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A.Sh. Akysh (Akishev)

Almaty, Kazakhstan
(E-mail: akysh41@mail.Tu)

Global solvability of a nonlinear Boltzmann equation

In this paper, based on the splitting method scheme, the existence and uniqueness theorem on the whole
time interval ¢t € [0,7),T < oo for the full nonlinear Boltzmann equation in the nonequilibrium case is
proved where the intermolecular interactions are hard-sphere molecule and central forces. Considering the
existence of a bounded solution in the space C, the strict positivity of the solution to the full nonlinear
Boltzmann equation is proved when the initial function is positive. On the basis of this some mathematical
justification of the H—theorem of Boltzmann is shown.

Keywords: full nonlinear Boltzmann equation, splitting method, existence and uniqueness theorem on the
whole time for the nonlinear Boltzmann equation, positivity of the solution to the nonlinear Boltzmann
equation, Boltzmann’s H —theorem.

Introduction

The Boltzmann equation [1] is a complex nonlinear integro-differential equation and refers to
difficult-to-study mathematical objects. Proof of the existence and uniqueness theorem for a solution
of the Cauchy problem for a spatially homogeneous Boltzmann equation begins with the work of
T. Carleman [2].

H. Grad [3] proved the first existence theorem in the "small" for spatially nonhomogeneous Boltzmann
equation in the case of Maxwellian molecules when the initial function tends to Maxwellian distribution
function in a special norm.

The world’s leading experts on kinetic equations provided a review monograph [4], on the current
state of mathematical theory of the Boltzmann equation starting with its derivation, theorem existence
and uniqueness and methods of solution. They wrote: «... For over 110 years this equation attracts
the attention of researchers, but only in recent years it has proved global solvability spatially —
nonhomogeneous problem in the case of a small deviation of the gas state from equilibrium positions
- more general results are not obtained to this day ...» [4].

T. Carleman in [2| pointed out that solving the full Boltzmann equation for practical problems
can be only done through approximate mathematical methods. In this connection, we have chosen the
splitting method to solve the full nonlinear Boltzmann equation. Splitting methods for solving a class
of various applied problems were developed by G. I. Marchuk [5].

In Kazakhstan, the study of the nonlinear equation and its corresponding discrete models began in
S.K. Godunov and U.M. Sultangazin works [6].

In this connection, to solve the full nonlinear Boltzmann equation in the class of positive initial
functions, the splitting method was applied [7], [8]. First, based on this method boundedness of
positive solutions in the space continuous functions was got. With the help of the boundedness of
the solution and of the established a priori estimates, the convergence of the scheme splitting method
and uniqueness of the limiting element were proved. The found limiting element satisfies the equivalent
integral Boltzmann equation. Thus, a weak solvability of the nonlinear Boltzmann equation as a whole
in time.

From modern bibliographic sources it follows that there are no the existence and uniqueness
theorems as a whole in time for the nonlinear Boltzmann equation in a nonequilibrium case when
intermolecular interactions are hard-sphere molecules or central forces.

4 Bulletin of the Karaganda University



Global solvability of a nonlinear

1 Statement of the problem for a nonlinear Boltzmann equation

Cauchy problem for the full nonlinear Boltzmann equation for molecules — hard spheres of radius
X in the domain

Q —(te[O,T),Tgoo;x—(xl,ajg,xg)eGE{ngagl,a—1,3};

V:(£17§2a§3) E%E{_Ooggagooa Oé:1,3}>

with respect to the distribution function f = f(t,x,v) is written as [1], [2]:

0

o (v V)f = 3(7) ~ IS = B(.1), 1)
with an initial

f(ta X, V) ’t=0: SO(Xa V) (2)

and periodic boundary conditions*

fFtx V)|, =ftx V)|, a=13 (3)
where

oo /22
S(f) = flt,x,v1)K(0,w)dedfdv, = flt,x,v1)K(0,w)dodvz;
il A

I(f) = / Ftx, V) f (%, V) K (0, w)dodvy, K(0,w) = 0.25x | w | sin(26),
V3xX

v, v are the velocity vectors of two colliding molecules, w = v — vy is relative velocity vector; velocity
of molecules after collisions v/, v, are related to v, vi by the dynamic relation: v/ = v+g(g,w), v| =
v — g(g,w); g is unit vector in the direction of scattering of molecules:
g = (sin@cose, sinfsine, cosG); (0,e) € ¥ = {0 <O0<m0<e<L 27r}; ['pz,— edge cube G
perpendicular to the axis x,, passing through z, = p, p takes the value either 0 or 1.

The initial function ¢(x,v) satisfies condition (3) and it is such that

0 < o(x,v) € C(G X Vo) A (Ilp(V)l(ey € —22—, 5 > 6));

(1+]v]?)2
IS [ et o)) IK (6 w)dodv = a1 (v) < oc; (4)
3 X
S(p) < [ lle(v)llpee)E(0, w)dodvy = ga(v) < o0,
V3><E

where [|o(V)|lz ) = sup | @¢(x,v) | at every v € V3, [qi(v)dv = const, k = 1,2. Following
xeG V3
[2], requirements (4) for the initial function were taken into account, that improper integrals were

convergent in the velocity space.

Lemma 1. For periodic functions, the following integration-by-parts formula over the cube G5 is
valid

/ VAU dx = — / YV VU dx. (5)
G3 G3

*or mirror reflections of molecules from the boundary of the G domain.

Mathematics series. Ne3(107)/2022 5



A.Sh. Akysh (Akishev)

Proof. Let us write down the integration-by-parts formula

/VAdez—/VVVde%—/VZde. (6)
Q

From the properties of the cube surface, it follows

/de— :1< / Vgg{n,{d:cgdx,y-l-

0G3 Loz,

3

+ / Vngnn dxgda:7>7 (8,7) € {1,2,3} A (B,7) # K, (7)

Fl,TN

where n is the outward normal vector to the cube surface, then considering the value of the normal

1, p=0
component in formula (7), n, = P77 e have
+1a P = 17
oU 3 oU oU
/ Va— dx = ’ ( / Va—xmn,.C drgdx, + / Va—xmn,.i da:gclam) =0.
0G3 =5 o, 1,2,

Taking into account this relation, from (6) we get (5).

2 Existence and uniqueness theorems

To solve problem (1)—(3) we use the of splitting method [5]. On [0,7") we introduce the time grid
T={t,=nt <00, 7>0,n=0,1,---;}, and*

<1/ [ (g1 + q2)dv. (8)
/

Suppose an approximation is known f"(x,v), at time n7. Then the schemes of the splitting method
corresponding to the problem (1)-(3) are written as follows:

fn+1/2 fn o en
—— =B({". "), (9)
Jn
n+l _ pn+1/2
m - Tf + (v, V)t =0, (10)
with initial and periodic boundary conditions
1%, v) = p(x,v), an‘Fom: f"H’Fma. (11)

Let the known approximation f™(x,v) has all the properties (4) of the initial function.

Introduce a shift operator T—/2 such that T—1/2f" = f7=1/2 that is, the operator T~1/2— acting
on the function f" returns its value obtained by the previous fractional step of the splitting method.
Acting this operator on scheme (10), we find the difference-differential analog of the continuity equation

*Condition (8) on the step 7 is necessary for the solution positivity of the splitting method schemes.

6 Bulletin of the Karaganda University



Global solvability of a nonlinear

(or mass conservation equation) at each v € V3 corresponding to the first fractional step of the splitting
method, that is

frE—pm nt1/2 nt1/2 nt1/2
- + (V7 V)f =0, f |Foza: f |Flza : (12)

The boundary condition was obtained from (9), since the function f™ has this property.

It is easy to see that there is the maximum principle on spatial variable x € G for problems (10)-(11)
and (12).

Let us first consider problem (12) in the form

VR g (v, ) R e

Applying the maximum principle to this problem, we find an estimate for the solution f"*1/ 2(x,v) in
the space C(G)

sup | /2 (v)| < sup |f"(v)], Vv € V3.
xeG xeG

Then in the same way from problem (10), (11) we obtain an estimate

sup | " (v)] < sup [P THA(v)], Vv € Vs
xeG xeG

Combining the found estimates, we have

sup | £ (v)] < sup [ £ (v)| < sup | f"(v)], Vv € V.
xeG xeG xeG

From here, summing over n, we find the main estimate

sup )] < sup 2] < () L) = 20(v), WV € V3 (13)
Xe XeE

that allows us to obtain estimates for the nonlinear terms of the equation (9).
Consider first

J(fM) = / fr(x,v) - f'(x, v K(0,w)dodv.
Vax ¥

From here

L3 < / P06V - 76, V) K (8, w)dodv, <

VaxX
< / sup |f™(x, v')| - sup | f"(x,v])| K (0, w)dodv, =
xeG xeG
V3x X%
= [ 170 i@ 17 ) o) K (0, w)dadv: <
VaxX

< / eV Lw(@) - eV Loy K (0, w)dodvi = qi(v) < co. (14)
VaxX

Mathematics series. Ne3(107),/2022 7



A.Sh. Akysh (Akishev)

2. f"(x,v) | S(f"(x,v1)) |[< sup | f*(v)] / | [ (x,v1) | K(0, w)dodvy <
xeG

V3><E
< qo(v) / 17 (1 o) K (6, w)dordvy <
V3><E
< qo(v) / Il () K (6, w)dodvy = ga(v) < co. (15)
V3><Z

It is now easy to obtain an estimate for the difference derivative f; +1/2 using (14), (15), based on the
equation (9):

et (2= T ISEBU ) ISEIUN 0TS 1S aa(v) + @2(v) = a3(v). (16)

Adding equations (9), (10), on the integer step we obtain the difference-differential Boltzmann
equation

(S = /7 + (v V) =BT . (17)
with initial and boundary conditions
vy =pxv), = (18)

From here
| (=M ILIBU ) L+ | (v, V)]

When the function f"*!(x, v) reaches its maximum value at extremum points reaches x in G for every
v in V3 by virtue of the maximum principle, we have

| =/ L) <L (= ) | (x0) <[ B ) | (x6).

From here
sup (= )] < B M| = a3(v). (19)
Now from (17) we find
sup (v, V) ] < 2g3(v). (20)

Remark 1. The functions qi(v) € C(V3). kK = 0,3, i.e., they are positive continuous summable
functions and continuous depending on the integral of norm for the initial function ¢(v) over the
domain V3.

Proposition 1. Each problem (12) and (10)—(11) has a unique positive continuous solution that is
bounded in @, and it is periodic function over z,, i.e., it possesses properties (4) of the initial function,
since the approximation f™(x,v) is such. The periodicity is shown in the same ways as in [7], and the
rest of the properties have already been proven.

3 Compact solutions and existence

We denote the set of found approximate solutions to problems (9), (10)—(11) by {f7}, and the the
set of interpolated values on the interval [0,7) by f7.

In the velocity space V3, we introduce a ball Vz- with the center at the origin of coordinates and
with the radius R” = O(1/7%) < oo, where 1 < k = const Ak € N resulting in a finite bounded
domain Qr- =[0,T) x G x Vrr C Q.

8 Bulletin of the Karaganda University



Global solvability of a nonlinear

Since all the estimates are established in the domain @ then they are valid in Qp-. The validity of
the estimates are not violated when the radius of the ball R™ increases arbitrarily large as 7 tends to
zZero.

Moreover, from estimates of (13), (14), (15), (16) and (19), (20) it follows the uniform boundedness
of the norms for the interpolated functions

JFT; J(JET)7 S(fT)a ffTa (V7 v)fT

in C(Q) at 7 — 0. From here it follows the equicontinuity of {f7} in C(Q). Hence, the set f7 is
compact in the space C(Q). A convergent subsequence can be distinguished from this set. It converges
in C(Q) to some element f(t,x,v) € C(Q). Due to compactness, the following limit transitions take
place at 7 — 0 :

Fr=f = £ 3G = 38, F7S(F7) = fS(5),

fT(t7 X, V) ‘t:0_> f(tv X, V) |t=0: (P(X, V)a (V? V)fT - (V> v)fa

fT(t7 X7 v)ll—‘oz(l: fT(t7 X? v)‘l—‘lxﬂ _> f(t? X? V)‘Foza: f(t7 X7 V)}Flza7a = 173?

QRT — Q

Thus, going to the limit in the difference-differential problem (17)-(18) we make sure that the limit
element f(¢,x,v) uniformly satisfies problem (1)—(3) for the nonlinear Boltzmann equation.

4 Uniqueness

Let there be two solutions f(t,x,v) and F(t,x,v) of problem (1)—(3). Let us write down the
equations for their difference U = f — F:

ou
E—F(V,V)U:B(f,f)—B(F,F), (21)
in the domain @ = [0,7") x G x V3 with zero initial U |;—o= 0 and periodic boundary condition
U(t,x,v) =U(t,x,V) ,a=1,3. (22)
FOZa Flza

Note that all improper integrals in the calculations make sense, i.e. they are converging integrals.
Multiply equation (21) by 2U and integrate by domain Vi:

;/U2dv+/(v,vw2dv - 2/U(B(f, /)~ B(E.F))dv. (23)
V3 VS V3
Remark 2. In ([2], p. 13), there are formulas (8), (9) of the involutive transformation. For trans-
formation (8), properties are briefly written as
U =P(U),
a) P is an involutive transformation, i.e. P(P(U) = U),
b) Transformation P preserves the volume element dodvidv.
Definition 1. We call two single-valued functions sign equivalent, i.e., U ~ W, in the domain @) for
Vt € [0,T) such that
Ut,x,v),W(t,x,v) € C(G x V)N L1(V3),Vt € [0,T),

and properties
a) signU = signW in Q,
b) U(M’) = W(M’) =0, where M7,j =0,1,--- , are zeros of these functions in Q.

