD (@, )| <
r=1,N ye[0,Y] r=1,N y€[0,Y]
m+1 ‘
<> la(z, b))V max sup otV (2, y)ll.
j=1 r=1,N ye[0,Y]

max sup [[o"" ) (2, y)| <

r=1,N y€[0,Y]
m+1 '
< 3l 1+ (e 0n ) (50) + ) mas{ e 1ol s LGl

m—+1
g%NHAT (z)]| < ]E:O lq(z,h)[y(z, h)h(B(x) + 1) ma {yggy] @), (;g?eng(x,y)H}
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Passing to the limit as m — oo we obtain the estimates:

s D (z (@, Wh(Bz) +1)
T:LNH)\T @)l = == ) {

max [lo()]l. max ||f<x,y>||},

y€[0,Y] " (zy)eQ

max sup Hvﬁl)(x,y)HS
r=1,N y€[0,Y]

1+a(w)7(fmh)h> (B(:L")H)maX{ max o), max IIf(w,y)Il},

y€[0,Y] (z,y)eQ

Sl—ql@c,mh<

max AL ()] + max sup [|of” (z, y)]| §9($ah)(5(ﬂf)+1)ma><{ max |[o(y)|, max Hf(w,y)ll}a
r=1,N r=1,N y€[0,Y] y€[0,Y] (z,y)eQ

x T

max sup [[zY(z,y) — o(y)|| < [ max [[AD(€)]|de + [ max sup [ofV(€,y)|dE <
r=1,N y€[0,Y] 5 r=1,N 5 r=1,N y€[0,Y]

yG[O,Y] (1‘ y)EQ

</ e<§,h><ﬁ<5>+1>d§max{ mas o) o uf@:,wu}.
0

The following estimates follow from the algorithm:

max [|AP (z) = AP (2)[| < y(w, h)hB(x) max  sup [2{)(z,y) — @(y)]),
r=1,N r=1,N y€[0,Y]

max sup [[ol* (2, y) — o> (2, y)|| < hB(x)[1 +v(2, h)ha(z)] max sup |2V (2, y) — o(y)]|
r=1,N y€[0,Y] r=1,N ye[0,Y]

The following estimates follow from the algorithm:

max [|A>?) (z) = APV (2)]| < a(z)y(e, h)h max sup [[v®) (2, y) — v (z,y)]],
r=1,N r=1,N y€[0,Y]

max sup (022 (,y) — v (2, y)] < gle.h) max sup [ol2D(z,y) — o0 (@, y)|
r=1,N y€[0,Y] r=1,N y€[0,Y]

Let’s establish the inequality

max AP (@) = AP (2)|| < (@, hha(zr) max sup o™ (z,y) = o™ (2, )],

i
r=1,N r=1,N y€[0,Y]

max sup [0 (2, y) — o (2, y)|| < gla,h) max sup (o7 (@, y) — o™ (@, ).

T:1,N yG[O,Y] T:LN yE[O,Y]

By virtue of the inequality ¢(x,h) < 1, the sequences vﬁz’mﬂ)(m, y) converge uniformly as (z,y) €
Q, to v!? (z,y) and the convergence of a sequence of systems of functions A,(?’mﬂ)(x) to functions

AP (x) continuous on x € [0, X] for all r =1, N.
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max [ AZ™H) (z) = AP0 (2)]| <
r=1,N

<Y lg(@, h)Pa(z)y(z, h)h max  sup [[v>)(z,y) — vV (2, y)| + max AP (x) = AP ()],
=0 r=1,N ye[0,Y] r=1,N

max sup [[o™ ) (z,y) — 02 (z,y)| < lg(@, )P max sup oD (z,y) — v (z,y)|.
r=1,N ye[0,Y] =0 r=1,N y€[0,Y]

Passing to the limit as m — oo we obtain the estimates:

max [|AP (z) = A ()| <

r=1,N
1
< ————a(z)y(z,h)h max sup vV (z,y) — vV (2,y)|| + max [A>D(z) - AE(2)| <
1 —gq(z, h) r=1,N ye[0,Y] r=1,N
1
< ————a(@)y(z, )hhB(x)[1 + y(z, h)ha(z)] max sup ||z (z,y) — o(y)||+
1 —q(z,h) r=1,N ye[0,Y]

+y(z, h)hB(z) max sup |2V (z,y) — @(y)|| <
r=1,N ye[0,Y]

< y(x, W)hA(x) max sup =0 (xz,y) — o),
1= (o ) (z,h) ()T:LNyE[OvY]H (z,y) — )|l

max sup ol (z,y) — vV (z,y)|| < max sup [li* (z,y) — v (2, y)| <

r=1,N ye[0,Y] 1—q(z.h) r—T N yeoy] "
1

< ——hB(z)[1 + v(z,h)ha(zr)] max sup z,(.l) z,y) — e,

1= g(a.h) (@)[L +~(z, h)ha( )]TZLNyE[O’Y]H (z,y) — )l

max [|A®) (2) = AP ()] + max sup o) (z,y) — vl (2,y)|| <

T
r=1,N r=1,N y€[0,Y]

< 0(x,h)B(x) max sup |27 (z,y) = ¢(y)],
r=1,N ye[O,Y]

x

max sup |2 (z,y) — 2V (z,y)| < /9(§7h)ﬂ(§) max sup [2(¢,y) — @(y)l|dE.
r=1,N y€[0,Y] J

r=1,Ny€[0,Y]
At the k -th step, we obtain the estimates:

max A (@) = AP ()| <
r=1,N

q(, h) (k) (k—1)
< v(x,h)hB(x) max sup |z (z,y) — 2, z, Y|,
T e RS(E) max sup [0, 0) = D )]

max_ sup v (z,y) — o (2, y)|| <
r=1,N yE[O,Y]

1
< —hB(x)|1 +v(x, h)ha(x)] max sup zqu) T,y —zy(qk_l) z, )|,
A e max swp 120z p) )|
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max [A') (@) = A (2)]| + max sup oD (@, y) — o (@, y)] <

r

r=1,N r=1,N ye[0,Y]

T

< 0. m3(a) [ (max||A£’f><£>—A£’“—l><s>H+ max sup ||v$’“><5,y>—vﬁ’“—%,y)n)ds,

r=1,N r=1,N y€[0,Y]

max sup ||zFY (z,y) — 2% (2, y)| <
r=1,N yG[O,Y]

T

< / ( max [AFTD(€) — AP (€)[| + max  sup Hvﬁk“)(é,y)—vﬁ’“)(&y)\\)dé
0

r=1,N r=1,N y€[0,Y]

Let’s establish the inequalities

max [\ (z) = AP (2)]| + max sup (o (2, y) — oY (@, y)|| <

r

r=1,N r=1,N y€[0,Y]
O(x, h)B(x i kop
< AR foe.moerac) [ ((max N+ max swp o€ Jae
k! r=1,N r=L,N y€[0,Y]
0 0
max N () - AD (@) + max sup o () — oDz, y)]| <
r=1,N r=1,N (m,y)eQT
k—1 1 z j =
< Oz, )B(2) .,< / e<f,h>5<f>d5) / e<s,h>dsmax{ mex [lo(y), mex \f(x,wn}.
s 7' y€[0,Y] (z,y)EQ
J 0 0
max sup |20 (@) — 20 (2, y)l| <
TZl,NyG[O,Y]
< [ max [AF(€) = AD(©)[lds + [ max sup [T (€ y) — vV (&, y)lldE
5 r=1,N ) r:l,N(x7y)eQT

Passing to the limit as £k — oo, we obtain the estimates of Theorem 1. The uniqueness of the
solution of this problem is proved by contradiction. Theorem 1 is proved.

The proof is complete.