Mathematics series. Ne3(107),/2022 9



A.Sh. Akysh (Akishev)

Lemma 2. There is the inequality
/U(B(f, f) - B(F, F))dv <0. (24)
Vs

Proof. Consider the expression system

f OB(f, f)dv = f O[f, fldodvidv,
V3

VX%
(25)
J ®B(F,F)dv = [ ®[F, F|dodvidv,
Vs VZxE
where
[f, 1= (f'fi = ) K(0,w), (26)

VE=V3x Vs, @=®(tx,v) is an arbitrary continuous in @ and summable in V3 function.
From the first expression of system (25), subtracting the second expression, respectively, we get

/(I)(B(f,f)—B(F,F))dv: / @([f, f] — [F, F])dodvidv.

Vs VEx%

Here we use the well-known involutive transformation P (see Remark 2).
Applying P to the integrand on the right parts, we have

/CD(B(f, f) — B(F, F))dv =— / (I)’([f, f1—1F, F])dadvldv.
Vs VZx3
Adding the latter with the previous expression, we find
[o®.n-BE) = [ @ @75~ (F.F)dodviav.
V3 V32><2

In this formula, we make the change of variables vi &= v and find

/cb(B(f, f) = B(F,F))dv = % / (® + By — & — &) ([f, f] — [F, F)dodvidv.

Vs VExS

Hence the square brackets on the right side, replacing the expressions according to the formula (26),
we find

/@(B(f,f) —B(F,F))dv =~ / (@ + P — D' — D)) x
V3 VZxE®
X ((f’f{ +FR) - (ffi+ F’F{))dadvldv. (27)
If we put ® = In(f/F), then from (27) we arrive at formula
[ 04/F)(BU.) ~ BEF))dv -
V3

1 F'F] /ol ! 1
= / ln<%)((ff1+FF1)—(ff1+FF1)>dadv1dv. (28)
VZx%

10 Bulletin of the Karaganda University



Global solvability of a nonlinear

We must define the sign definiteness of the complex integral (28). In this case, it is difficult to check
the sign of the second the integrand in the domain (). Since we are interested in only integral is definite
in sign, then using Definition 1 we write the sign equivalence functions for the terms of the second
integrand

f'fi
fh

Using these relations, we rewrite the integral (28) sign equivalent form

/ln(f/F)(B(f,f) _B(F,F))dv ~ / In (fle’Fll) (mf'fhr

FFy

(F'fi = f1) ~ It (FF — F'F]) ~1

4 ' fiFF fh
V3 VZx%
FF, 1 FAF'FN, [ fiFF _
+ lnF,Fl,>K(9,w)dadv1dv =3 / In (f/f{FFl)ln<ff1F,F1,)K(G,W)dadvldv -
VEx%
1 L (FHEFF
_ ! Jr <0. .
; / 1n? ( - f{FFl)K(G,w)dadvldv_O e [0,T). (29)
VExS

According to Definition 1, the functions U = f — F and ® = In(f/F') are also sign equivalent that is,
U ~ &, since signU = sign® in @, Thus, (29) implies inequality (24), since U = f — FA® =1In(f/F),
then we will see that signU = sign® in Q, As a result, we arrive at the inequality (24).

[ /P B - BER)iv < 0= [U(B(.1) - BEF)dv <0
V3 Va
Lemma 2 is proved.

Now for functional equation (23), integrating over the domain G taking into account the boundary
condition (22) and Lemmas 1 and 2, we obtain the main the inequality for the uniqueness of the
solution

d

= | UAtxv)dvdx <2 / U(B(f, ) - B(F, F))dvdx <0.

GxV3 GxV3

The latter we will rewrite

Ci/U2(t,x,v)dvdX—2 / U(B(f,f)—B(F,F))dVdXﬁO,

GxV3 GxV3

from the left side, discarding the non-negative bounded integral justified in estimates (13)-(16) and,
integrating over t, we obtain

/ U%(t,x,v)dvdx < / U%(0,x,v)dvdx, Vt € [0,T).
GxV3 GxV3
From here [ U?(t,x,v)dvdx <0, = U(t,v,x) = 0. V(t,x,Vv) € Q.
GXV3

As a result, we show the existence and uniqueness of the positive solution to the full nonlinear
Boltzmann equation from the space

ft,x,v)eC! (0,T5;C(G x V5) N L1(V3)) A (v, V); B(f, f)) € C(Q) N Ly (V3), (30)

Mathematics series. Ne3(107),/2022 11
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it consists of the union of some functional spaces, as the space of continuously differentiable functions
f(t,x,v) by t € [0,T) and at each ¢ continuous in (x,Vv) in the domain G x V3 and summable over v
in V3, and the functions (v, V)f; B(f, f) at each ¢ continuous over all variables in () and summable
over v in V3.

Definition 2. The solution f(¢,x,v) with properties (30) uniformly satisfying the Boltzmann
equation (1) with initial boundary conditions (2), (3) in the domain @ will be called strong.

As a result, it was proved next main theorems

Theorem 1. If the initial function satisfies conditions (3), (4), then there is a unique strong positive
solution to (1)—(3) for the whole time interval ¢ € [0,7),T < oo satisfying uniformly the Boltzmann
equation (1) everywhere in Q.

When intermolecular interactions are determined by central forces, then K (6, w) is determined by
the formula (see [2], p. 15)

KOw) = w | ppw=vovy;S=1{0<p<p;0<0< 2} do= dpd,

where p is the target distance of the colliding molecules, pg is the radius of action of the molecule.
Initial function ¢(x,v) satisfies condition (3) and such that

0 < p(x,v) € C(G x Va) A (loW)llee) < M5, 4> 6));

(1+vi?)?
I(p) < sz [V - eV Ee(8, w)dodvy = by (v) < oo; (31)
3 X
S(p) < [ le(vi)lKe(0, w)dodvy = ha(v) < oo
V3x X
where [ hy(v)dv = const, k=1,2.

Vs
The existence and uniqueness theorem of the Cauchy problem for the Boltzmann equation with

intermolecular interaction K (6, w) is also proved as Theorem 1, by a literal repetition, the formulation
will be:

Theorem 2. If the initial function satisfies conditions (3) (31), then there exists a unique strong
positive solution of problem (1)-(3) on the whole time interval ¢ € [0,7),T < oo satisfying uniformly
the Boltzmann equation (1) everywhere in Q.

Corollary 1. The existence and uniqueness theorems 1 for the nonlinear Boltzmann equation (1) are

trivial for the Boltzmann equation in the case of Maxwellian molecules with corresponding relaxations
of the requirement from the initial function.

5 Positivity of the solution to the Boltzmann equation

Lemma 3. Since there exists a bounded solution of the Boltzmann equation (1) with positive
initial condition (2), then the value B(f, f) of the collisions integral makes sense and the solution
f(t,x,v) € Q is positive.

Proof. The Boltzmann equation (1) is written along the trajectory
d aof
dif(tx - V(t - 7_)7V) = a + (V7 V)f(t,X - V(t - T)7V) = B(f7 f)(t,X - V(t - T)7V)' (32)

-
We put f = U1, since f exists and it is a bounded solution of the Boltzmann equation, then (32) can
be rewritten as

%U(t,x —v(t—r71),v)=-UBUU)(t,x —v(t—7),Vv).
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From here, integrating we find
Ul(t,x,v) = p(x,v)exp(-B(U,U)t) > 0,V(x,v) € G x V3,

it was required to prove.

6 H—Boltzmann theorem

Let us multiply the Boltzmann equation (1) by the function 1+ In f(¢,x,v). Then integrate over
the domain G x V3 and, considering mass conservation [2]|, we find

— / fln fdvdx + /(V,V)flnfdvdx:

GxV3 GxV3
= / /lnf(f/f{—ffl)K(O,w)dadvldvdx. (33)
GxV3 V3xX

Hence, the second summand of the left part, integrating over the parts, taking into account the
boundary condition (3) and using the lemma 1, we have:

/ (v,V)fln fdvdx = 0. (34)

GXVg

Using the involutive transformation P (see note 2), the integral in the right-hand side (33) can be
written as

/ / In f(f’f{ - ffl)K(G,w)dadvldvdx =
GxV3 V3xX

—% / <1nf/+lnf{—lnf—lnfl)(f/f{—ff1)K(9,w)do—dv1dvdx:

GXVZxZT

_ 1 N L(f'fi — ff1)K(0,w)dodvidvdx. (35)
4 fi

GXVZxE

Wherefore, using the signequivalence of the function Inif f f ( =1 fl) and denoting

/ flt,x,v)In f(t,x,v)dvdx,

GxV3
considering (34), (35) from (33), we find
First case:
—H —= / / In 2f’ flK 0, w)dodvidvdx < 0.
G>< V3 Vax X ffl

Second case:

—H —= / / ff1 ffl K(0,w)dodvidvdx < 0.
GXV5 VgXZ
From these cases it follows that
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Lemma 4. 1If the positive initial function ¢(x,v) is an additionally function to the requirements
(4) and satisfies the condition

/ o(x,v)|[In p(x, v)|dvdx < oo,
GXVg

then the following inequality holds

| / ft,x,v)In f(t,x,v)dvdx| < / o(x,v)|Inp(x,v)|dvdx < oo, Vi. (37)
G'><V3 GXVg

Integrating inequality (36) over ¢ in the range from 0 to ¢, we obtain (37).

Above we proved the strict positivity of the solution f(¢,x,v) to problem (1)-(3), when the initial
function p(x, v) is positive, thus the logarithm function of the distribution is lawful and, moreover, it
follows from (30), (37) that 31In f(¢,x, v) for all (¢,x,v) € Q.

It follows from (36) that the H(¢) function never increases in time and is constant if and only if
the distribution function is locally-Maxwellian. Indeed, the equality in (36) is achieved, if and only if:

in the first case In? % =0,— In % = 0, from here

In f(v/) 4+ In f(v}) = In f(v) — In f(v1) = 0, (38)
and in the second case f’f] = ff1, By logarithmizing both parts of the latter, we have the ratio

In f(v) +In f(vi) —In f(v') —In f(v]) = 0. (39)

Eventually, we see that equations (38), (39) coincide and it follows from them that In f(¢,x,v) is a
summator invariant, i.e.,

In f(t,x,v) = a+bv+cv|]?, ¥(t,x) €[0,T) x G,
where a, ¢ are scalar function and b is a vector constant. Hence, following [2], we obtain

f=fo=Cexp([—allv] = [vo])?]),
where fj is the local-Maxwell distribution.

C>0 and o> 0,anda =1/(2kT),

k is the Boltzmann constant, 7" is the temperature, vy is the average velocity, C = p(27rk:T)7%, p is
the density. p, T, vo can depend on (t,x).
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O.11. Axprimn (Akpires)

Aamamoi, Kasaxcman

Beiicb3pikThl BosibliMaH TeH/ieyiHiH 0apJIbIK YaKbITTa IIEINiJIeTiHiri

2KywmpicTa bIabIpaTy 9/IiCiHIH, HETi3iHIEe TOJBIK OeMCHI3BIKTHI BosMan TeHIeyiHiH 6apJIblK YaKbIT apaJibli-
reiazga t € [0,7), T < 0o MOJIeKy/IaIapIblH TEIEeTEeHIIKCI3 KYiil OPTAChIHIA XKOHE OJIAP/IBIH 9CEPJIeCyi KATThI
chepagibl MosieKystajiap 00jica HeMece KAKTBIFBICYbl OPTAJIBIK, KYIIT apKbIJIbI OPBIH/IAJICA KAJIKbI IIEeITyiHiH
6OJTATHIHIBIFBI TEOPEMACHI JIJIEJIIEHTeH. Y 3imicci3 PYHKIMIap KeHICTITiHIe TYNBIK MIentyi 60IFaHIBIKTaH
OefichI3bIKTE Bosvan TeHeyiHiH OacTamkbl MIApPTHI OH OOJIFAHA, MIEIIY/IiH OPKAIIAHIA OH OOJIATHIHDI
monenneni. CourbiabIg Herizinge Bosmyan H —TeopeMachIHbIH KEHOIp MaTeMaTUKAJIBIK HET13/1ey1 KopCeTi-
PeH.

Kiam cesdep: Touiblk GefChbI3BIKTBI BosiMan TeHeyi, biabIpaTy 9/1ici, 6apJiiblK, yaKbIT apaJibIFbIHIa Oeii-
CBI3BIKTHI BoJiiiMaH TeH/1eyiHiH >KaJIKbl MIeNyiHiH 00JaTBIHIBIFBI T€OPEMAChl, OEHCHI3BIKTHI BosiiiMan TeH-
neyiuig oy menryi, bosvan H —TeopeMachIHBIH MaTeMaTHKAJIBIK, HETi31eMeci.

ATII. Axkbin (Akwuies)

Asamamo, Kasazcman

I'mobGasbHAs pa3penmmMocTh HeJIMHeITHOTro ypaBHeHust Boabiimana

B crarbe ¢ moMomipio cxembl METO/A PACHICIIEHUSI JOKA3aHA TeopeMa CYIIECTBOBAHUS U €IUHCTBEHHOCTU
Ha BceM npoMexxyTke Bpemenu t € [0,7), T < oo, sl IOJHOrO HEJIMHEHHOroO ypapHeHus BosbiMaHa B
HEPABHOBECHOM CJIydae, KOT/Ia MEXKMOJIEKY/ISIDHBIE B3aUMOIEHCTBUS SIBJISIFOTCST MOJIEKYJI-TBEPIABIMU Cde-
paM¥ U UEHTPaJIbHbIMEU cuyiaMu. Ha OCHOBe CyliecTBOBaHUsI ONPAHUYEHHOrO pelenusi B npocrpancrse C
MO/ITBEPKJIeHA CTPOTasl MOJIOXKUTETBHOCTh PEIIEHN MOJHOTO HEJIMHEHHOTO ypaBHeHUsI BosbiMana, Koria
HadaJIbHas (DYHKIUS TOJIOKUTEbHA. Ha OCHOBaHWM 3TOr0O MOKA3aHO HEKOTOPOE MaTeMaTHIeCKOe 0OOCHO-
Banue H—reopembl Bosibiimana.

Karoweswie caosa: monHoe HenuHelHOe ypaBHeHue BosbliMana, MeTo paciliellyIeH s, TeOpeMa CyIIecTBOBa-
HUSI U €IMHCTBEHHOCTH HA BCEM MPOMEXKYTKE BPEMEHU JJIsi HEJIMHEIHOTO ypaBHeHNsT BobiMana, momoxm-
TEJILHOCTh PEIeHn HeJIMHEeHHOTro ypaBHeHust bosbimana, H-reopema Bosibiimana.
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New exact solutions of space-time fractional
Schrodinger-Hirota equation

In this study, improved Bernoulli sub-equation function method (IBSEFM) is presented to construct the
exact solutions of the nonlinear conformable fractional Schrodinger-Hirota equation (FSHE). By using
the traveling wave transformation FSHE turns into the ordinary differential equation (ODE) and by the
aid of symbolic calculation software, new exact solutions are obtained. 2D, 3D figures and contour surfaces
acquired from the values of the solutions are plotted. The results show that the proposed method is powerful,
effective and straightforward for formulating new solutions to various types of nonlinear fractional partial
differential equations in applied sciences.

Keywords: conformable fractional derivative, Schréodinger-Hirota equation, improved Bernoulli sub-equation
function method (IBSEFM).

1 Introduction

Fractional differential equations are the generalization of classical differential equations with integer
order. In recent years, fractional differential equations become the field of scientists to investigate
the expediency of non-integer order derivatives in different areas of physics and mathematics. These
equations have become a useful tool for describing numerous nonlinear phenomena of physics such
as heat conduction systems, nonlinear chaotic systems, viscoelasticity, plasma waves, acustic gravity
waves, diffusion processes [1-3|. Many numerical and analytical methods have been developed and
successfully employed to solve these equations such as modified Kudryashov method [4], homotopy
perturbation method [5], new extended direct algebraic method [6], fractional Riccati expansion method
[7], modified extended tanh method |[8].

During the last few years, a straightforward definition of conformable derivative has been given
[9]. The conformable derivative operator which is compatible to many real-world problems provides
some properties of classical calculus: derivative of the quotient of two functions, the chain rule, the
product of two functions [10]. In addition, many techniques have been applied to find exact solutions
for conformable nonlinear partial differential equations [11-16].

In this study, FSHE is considered as follows:

. 1 - =/
ZQt(M)+§qzx+‘q,2q+Z)\Qa‘xmzov t>0,0<p<Li=v-1, (1)

where A is a nonlinear dispersion term, ¢ is the function of the independent variables of z and ¢. The
operator qt(“ ) represents a conformal derivative operator defined only for a positive domain of ¢ [10].
Before beginning the solution procedure, let us give some properties of the conformable derivative:

The conformable derivative of order av with respect to the independent variable ¢ is defined as [9):

DE(u(0) = i W) 00

T—0 T

, t>0, a€(0,1],

for a function y = y(t) : [0,00) — R.

*Corresponding author.
E-mail: volkanala@mersin. edu.tr
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Theorem 1. Assume that the order of the derivative a € (0,1] and suppose that u = u(t) and
v =v(t) are a— differentiable for all positive ¢. Then,

i. D (ciu + cov) = 1 D (u) + coDf (v), for ¥V ¢1,co € R.

ii. D{(tF) = kt*=2 V k € R.

iii. Df(A) = 0, for all constant function u(t) = A.

iv. Df (uv) = uD{(v) + vD§(u).

. D? (%) — UD?(U)UEUD?(U) .
: —ad
vi. Df (u) (t) = t1->%L
The conformable differential operator satisfies some critical fundamental properties like the chain

rule, Taylor series expansion, and Laplace transform.

Theorem 2. Let uw = wu(t) be an a— conformable differentiable function and assume that v is a
differentiable function. Then,

D o v)(t) = 7%/ (t)u' (v(t)).

The proofs of these properties are given in [17| and [9] respectively.

The rest of the paper is organized as follows: in the second section, descripton of the IBSEFM is
given; in the third section, the application of IBSEFM is mentioned; in the last section, this study
provides conclusions.

2 Description of the IBSEFM

In this section, we give the fundamental properties of the IBSEFM. This method is direct, significant,
advanced algebraic method for establishing reliable exact solutions for both nonlinear and nonlinear
fractional partial differential equations [11,12,18-21]. We present five main steps of the IBSEFM as
follows:

Step 1: Let us take account of the following conformable partial differential equation of the style

P(v, D! v, D@y, DBy ) =0, (2)
where Dga) is the conformable fractional derivate operator, v(z,t) is an unknown function, P is a
polynomial and its partial derivatives contain fractional derivatives. The aim is to convert conformable
nonlinear partial differential equation with a suitable fractional transformation into the ordinary
differantial equation. The wave transformation as

v(z,t) =V (), &=¢(x,1%). (3)

Using (3) and the properties of conformable fractional derivate, it enables us to convert (2) into an
ODE in the form

NV, V', V", ..)=0. (4)

If we integrate (4) term to term, we obtain integration constants which can be determined later.
Step 2: Hypothesize the solution of (4) can be presented as follows:

Vi) = ) _ag+arF(€) + aaF() + ..anF(6) 5
iobij@ bo + b1 F(€) + b F2(€) + ..o F (€)
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where ag, a1, ...,a, and bg, by, ..., b, are chosen arbitrary constants of the balance principle and the
form of Bernoulli differential equation is as follows:

F'(&)=0oF() +dFM(¢), d#0,0 #0, M € R/{0,1,2}, (6)

where F(€) is a polynomial.

Step 3: The positive integers m,n, M are found by balance principle that is both nonlinear term
and the highest order derivative term of (4).

Substituting (5) and (6) into (2) it gives us an equation of polynomial ©(F) of F' as follows;

O(F (&) = psF(§)° + ... + p1F(§) + po =0,

where p;,i =0, ..., s are to be determined later.
Step 4: Equating all the coefficients of ©(F(£)) which yields us an algebraic equation system;

pi=0,1=0,..,s.
Step 5: When we solve (4), we get the following two cases with respect to o and d,

1
1—e

—deo(e=1)
—ae’” T teo . d#o, (7)

0-60'(6— 1)¢

F(é)Z[

(e—1)+ (e+1)tanh (U(l - e)g)

1 — tanh (0(1 - e)%)

F(§) = ,d=o0, e € R.

Using a complete discrimination system of F'(£), we obtain the analytical solutions of (4) via Wolfram
Mathematica and categorize the exact solutions of (4). To achieve better results, we can plot two and
three-dimensional figures of analytical solutions by considering proper values of parameters.

3 Application of the IBSEFM

In this section, we will applicate the IBSEFM to obtain the exact solutions to space-time fractional
Schrédinger-Hirota equation. Let us consider the following wave transform:

a(z,t) = U(€) exp < <waz " ﬁ)) Cema-nl, ®)

where the coefficient 1 and w are constants that represent soliton frequency and soliton wave number
respectively. Introducing (8) we get

e
qt(“) = (—2wU’ + inU) exp <z (wx + 77”)) ) 9)
g
Qo = (U” + 2iwU’ — wQU) exp (z (wac + 77“)) , (10)
" tu
Grox = (U'" + 3iwlU — 32U’ — iw3U) exp <z (wx + n)) . (11)
1

Substituting (9)—(11) into (1) and detaching the real and imaginary parts yield w = —3% and U(€)
satisfy the following ordinary differential equation:
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5 3
—<54/\2+n>U+2U”+U3—0, (12)

where U” = f—g. When we reconsider (12) for balance principle, considering among U” and U3, the
relationship as follow:

M=n—-m+1. (13)

(13) shows us the different cases of the solutions of (12) and some analytical solutions can be constructed.
According to the balance, we consider M = 3,m = 1,n = 3 for (12) and (13), the following equations
hold:

ap + a1 F(§) + aF?(§) + azF3(€) _ T(€)

ve= bo T biF(E) BRIG) .
iy = TOLO-TOVE )

and
vy = LEOYEO - TOU(E) YOV (I P2(©) — 2TV () (16)

w2 (¢) (€

where F' = cF+dF3, ag # 0,b1 #0, 0 # 0, d # 0. Using (14)-(16) in (13), obtained from coefficients
of polynomial of F' we get:

0.3 2 _ Baghy _
F® :ag —naoby — 52 = 0,
. 9,2 2 5aiby | 3 2 19 5agboby 3.2 _
F: 3a0a1 — na1b0 — 54)\20 50 a1b0 — 277a0b(]bl - 307)?21 — 30 CL()bobl = 0,
F? : 3apa® 4 3a2as — nasbt — basb + 602a3b? — 2nayboby — 222 _ 3520, boby — nagh? — Saoby +
9apay 002 — Na20p — F52 209 11410001 27\2 2 19001 — Naod1 — 5z

3.2 2

2
F3 . a‘i’ + 6agaias + 3aga3 + 6d0’CL1bg — 77(13[)3 _ Basby z0’2(13133 — 6doagbgby — 2nasboby — 5a2boby +

5 542 2 272
9 2 2 _ Saiby _
50°agbobr — na1by — 553 =0,
5a2b?
F. Ba%ag+3a0a%+6aga1a3+18daagb(2)—277a3bgbl—%—F%UQagbobl—nazb%— 54321 %O'Zagb% =

07

F5 : 3a1a3 + 3a%asz + 6agazasz + %anlbg =+ 36daa3bg — %anobobl + 18doasbob; — nasb? — Zi?’)\bj +
60%azh? = 0,

FS6 . a% + 6ajasas + 3a0a§ + 12d2a2b(2) + %dzalbobl + 48doasgbgby — %d2a0b% + 6do’a2b% =0,

FT: 3asa3 + B d%azboby + $d%azb? =0,

F8: a3 +12d%a3b? = 0,

F9: Ba%ag + 3a1a§ + %dzagb% + %dQCLQbObl + 18d0’a3b% =0.

When we solve above the system of the equations of F' using Wolfram Mathematica, the coefficients
are obtained as:
Case 1. For o # d,

i/ =2 — 9nA2by i/ 22 — INA2hy i/ 52 — 2TnA2
0 : = 0 sag = 2i\/§db0; as = 2i\/§db1; o= —2—.

a0 = 3\ P 3 9
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Substituting these coefficients along with (7) in (14), we obtain the following solution to (1) as follows:

iy/ 22— 9InA2 - .
6 Y 22\/§d ez(wz-ﬁ-’n%) '

q (2,t) = o =5 i

3\ 2 77277])\2(1720‘/7)
e ERN

Figure 1. 3D- plots of ¢ (x,t) for the values d = 0.4; w =0.5; u =0.3; e = 0.2; A =0.3; n = 0.1;
A=03;t=0.1; -10 < z < 10, —10 < ¢ < 10.

| % J .. 1

G

=1§ =10 =i ] L] 10 15

Figure 2. 2D- plots and contour surfaces of ¢ (z,t).

- /5
V3 oo a1 = i3 obis an = 203 dby; a3 = 20v/3 dby A= —— Y
Case 2. For 0 # d, ag = iV/3 oby; a1 = i3 oby; as = 2ivV/3 dbo; az = 2iv/3 dby; A = P el
Substituting these coefficients along with (7) in (14), we obtain the following solution to (1) as
follows:

Figure 3. 3D- plots of ga(x,t) for the values d = 0.3; 0 = 0.5; £ = 0.3; ¢ = 0.2; w = 0.5; n = 0.1;
t=0.2,-10 < 2 < 10, —10 < ¢ < 10.
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F/IRN :
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Figure 4. 2D- plots and contour surfaces of go(x,t).
4 Conclusions

In this paper, the IBSEFM is applied for FSHE. Using a wave transformation, FSHE has been
converted into the ODE which can be solved according to the IBSEFM. By means of this method,
exact solutions are obtained. The contourplot surfaces, 3D and 2D figures (Figures 1-4) of all solutions
obtained by IBSEFM under the suitable values of parameters are plotted by showing the main
characteristic physical properties of the solutions with the help of symbolic software. According to
the results, the formats of traveling wave solutions in two and three-dimensional surfaces are similar
to the physical meaning of results.

The solutions are solitary wave solutions. It is also clear that the more steps are developed and the
better approximations are obtained. The conclusions show that the IBSEFM is simple, effective, and
powerful. Thus, in mathematical physics, it is applicable to solve other conformable partial differential
equations. In summary, the improved Bernoulli Sub-equation funtion method is influential and suitable
for solving other types of nonlinear differential equations in which the balance principle is satisfied.
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B. Ana

Mepcun ynusepcumemi, 2viavim stcone adebuem daryasvmemi, mamemamura Parxysvmemi, Mepcun, Typrus

KeHicTik 11eH yaKbITTaH TOyeJIIi OeJmnekK
ITpenunrep- Xupora TeHAEYiHIiH »KaHa HAKTHI IHelliMaepi

Makasaia ChI3bIKTHL eMec Geutek Topiznec Ipenunrep-Xupora regaeyiniy (FSHE) non memimzaepin Kypy
YIIiH 2KakcapThuFan Beprysmn Kocankel Tergeyi dyaknusacerbiy oici (IBSEFM) yebraburran. 2Kbuikbr-
MaJIbl TOJIKBIH TYpJenaipyiniyg kemeriven FSHE komimri muddepennmanapik renaeyre (ODE) Typien-
Jipisesi yKoHe CHMBOJIJIBIK €CcenTeyiln HarmapiaMaiblK KAMTAMAChI3 €TY/IiH KOMeriMeH »KaHa HaKThI IIe-
miMaep anbiaagel. 2D, 3D durypasapsr MeH mentiMaep/IiH, MOHIEPIHEH aJIbIHFaH KOHTYD 6eTTep CabIHFaH.
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Horukenrep KepcerkeHieit, YChIHBLIBII OTBIPFAH 9IC KOJAAHOAbI FBHIIBIMIAPIAFEI 9PTYPJl THOTI ChI3bI-
KTBI eMec GeJmek jepbec TYBIHABLIB auddepeHITnaiIblK, TeHIeYIep/IiH KaHa IIeniMIepiH )Kacay VIIiH
KyaTTbl, THIM/I »KoHE KapamnaibIM 9d/IicC.