If instead of v, (z,y) we substitute the corresponding right side of equality (16) and repeating this
process v(v = 1,2,...) times we get

ve(x,y) = Gur(z,y,vr) + Dyr(z,y) N (§)dE + For(,y, 21), (18)
where
Yy Nv—2 Mv—1
Gon(@,9,0r) = / Al m)-.. / Az, 1) / A, 1)or (e, ) diydigy—..ds,

(r—1)h (r—=1)h (r—1)h
v—1 Yy Ui

Dyr(z,y) =Y / Az, m)... / A(x,mj+1)dnjsa...dn,
=00 "1)n (r—1)h
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Yy
Furlosyzn) = [ 1BGmn)anam) + Sl +
(r—1)h
Mj—1 15
+Z / Az, m). / A(z,m;) / [B(z,nj4+1)2r (@, nj4+1) + f(2,mj41))]dnjp1dn;...dn.
i= 1r 1)h (r—1)h

Passing to the limit at y — rh — 0 in (18) and substituting in (13),(14) instead of . liI})ln Ovr(ac,y),
—rh—

r = 1, N, the corresponding right-hand sides for the unknown functions \,(z), r = 1, N, we obtain the
system of functional equations:

Qy(w,h))\(iﬂ) = —Gy(x,h, U) —F(:L’, h, Z)v (19)
where
QV('r’ h) =
I 0 0 I — Dyn(z,Nh)
I+ Dyy(z,h) I 0 0
- 0 I+ Dya(z,2h) ... 0 0 :
0 0 I‘{'DV(N—I)(:E, (N —1)h) —I
—GVN(x,Nh,’UN) — ,,N(x,Nh,zN)
Gui(z, h,v1) Fo(x,h,z21)
Gy(x,h,v) = Gra(z,2h,v9) , F,(x,h,2)= Fo(x,2h, 29)
Gyn-1)(z, (N = 1)h,on-1) Fyn-1y(z, (N = 1)h, 2n-1)

I is an identity matrix of dimension n.

To find a solution to a system of three functions {\.(z),v.(z,v), z-(x,y)}, r = 1, N, we have a
closed system consisting of from equations (19), (18), (15).

Suppose that the matrix @, (z, h) is invertible for all z € [0, X].

Taking z( )( y) = ¢(y), r = 1, N, as an initial approximation we find the solution of the boundary

value problem (11)—(15) as the limit of the sequence of the system of triplets {/\,(nk) (x), k) (x,y), k) (xz,y)},

k=1,2,..., determined by the following algorithm: A) Assuming that z,(z,y) = zﬁkil)(x y),r=1,N,

we find k—th approximations A )( ), o) (z,y) r =1, N, as the limit of sequences Al (z), piem) (z,9)

r=1,N, m=0,1,2,..., defined as follows:
A (@) = AED (@), o (@,y) = o V(a,y),

AEmED) () = —[Q, (z, h)] <G,,(:c, h, ™) 4 F(z, h, z(kl))>,

oEm ) (2 y) = Gy, y, 05 ™) + Dy, y) NFT(E)dE + Fop(, y, 257D),

those pair system sequence {)\T ’ Jrl)(ar;), Uq(nk7m+1)(l‘, y)}, for m — oo converges to {/\gk) (x), o (z,y)},

r=1,N.
B) Functions zﬁk) (xz,y),r =1, N, are determined from the relations

xz

B (2,y) = o(y) + / o (€, y)de + / A (€)de.
0

0
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The conditions of the following statement ensure the feasibility and convergence of the proposed
algorithm, as well as the unique solvability of problem (11)—(15).

Theorem 2. Let for some choice of steph > 0: Nh =Y, N = 1,2, ..., and the number of substitutions
v, v € N, matrix Q,(x, h) of dimension (nN x nN) is invertible for all x € [0, X| and the inequalities
hold:

D 1Qu (@, M) < v (x, h); )

2) g (x, h) = LA (1 + (b)Y “m“”j) < <1, where a(z) = sup [|A(z,y)].

il
J=1 y€[0,Y]

Then there is a unique solution to problem (11)—(15) and fair assessments

a) max |\ (z) = AV (2)[| + max  sup o (z,y) — ol (2,y)] <
r=1,N r=1,N (z,y)eQ,

<)o) esn ([ outens©de) [ o6 mdemax{ max e, max 17},
0 0

b) max sup |z (z,y) — Zﬁl)(fU,y)H <

r=1,N y€[0,Y]
< [ max A9 = AV(©lld + [ max  sup vr(&,y) — oD (& )| dE,
r=1,N r=1,N (z,y)€Q,
0 0
where B(x) = sup |[Bz,y)ll, Ou(z,h) = J@,m(lmu,h) > WW)‘
y€[0,Y] =0

The proof of Theorem 2 is similar to the proof of Theorem 1.
By virtue of the equivalence of problems (1)-(3) and (11)—(15), Theorem 1 implies
Theorem 3. Let the conditions of Theorem 1 be satisfied. Then problem (1)-(3) has a unique
solution z*(z,t) and the estimate
).
Ox -

< max{1+ XM(h)(8+1), M(h)(B+ 1)}maX{ max |[|o(y)[l, max !f(%y)ll},
y€[0,Y] (z,y)€Q

max < max |z"(z max
{ o 2"l

Y1 (h)hX 1 (WhBX

h 1
) (1 + 71 (R)h(a + BX)e? WW) :
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T. . Tokmaramberosa, H.T. Opymbaesa

Axademur E.A. Boxemos amuwindazv, Kapazandv yrusepcumemi, Kapazanow, Kaszaxcman

I'umep6os1aJIbIK, TeHAEy /Iep VIIIIH NePUOATHIK IMeTTIK eCcenTiH Oip
mIermiMi TypaJibl

TikOGYpBIMITHI 00JIBICTa TUIIEPOOJIATIBIK, THITI AepOec TYBIHABLIB AudDepPEeHITnaIIbIK, TeHAeYIep Kylieci
yIIiH 6ip aflHBIMAJIBIIAH TOYeJIi MEePUOIATHI MIEKAPAJbIK, €Cell KapaCThIPBLIALI. ABTOpsap kKaHa 6eJrici3
(BYHKIUSHBI €HTi3€ OTBIPBIN, OYJI €CenTi MHTErpaJiIbIK MapThl Oap KapamaiibiM auddepeHInaiIbK, TeH-
Jey YIIMH SKBUBAJIEHTTI IeKapasblk ecenke keariperdi. [lapamerpsey omici Herisinge SKBUBaJIEHTTI ecenTiH,
2KYBIK, IIEITIMIH TaOy/IbIH YKaHa TOCLIIep] YChIHBLIBIN, OHBIH >KMHAKTBLIBIFBI J12J1esaenei. Byn exinmr perTi
runepOoJIaIbIK, TEHIEYIep Kyiecl YImiH »KapThllail MepUOATHIK, MIEKapaJIbIK, ecenTiy bipereil mremrimi 6ap
JKargaiiapapl aHbIKTayFa MYMKIH/IIK Oep/ii.

Kiam cesdep: merTik ecer, rumepOOJIAIbIK, TEHIEYIED, AJITOPUTM, TAPAMETPJIEY OICI, KYBIK, IITEITIM.

T. . Tokmaram6erosa, H.T. Opymbaena

Kapazandunckul yrusepcumem umenu axademura E.A. Byxemosa, Kapazanda, Kazaxcman

O06 omHOM pellleHnN IEPUOANYECKO KpaeBoii 3aJja9u AJIs
TUIepo0JInYIecKOoro ypaBHEHUS

B mpsimoyrospHORT 0bs1acTi pacCMOTpeHa MEPUOJUTIECKas [I0 OFHON IIEPEeMEHHOI KpaeBas 3ajada JJIs CH-
creMbl udpepeHnuaIbHbIX YPABHEHU B YACTHBIX [IPOU3BO/IHBIX MUNIEPOOJIMIECKOro THIla. ABTOPBI BBOJIs
HOBYIO HEU3BECTHYIO (DPYHKIINIO, JAHHYIO 33Ja49y CBOJAT K dKBUBAJEHTHON KpaeBOil 3ajatde JJid OOBIKHO-
BeHHOTO JAudHEPEHITNATLHOTO YPABHEHNST C MHTETPAJIBLHBIM ycaoBueM. Ha ocHOBe MeToa mapamMeTpu3anum
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IIPEIJIOXKEHBI HOBbBIE ITOIXO/IbI HAXOXKIEHUS IIPUOJIM?KEHHOI'O PEIeHNs] SKBUBAJIEHTHON 33/1a91 U JIOKa3aHa
€ro CXOJIMMOCTh. JTO MO3BOJIUIO YCTAHOBUTE YCJIOBUsI CYIIECTBOBAHUsI €IMHCTBEHHOTO PEIIEHUS TIOJIYTePU-
OMYECKON KPAeBOil 33/1a9M JIJIsi CUCTEMbBI TUIIEPOOINIECKAX YPABHEHUI BTOPOTO MOPSIKA.