Kiam cesdep: 6omuek Topizaec Tybinabl, [1pegunarep-Xupora TeHaeyi, xKakcapThlirad bepHy/im KOCaJIKbI
reyzeyinin dyukuuscer sxnici (IBSEFM).

B. Ana

VYwnusepcumem Mepcun, Mepcun, Typuyus

HoBbie ToYHBIE perlieHnst ITPOCTPAHCTBEHHO-BPEMEHHOTO
apobHoro ypaBHeHus l1Ipémumarepa-XupoTbl

B craTbe npejcraBiien ycoBepIieHCTBOBAHHBIM MeTOn (DyHKIWI HOAypaBHeHuil BepHysum 151 mocTpoeHnst
TOYHBIX PEIIEHUI HEJTMHEHHOTO npobHO-Tof06HOT0 ypasuerns Ipémunrepa-Xupoter (FSHE). C momompio
npeobpazoBanus Geryieit Bosinbl FSHE npespaiaercs: B o6bikHOBeHHOE udddepeHImaibHoe yPaBHEHNE,
a C UCIOJIb30BAHUEM IIPOI'PAMMHOIO OOECIIeYeHNUs Il CAMBOJIBHBIX BBIYUCJICHUI [TOJIYYalOTCsl HOBbIE TOY-
wbie pemennsi. Ctpostes 2D, 3D ¢burypsl u KOHTYpHBIE TTOBEPXHOCTH, TIOJIYY€HHBIE U3 3HAYECHUIM PEICHNIA.
Pesynbrarsl moKasbBaoT, 94TO MPEJIOXKEHHBIA METO/, SIBJISIETCS MOIIHBIM, 3((MEKTUBHBIM U IIPOCTHIM CIIO-
coboM JIjIsi pa3pabOTKU HOBBIX PEIIeHMI Pa3/IMYHBbIX TUIOB HEJIUHENHBIX JIPOOHBIX audbepeHInaaIbHbIX
YPaBHEHU B YaCTHBIX MTPOU3BOIHBIX B MPUKJIATHBIX HAYKAX.

Kmouesvie caosa: mpobHo-ionobHasi mpousBoanasi, ypasuenue llIpénunrepa-XupoTsl, yCOBEPIIEHCTBOBAH-
HBIH MeToJ1 PYHKIMI 1oaypaBHennii Bepuystin.
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Stability of the time-dependent identification
problem for delay hyperbolic equations

Time-dependent and space-dependent source identification problems for partial differential and difference
equations take an important place in applied sciences and engineering, and have been studied by several
authors. Moreover, the delay appears in complicated systems with logical and computing devices, where
certain time for information processing is needed. In the present paper, the time-dependent identification
problem for delay hyperbolic equation is investigated. The theorems on the stability estimates for the
solution of the time-dependent identification problem for the one dimensional delay hyperbolic differential
equation are established. The proofs of these theorems are based on the Dalambert’s formula for the
hyperbolic differential equation and integral inequality.

Keywords: hyperbolic equation, time delay, Hilbert space, source identification, stability.

Introduction

There is always a major interest for the theory of source identification problems for partial differen-
tial equations since they have widespread applications in modern physics and technology. Subsequently,
the stability of various source identification problems for partial differential and difference equations
have been studied extensively by many researchers (see, e.g., [1-25] and the references given therein).
In many fields of the contemporary science and technology, systems with delaying terms appear. The
dynamical processes are described by systems of delay ordinary and partial differential and difference
equations. The stability of the delay differential and difference equations have also been studied in many
papers (see, e.g., [26-35| and the references given therein). In the present paper, the time-dependent
identification problem

2u(t,x 2u(t,z 2u(t—w,
((Pulte) _ Qulte) _ 0%ullwt) | 4)q(a) + f(t, 2),

0<t<oo,xé€(—00,00),

u(t,z) = g(t,x), —w <t < 0,2 € (—o0,00), (1)
_Ofo a(z)u(t,z)dz = ((t),t >0

for one-sdimensional delay hyperbolic equation is considered. Here u(t,x) and p(t) are unknown
functions. Under compatibility conditions, problem (1) has a unique solution (u(t,x),p(t)) for the
smooth functions f(¢,z)((t,z) € (0,00) X (—00,0)), g(t,z)((t,z) € [~w,0] X (—o0,00)), ((t)(t >
0),q(x), and a(z),

x € (—00,00) . Here b is a constant.

*Corresponding author.
E-mail: aallaberen@gmail.com
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The theorems on stability

We have the following theorems on the stability of problem (1).
Theorem 1. Assume that f Jq(x)dx # 0 and f |a(x)| dx < a < oo. Then for the solution of

problem (1) the following Stablhty estimates holds:

Jmax. Ip(0)], Org%)fdnuttuc’(—oo,oo)? Orgtag}ijnutHC(l)(—oo,oo)’ (max. [ull @) (—o0,00)

< M((La) |:a0 + r?ta<x Hf )HC(,OQOO) + Hf (O)HC(—oo,oo) + Orilta<x ‘CN|

o = mac{ e )]y mx IO

w<t<0 —w<t<0 D) (—o0,00)
e o0l
and
e p@®l, max el ey s Sg%l)w\\ut!lcm ooy
sl <M 00) [0+ s (o)
+nw<£§a§+1 | 7( )HC(_OO,OO) + |[f (nw)ll ¢/(—o0,00) +nw§2?i{+l)w‘ “I1,
= { Ol [0l

' =1.2.---.
e PO 7 = 1.2

Here C(—o00,00) refers to the vector space of continuous functions w(x) from the entire real line to
R = (—00, 00) with norm

[0l oicong = 5up (@),
z€(—00,00)

Proof. We will seek u(t, x), using the substitution

u(t, =) =w(t, x)+n(t)q(x), (2)

where 7(t) is the function defined by the formula

n(t) = /( (t = s)p(s)ds, n((n—1Dw) =n'((n-1Nw)=0,n=12,-

n—1)w

It is easy to see that w(t, x) is the solution of the problems

2'Ll) €T 2’11) T
Pullor) _ TWLT) — (1)g" (@) + bgua(t — w, z) + f(t, ),
0<t<w,z € (—00,00), (3)

w(07 .%') = 9(07x)7 wt(07 :IZ') = gt(O,x), TE (—OO, OO),
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and
( Pw(tx)  Pw(tz) b82 w(t—w,r)
ot? oz? Ox?

+(n(t) +on(t —w)) ¢"(z) + f(t,z),

m—lNw<t<nw,xz€(—o0,00), n=2,3,--,

(4)
w((n - 1wk, 2) = w((n - 1)w-, 2)
wil(n — Dwt, @) = wl(n - Dw-, 2),
x € (—00,00),n=2,3,- -
Now we will take an estimate for [p(t)|. Applying the integral overdetermined condition
(e}
[ a@uteaas =<
and substitution (2), we get
() = [ a@)w(t,z)d
n(t) = ——=—
[ a(z)q(z)dx
From that and p(t) = n(¢), it follows that
")~ [ alx)Zw(t,z)de
p(t) = =
[ a(z)q(z)dz
Then, using the triangle inequality, we obtain
1" ()] + f ’ tgwtx)’dx
p()] < = )
[ a(z)q(z)dx

2

< kg, [}c )|+ gt

C(—oo,oo)]

for all ¢ € (0,00) . Now, using substitution (2), we get

Ou(t,x)  O*w(t, )
oz o
Applying the triangle inequality, we obtain
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02w (t, )
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for all t € (0, 00) . Therefore, the proof of Theorem 1 is based on the following theorem.
Theorem 2. Under assumptions of Theorem 1, for the solution of problems (3) and (4) the following
stability estimates holds:

Olgf‘g)ijnwtt”C(—oo,oo)’ Jmax [well e (—o0,00) - 021%>i||w\|c<2>(_oo,oo) (6)

< M(g.0) [ao + 0 (1P Olleq ey + 1 Ol oay + s \4"|]

0<t<w

a = max {mxo It (Ol oy« max e(®,) o max (e >||C(2)(_m)} ,
ma; w ma ma w 7
Wﬁg(rﬁl)w” ttll o) e [[we] ) —cor0) o D [wll e (—oo,00) (7)

1!
< M (¢,) {an T o 1O e —oope) T I () oo ,00) + o I8 @ :

= t t
= {00

max w(t nm=12 ...
S G ey

Proof. First, we will prove that

1!
hax [witlle(—oo,00) < M (g, @) [ao—i— hax () HC(_OO,OO) +1F Ol eoo,00) + Goax <"1 (®)

Applying the Dalambert’s formula, we get the following formula

T+t

0,2+t +g0,z—1t) 1
w(t,x):g( T )29( T )+2/gt(0,§)d§
x—1
t ) T+ (t—7)
s[5 [ WO+ boeetr - w.8) + 7€) dgar
0 z—(t—7)
for any ¢t € [0,w],x € (—00,00) . From that it follows that
0 0 L
) +t + ) -1
w(t,x)zg( T )29( T )+2/gt(0,§)d§
r—1

t
" / 77(27) (@046 (@ + (E = 7)) = G oy (@ = (t = 7))] dr
0

t

b

+ / 5 [g:(:+(t—r)(7_ —Ww, T+ (t - T)) - gz‘—(t—T)(T — W, T = (t - T))] dr
0

28 Bulletin of the Karaganda University



Stability of time-dependent ...

t . x+(t—T)
+ / 3 f(r,&)dedr.
0 z—(t—7)
Taking the derivatives, we get
0,z +1t)+ g0,z —t) 1
wy (t,(lﬁ) = gt( & ) gt( & ) +*[gt(0,l'+t) _gt(ovx_t”

2 2

" / 77(27) [Gar—ryp (@ + (= 7)) = qoeoryp(z — (t —7))] dT
0

t

b

+ / B} [gx-i-(t—r),t(T —w,x+(t—71)) - gx—(t—r),t(T —w,r—(t - T))] dr
0

+ [ U+ ¢ =) - fira = (= )] ar
0

0,z +1t)+gu(0,z—1t) 1
:Qtt( z+1t)+ 910, )+7[gtt(0,$+t)_gtt(ov'x_t)]

wy (t,x) 5 5

—I—/ e ot (—ry, (@ + (8= 7)) = Qo (pryu (@ — (¢ = 7))] dT
0

2
t
y
0

+/;[ft(T,$+(t—T))—ft(T,$—(t—T))] dr.
0

N o

9 (—w,x +t) — gu(—w,x —t)] dr

Applying this formula and the triangle inequality and estimate (5), we get

lwie(t, )l < M (g, )

1

ap + Orél%ﬁ Hf/(t)HC(—oo,oo) + Hf (O)HC’(foo,oo) + ‘C”(t)l

+M (Q) ”wTT(T7 )” dr

o _

for any ¢ € [0,w]. By the integral inequality, we get the estimate (8). Applying equation (3) and
triangle inequality and estimate (8), we get estimate (6).
Second, we will prove that

0w (t,)

max — =5
ot?

< M (q,
nw<t<(n+1)w B ((] a) [an

C(—00,00)

+nw§1{r§1?§+1)w Hf/(t)HC(—oo,oo) +|If (nw)HC(_OO’OO) + nwggiﬁl)w ‘C”‘ n=12-
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Applying the Dalambert’s formula, we get the following formula

T+t
w(tx) = w(nw,x—l—t);—w(nw,x—t) +% / wn(nw, €)dE
r—t
t z+t ’T
+[5 [ L)+ o =) ) + bugelr —w.€) + £, )] dgr.

nw  g—(t—7)

for any ¢ € [nw, (n+ 1)w],z € (—o00,00) . From that it follows that

T+t
w(nw,x +t) +wnhw,z —t 1
wity) = WD 2 L s, )
z—t

[Qx+(t—T) (JT + (t - 7-)) — Qr—(t—1) (33 - (t - T))] dr

[ (n(r) + by(r — w))
+/ d

t
b
" / 3 [War(t—n) (T = w2+ (t = 7)) = Wo i) (T —w, @ — (t = 7)) dr

t  at(t-T)
+ /; / f(r,&)dédr.
nw  z—(t—)
Taking the derivatives, we get

wi(nw, z +t) + wi(nw, z —t)
2

wy (t,x) =

1
+o [wi(nw, x + 1) — wy(nw, x — t)]

b [OOIITZD (oot =)~ el — )] dr

t
b
+ / 5 [wm—i-(t—T),t(T —w, T+ (t - T)) - ww—(t—T),t(T — W, T = (t - T))] dr

+ [ U+ =) = fira = (- )l dr

wy(nw, T + t) + wy(nw, x —t)

Wit (t, 33‘) = B
1
+§ [wy(nw, x + t) — wy(nw, x — t)]
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b [HOEITZD gyl (=) = eyl — (6= )] e

t
b
+ / 3 [wy(—w,x +t) — wy(—w,z —t)]dr

t
1

+ [ SUtro+ ¢ =) - ilro = (=) dr

Applying this formula and the triangle inequality and estimate (5), we get

[wit (2, )] < M (g, @) [an

+ max Hf )HC’(—oo,oo) + ”f (nw)”C(—oo,oo) + max KH‘

nw<t<(n+1)w nw<t<(n+1)w
t
) [ lwer(r)l dr
nw

for any t € [nw, (n + 1) w]. By the integral inequality, we get the estimate (6). Applying equation (4)
and triangle inequality and estimate (6), we get estimate (7). This completes the proof of Theorem 2.
Moreover, we have that

Theorem 3. Assume that [ «o(z)g(z)dz # 0 and f lo(z)|?dr < a0 < 00,1 < ¢ < 00, + —|—f 1.

Then for the solution of problem (1) the following stablhty estimates holds:

org?éu ’p( )‘ 0rgiia<x HuttHL (—00,00) ? Orgta<x Huf”W1 (—00,00) ? OrgtagquuHWQ (—00,00)

< M (g,0) [ao + 08X O], oy + 17 Oy oy + max [¢7]]

4o — max {_Ln;’;o ()1, ey i N,

max gt >||Wp2(m,w>} |

max t max U max U
nw<t<(n+1)w [p®)l nw<t<(n+1)w sl p(=00,00) antS(n—l—l)wH t”vvpl(—oo,oo)

<M t
nwgzlflglz(%é(—l-l)w HUHWE(*OO’OO) < M{a.2) [an " (n—lﬁzgﬁnw Ip(®)

+nw§2?¢i{+l)w Hf/(t)HLp(foo,oo) + ”f (nw)”Lp(—oo 00) + an?ﬁl?SL{—&-l)w ’Clll y

= t t
i = { (n—lr)ri)aé}iﬁnw Hu“( )HLp(—oo,oo) 7(n—1r)r:Ja§}§§nw HUt( )||WP1(_OO’OO) ’

¢ —1,2,---
max >ng(_m)} =12,
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Here L, (—00, 00) refers to the vector space of functions w(z) from the entire real line to R = (—o0, 00)
satisfy the condition

/ lw (2)]P dz < 0.

Conclusion

This paper is devoted to the time-dependent identification problems for delay hyperbolic partial
differential equations with unknown parameter p(t). The theorems on stability estimates for the
solution of this problem are established.
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Attractors of 2D Navier—Stokes system
of equations in a locally periodic porous medium

This article deals with two-dimensional Navier—Stokes system of equations with rapidly oscillating terms
in the equations and boundary conditions. Studying the problem in a perforated domain, the authors set
homogeneous Dirichlet condition on the outer boundary and the Fourier (Robin) condition on the boundary
of the cavities. Under such assumptions it is proved that the trajectory attractors of this system converge in
some weak topology to trajectory attractors of the homogenized Navier—Stokes system of equations with an
additional potential and nontrivial right hand side in the domain without pores. For this aim, the approaches
from the works of A.V. Babin, V.V. Chepyzhov, J.-L. Lions, R. Temam, M.I. Vishik concerning trajectory
attractors of evolution equations and homogenization methods appeared at the end of the XX-th century
are used. First, we apply the asymptotic methods for formal construction of asymptotics, then, we verify the
leading terms of asymptotic series by means of the methods of functional analysis and integral estimates.
Defining the appropriate axillary functional spaces with weak topology, we derive the limit (homogenized)
system of equations and prove the existence of trajectory attractors for this system. Lastly, we formulate
the main theorem and prove it through axillary lemmas.

Keywords: attractors, homogenization, system of Navier—Stokes equations, weak convergence, perforated
domains, rapidly oscillating terms, porous medium.

Introduction

In this paper, we study the asymptotic behavior of attractors to initial-boundary-value problems
for two-dimensional Navier-Stokes systems of equations in perforated domains as the small parameter
€, characterizing the microinhomogeneous structure of the domain, tends to zero.

One can find some results for homogenization problems in perforated domains and a detailed
bibliography in monographs [1-3]. This paper presents the case of the appearance of a potential in the
limit (homogenized) equation (cf. similar problem in [4-10]).

We study a weak convergence and limit behavior of attractors to the given system of equations
as the small parameter converges to zero. There are recent works (cf. [11-13]) on homogenization of
attractors used for this study. Overall results on the theory of attractors and the homogenization of
attractors cf., for example, in monographs [14-16], and also see the bibliography in these monographs.

We prove that the trajectory attractors 2. of the two-dimensional Navier—Stokes system of equations
in (cf. also [17-19]) a perforated domain weakly converge as € — 0 to the trajectory attractor A to
the homogenized system of equations in the corresponding function space. The small parameter e
characterizes the cavity diameter, as well as the distance between cavities in the perforated medium.

In Section 1, we define main notions and formulate theorems on trajectory attractors of autonomous
evolution equations. In Section 2, we describe the geometric structure of a perforated domain, formulate
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the problem under consideration, and introduce some function spaces. Section 3 is devoted to homo-
genization of attractors to the autonomous two-dimensional system of Navier—Stokes equations with
rapidly oscillating terms in a perforated domain.

1 Trajectory Attractors of Evolution Equations

We describe a general scheme of constructing trajectory attractors of autonomous evolution equations.
This scheme is used in Section 2 to study trajectory attractors of a two-dimensional system of Navier—
Stokes equations in a perforated domain with rapidly oscillating terms in equations and boundary
conditions and the corresponding homogenized equation.

We consider the abstract autonomous evolution equations

%~ A, tz0 1)
where A(+) : By — Ej is a given nonlinear operator, F; and Ej are Banach spaces such that E; C Ej.
For example, A(u) = vAu — (u, Vu) + g(-) (cf. Section 2).

We study a solution u(s) to equation (1) globally, as a function of variable s € R,. Here, s = ¢
denotes the time-variable. The set of solutions to equation (1) is called the trajectory space of equation
(1) and is denoted by K*. We describe the trajectory space K in detail.

First of all, we consider the solution u(s) to equation (1), defined on a fixed time-segment [t1, ts]
in R. We study solutions to equation (1) in the Banach space F, +,, which depends on ¢; and ¢3. The
space JFt, 4, consists of functions, f(s),s € [t1,t2], such that f(s) € E for almost all s € [t1,t2], where
FE is a Banach space. It is assumed that £1 C E C Ej.

For example, for F;, 1, we can take the space C([t1,t2]; E) the space Ly(t1,t2; E), or p € [1,00], or
the intersection of such spaces (cf. section 2). We assume that II;, ;, Fr, 7, C Ft, 1, and

HHtl,t2fH]'—t1,t2 < C(t17t277_177_2)Hf”]:7'1,72’ Vfe "TT1,7'27 (2)

where [t1,t2] C [11,72] and Wy, 4, is the restriction operator on [t1,ts]. Constant C(t1,t2,71,72) is
independent of f. Usually, one consider the homogeneous case of the space where C(t1,t2,71,72) =
C(te —t1, 70 — 11).

Let S(h) for h € R denote the translation operator

S(h)f(s) = f(h+s).

It is obvious that if the variable s of f(-) belongs to [t1,?2], then the variable s of S(h)f(-) belongs to
[t1 —h,ta — h] for h € R. We assume that the mapping S(h) is an isomorphism from Fy, ¢, to Fy, _p¢,—n
and

||S(h)f||ft1_h,t2_h = [IfllFtr stz Vf € Fryto- (3)

This assumption is natural, for example, for the homogeneous space.

We assume that if f(s) € F 4, then A(f(s)) € Dy t,, where Fiy 4y C D t,. The derivative
%&t) is a generalized function taking the values in Ey, % € D'((t1,t2); Ey) We assume that Dy, 4, C
D'((t1,t2); Ep) for all (t1,t2) C R. A function u(s) € F, 4, is called a solution to equation (1) in the
space Fi, 1, (on the interval (¢1,t2)) if %(s) = A(u(s)) if in the sense of distributions in D'((¢1,t2); Ep).

We also introduce the space

Fee={f(s), s € Ry [Ty, f(5) € Frror ¥ [tr,t2] C Ry} (4)
For example, Fy, 1, = C([t1,t2]; E) implies F1°¢ = C(Ry; E), and Fy, 4, = Ly(t1,t2; E), implies Flo¢ =
LI“(R s ).
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A function u(s) € F°¢ is a solution to equation (1) in F1°¢, if Il 1,u(s) € F4, +,, and the function
I, +,u(s) is a solution to equation (1) for any time-segment [t1,%2] C Ry.

Let KT be a set of solutions to equation (1), on the space F toc hut does not necessarily coincides
with the set of all solutions to equation (1) in .7:_11?0. Elements of KT are called trajectories, and K7 is
said to be the the trajectory space of equation (1).

We assume that the trajectory space KT is translation invariant in the following sense: if u(s) € KT,
then u(h + s) € KT for any h > 0. This condition is natural for solutions to autonomous equations in
homogeneous spaces. We consider the translation operators S(h) in ]:j?c :

S(h)f(s) = f(s+h), h>0.

It is clear that {S(h),h > 0} is a semigroup in F° S(h1)S(h2) = S(h1 + hs) for hi,he > 0 and
S(0) = I is the identity mapping. We replace the variable h with the time-variable ¢. The semigroup
{S(t),t > 0} is called the translation semigroup. By assumption, the translation semigroup maps the
trajectory space K1 onto itself:

SHKTCKT vt>o. (5)

In what follows, we study the attraction property of the translation semigroup {S(¢)}, acting on
the trajectory space KT C ]-"_lfc. We introduce a topology in .F_li_oc.

Let pg, 4,(+,-) be a group defined on the space F3, 4, for all segments [t1,t2] C R. As in (2) and (3)
we assume that

Pt1,ts (Ht1,t2f7 Ht1,tzg) < D(t17t27 7-177-2)p7'177'2 (f? g) ) Vf,g € le,Tgv [tlvtﬂ c [7-177-2]7
ptlfh,tth(s(h)fv S(h)g) = Pty,to (f7g)7 vfag € ftl,tQ? [t17t2] C Ra h e R.

(For a homogeneous space D(t1,te, 71, 72) = D(ta — to, 70 — 71).)

We denote by Oy, 4, the corresponding metric space on Fy, 1,. For example, py, 1, can be the metric
generated by the norm || - [/, ,, in the Banach space J%, t,. In applications, it can happen that the
metric py, 1, generates a weaker topology in ©y, s, than the strong convergence topology in the Banach
space Fi, t,-

We denote by @lfc the space F!°¢, equipped with the local convergence topology in O, ¢, for any
[t1,t2] C Ry. More exactly, by definition, a sequence of functions { fx(s)} C F: _lfc converges to a function
f(s) € F¢in k — oo as ©% if py, 1, (I, 4, s Iy 4, f) — 0 as k — oo for any [t1,t2] C Ry It is easy

loc

to prove that the topology in ©%¢ in metrizable by using the Frechet metric

p+(f1, f2) == Z 9—m po.m(f1, f2)

2 T o f) ®)

If all metric spaces ©y, 1, are complete, then the metric space @lﬁc is also complete.

We note that the translation semigroup {S(¢)} is continuous in the topology of the space ©°¢. This
fact directly follows from the definition of the topological space @lfc.

We define the Banach space

F={f(s) € FE L Iflm, < +oo}, (7)
equipped with the norm
1fll 72 = sup [T, f(h + 8)[| 7 - (8)
h>0

For example, if ¢ = C(R4; E), then F2 = C%(Ry4; E) is equipped with the norm Hfoi =
supy>q || f(h)]| g, and if Floe = LéOC(RJ'_; E), then Fb = LZ(RJF; E) is equipped with the norm ”foi =

h+1 1/p
(Sutho J |f(8)||%d8> :

h
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We note that ]-"ﬂ’r C @ljr’c. The Banach space Fi is necessary to introduce bounded sets in the
trajectory space K. To construct a trajectory attractor in Kt, we use the weaker local convergence
topology in ©¢, instead of the uniform convergences in the topology of the space ]-"i.

We assume that Kt C F2 | ie., any trajectory u(s) € Kt of equation (1) has finite norm (8). We
define an attracting set and a trajectory attractor of the translation semigroup {S(t)}, acting on K.

Definition 1.1. A set P C @lfc is called an attracting set set of the translation semigroup {S(¢)},
acting on T, in the topology of ©%¢, if for any bounded set .7-"_1; in B C KT the set P attracts S(¢)B
as t — +oo in the topology of O i.e., for any e-neighborhood O.(P) in @lfc there exists ¢; > 0 such
that S(t)B C O, (P) for any t > t1. The attraction property of P can be formulated in the equivalent
form: for any bounded set B C K+ in % and any M > 0

diSt@()’M (H(),MS(t)B, H(),M’P) —0 (t — +OO),

where

distpm(X,Y) := sup dist pm(z,Y) = sup inf paq(x,y)
z€X reX YeY
where denotes the Hausdorff semi-distance between sets X and Y in the metric space M.

Definition 1.2.([15]) A set 2 C KT is called a trajectory attractor of the translation semigroup
{S(t)} on KT in the topology of ©!¢ if the following conditions are satisfied: (i) 2 is bounded in F2
and compact in @lﬁc, (ii) 2A is strictly invariant under the translation semigroup: S(¢)2 = 2 for all
t >0, and (iii) 2 is an attracting set of the translation semigroup in the topology of {S(¢)} for £ in

the topology of ©%°¢, i.e., for any M > 0
diste, ,, (Io,nrS(t)B, Mo pA) — 0 (¢t — +00).

Remark 1.1. Using the terminology of [14], we can say that a trajectory attractor 2 is global (F4,©%¢)-
attractor of the translation semigroup {S(¢)}, acting on K, i.e., 2 attracts S(¢) B as t — +oco in the
topology of @ﬁ‘_’c, where B is any bounded (in fi) set in KT:

dist@zﬁc(S(t) B,A) =0 (t— +00).

We formulate the main result concerning the existence and structure of a trajectory attractor of
equation (1).

Theorem 1.1.([14,15,20]) Let the trajectory space KT, corresponding to equation (1), be closed in
F? and satisfy the condition (5). Let the translation semigroup {S(¢)} have an attracting set P CK,
that is bounded in ]-"i and compact in @lfc. Then the translation semigroup {S(t),t > 0}, acting
on K, has a trajectory attractor 2 C P. The set 2 is bounded in .7-"3 and compact in @lfr’c. We
describe the structure of trajectory attractors 2 of equation (1) in terms of complete trajectories of
this equation. We consider equation (1) on the whole time-axis

ou
5 = A(u), t e R. 9)

Now, we extend the notion of the trajectory space KT of equation (9) introduced on R, . To the case
of the whole axis R. If a function f(s), s € R, is given on the whole time-axis, then the translations
S(h)f(s) = f(s+h) are also defined for negative h. A function u(s), s € R is called a complete trajectory
of equation (9), if Il u(s+h) € KT for any h € R. Here, I1+ = IIj o, denotes the operator of restriction
onto the half-axis R.