Karoueswie caosa: KpaeBas 3a7ada, FrUIepOOINIECKIe yPABHEHNUsI, aJITOPATM, METO/] IapAMETPH3AIH, [IPH-
OJIMKEHHOE PEITIeHIIE.
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Extensions of some differential inequalities for fractional
integro-differential equations via upper and lower solutions

This paper deals with some differential inequalities for generalized fractional integro-differential equations
by using the technique of upper and lower solutions. The fractional differential operator is taken in Caputo’s
sense and the nonlinear term divided into two parts depends on the fractional integrals of an unknown
function with two different fractional orders. The results are studied by employing a variety of coupled
upper and lower solutions. These theorems have some potential for extending the iterative techniques
to fractional order integro-differential equations and to coupled systems of integro-differential fractional
equations to obtain the existence of solutions as well as approximate solutions for the considered problem.

Keywords: fractional differential equations, differential inequalities, upper and lower solutions, boundary
value problem.

Introduction

Although fractional calculus has existed for as long as «conventionals» calculus, it was not until
recent decades that the study of fractional differential equations became popular. This is because
fractional operators commonly offer better accurate models than those with integer derivatives. See
[1,2] for the recent developments and further information. Among the different definitions for fractional
order derivatives, the Caputo fractional derivative stands out and has been intensely utilized since it
is best suited for describing many events and the initial conditions for fractional differential equations
are the same form as that of ordinary differential equations with integer derivatives. Due to the fact
that it is far more extensive than the theory of classical ordinary differential equations, the theory
of fractional differential equations has drawn a lot of attention. Although there has been tremendous
recent progress in the study of fractional differential equations, there is still a significant potential in
this area. After reviewing the literature, we find a number of publications on basic arguments, such
as existence, uniqueness and stability results for fractional differential equations. See [3-10] and the
references therein.

Differential and integral inequalities are crucial in the qualitative study of differential and integral
equations. They are used to investigate the concepts of existence, uniqueness, boundedness, stability,
continuous dependence, and so on. The method of upper and lower solutions is a quite effective concept
in the theory of nonlinear differential equations with initial or boundary conditions. Recently, these
methods have been applied to fractional differential equations as well as differential inequalities [11-20].
We give some comparison results for several types of coupled upper and lower solutions for a given
boundary value problems of fractional integro-differential equations. The results here can be viewed as
expansions and generalizations of corresponding analogous results from the integer order case to the
fractional order case.

The purpose of this paper is to refine some previously published results for a given boundary
value problems of fractional integro-differential equations by employing the method of upper and lower
solutions together with strict and non-strict inequalities.

*Corresponding author.
E-mail: ali.yakar@gop.edu.tr
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1  Mathematical Preliminaries

This section provides background knowledge on fractional calculus and fractional differential equations
in order to improve understanding.

Definition 1. [1] Let [a,b] C R, Re(q) > 0 and f € Lq[a,b]. Then the left and right Riemann-
Liouville fractional integrals I, and I;_ of order « are defined as

(@) = o /(f“)‘“ v € (a,)

(9) J (x- )=’
and b
I f () = rch) / (tf—(t;)(ﬁq’x € la,b)
respectively. )

Definition 2. 1] Let [a,b] C R, Re(q) € (0,1) and f € Ly[a, b]. The left and right Caputo fractional

derivatives of order g are given by
Dy f (x) = L,."Df (), Y € (a,0]
and
D f(x):=—I,""Df (z),Vz € [a,b)
respectively.
Let F,G € C[JxRxR,R], u € C'[J,R], J = [0,T]. We consider the following fractional
boundary value problem.

CDNy (t) = F (t,u(t), IPu(t) + G (tu(t), [%u(t), g(u(0),u(T)) =0, (1)

where 0 < g3 < g2 < q1 < 1 and g € C[R?,R]. From now on, the fractional operator © D9 stands for the
left Caputo fractional derivative as well as I? represents the left Riemann Liouville fractional integral
operator.

Definition 3. Let a, B € C1[J,R]. Then o and f3 are said to be
(i) natural lower and upper solutions of (1) respectively if

Do (t) < F(ta(t),I%a)+Gtal), 1%a(t), g(a(0),a(T)) <0, (2)

“DUB(t) > F(t,B(t),I26(t)+G (1), I%6 (1), g(5(0),58(T)) >0, (3)
(ii) coupled lower and upper solutions of type I of (1) respectively if

CDia(t) < F(ta(),I"8(1)+GC(tal),[96(1), g(a(0),a(T)<0, (4

DUB () = F(t,B(1), [Pa(t) + G (A1), I%a(t), g(B(0),5(T)) >0, (5)

(iii) coupled lower and upper solutions of type II of (1) respectively if

Cpagy (t)
“DNB(t)

B @), [Ta(t) + G (t,B(1), [Pa(t), g(a(0),a(T))

< F(t, <
> F(t,a(t),I78(1)+G(ta(t), I1P5(t), g(B(0),8(T)) >0,
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(iv) coupled lower and upper solutions of type III of (1) respectively if

CDBq (t)
‘DB (t)

F(t,B5(t), I26()+G @ A(1),I%4(1), g(a(0),a
Fta(t), o) +G (4 a(t), [Pa(t)), g(B(0),8(T))

AVARVAN

(v) coupled lower and upper solutions of type IV of (1) respectively if

CDa(t) < F(ta(t),[a®)+G A1), I%8(), g(a(0).a(T)) <
CDUB(H) = F(LB(1), 128 (1) +C(La(t), % (1), g(8(0),8(T)) >0,

(vi) coupled lower and upper solutions of type V of (1) respectively if

CDn g (t)
“DU B (t)

F@A@1), 126 (1) + G (talt), [Pa(t), g(a0),a(T)) <0,
Fta(t), o) +G (), 1%6(t), g(B(0),8(T)) = 0.

AVARVAN

Lemma 1. [3] Let m € C'[J,R] and assume that m (t;) = 0 for t; € (0,7] and m (¢t) < 0 for
0 <t < t1. Then we have ¢ D%m (t1) > 0.

The Laplace transform technique, as is well known, is a beneficial tool for solving initial value
problems. Using this method, the stated problem is turned to an algebraic expression. The next lemma,
which is about the inverse Laplace transform of the given function, is critical in this case.

Lemma 2. [21] Let a > >0, a >, a,b € R, s > |a| and |s® —I—asﬁ‘ > |b|. Then we get

a) k (n;{rk) th(a—B)+na

_ s  La—— e ()" (—
3 1{(S“+asﬁ+b)}_t ' 1ZZF(k(a—ﬁ)+(n+1)a—v)-

n=0 k=0

We prove the following lemma in order to solve the given linear fractional initial value problem. It
allows the corresponding result in [16] to be a specific case of this lemma.

Lemma 8. Assume that A € C'[J,R], 0 < ¢3 < q2 < q1 < 1 and Ly, My, My € R. The explicit
solution of the following linear fractional integro-differential equation,

CDUN(t) = LA (t) + MiI2X () + MaIBX (), A(0) = Ao (6)

is given by
2 &0 &0 (M) (Ly)F (My)? (1R (n i) pas (b4 +naa-tias

At) =
2 nzzg)kmo I'(qi(n+k+1i) +ng +igs+ 1)

Ao

provided that [s71F9| > |My|, |s? — Mas™%| > |Ly| and [s91792 — Mys®~% — [1s%2| > | M.

Proof. If we apply the Laplace transform on both side of the equation (6), we find the following
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relations
L{°DUN({t)} = LiL{NO)}+ML{I2A({)} + ML {IBN ()}
sA(s)—Xo A(s) A(s)
31_‘11 - Ll)\ (S) - Ml S92 - M2 s43
SEN(s) — sy = LiA(s)+ M (s) s~ + MyX(s) s %
sfita—1
)\(8) - snt2 — Nos92—9 — [1s92 — My Ao
stge—1
= " Ao
(st1+a2 — Mpst—ts — [;502) (1 e Lls%)
ghita2—1 ad (M)
- snte — Nos92—9 — [1592 ZO (st — Moys92—93 — ngth)"
n=
o n
_ ey (M) .
S (st — Mys s — L18q2)"+1
[e.¢]
— ghitae—l (Ml)n

n=0 (Sq1+q2 — My

L1592

n+1 /\0
sq1+4a2 —Mos92—93 )

SQ2—QS)”+1 (1 —

[e%S) k k (n+k
= 5q1+q2—lz (Ml)n 12 (Ll) (5%2) ( ) Ao
— (sm+az — Myst2—a)"F (sataz — Mysa2—as)k
k

Ao

>y

n=0 k=0

s~ 71— k+1)+1 (SQH—QQ

(Ml)n (Ll)k (n—llc-k

Mysia—as) 7R+

)

- Yy Ao
_ Fhk+1
n=0 k=0 g~ 01 —q2(k+1)+1 (8q1+Q2)”+k+1 (1 _ A/{SquqquQ3 )n
- Yy " (L) (L) Sy (M E ) iy
N —q1—q2(k+1)+1 ( gq1+go\Hk+1 1 s 0
n=0k=0 (5 ) i=0

oo o0 0

Ly)"

(Mg)i (n+k) (n+k+z’

7

)

2.0 2.

s—a1—a2( k+1 Y+1+(q1+q2) (ntk+1)+i(q1+qs) 0

n=0 k=0 i=0
)
o Sql n+k+z)+nq2+lq3 0
n=0 k=0 i=0
provided that [s779%| > |Ma|, |s? — Mas™%| > |Ly| and |s91192 — Mys9?2™ %3 — [15%2] > | M.

At this stage, we arrive at by implementing the inverse Laplace transform

oo o0 O

2.2 > (an)"

n=0 k=0 =0
oo 0 XX

> le

L7 (s)}

k(M) <"

A(t)

(M2)i (n+k) (n+f+i) a1 (ntk+i)+ngz+igs

1
n+k+1i)+nga+igs

+k\/n+k+1
k i

-1
)E {3‘]1(

Ao-

n=0 k=0 =0

ql(n+k+z)+nqz+iq;g+1)

2 Formulas and theorems

b

Depending on the selection of upper and lower solutions of (1), we will assume the suitable

conditions to establish some differential inequalities.
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Theorem 1. Let o and 8 be natural lower and upper solutions of (1). F(¢,u,v) and G(t,u,v) is
non-decreasing in v and following Lipschitz-like conditions are also satisfied for Ly, Lo, M7, My > 0

Ly (ug — ug) + My (v1 — v2), (7)

<
< Lz (u1 —ug) + Mz (v1 — 09) (8)

—~
~
SR
no
~—~
~+
~—
—~
~~
S~—

G (t,ur (t),01 (1)) —

whenever u; > ug. Then we have a (t) < S (t) provided « (0) < 5(0).

Proof. In order to make it compatible with the problem (1), the functions v;, v; must be evaluated
as follows v; = I%?u; and v; = IBu;, 1 = 1,2. Clearly, u; < ug implies that v; < vg and v; < s.
We now set a (t) = a (t) — e\ (t) for arbitrary small number € > 0, where

oo 0o 00 (Nl)z (n—l—k) (n+k+i) 0 (n+k+i)+ng2+igs
nz%kzng I'(gi (n+k+1i) +ng +igz + 1)

is unique positive solution of the equation
Cpa ) (t) = LA(t) + MiI®X(t) + MaI® X (t), X(0) =1, (9)

where L is a positive number such that L > L; + Lo. Notice that a.(0) = a(0) — eA(0) < «(0),
ae (t) < a(t) for 0 <t <T. If we differentiate a. (t) in terms of Caputo’s sense, and using (2) we get

Dl (t) = “DBa(t)— DAt
< Fta(t), I2a) + G (ta(t), [Pa(t))
—LeX (t) — Myel® X (t) — MoeI %\ (t).

We observe that a. (t) < a(t) on J yields I?a, (t) < I2a(t) and IBa, (t) < I8« (t) on J by the
definition of R-L fractional integral. We then employ the Lipschitz-like inequalities in (7) and (8) to
obtain

Dl (t) < Ft,at), I2a(t)) — F (t, o (t), IPa (t) + G (L, a (t), [Ba(t))
CG(t e (1), TP (1)) — LeA () — MyeI® A (£) — MoeI® A (1)
+F (t,ac (), IPac (1) + G (t, ac (1), [P (1))

Lie(@(t) — ac (1) + MieT® (a (1) — ac (1)) + Lae (a (t) — ac (1)

+Moel® (o (t) — e (t)) — LeA (t) — M1el X (t) — Mael )\ ()

+F (t,oe (), IPac () + G (t,ae (t) , [P, (1))

)

)

IA

= F(tac(t),I%ac () + G (t,ac (t) , % (t)) + e (t) (L1 + Lo — L)

)
< F(tac(t), IPac (b)) + G (8 ae (t), 1T ac (1)) -

We intend to demonstrate a. (t) < 5 (t) for ¢ € [0, 7], which concludes the proof by letting ¢ — 0.
Suppose that a¢ (t) < S (t) on t € [0,T] is false. Then the set A = {t:t€[0,T],a.(t) > (t)}
is nonempty. Let ¢, be the greatest lower bound of A, then ac (t.) = S (t«) and . (t) < B(t) for
0 <t <ts.

By generating m (t) = a. (t) — B (), it is written that m (¢) < 0 for 0 < ¢ < t, and m (t,) = 0.
Because of Lemma 1, it leads to “D%m (t,) > 0.

160 Bulletin of the Karaganda University



Extensions of some differential ...

Since a, (s) < B (s) for 0 < s < t,, we immediately get

I2a,(t,) = T (1(]2) /(t* — )2 o (s)ds
0
. t o
< () O/(t* —35) B(s)ds
= I25(t,).

A similar discussion offers IBa (t.) < I8 (t4). By recalling the non-decreasing features of F' and G,
we follow that

F (te, 0 () , TP (1)) + G (ts, e (ts) , [P e (t4)) “Dua (t,)
‘DB (t)
F (t*aﬁ (t*) ’quﬂ (t*)) + G (t*v B (t*) 7Iq3/8 (t*))

F (i, B (8e) s TP e (t2)) + G (b, B (8) , I e (E4))

vV IV IV V

giving rise to a contradiction because of the fact that a. (t.) = B (t«). Then the inequality
ae(t) < p(t),Vted

holds, which proves « (t) < S (¢t) on J.
Corollary 1. This result includes the Theorem 2 in [11] as a special case when F' = 0 and ¢; = ¢2
or G =0 and q; = g3.

Theorem 2. Let a and  be coupled lower and upper solutions of type I of (1). F(¢,u,v) and
G(t,u,v) is both non-increasing in v and they hold the following inequalities for u; > ug,v1 > vy and
L1, Lo, My, Ms positive constants such that

F(t,uy (t),v(t)) — F(t,uz (t),v(t)) < Li(u —u2), (10)
G (t,uy (t),0(t)) — G(t,uz (t),v(t)) < Lo(us —uz), (11)
F(t,u(t),v1(t) — F(t,u(t),va(t)) > —Mi(v1—wv2), (12)
G(t,u(t),v1 () — G(t,u(t),ve(t) > —Ms(v1—02). (13)

If «(0) < 5(0), then it yields that « (¢t) < B (t) on J.

Proof. We begin by constructing o, (t) = a(t) — €A (t) and 5. (t) = [ (t) + eX(t) for € > 0. The
function A (¢) is also supposed to be unique positive solution of (9) with Ly + Lo > L > 0 . It is clear
that B¢ (0) = 5(0) + eA(0) > 5(0) and . (0) = a(0) — eA (0) < a (0) that imply . (0) < S (0) and
for 0 <t <T, we get B (t) > [ (t) and e (t) < a(t).

Differentiating both sides of S (t) = B (t) + €A (t) leads to

CDUB (t) = “DNB(t)+ DU (1)
> F(t,8(),I%a(t)+G(t,B(t),I%al(t))
+LeX (t) + Miel X (t) + Mael B\ (t) .

Since S, (t) > [ (t), we can utilize the inequalities (10) and (11) in hypothesis to get
F(t,Be(t), I (t)) = F (8,5 (t), IPa(t) < Li(f(t) =B (1),
E@,B(1),1%a(t) = F(,B(t),[®a(t) = Li (B (t) = 5 (1))
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and

G, Pe (), [Ta(t) =G (L, 5(1), [Pa(t)) Ly (B (t) = B(1))
G(t,B(t), IPa(t)) G (t, Be (), TP o (t)) = L2 (Be (t) = B (1)) .-

Putting these results into the foregoing inequality, we write

“DUB(t) = F(t,fe(t),Ia(t) — L1 (Be (t) — B (1)
+G(tBe (1), 1P (t) = L2 (B (1) = B (1))
+LeX (t) + Miel )\ (t) + Mael B\ ()
= F(t,B:(t), IPa(t) + G (t,L(t), [Pa(t)) + (L — L1 — La)eX (t)
Myl ) (8) + Mael® A (1)
> F(t,8:(t), [a(t) + G (t, Be (), [T (t)) + MrelP X (t) + Mael B (t).