We introduced the spaces FL¢, ]-"ﬂ’r and @lﬁc. Now, we can introduce the space F'°¢, F* and ©%° as
follows:

Floe = {f(s),s eR] Htl,tzf(s) € Fritn V [t1,t2] € R}
Fri={f(s) € F L fll 7 < ool
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where
| f1l 0 := sup [[To1 f(h + 8)|| 7., - (10)
heR

The topological space ©!°° coincides (as a set) with F°¢, and by definition fi(s) — f(s) as(k — o)
in ©¢, if Ty, 4, fe(s) — It 1, f(s) as(k — o) in Oy, 4, for any [t1,t2] C R. It is clear that ©¢ is a
metric space, as well as @l_f_’c.

Definition 1.3. The kernel K in the space F° of equation (9) is the union of all complete trajectories
u(s), s € R, of equation (9), that are bounded in F* in the norm (10):

HHO,lu(h + S)Hfo,1 < Cua Vh € R.
Theorem 1.2. Let the assumptions of Theorem 1.1 hold.Then
A =11, K.

The set K is compact in ©!°¢ and bounded in F?.

The full proof is given in [15,20]. To prove that some ball in .Fjbr is compact in @lfc we use the
following lemma. Let Ey and F; be the Banach spaces such that E; C Ey. We consider the Banach
spaces

Wpl,po(ovM;EbEﬂ) = {7/}(5)75 €0, M ’ @Z)() € Lp1 (O,M;El),
WOO,pO(OvM;El’EU) = {1/}(8)73 € O’M ’ ¢() € LOO(O,M; El),

LPD(Oa Ma EO)} )

()
’ LPO(O’M;EO)}7

P(-) €
V() €
(where p; > 1 e pg > 1) with the norms

1/p1 1/po

M M
0w,y = | [Io@Eds |+ | [Iolmds]
0 0

1/po

M
[0y = esssup {05 e |5 € 0,01} + ([ 10/(5) i ds
0

Lemma 1.1.(Aubin-Lions-Simon, [21]) Let By € E C Ep. Then the following embeddings are
compact:

Wi po(0,T5 Ev, Eg) € Ly, (0, T E), Wy (0,T; Er, Ep) € C([0,T]; E).

In the next section, two-dimensional systems of Navier-Stokes equations and their trajectory attractors
depending on a small parameter £ > 0 will be studied.

Definition 1.4. We say that trajectory attractors 2. converge to a trajectory attractor 2 as ¢ — 0
in the topological space ©%¢, if for any neighborhood O(2A) in @)l_fc there is 1 > 0 such that . € O(X)
for any € < €1, i.e., for any M >0

diste, ,, (oA, o 2 2A) — 0 (€ — 0).
2 Notation and Setting of the Problem

First, we define a perforated domain. Let 2 be a smooth bounded domain R?. Denote

1 1
TE:{jEZQdISt(ﬁj,aQ)Zﬂ5}7 DE{€—2<£]€<27]€:1’2}
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Given an 1-periodic in £ smooth function F(z,§) such that F'(z,§)|¢com > const > 0, F(x,0) = —1,
VeF #0as e 0\ {0}, we set

, T
sz{xEE(D+j)| F(:Ug> go}, G-= |J
JjEY,
and introduce the perforated domain as follows:
Q°F=Q\ Ge.

Denote by G(z) the domain G(z,&) in a stretched space £. Afterwards, we often interprete 1-periodic
in ¢ functions as functions defined on 2-dimensional torus T? = {¢ : ¢ € R?/Z?}. According to the
above construction, the boundary 9€); consists of 02 and the boundary of the cavities 0G. C €.

We introduce the function spaces:

H := [L5(Q))%, He := [La(0)]%, V = [H}(Q))?, Ve = [H}(Q:;09)]? is the set of vector-valued
functions in [H'(£2.)]? with zero trace on 9§2. The norms in these spaces are defined by

2 2
ol? = /Q S i (@) de, [lo]2 = /Q S lvi(a) 2da,
=1

€ =1
2 2
o2 = /Q SV (o) P, (ol = /Q S Vi (2) P
=1 € =1

We study the asymptotic behavior of trajectory attractors of the following initial-boundary-value
problem for the autonomous two-dimensional system of Navier—-Stokes equations:

0

;: —yAus—l—(ug,V)uE:g(a:,g), x € Qe,
(V,us) =0, x € Qe,

ou T T 11
V@ne +B(m,g)u€:h(x,g), x € 0Ge,t € (0,400), (11)
Ue = 07 T € 8Q
ue = U(x), x € Q.,t=0.

\

Here ue = uc(z,t) = (ul,u?), g-(x) = g (2,2) = (¢",¢%) € H, he(z) = h (z,2) = (h',h?*) e H, n
is the outward normal vector to the boundary, and v > 0.

Further,
1
B(I',é.) = ( ’ (375) b2(2’€) ) )

functions b*(z, &) € C(Q x R?) such that b¥(x, ) is 1-periodic by variable ¢ functions on © x R? and
satisfy the condition

/ Wiz, &)do =0, k=1,2,
G ()

here, do is the length element of the curve 0G(z).
Similarly, vector-function components h(x, £) satisfy the conditions: h*(z,£) € C(2 x R?), h¥(x, )
is 1-periodic by variable ¢ functions on  x R? and

h*(z,€) do = 0, k=1,2.
G ()
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For U € H, there exists a weak solution u(s) to the problem (11) in the space LZOC ¢ (Ry; V)N

Ou,
Lf)%c*w(]RJr;Ha), such that u(0) = U. Moreover E € Ll"c (Ry;H.). We consider weak solutions to

the problem, i.e., [20], [22].
This satisfies the problem (11) in the sense of distributions, i.e.,

oc oc a
eles) € LR V) ML Ry 1 fus T € 1 (RyHL) |

that satisfy the problem (11) in the sense of distributions, i.e.,

8: . /Vu€ -V dxdt + /(us, V)ue - ¢ dedt+
OF Qe Qe
+o0 +o0
x
+ Z / / B(ﬂz,g)ug-w dodt = /ga(ac)w dxdt + Z / / he(z) -9 dodt
€Y 0 g Qs I 0 pai

for any function ¢ € C*(R4; H,). Here y; - y2 denotes the inner product vectors yi, yo € R?.
To describle the trajectory space KT of the problem (11), we follow the general scheme of and on
every segment, introduce the Banach space [t1,t2] € R

Oue
Firgo i= Lloc w(t1,t2; Ve )ﬂLéooc*w(tht%Hs)ﬂ{ Y (t17t2;He)}
equipped with the norm
ov
o050 = o) + el + | 5 . (12)
La(t1,t2;H)

It is obvious that the condition (2) holds for the norm (12) and the translation semigroup {S(h)}
satisfies (3).

Setting Dy, 1, = L2 (t1,t2; V) we find that Fy, 1, C Dy, 4, if u(s) € Fiy 4o, then A(u(s)) € Dy, 1.
Further, we can consider a weak solution to the problem (11) as a solution to the system of equations
in accordance with the general scheme .

Introducing the space (4), we find

Floe = LY (R V) N LR H { ‘ — e LyY( R+;H)},
P~ LRy Vo N LR H) 0 {0 | 3 € LR |

We denote by K a set of all weak solutions to the problem (11). We recall that for any function
U € H there exists at least one trajectory u(-) € KI such that u(0) = U(z). Consequently, the
trajectory space K of the problem (11) is not empty.

It is clear that KI C F°¢ and the trajectory space K is translation invariant, i.e., if u(s) € K7,
then and u(h + s) € K for any h > 0. Consequently,

S(hKI CcKf, vh>o.
Further, using the Ly(t1,t2; V)-norms, we introduce the metrics py, 4, (+,-) in the spaces Fy, 4, as

follows:
1/2

artu) = ( | " Jugs) - voIPds) L Vo0 € Four
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These metrics generate the topology of @l"c in the space F'¢ loc (respectively @le"i in ]-'é‘ﬁ) We recall that

Flo¢ converges to a function v € F1¢ as k — oo in ©%¢, if [|vg(-) = v(:) ||y (0.005) —

a sequence {vg} C F
0 (k — o0) for any M > 0. The topology of ©%¢ is metrizable (nf. (6)) and the corresponding metric
space is complete. We consider the topology in the trajectory space KI of the problem (11). The
translation semigroup {S(t)}, acting on K is continuous in the topology of the space ©'¢.
Following the general scheme of 1, we consider the bounded set in K1 by using the Banach space

FY (cf. (7)). It is clear that

ov

o :Lg(R+;V)mLOO(R+;H)ﬂ{ 5

€ Lb(R+,H)}

and .7-"3 is a subspace of the space F ﬂfc.

We consider the translation semigroup {S(¢)} on K, S(¢t) : KIf — K, ¢t > 0.

Let K. denote the kernel of the problem (11), consisting of all weak solutions u(s),s € R bounded
in the space

F¥ = LY(R; V) N Lag( { ‘eLbRH)}

Proposition 2.1. The problem (11) has trajectory attractors 2. in the topological space @lfc. The
set 2. is uniformly (with respect to € € (0,1)) bounded in F% and compact in ©%¢. Furthermore,

Qle = H—‘:-ICEv

the kernel . is nonempty and uniformly (with respect to e € (0,1)) bounded in F°. We recall that
the spaces .7:3’_ and GZ_EC depend on €.
The proof of Proposition 2.1 is similar to the proof in [15] given in a particular case.

8 Homogenization of attractors of initial boundary value problem for the Navier-Stokes system of
equations in a perfected domain

3.1 The main assertion

In this subsection, we study the limit behavior of attractors 2. of the Navier-Stokes equations
(11) as € — 0+ as and their convergence to a trajectory attractor of the corresponding homogenized
equation.

The homogenized (limit) problem has the form:

2
Moy (aﬂ<w>a%)+<uo,v>uo+v<m> — gla) + H(z), z€Q,

ot =1 (9.%'1 830,
(vv uO) :707 x € Q’ (13)
ug = 07 S 89
ug = U(x), zeNt=0,
where ON
aiw) = [ (D) gw- [ s
Y\G(z) Y\G(z)
m) = [ Paor@od, v = (" 0.
0G(x)
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) =~ [ weortegde - ( 3o ).

0G(x)

Here M*(¢) and N;(€) are 1-periodic functions of ¢ satisfying the problems

k
AMF =0in Y\ G(z), Oé\i = —b¥(x,€) on OG(x),
n
AN, =0in Y \ G(z), %]X = —ny on OG(x)

and having zero mean over the periodicity cell.
We consider the weak solution to the problem (13), i.e., a function

)
uo(x, s) € LY (Ry; V) nLlee (R+;H)ﬂ{v: (;f

2w 00, kW

L (R |
satisfying the problem (11) in the sense of distributions,i.e.,

8’&0 & ~
yr <) drdt + I// | a;(x) oz, o dxdt + /(uo, V)ug - 9 dadt+

Q Q W=l Q

auo ) Ow

+/Vuo-wdmdt:/g(x)'wdxdt—l—/H-wd:cdt
Q Q Q
for any function ¢ € C*(Ry; H).
Remark 3.1. Denote by my = supmy(z).The coercivity of the limit operator (13), is a delicate
Q

problem since the constants my are always positive. In particular, the well-posedness of the problem
(13), connected with the coercivity of the operator is guaranteed by the inequalities

Ao > max{mi,ma}, (14)

2

where )¢ is the first eigenvalue of the operator v g 86 (Ziil(:c)aa> in the space H'(Q). The proof
; ZT; X
3,0=1

of this assertion can be found in [8].
Under the condition (14) (cf. remark 3.1) the problem (13) has a trajectory attractor 2l in the

trajectory space KJF, of the problem (13); moreover,
ﬁ - HJFK

whera K is the kernel of the problem (13) in JF.

We formulate the main theorem on homogenization of attractors of the system of Navier—Stokes
equations.

Theorem 3.1. Let \g > max{mj, ma}, then is topological space @lfc correctly limited relation

A, - A if e =0+, (15)

Moreover, B
K. =K if ¢ =0+ in 0k, (16)

Remark 3.2. We recall that the spaces in theorem 3.1 depend on €. We assume that all functions
under consideration can be extended over the holes with preserving the norms.

Mathematics series. Ne3(107),/2022 43



K.A. Bekmaganbetov, G.A. Chechkin, A.M. Toleubay

3.2 Auziliaries

We use some results of [8] below.
We consider the auxiliary problem

—yAmu =g ( ) x € e,
p o an + 07 (z, L)ul = ¥ (2, L), z€0G., k=12 (17)
ub =0, x € 0N,
We also require that
/ V¥ (x,€)do =0, / hF(x, €)do = 0. (18)
dG(z) G ()

We look for a solution in the form of a series
T
uf = ug (@) + eui(2,€) +uf(@, O+, £=7. (19)

Substituting the series (19) into (17) and collecting terms with € , of the same order in the equation
and boundary conditions, we find a recurrent sequence of problems such that the first one has the form

u %uk
Vanl + Vauo + b8 (2, §)uf = hk(a: €), x € IdG(x).
The integral identity for the problem (20) is a follows:
ouk Qv 8u’f 8U> oul Ov 8u v
L déydés + / / ( 0 2 ) d&ydéa+
//Y\G’(a:) <8§1 351 082 08 S V\G() \ 01 0&1 " o, 3 1tz (21)

—I-/ v (w,{)uovda = / % (w,{’)vda,
OG(zx) 0G(z)

where v € H.(Y \ G(2)).
From the form of the integral identity we can propose that the functions u¥(z, &) have the following

structure: L

oul oug
No(&)—.

o T (&) D9

Substituting the last expression into (21) and collecting the corresponding terms, we obtain the
following problem for the functions N;(¢) and M¥(€):

ON; Ov 8Nl )
dérd L dgyd
//Y\G (351 851 & 6§2> & §2+//Y\G(z 06, §1d&2 = (22)

or, in the classical form:

ut(a,€) = L*(€) + MM (&)ug (@) + N1(§) 52

{ Age(Ni+ &) =0, z€Y \G(x),

Tt = 1, x € 0G(x);
8Mk ov 8Mk ov
//Y\G(a:) < 061 06 & 3§2> §1dé ¢ () (33 f)v o (23)
or
AgeMF =0, z €Y\ G(x),
DI+ (2,8) =0, @ € 0G(x);
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oL* oy OLF du k
//Y\G(x) (651 6, + 965 06, ) d&rdgs = /80(36) h*(z,&)vdo (24)
: Agel* =0, z €Y\ G),
OL° = hM(x,6), x € 0G(x).