<
>

Since the fact that o (t) > ae (t), we can have [« (t) > 1%, (t) and [B«a (t) > [ a, (t). Therefore,
the following inequalities can be found by considering inequalities (12) and (13)
F(t,Be (1), IPa(t) = F (¢, B (t) , IPac (t)) = —MI® (a(t) — e (t)),
E(t, B (t), IPa(t)) = F( B (t), I1%ac(t)) — MiI® (a(t) — ac(t))

and

G (t, B (1), I%a (1)) — G (t, Be (1) , IPac () > —MaI® (ar(t) — e (1)),
Gt Be (), ITa(t)) = G(t,B (1), [Pac(t)) = Mal® (o (t) — ae (1))

Combining these results with previous inequality, we arrive at

CDUB(t) > F(t,Bc(t), 120 (1)) — MyI% (o (t) — o (1))
+G (t, Be (1) [P e () — MaI® (ar (1) — e (1))
FMyel®2) () + Moel® A (1)
= F(t,8c(t), IPac(t)) + G (t,Bc (), [Bae (t)).

We intend to demonstrate a (t) < S (t) on J. If we use the similar technique as before we first assume
that assertation is false which gives a contradiction itself. Therefore, when ¢ — 0 gives the desired
result.

Remark 1. Notice that if F(t,u,v) and G(t,u,v) are non-decreasing in v for each (¢,u) whenever
a < (3, then natural lower and upper solutions given by (2) and (3) imply the coupled lower and upper
solutions of type I given by (4) and (5). Conversely, if F'(¢,u,v) and G(¢,u,v) are non-increasing in
v for each (¢,u) whenever o < 3, then coupled lower and upper solutions of type I reduce to natural
lower and upper solutions respectively.

Theorem 3. Let o and (3 be coupled lower and upper solutions of type II of (1) as well as F(t, u,v)
and G(t,u,v) is non-decreasing in v. We also assume that

F (tyuy (t),v(t)) — F(t,ua (t),v(t)) > —Lj(u —uz)
G(t,ur (t),v(t)) — G (t,ua(t),v(t)) > —La(ur —u2)
F(tyu(t),v1(t)) — F(t,u(t),v2(t)) < My (v1 —ve)
G(t,u(t),v (t) —G({t,u(t),v2(t)) < M (v — v2)

whenever uj > ug,v1 > vg, where L1, Ly > 0, M1, My > 0. Then a (0) < 8 (0) implies that « (t) < B ()
on J.

162 Bulletin of the Karaganda University



Extensions of some differential ...

Proof. For the proof, we recall the previous definitions of functions «. (t), 5¢ (t) on J such that for
e>0

ac(t) = a(t) —eA(t), Be (t) = B (1) + eX(t).

The function A (¢) is the unique positive solution of (9) with L; + Ly < L. We can achieve the desired
conclusion by using a similar process as described above.

Theorem 4. Let « and 8 be coupled lower and upper solutions of type III of (1) as well as both
F(t,u,v) and G(t,u,v) is non-increasing in v. We also assume that

F (t,ul (t) , U1 (t)) - F (t, usg (t) , V2 (t)) > —L1 (U1 — ’U,z) — M1 (’1)1 — 'UQ) )

G (t, U1 (t) , U1 (t)) -G (t, U9 (t) , U9 (t)) > -1 (u1 — UQ) — M, (771 — 172)

whenever u; > ug,v7 > ve and Li, Ly > 0,M;, Ms > 0. Then «a(t) < 5(t) on J provided that
a(0) < 5(0).

Proof. By using analogous considerations as mentioned previously, we can gain the conclusion of
theorem directly. For space-saving, we omit the details here.

Corollary 2. If we take G = 0 in the problem (1), then the results in Theorems 1-4 are reduced to
the results in [16].

Remark 2. 1t is worthwhile to note that if « < 8 on J, then the monotonicity assumption of F' and
G in Theorem 3 combined with allowing «, 5 to be the coupled lower and upper solutions of type II
respectively is equivalent to the case in which the monotonicity assumption of F' and G in Theorem 4
combined with «, 8 being the coupled lower and upper solutions of type III respectively.

Theorem 5. Let o and (8 be coupled lower and upper solutions of type IV of (1). F(¢,u,v) is non-
decreasing in v while G(¢,u,v) is non-increasing in v. Assume further that following inequalities are
satisfied:

F(t,ur (t),v1 (1) — F(tuz (t),v2 (1))
G (t,ur (t),01 (1) — G (tuz (t), 02 (1))

Ly (uy — ug) + My (v1 — v2), (14)

<
> =L (u1 —ug) — Ma (91 — 0a), (15)

where Ly, Ly > 0, My, My > 0, whenever u; > ug,v1 > ve. Then a (0) < §(0) implies that « (t) < B ()
on J.

Proof. We begin by constructing S, (t) = [ (t) + e\ (t) and «, (t) = a(t) — e (t) for € > 0. The
function A () is also supposed to be unique positive solution of (9) such that L > L; + Lg. It is clear
that 8. (0) = B(0)+€eA(0) > 5 (0) and a (0) = a (0) —eX (0) < a(0) imply . (0) < B¢ (0). In addition
to that for 0 <t < T we get B¢ (t) > B (t) and ac () < a(t).

Differentiating both sides of S, (t) = B (t) + e (¢) leads to

CDUB(t) = “DNB(t)+C DUeA(t)
> F(t,8(1), 175 () + G alt), [®a(t))
+LeA (t) + Myel X (t) + Moel BN\ (t) . (16)

Since B¢ (t) > [ (t) for 0 <t < T, we can employ the inequality (14) and (15) then it yields

F(twﬁe (t) 7Iq266 (t)) - F(taﬁ (t) 7Iq25 (t)) < Ll (56 - /8) =+ M1[q2 (ﬁe - 5) )
F <t7ﬂ (t> A (t>) > F <t756 (t> 1% B, (t)) — LieA (t) — Myel? X (t) (17)

and
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G(t,a(t), [%a(t) — G(t,ac(t), [Bac(t) > —La (o — o) — MaI® (a0 — o)
G(t,a®t), IBa(t) > Gt ac(t),[Bac(t) — Lae) (t) — Mael B (1). (18)
If we substitute (17) and (18) into (16), we get
“DUB(t) = F(t,8(t), 128 () + G (ta(t), [Ca(t)

+Le (t) + Myel P\ (t) + Mael B\ (t)

> F (b B (8), T26c (1)) — Lieh (1) — MyeI) (1)
+G (t,ac (), TP, (t)) — LoeX (t) — MaelB X (t)
FLeA () + Myel®X (t) + MoeI® )\ (1)

> F(t,B:(t),I”6: (1)) + G (t,ac (), IPac (1)) .

A similar procedure can be applied to ae (t) = a (t) — €A (t) to achieve the following result
CDlac(t) < F(t,ac (t), 1% () + G (t, Be (1), I9 6. (1))

on [0,7].

We next prove that ae (t) < B¢ (t) on [0,T]. Contrary to this claim, we presume for a moment that
the inequality is not true and, setting m (¢t) = ae (t) — B (t) there would exist a point ¢, such that
m(ts) = 0 and m (t) < 0 for 0 < t < t,. We get at once “ D%m (t,) > 0 by Lemma 1. Obviously, it
causes a contradiction. Then, it has to be

(0% (t) < Be (t)

on J. Finally, letting ¢ — 0, we reach at

Tim (o (f) = A () < Tim (B(2)+A(1),
alt) < B,

for t € J, ending the proof.

Corollary 3. This result is evaluated as the generalization of Theorem 2.10 in [17] to fractional
orders by simple modifications.

Theorem 6. Let o and 8 be coupled lower and upper solutions of type V of (1). F(t,u,v) is non-
increasing and G(t,u,v) is non-decreasing in v. Additionally, following inequalities hold:

F (t,ug (t),v1 () — F (t,ug (t),ve (t))
G (t,ur (t),01 (1) — G (tuz (t),02 (1))

(

(
where Ly, Lo, My, My > 0, whenever u; > ug,v; > ve. Then « (0) < 8(0) implies that a (t) < B (¢)
on J.