The compatibility condition in the problem (22) can be easily verified by integrating by parts and
using (18) in the problems (23) and (24). We note that the functions L*(¢), M*(¢), and Ny(§) are
defined up to an additive constant and the natural normalization conditions are the following:

//Y\G(m) LA = //Y\G( §)dt = //Y\G Q=0

In what follows, we assume that these conditions are satisfied.
The next power of eyields the problem for u}(z, ¢):

82 k 82 k k k
Aggué’ +2 (8&17391“ + 6527;:1@) + Aggug = —¢"%, zeY \G(z), (25)
0 0
‘aﬁé aZl o (, £)uf + h* (2, £ )uf = 0, z € 0G(x).

The following statement is true.
Lemma 3.1. The functions M* (&) and N;(€) are connected by the integral identity

Oubi(x / / oM* / i
d&1déy — b* N;d =0.
Oy < \G) 98 1z 0G(x) e

We also need the integral identity corresponding to the problem (25)

81} Fov oul ov

dé1d —l—// ( + — >d déo+

//Y\G(x (351 351 652 8§2> $1d6 Y\G(x) Oy &+ 1 Do 03 §1d&2

k

+/ bk(f)ulvdg"‘uo( )/ hF (x, € vda—// 6M vd§1d§2 8u0

9G(z) G () @ .
ey - 28 / / < +1> dé1d 0
/ /Y\G(:r 06 Sz O Vo) \ 981 vd§yd&s - o2

e L (o S
N dérd — + 1) vd&id 04 g8 =0,
//Y\G’(x) ( 852 8&1 v §1 52 83318.%'2 \G(@) 852 v 51 §2 xQ g

where g¥( // (z,&)d&1dEs.

The solvability condltlon for the problem (25) leads to the equations for u£(z), which is the required
formal homogenized equations. Applying Lemma 3.1, and considering the connection between b(x, )
and h(z, &) we can write it in the form

2
auo - e k oul(z) = g"(x k(x k o
3 28— [ e on @i =@+ [ ot

0G(x) 0G(x)

where

ay(x // < 3 (5il> d€1d€s, 6y is the Kroneker symbol.
G(z) \ 9
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Thus, the homogenized problem can be written as

where as k = 1,2 we have m"*(z) = / v (x, &) M*(z, &)do
8G(x)

H(2) = / W (o, €)M (, ) dor = — / Ve (2, €) L (., €)do
0G(x) 0G(x)

The following lemma is true (cf. [8]).
Lemma 3.2. If u, is a solution to the problem (17), and ug is a solution to the problem (26), then
there is convergence

“+o00

x x

\V4 . — 2. —
/ ue - Vb dwdt + H / / €)u5 Y dodt Z / /h(z,e) Y dodt
JEY: 0 6GJ JEYe 0 60“;

—/g(a:,i)ue‘wdadt—>V/ZiVug~V¢ dzdt—l—/Vuo-zpdxdt—/H-wdmdt—/g‘wda:dt

Qe Q Q Q Q

as € — 0.
Following 23] and taking into account Remark 3.2 , we show that
(e, V)ue — (u, V)u strongly in Ly(Q). (27)

For this purpose we use the estimate

[(ue, Ve = (u, V)ul|Lyq) < l[(ue = u, Vel Ly () + 1w, V) (ue =)L) <

1

1 1
C’(/|u8 —u]2|Vu5]2dxds)2 —|—C(/\u|2\V(u5—u)|2dxds)2 <

< Cl</|Vu5]3dxds)é</|u5—u]6dxds>é +C’1(/\u|6dxds)é(/\V(ue—u)|3d:cds)é.

Q Q Q Q

As proved in [15] the trajectory attractors 2. and 2 of equations (11) and (13) exist in the following
(2,2,1)
space with a stronger topology: Hy, (Q), where

ov

HZ2D(Q) = Ly (R+; [WS(Q)]2) n { g € L2w(R+aH)} :

We set . 2
HLM(Q) = Lo (Rys W3 (@))7).

Since H221(Q) € H{""?(Q) and H?21(Q) € L¢(Q), we find

/ lue — u|®dxds — 0, /|V(u8 —u)|*drds — 0
Q Q
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as € — 0. Here, we used the uniform boundedness of the integral /|Vu5|3dxds < M. Thus, we have

Q
proved the convergence (27).

3.8 Proof of Theorem 3.1

Proof. It is clear that (16) implies (15). Therefore, it suffices to prove (16), i.e., for any neighborhood
O(K) in ©!¢ there is £; = £1(O) > 0 such that

K. c O(K) for all € < &. (28)

If (28) fails, then there exists a neighborhood O’'(K) in ©!¢, a sequence e, — 0+ (k — o) and a
sequence ug, () = ug, (s) € K¢, such that

ue, ¢ O'(K) for all k € N. (29)

The sequence {g (w, i)} is bounded in H. Consequently, using the integral identity and the

Cauchy-Bunyakovsky inequality, we conclude that the sequence of solutions {ue, } is bounded in JF?.
Passing to a subsequence, we can assume that

s, — ug (n — 00) in @,

We assert that ug € K. The functions wu., (z, s) satisfy the equation

0
Yen _ vAu, + (ue,, V)ue, = g(x, E), teR, (30)
ot En
the condition 5
U, T T
TTT+B($’ a)uan :h(l', a), $€8G5n,

and the energy identity

— /_i||u€n<s>||%lw<>ds+u / e, () o(s)ds + 3 / [ B gl (o 5)(s)dods-

jeY
J € 8G]

- / [ nawisos = [ (9000, uele N vis)as (31)

—-M
JEY, 8G7

for any M > 0 and any function ¢ € C3°(] — M, M[), ¢ > 0. Furthermore, u., (s) — uo(s) (n — o0)
weakly in Lo(—M, M;V), x-weakly in Lo, (—M, M;H) and Otc, (3) 8u0( )
Lo(—M, M; H). By the known compactness theorem [22] we can assume that ugn( ) = up(s) (n — o0)
strongly in Lo(—M, M;H) and u., (x,s) — ugp(z, s) (n — oo) for almost all (z,s) € D x (=M, M). In
particular, u., (s) — ug(s) (n — 00) strongly in ©%¢ = LY*(R; H).

Now, taking into account Lemma 3.2 and the convergence (27), we pass to the limit in (30) and
(31) as € — 0, based on a standard argument in [22] (see the detailed proof in [15,17,20]). Consequently
up € K, i.e., ug is a solution to the problem (13), satisfying the corresponding identity (31) with the
exterior force g(z). At the same time, we have established that u., (s) — uo(s) (n — 00) in ©'¢ and,
consequently, u.,(s) € O'(ug(s)) € O'(K) for &, < 1. Thus, we arrive at a contradiction with (29).
The theorem is proved.

(n — o0) weakly in
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Jlokaababl mepumoaThl KeyekTi opTagarbl 2D HaBbe—CTOKC
TeH/leyJiep >KYHeCciHIH aTTpaKTopJaphbl

Maxkasiazia TeHeyIepie KoHe MeKapaJsblK MapTTapia Te3 Tepdemesti mymrerepi 6ap eki emem i Habe—
Crokc Tengieysiep Kyiecinin KapacTbIpblabl. Tecik 06JIbICTaFbl €CeITi 3epTTeil OTHIPBIIL, CHIPTKBI IIEKAPa-
narel Jupuxienis 6ipTeKTi MapThIH XKoHe KybICTapAblH mekapacbiaaarbl Pypbe (Poben) mapThiH aHbIKTal-
MbI3. Ocbingail 6o/KaMIaAPMEH OChI YKYHEHIH TPaeKTOPUSIIBIK aTTPAKTOPhI KEHOIp 9JICI3 TOMOIOrUsIIapia
KOCBIMIIIA [TOTEHIIAAJIBIMEH YKOHE TPUBHAJIIBI €MeC OH, YKaK 0eJI1iri 6ap Teciri KoK, 00JIbICTaFbl OpTaIlaJIaHFAH
Hasbe—Crokc Tenzeynep »KyileciHiH TPaeKTOPHUSIBIK aTTPAKTOPbIHA KUHAKTAJIATBIHBL Jpiesaenred. Our
yutie A.B. Babunnig, B.B. YenwvikosreiH, 2K.—JI. Jluouctei, P. Temam xome M.M. Bummukrin 3BOJIIO-
[USIBIK, TEHIEYJIEPIIH TPACKTOPHUSIBIK, ATTPAKTOPJIAPHI TyPAJIbl MAKAJIAIAPhl MEH MOHOTPAMUIAPBIHBIH
amicremeci KomnanbuFal. CoHpmait-ak, XX FachIpbIH, COHBIH/IA Taiiga OOJIFaH opTallajiay 9icTepi maiiga-
JIAHBLIFAH. AJIIBIMEH aCUMITOTUKAJIBIK, 9[ICTEP/l aCUMIITOTUKAHBI (POPMAJIBbIBI KYPY YIIH KOJJIAHBII CO-
[aH KefiH aCUMITOTHKAJIBIK KATapPJIapAblH HEri3ri MyInesepid GyHKIIMOHAIIb TAIAay KOHE WHTEIDAJIIbI
GaraJiay 9JiCTEPiH KOJIIaHa OTBIPHIN TaHaaFal. ColikeciHIlle, KOMEKII 9JICi3 TOMOIOTUSIBI (DY HKIUOHAIIIBI
KEHICTIKTI aHBIKTay apKbLIbI TEHJECYJIEP/IiH MeKTi (OpTalalanran) XKyHeCiH aJbIHFaH KoHe OCBI XKyie VI
TPAEKTOPUSIIBIK, ATTPAKTOPJIAP/IbIH 6ap exeni mosesienren. Cofan Keilin Herisri reopema TY>KbIPBIMIAJIBIIL,
0J1 KOMEKIIII JIleMMaJIap/IblH KOMeriMeH HaKThLIAHFaH.

Kiam ces3dep: arrpakTopJiap, opramasay, HaBee—CroKC TeHzeysiep xKyiteci, 9JIci3 dKUHAKTBUIBIK, TeCiK 00-
JIBIC, Te3 TepbOeIMesti MyIesep, KeyeKTi opra.

Mathematics series. Ne3(107),/2022 49



K.A. Bekmaganbetov, G.A. Chechkin, A.M. Toleubay

K.A. Bekmaran6eros?, I'A. Yeuknn®3*, A. M. Toney6aii>>

! Mockoscxuti 2ocydapemeenmonti yrusepcumem umeny, M.B. Jlomonocosa,
Kaszaxcmancxut guauan, Hyp-Cyaman, Kaszaxcman;
2 Huemumym mMamemamury, u mamemamuseckozo modesuposanus KH MOH PK, Aamamo, Kazaxcman;
3 Mocxosckuti zocydapemeennuiti yrusepcumem umenu M.B. Jlomonocosa, Mocksa, Poccus;
4 Mrnemumym MmMamemamury, ¢ KoOMNoomeprsm uenmpom — nodpasdeaenue Ydumckozo pedepanvrozo
uccaedosamenverozo uenmpa PAH, Yga, Poccus;
5 Bepasutickutl mayuonaivruiti yruueepcumem umenu JI.H. Dymuaesa, Hyp-Cyaman, Kazaxcman

ArtpakTopsl 2D cucremnl ypaBuenuii HaBbe-Ctokca
B JIOKAJIbHO NEPUOJNYECKON MMOPUCTOI cpejie

Paccmorpena gsymepnas cucrema ypasuenuii HaBbe—CTokca ¢ GbICTPO OCIUJIMPYIONIMME YJIEHAMY B yPaB-
HEHUSAX U IPAHUYHBIX yCJIoBUsX. Vcciemys 3amady B nepOprUpOBaHHON 00JIACTH, MBI 38J1a€M OJHOPOTHOE
ycnosue Jlupuxsie Ha BHemHe# rpanune u ycinosue Pypbe (Pobena) ma rpammme mosocreit. [lpn Takmx
MIPEIIIOIOKEHNAX TOKA3bIBAEM, UYTO TPAEKTOPHBIE ATTPAKTOPHI ITOM CHCTEMBI CXOISTCS B HEKOTODOH Cla-
00ii TOMOJIOTHM K TPAEKTOPHBIM aTTPAKTOpaM yCpeJHeHHON cucrtembl ypaHenuii Hasre—CroKca ¢ J10m0JI-
HUTEJIbHBIM TOTEHITNAJIOM U HETPUBUAJIBHON MTPaBOil YaCThIo B 0OacTu 6€3 mop. Jjist 9TOro MbI HCITOTB3yeM
nonxox u3 crareir u mouorpacuit A.B. Babuna, B.B. Henszkosa, 2K.-JI. JIuonca, P. Temama u M.!. Bu-
IIIAKA O TPAEKTOPHBIX ATTPAKTOPAX IBOJIIOIMOHHBIX ypaBHeHMit. Kpome Toro, npuMeHsieM MeTOIbI yCpeIHe-
HUsl, TIOgBUBINKECs: B KoHIe XX Beka. CHadasIa UCIOIb3yeM aCUMITOTUIECKAE METOIBI st (pOPMATHLHOTO
IIOCTPOEHUS ACUMITOTHK, JaJiee Mbl BbIBEPsieM TJIABHBIE YJIEHBI ACHMIITOTUIECKUX PAIOB C IOMOIIBIO METO-
JI0B (DYHKIMOHAJIBHOIO aHAJIN3a U MHTErPaIbHBIX OlleHOK. OIpe e isisi COOTBETCTBYOIIUE BCIIOMOTATEIbHBIE
GYHKIMOHAILHBIE TPOCTPAHCTBA CO CIab0i TOIOJOrHEil, MBI BBIBOJAMM TPEAETBHYIO (yCPEIHEHHYIO) CH-
CTeMy ypaBHEHWI M JOKA3bIBAEM CYIIECTBOBAHWE TPAEKTOPHBIX ATTPAKTOPOB JIJIsl TON CHCTEMbI. 3aTeM
(dopMyIUpyeM OCHOBHYIO TEOPEMY U JIOKA3bIBAEM €€ C IMIOMOIIBIO BCIIOMOTATEIbHBIX JIEMM.