Proof. In that case, for some € > 0, we compose ¢ (t) = B(t) + e (t) and . (t) = a(t) — e (t)
where the function A (¢) is taken as the nonnegative unique solution of the following linear equation

—Lq (ug —ug) — My (v1 — v2),
Lo (ug —ug) + Ms (01 — v2),

)

> 19
< 20)

CDUN(t) = LA (£) + My () + MaI®BA (1), A (0) = 1.

Taking derivatives in Caputo’s sense on both sides of constructed functions and using (19) and (20),
we have the following strict inequalities

DB (t) > F (t e (1), IPac (1)) + G (¢, Be (1) , 1 Be (¢))
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and

DU (t) < F(t,Bc (t) , 126 (1) + G (t, e (), TP e (1)) .

At this stage we apply proof by contradiction with the help of Lemma 1 to show «. (t) < S (t) on J.
As a final step, performing ¢ — 0, we get the desired result

a(t) < B(t),

for t € J, which completes the proof.

3 Conclusion

Using the method of upper and lower solutions, this research discusses some differential inequalities
for generalized fractional integro-differential equations. Multiple coupled upper and lower solutions
are used to examine the results. These theorems provide some possibilities for stretching iterative
techniques to fractional order integro-differential equations and coupled systems of integro-differential
fractional equations in order to determine the existence of solutions as well as approximations for the
problem under consideration.
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A. dxkap, X. Kyrait

Toxam Iasuocmannawa ynusepcumemsi, Toxam, Typrus

2Koraprbl 2kKoHe TOMEHTI ImentiMaep apKbljibl 06JII1eK peTTi
MHTerpaJabl auddepeHnnajIIbIK TeHaeyJiep YIIniH Keiidip
anddepeHInaJIblK TeHCI3AIKTep/diH KeHel0i

Makasiazia KoFaprbl 2KoHe TOMEHT] IIeIMIep TEXHUKACHIH KOJITaHa OTBIPHII, O6JIIIeK PETTI YKaJIIbLIaHFaH
nHTErpasibl-1uddepeHnraIblK, TeHaeysep YIniH Keibip auddepeHnaiiblk TeHCI3IKTep KapacThIPbl-
gran. Bemmek muddepennmnanabik oneparop KamyTo marbiHAChIHIA TYCiHIIED], an ekire OeiHIeH ChI3bI-
KTBIK €MeC TepMUH eKi TypJii Oesiiek peri 6ap Oesrici3 pyHKIUAHBIH OOJIIIEeK UHTErPAJIapblHa, TOYesIi.
Hormxkesep oprypai 6ailiaHbICTEI XKOFaPFBI 2KOHE TOMEHT IIeIiMIep/1i KOJIIaHy apKblIbl 3epTTesred. By
TeopeMasiap KalTaJaHATBIH 9/icTepai OeJIeKk peTTi mHTerpaiabl-1uddepeHInaIIblK TeHIeyIepre KoHe
mrentiMIepin 60JybIH, COHIail-aK KapaCTBIPBLIBIIT OTBIPFAH MdCeje VIIH XKYBIKTAJFaH MIENIMIepAl aty
yimiH Gestrek peTTi mHTerpasab-auddepeHnaIIbK, TeHAeYIepiH 6ailIaHbICThI XKy ieIepine TapaTy yIIiH
Gestrisii Gip osieyerke ue.

Kiam cesdep: Gemmek nuddepeHInaiablK, TeHaeyaep, mmddepeHuaiablK, TeHCI3MIKTED, XKOFapFbl XKoHEe
TOMEHT] IeNTiMIep, IIeTKi ecerl.
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A. dxap, X. Kyrai

Vnusepcumem Toxam Iazuocmannawa, Toxam, Typuus

Pacmupenus HeKoTopbiX auddepeHInaIbHbIX HEPABEHCTB JIJIs
nHTerpo-and depeHImaabHbIX YyPaBHEHUN JPOOHOTO MOPAIKA depe3
BEepXHUE W HU>KHUE PeIneHuns

B crarpe paccmorpensl HekoTopble nuddepeHIAIbHbIE HEPABEHCTBA JJjIs OOOOIIEHHBIX HHTErpo-aud-
depeHIaTbHbIX YPABHEHUN IPOOHOTO TOPSIIKA C WCIOJB30BAHMEM TEXHUKHA BEPXHUX W HUXKHUX pellle-
uuit. I pobuo-nuddepeHimanpHbit onepaTop moHUMaeTcs B cMbiciae KamyTo, a HeMHEWHBIH 4jaeH, pas-
JIeJIEHHBI HA JBe YaCTU, 3aBHUCHT OT JPOOHBIX MHTEIPAJIOB HEM3BECTHON (DYHKIUU C JABYMsI PA3IUIHBIMU
JPOOHBIMU TTOPsIKAMU. Pe3ysIbTaThl M3yYeHbI ¢ UCIOJIH30BAHNEM PA3JINIHBIX CBI3aHHBIX BEPXHUX W HUK-
HUX PEIIeHUH. DTU TeOPEMbl UMEIOT HEKOTODBIA MOTEHIMAN JJIsi PACIPOCTPAHEHUS] UTEPAIMOHHBIX METO-
OB Ha HHTerpo-nuddepeHnajbHble YPaBHEHUA JPOOHOTO IOPSIKA U HA CBS3aHHBIE CUCTEMBI HHTETDO-
mudepeHIaATBHBIX YPAaBHEHUI JPOOHOTO MOPSIAKA JJIsi MOJIy9YeHUsT CyIeCTBOBAHUs PEIeHM, a TaKkKe
MIPUOIU>KEHHBIX PeIeHni JIJIs PACCMaTPUBAEMON 3a/1a4u.

Kmouesvie crosa: apobubie nuddepeHiaibabie ypaBHeHus, JuddepeHiinajibHble HepaBEHCTBa, BEPXHIE
¥ HUKHFE DEIeHus], KpaeBasl 3ajiaja.
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Generalized differential transformation method for solving
two-interval Weber equation subject to transmission conditions

The main goal of this study is to adapt the classical differential transformation method to solve new types
of boundary value problems. The advantage of this method lies in its simplicity, since there is no need
for discretization, perturbation or linearization of the differential equation being solved. It is an efficient
technique for obtaining series solution for both linear and nonlinear differential equations and differs from
the classical Taylor’s series method, which requires the calculation of the values of higher derivatives of
given function. It is known that the differential transformation method is designed for solving single interval
problems and it is not clear how to apply it to many-interval problems. In this paper we have adapted the
classical differential transformation method for solving boundary value problems for two-interval differential
equations. To substantiate the proposed new technique, a boundary value problem was solved for the Weber
equation given on two non-intersecting segments with a common end, on which the left and right solutions
were connected by two additional transmission conditions.

Keywords: two-interval problems, the differential transformation method, Weber equation, transmission
conditions.

Introduction

It is well known that two-dimensional elliptic equations often occur as a mathematical model of
steady-state or equilibrium problems. For example, for a stationary flow of an incompressible inviscid
fluid, the velocity potential satisfies the two-dimensional elliptic equation

Pu 0%

92 "oz !

the so-called Laplace’s equation. Separation of variables method applied to the Laplace equation in
parabolic coordinates leads to the Weber equation

1 z2
1
+n+=-——y=0

where n is a constant. This equation was first studied by H. Weber in connection with the parabolic
cylinder in the potential theory [1]. The Weber equation converts to the equation

' — v +nu=0 (1)

2
via the substitution y = ue ™2 . Note that the solutions of the Weber equation are known as Weber-
Hermite functions or parabolic cylinder functions. In the case when the constant n is a non-negative
integer, the Weber equation (1) has the solution

2
u=-e 4 Hy(x),

*Corresponding author.
E-mail: merve.yucel@outlook.com.tr
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where H,,(z) is the Hermite polynomial defined by the equality

n
Hy(z) = (—1)"e" Qddn e

In recent years, there has been increased interest in boundary value problems for many-interval
differential equations with additional transmission conditions. [2-6]. Such type of transmission problems
are motivated by the emergence of new and interesting applications in physics.

In this article, the Weber equation given on two non-intersecting intervals and satisfying supplemen-
tary transmission conditions between left and right solutions, will be solved by the differential transfor-
mation method (DTM, for short). The main idea of this method was first proposed by Zhou in
connection with some problems of electrical circuits |7]. Using differential transform, the given differential
equation and related initial and /or boundary conditions can be replaced by linear algebraic equations.
Therefore this method is of great interest in physics, engineering and other natural sciences ([8-14]).
For example, Sepasgozar et al. used DTM to solve the momentum and the heat transfer problems of
non-Newtonian fluid flow in an axis-symmetric channel with porous wall [15]. Usman et al. applied
differential transformation technique to investigate unsteady two phases on non-fluid flow and the heat
transfer between moving parallel plates in the presence of the magnetic field [16].

In recent years, various modifications of the DTM have been used to solve many interesting problems
that arise not only in theoretical mathematics, but also in applied sciences (see, for example [17-20]
and references cited therein)

1 Differential transformation and Differential inverse transformation

Let f = f(x) be an infinitely differentiable function on the real axis R = (—o0, 00) and let g € R
be any point. Denote by Yz, (f,n), n =0,1,2,... the coefficient at the n. term of the Taylor series of
the function f in the neighborhood of the point xg, that is Y;,(f,n) := %f(") (x0)-

Definition 1. The sequence Yy, (f) 1= (Yy, (f, 1), Yz, (f,2),...) is said to be differential transformation
of the function f at the point xg.

Definition 2. Let A := (a,) be any sequence, such that the power series

oo
Z an(z — x0)"
n=0

is convergent on the whole R. Then the function

x) = Z an(x — xo)"
n=0

is said to be the differential inverse transformation of the sequence A := (a,,) at the point z = x.

It is obvious that any analytic function f(z) satisfies the following equality

ngl(yxo (f)? JI) = f(l‘)

Let C*°(R) be the set of all infinitely differentiable functions defined on the real axis R. It is easy to
verify that the following properties are valid

(2) xo(f+g, ):YGUO(fvn)+YIO(gan)7 f?gECOO(R)a n:071727'-';
(”) Zo ()‘fv ) )‘Yxo (fa n)’ )‘ € R7 f € COO(R)a
(ii1) Yoo (2L n) = (S:?)! Yoo (f,s+mn), s,n=0,1,2,..., f¢€ C‘X’(R)'

( ) Io(fg7 ) Zk; 0 xo(fv ) ﬂﬂo(gvn k) that ISon(fg) (f)*yﬂﬁo( ) WhereYzo(f)*on(g)
denotes the convolution of the sequences Yy, (f) and Yy, (g).
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Remark 1. Let A = (ay) be any real sequence. If we denote the sequence (ay,ag, ...,ax,0,0,0...).
by A, then we have

in real applications.

2 Solution of two-interval Weber equation using the modified differential transformation technique

Example 1. Consider the two-interval Weber equation

V(@) = o/ (@) + 29(@) =0,z € [l,5)U(51] )

subject to the boundary conditions, given by

and additional transmission conditions at the interior singular point z = %, given by

i)
Y (; - 0> — 729/ <; +0> =0, (4)

where v1 and 79 are real numbers that will be specified later. We will consider the equation (2) on the
left side [0, 1) and the right side (3, 1] of the domain [0, 3) U (3, 1], separately.

We will denote by Yy(yx, k) and Yi(y * *, k) the differential transformation of y(z) at the left end-
point x = 0 and the right end-point x = 1, respectively. Applying the differential transformation to
the differential equation (2) in the left interval [0, %), we have the following linear algebraic equations

k
1
Yo(y*, k +2) = Fr2ETD Z(/‘C —n+1D)Yo(yx k—r+1)0(r — 1) — 2Yo(y*,k) |, (5)
r=0
where Yy(y*, k) = %dkﬂ,ﬁx) |lz=0. The differential inverse transformation in the left interval has the

following form:
y* () = Yo(yx,0) + Yo (y*, 1) + ... + " Yo(yx,n) + ...

The first boundary condition y(0) = 0 becomes Yj(y*,0) = 0. Denoting Yy(y*,1) = A, (5) we have
where A is unknown number that will be calculated later, and then substituting in the recursive relation
Yo(y=,3) = 5, Yolyx,4) =0, Yo(yx,5) = 555, Yo(yx,6) =0, Yo(yx,7) = g --

Thus we have the following series expansion of the left solution:

= Ar— 23— — 5 - — 2"+ ..
y* () T 6:6 120:5 168096 + (6)
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Applying differential transformation in the neighborhood of the right end-point 2y = 1 we have

Yi(yxx,k+2)= [(E+1D)Yi(y*xx,k+1)+ kY1 (y x*,k) — 2Y1(y * *, k)]. (7)

(k+2)(k+1)
Applying the differential inverse transformation in the right interval (%, 1] gives
y*xx(x) =Yi(yx%,0)+ (z — DYi(yxx,1)+ ...+ (z — 1)"YVi(y * *,n) + ...

The boundary condition y(1) = 1 becomes Yj(y % *,0) = 1. Let Y1(y * x,1) = B. Here B is unknown
parameter that will be calculated later. Using the recursive relation (7) we have

}/l(y * *32) = %1(-8 - 2)7 Yl(y * *33) — %11 }/l(y * *74) = %217 Yl(y * *75) = %&7 Yl(y * *56) = %)
Y1 (y *,7) = 555 -

Then we have the following series expansion of the right solution

yxs(z) = 1+B(gg—1)+%(3—2)(x—1)2—é(x—1)3—
1 1 1 1
— E(az—l)4—%(x—1)5—%@—1)6—2—52@—1)7—1—... (8)

To find the unknown parameters A and B, we put the relations (6) and (8) into the transmission
conditions (3)—(4). Then using "Mathematica"8, we can calculate approximate values of the unknown
numbers A and B as A = 1.21302, B = 0.550509. Here we continued iterating up to the 7 th term in
the series expansion for DTM-solutions y * (x) and y * x(x). Below, Figure 1 shows the graph of the
DTM-solution

_ [ yx(@) for xel0y),
y(x)_{y**x) for :EE(,ZI].

D=

_--""'-'_F_-
-"'-)-—
0.8 | T
- ,-"‘)
- -~
-
o -
0.6 [ i
L -
.—’-".
o4l o
r s
.-"/
o2l -
i3
f/
al 1 1 1 1 1 =
0.2 0.4 0.6 0.8 1.0

Figure 1. Approximate DTM- solution of the problem (2)—(4) for v; = v = 1.
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Figure 2. Comparison of the exact solution (red line) and the DTM-solution (blue line) of the
problem (2)—(4) for y1 = y2 = 1.

Example 2. Now we shall consider a two-interval Weber equation with negative n, given by
(@)~ oy (@)~ dy(e) =0, w1, 5)U(51 )

together with the boundary conditions at the end points x = 0 and x = 1, given by

subject to the additional transmission conditions, given by

e (5-0) e (1 0) o, =

1 1
csy’ <2 - 0> -y <2 + 0> =0, (12)

where ¢1, co, c3 and ¢4 are real numbers that will be specified later. As above, we shall consider the
differential equation (9) on the left side [0, 3) and the right side (3, 1] of the domain [0, 3) U (3,1],
separately.

As in above, Yy(y*, k) and Y1 (y*, k) denotes the Y- transforms of y(z) at the left end-point x = 0
and the right end-point z = 1, respectively. Using differential transformation in the left interval, i.e. in
the neighborhood of the point o = 0, we have

k
1
Yt k+2)= —oc—— k — 1Y k — Do(r —1) +4Y; k 1
where Yy(yx, k) = %dkj;:,ﬁx) |z=0. The differential inverse transformation in the left interval has the

following form:
y* () = Yo(y*,0) + Yo (y*, 1) + ... + 2" Yo (y*,n) + ...

The first boundary condition y(0) = 1 becomes Yy(y*,0) = 1. Denoting Yy(y*,1) = K, where K is
unknown parameter that will be calculated later, and then substituting in the recursive relation (13),
we have
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%(y*a2) =2, }/O(y*a?’) = %7 }/O(y* 4) =1, Y()(y* 5) - 247
Yo(y*,6) = -5, Yo(y=7) =%, Yg(y* 8) = 57, ..

Thus we have the series expansion of the left solution y * (z) in the form

TK 4 K 1
Y a4 —af —i——:r—l— 8—|—... (14)

5K
= 1+ Kz+22°+—2°
y*(2) tRTELT A e Tt oy 157 " 16

Now applying differential transformation to the equation (9) in the right interval, we have

Yi(yx*x,k+2) = [(E+1D)Yi(y*xx,k+1)+ kY1 (y x %, k) — 4Y1(y * *, k)]. (15)

(k+2)(k+1)
The differential inverse transformation in the right interval (%, 1] has the following form:
yxx(x) =Yi(yx%,0)+ (z — DYi(yxx,1)+ ...+ (z — 1)"Yi(y * *,n) + ...

The second boundary condition y(1) = 0 becomes Y7 (y * *,0) = 0. Putting Y (y **,1) = M, where M
is unknown parameter that will be calculated later, and using the recursive relation (15) we have

Yl(y**2)_]\2/[, Yi(y**,3) =M, Yi(yxx*4) =

Yi(y *x,5) = 53%‘/1

2]\6[, Yi(y *x,6) = 21\21’ Yi(y**,7) = 50 )

Consequently we have the series expansion of the right solution y % *(x) in the form

y*x(x) = M(x—1)+%(:c71)2+M(x71)3+J\;( 1)* +%( 71)552]{44(3071)
53M

Substituting (14)—(16) in the transmission conditions (11)—(12) we obtain two algebraic equation with
respect to the variables K, M.

Finally, using «Mathematica 8>, we can calculate approximate values of the parameters K and M
as K = —1.93316, M = —0.70003. Here we were continued iterating up to the 7 th term in the series
expansion for the DTM-solutions y * (z) and y * *(z). The approximate DTM-solution of the problem
(9)—(10) is presented graphically in Figure 3 and Figure 4.

1.0 ::_\
£33,
vl ™~
L e
S
\_\\
0.6 - e
T
L H-H-"‘"‘-\..,___\_
o4l
L ; S
0.2 H""'\--..
-\--\""“-_..___\_
~—
1 1 L L e, C L
.2 0.4 0.5 0.8 1.0

Figure 3. Approximate solution of the problem (9)-(12) for ¢; =3, ca =4, ¢3 =5, ¢4 = 6.
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Figure 4. Comparison of the exact solution (red line) and the classical DTM-solution (blue line).
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M. IOzkent, @.II1. Myxrtapos?, O.I11. Myxrapos®

L Xumum Ywnusepcumemi, Yopym, Typrus;
20sipbatiorcar ¥Yammows eviavim axademuacoiioy Mamemamura orcone mexanura unemumymo, Baky, D3ipbatiorcan;
3 Toxam Lasuocmamnawa Yrwusepcumemi, Toxam, Typrus

Tapary miaprrapblH ecKepe OThIpbIII, BebepaiH eKimHTepBaJabl
TeHJIEyiH MIelryTre apHAJFaH KaJIblJIaHFaH JuddepeHImanabIk

TYPJAEHOIPY 9aici

3epTTeyaiH HErisri MakcaThl — KJIACCUKAJIBIK JuddepeHInaIblK TYPJEHIIPY O/IIiCiH KaHa IIEeTTIK ecell-
Tepmiy memntyre GeitiMaey. By omicTiH apTHIKIIBIIBIFB OHBIH KaPalalbIMIBIIBIFBIHIA, OTKEH] IIeniIeTiH
muddepeHIIANIBIK, TEHIEYI1 ipiKTey, aybITKy HEMECE CHIZBIKTBHIK €Ty KazkeT eMeC. OChbl ChI3BIKTBHIK YKOHE
GeChIBBIKTHI AudbepeHnnaIbIK TeHIeyep YIIiH KaTapjap TYPIHIe MeniMIep aJIyablH THIMI 9iCi KoHe
GepinreH pyHKIMSHBIH XKOFapbl TYBIHIBLIAPBIHBIH MOH/IEPIH ecenTeyll KaxkeT ereTiH Teitstop Karapaapbi-
HBIH KJIACCUKAJBIK d/1iciHeH epekiesnene . Juddepenmuaiasl TypaeHipy o/ici 6ip nHTepBaJsIbl ecernTep/ii
IIIeIyTe apHaJFaHbl OeJIrijI KoHe OHBbI KOTI MHTEPBAJIIAbLI ecenTepre Kajai KOIIaHy KepekTiri 6esricis. Ocbr
Makasaza 6i3 eki mHTEpBAIALl AuddEPEeHITNATIBIK, TEHACYIED VIMH METTIK eCenTep/l IIerry YImH KJIac-
CHUKAJIBIK, JuddepeHInalIblK, TYPJIEH Py 9icin 6eitiMae/iik. Y ChIHBLIFAH YKaHa 9/IiCTeMEH] Herizjey yIiH
COJI YKOHE OH, YKaKThI IIENIMIEP €Ki KOCBhIMIIa 6eplty mapTTapbiMeH 6ailIaHbICThI 6OJIATHIH OPTAK, YIIbI 6ap
€Kl KUBLIBICTIAMTHIH Kecinmijep Ootipiama bepinren Bebep tenpeyinin merTik ecebi mremmisii.

Kiam cesdep: ekimaTepBasabl ecentep, auddepeHnuaiabl TypPaeHaipy oici, Bebep Tenaeyi, Tapary map-
TTaphbl.
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M. Oxen!, @.I11. Myxrtapos?, O.I11. MyxTapos®

1
Vhusepcumem Xumum, Yopym, Typuus;
2 Mnemumym mamemamusy v mezarury, Hoyuornaivrotl axademuu nays Asepbationcana, Baxy, Asepbatidowcan;
3 Vnueepcumem Toxam Tazuocmarnawa, Toxam, Typyua

Metona, 06061menHoro auddepeHnnaJIbHOro Mpeodpa3oBaHus IS
pelieHnsl ABYyXUHTEPBAJIbHOTO ypaBHeHus Bebepa c ydyeTroMm ycjoBuii
rnepeiavdn

OcHoBHAs 1EJIb TAHHOTO UCCJIEJOBAHKS COCTOUT B TOM, 4TOOBI aJalTUPOBATh KJaccudeckuii puddepenim-
aJIbHBIN MeTOoJ IpeoOpa30BaHus /ISl PEIleHIs HOBBIX THIIOB KpaeBbIX 331a4. [IpenmyInecTso sToro merona
3aKJII0YAETCSI B €ro MPOCTOTE, TAK KAK HET HeOOXOAMMOCTH B IUCKPETU3AINH, BOZMYIIEHUN WU JIMHEAPU3a-
nuu pemaeMoro auddepeHaabHoro ypaBHenus. 91o 3(pdEeKTUBHBI METOJ, [TOJIyYeHUs PEIeHn B BUJIE
PSZIOB KaK JJIsl JIMHEWHBIX, TAK U HEJIMHENHBIX UM dePEeHIINaIbHBIX yPABHEHU, M OH OTJINYAETCS OT KJIACCU-
9ecKoro MeTosa psiaoB Teitopa, KOTOPBIit TpebyeT BBIYNC/TIEHNsT 3HAYEHU BBICIIINX TPOU3BOIHBIX 3aJaHHOMN
dyukmuu. V3BectHo, uT0 MeTo 1 nuddepeHnaJ bLHOr0 Ipeodpa3soBaHus IIpeIHa3HAYEeH IS PEIIeHIs OHO-
WHTEPBAJIbHBIX 33124 U He SICHO, KaK €ro IIPUMEHITh K MHOIOMHTEPBAJIbHBIM 33/la4aM. B HacToseil ctarbe
MBI &JIAIITUPOBAJIN KJIACCHUIECKUN MeTo 1 TudHEePEeHITNATBLHOTO Tpeobpa30BaHUs JJIs PEIIeHNs] KPAeBbIX 3a-
nadq sl IBYXUHTEPBAJIBHBIX JuddepeHuaibabiX ypaBHeHuit. s o6oCHOBaHUS TPEJIOXKEHHONR HOBOM
METOJIMKH pellajiach KpaeBasl 3ajiada /s ypaBHeHUs Bebepa, 3aJaHHOIO Ha JABYX HEIEPECEKAIOIIMXCS OT-
pe3Kax ¢ ObIIMM KOHIIOM, Ha KOTOPBIX JIEBOE U IIPABOE PEIEHUsT OBIIN CBSI3aHBI JBYMS JIOTIOJTHUTEIbHBIMU
YCIOBUSIMU TEPEIAtN.

Kmouesvie caosa: IBYyXUHTEPBAJbHBIE 331841, METOJ JuddepeHInaIbHOro Ipeodbpa3oBaHus, ypaBHEHNE
Bebepa, ycimosust mepegaan.
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