Karoueswie caosa: aTTpakTOphl, ycpeJHenue, cucrema ypasaennit Hasre-Crokca, cirabast cXoauMOCTb, Iep-
dopupoBanHast 06,1aCTh, OBICTPO OCIUJIIUPYIONINE UIE€HBI, IOPUCTAs CPEIa.
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Estimates of singular numbers (s-numbers) for a class
of degenerate elliptic operators

In this paper we study a class of degenerate elliptic equations with an arbitrary power degeneracy on
the line. Based on the research carried out in the course of the work, the authors propose methods to
overcome various difficulties associated with the behavior of functions from the definition domain for a
differential operator with piecewise continuous coefficients in a bounded domain, which affect the spectral
characteristics of boundary value problems for degenerate elliptic equations. It is shown the conditions
imposed on the coefficients at the lowest terms of the equation, which ensure the existence and uniqueness
of the solution. The existence, uniqueness, and smoothness of a solution are proved, and estimates are
found for singular numbers (s-numbers) and eigenvalues of the semiperiodic Dirichlet problem for a class
of degenerate elliptic equations with arbitrary power degeneration.

Keywords: elliptic operator, boundary value problem, singular numbers, power degeneracy, solution, uniqueness.

1 Introduction. Main results

Let Q@ = {(z,y) : =7 <z < 7,0 <y < 1}. Consider the following problem

Lu = —k(y)uzs — Uyy + a(y)uy + c(y)u = f(z,y) € L2(2), (1)
U(—?T,y) = u(ﬂ-ay)?ul(_ﬂ-ay) = ’U,x(ﬂ',y), (2)
u(z,0) = u(x,1) =0, (3)

where a(y), c(y) are piecewise continuous functions in [0, 1], k(y) > 0 as y € (0,1] and k(0) = 0. Let
Cox () be a class of infinitely differentiable finite functions in 2 and satisfying the conditions (2)—(3).

We also denote closure of the operator (1) by the norm of La(f2) as L.

In the study of the smoothness and approximation properties of solutions to boundary value
problems for some nonlinear equations we encounter questions of the spectral properties of linear
degenerate elliptic equations. In contrast to elliptic operators, spectral questions for degenerate elliptic
operators are poorly understood. Known results on this topic or those close to it in content are contained
in the works of M. Smirnov [1], M. Keldysh [2], T. Kalmenov, M. Otelbaev [3], O. Oleinik [4], M. Vishik,
V. Grushin [5, 6], and others.

However, in the general case, such traditional questions as asymptotic behavior and estimates of
eigenvalues in general are far from complete.

The results of this work are close to those of M.B. Muratbekov [7-10], where differential operators
of mixed and hyperbolic types were investigated. In contrast to the above works, here we investigate
previously unconsidered degenerate elliptic equations with an arbitrary power-law degeneracy on the
degeneracy line.

Definition 1. The function u € Lo(2) is called a solution to (1)—(3) if there exists a sequence

{uk(z,y) 172, C G5 () such that

*Corresponding author.
E-mail: igisinovsabit@mail.Tu
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|lug — ull2 = 0, ||[Lux — f|l2 — 0 as k — oo.

By C(]0, 1], La(—m, 7)) we denote the space obtained by completing the set of continuous functions
on the interval [0, 1] with values in Lo(—m7, ) relative to the norm
1
™ 2
Jullcqonan = sup | [ luoy)Pds
yel0a] \ 1

and W3 (€2) is the Sobolev space with norm

1
lullz,ne = [llual3 + lluyllz + lull3] *

where || - || is a norm of Ls(€2).
Definition 2. [11] Let A be a completely continuous linear operator and |A| = v/ A* A. Eigenvalues
of |A| are called s-numbers of A.
Nonzero s-numbers of L ™! will be numbered in descending order, taking into account their multiplicity,
so that
se(L7Y) = M(IL7Y), k=1,2,3, ...

Theorem 1. Let a(y), c(y) are piecewise continuous functions in [0, 1] and satisfying the conditions
i)a(y) > dp > 0,c(y) > 6 > 0.
Then there exists a unique solution u(zx,y) to (1)—(3) such that

lello),L. + lullz10 < coll £l2

for all f € La(£2), where ¢ is a constant.
Theorem 2. Let the condition i) be fulfilled. Then the estimate

1 1
1+ < s < Cgfl,k = 1,2,3,...
k 3

holds, where ¢1, ¢ are constants, 0 < ¢; < ¢, sg is singular numbers (s-numbers) of L1
2 Auxiliary lemmas
Lemma 1. The estimate
[ Lul|2 = clull2 (4)

holds for all uw € D(L), where ¢ is a constant.
Proof. Let C@?ﬂ(ﬂ). Integrate by parts and taking into account the boundary conditions we have

< Lu,u >> /(uz + c(y)u?)dzdy + /k(y)ugdxdy
Q Q

and

< Lu,uy >= /a(y)uidxdy.
Q

From these relations we obtain (4) using the Cauchy inequality with "e"and taking into account
the condition i). Lemma 1 is proved.
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We denote by [, the closure of the operator
Lou(y) = —u” + (n?k(y) + ina(y) + c¢(y))u,n = 0, £1,+2, ...

defined on C§°[0, 1], where C§°[0, 1] is a set of infinitely differentiable functions satisfying the conditions

(3)-

Lemma 2. The estimates
”lnuHLz(O,l) > Cl(||U/HL2(0,1) + HUHLQ(O,I))v (5)

1lnullLy0,1) 2 c2llullepo,, (6)

hold for all u(y) € D(l,,), where c¢1, co are constants.
Proof. Let us compose quadratic form (I,,u,u), u € C§°[0, 1]. Integrating by parts we obtain

/Ol(lnu)ady‘ =

Hence, using the inequality |« + 5| > mazx(|a|,|]) (o, 8 € R), the inequality Schwartz and the
Cauchy inequality with "e > 0"we obtain

1
(b, u)| = /0 (' + (nk(y) + ina(y) + c(y))|uf*)dy| .

||lnu||%2(071) > n262||u”%2(0,1)’

T 1
Ml yion = o [ (" + el -+ [ nhiw)luf)ay. (7)
From (7) taking into account k(y) > 0 we have
lnelZ 0,0y = calllull? 0,0y + 1412 40,1) = crllullyy o1y-
Since the embedding operator of the Sobolev space W3 (0, 1) to [0, 1] is bounded it follows that

llntll 2o00,1) = c2(llullcpo

which is true for all w € D(L). Lemma 2 is proved.

Lemma 3. The operator [, is continuously invertible.

Proof. Taking into account (5) it is enough if we show the density of D(l,,) in La(2). Assume the
contrary. Let the set D(l,,) is not density in L2(0,1). Then there exists nonzero element w € Ly(0,1)
such that (l,u,w) = 0 for u € D(l,). Hence since the set D(l,) is not density in Ly(0,1) we obtain
that w is a solution to l[iw = —w” + (n%k(y) + c¢(y))w = 0. From this equality it follows that w” €
L2(0, 1) by virtue of the continuous coefficients on [0,1]. Now we show that w(y) satisfies the condition
w(0) = w(1) = 0. Integrating by parts we obtain

0= (u,llw) = (lyu,w) — v (1)w(1) + v (0)w(0)
for all u € D(l,). Last equality holds if w(0) = w(1) = 0. Therefore w € D(l,,). Then, we obtain

llnwll y0,1) = cllwl Ly0,1)

same as (5). It is shown that w = 0. The resulting contradiction proves the lemma 3.
Lemma 4. The following estimate holds for [ !

1
nll2o(0,1) = La(0,1) = = +1, 42, ...
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Proof. Taking into account the condition i) we have for any function u € C§°[0, 1]

1
(] = | [ ina(y)\uﬁdy\ > Inldollull2, 0.1

Hence, using the Cauchy inequality we obtain
1TnullLyc0,1) = [nldollul Lo0,1)-
From the last estimates it follows Lemma 4.
8 Proofs of the main theorems

Proof of Theorem 1. The existence and continuity of [, ! follows from Lemma 3. Let u,(y) =
(1.1 f2)(y). By direct verification, we make sure that the function

k

k
up(z,y) = Z un(y)em"j = Z (l;lfn)(y)eim:

n=—*k n=—~k

is a solution to (1) with the right side

k
=Y faly)e™

n=—=k

which satisfies the condition (2)—(3). Moreover the following equality

k(@ DLy ) =27 Y Jun(y)]®

holds. Then from the estimate (5) it follows that

sup Huk(i&y)H%Q(fﬂm) 27 Z sup |un(y

y€(0,1] n——r YE[0,1]
k
<e2r Y ||znuHiQ<0,1>_cz2wZ £ 50,0y = ell falz, w13 (8)
n=—Fk n=—k

From Lemma 4 we have

dug(z,y) 0 < - ;
12218 = M5 D G ) @)™ B = llin Y (1 fa) ()™ |3 <
ox Ox = =
< Z |n] s 1||L2(01 —L2(0,1) an||L201 = 52 Z an||L201 5(2)||fk(337y)”§' 9)
n=—k 0 p=——~&

Similarly, using estimates (5), (6) we obtain

auk(x,y) 2 2 9 . -1 inTy |2 . -1 nxy (|12
HTHQ + [Jukllz = Ha*y MG ER)@EME D U ) @)™l <

n=—~k n=—~k
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5 <=2|| filz,y)ll5. (10)

k k
<D I+ DD Il

n=—"k n=—k

It is known that a set of functions

an e (k=1,2,..)

n=—Fk
is dense in Ly(2). Therefore, we can assume that || fx(z,y) — f(z,y
sequence { f}72, is fundamental, and by virtue of estimates (8)—(10)

lur (@, y) — um(z, Yl cqo,1), o) + llur(,y) — um(z,y)ll21.0 <

)2 — 0 as k — oo. Then the

fm(xﬂﬁ”Q_?O

< el (. y) —
)) and W3 (§2) are complete, it follows that the

as k,m — oo. Hence, since the spaces C([0, 1], La(
sequence {up(x,y)}32 . has limit u(x,y), for which, by virtue of (8)-(10), the estimate

lulleqo,cyy + lullzi.a < ¢l fll2

holds. Theorem 1 is proved.

Let us introduce the sets
M = {u € Ly(®) : | Lullo + Julle < 1},

1

) = (luzll + lluyl3 + [ull3)? < e},
1
2

M., = {u € C(]0,1], La(—
M1 ={u € Lo(Q); (Juaall3 + lluyyll3 + lluall3 + luyll3 + [[ull3)2 < '}

where ¢ > 0 n cfl > 1.

The following lemma holds
Lemma 5. Let condition i) be satisfied. Then for some constant ¢; > 1 the inclusions

Mc;1 C M C M,

hold.
Proof. Let u(z,y) € M -1 Then, taking into account condition i), we obtain
1
1Zall3 + )3 < ea(lluas 3 + gy 13 + sl + luy 3 + lull3)? < e,

max {[k(y)], [a(y)], lc(y)]}-

where ¢y =
y€[0,1]
Hence, assuming ¢y = ¢1, we have M -1 C M.
Let u € M. Then it follows from Theorem 1 that

1
(luzll3 + lluyll3 + lull3)2 < C(ILullf + [lul3) < C,

ie. M C MC By choosing a constant ¢; such that ¢; > ¢ we obtain the assertion of the lemma. Lemma

5 is proved.
Lemma 6. Let condition i) be satisfied. Then the estimates
cldy < dp <cdy, k=1,2,...
55
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hold, where ¢ > 0 is an any constant, givk, dg, dj, are the k-widths of the sets respectively MC, M, Mc—l.
The proof of this lemma it follows from Lemma 5 and the properties of the widths.
Let us introduce the functions

=Y LNV =) 1LNXN=> 1,

dp>A dp>A dp>A

equal respectively to the number of widths dj(M), di, and dj, are greater than A > 0. Estimates (8)
easily imply the inequalities . B
N(cA) < N(\) < N(c7 1))

Proof of Theorem 2. It is known that the estimates
gIATZ <N < A2, (11)
oA N < oAt (12)

hold for the functions N(A) and N(A). Let A = di. Then N(dj,) = k. Therefore from (11) and (12) it
follows

1 1
1 b <d < 1 < Oy~
C \/* k CO\/E’ CO k _dk Cok

respectively. Hence, taking into account estimates (7) and the equality s 1(L~!) = dj we obtain
1

Ch T
k3, k=1,2,3,...

<s

| /\

Co

w\'—‘

Theorem 2 is proved.
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ko3 durmenTrepi 6ap guddepeHnna bl OepaTOPAbIH aHBIKTAIY OOJIBICBIHIAFBI (DYHKIIUATIAPILIH 63Te-
pyiHe 6afIaHBICTHI TYBIHIANIBIH [IIEHEITEH OOJIBICTAFbI MMEKAPAJIBIK, €CENITEP/IIH CIIEKTPAJIBIIK CUIATTAMA-
JIapBIHA DCEP €TETiH 9PTYPJIi KUBIHIBIKTAPIbI KEHY/IIH 9JICTEPIH YCBIHFAH OCHI KYMBICTA IIENTiMHIH OOJIy b
MEH >KaJIFBI3/IBIFBIH KAMTAMAChI3 €TeTiH TeHIEeYAiH Killi MyInesaepi KoadduIimeHTTepi YiiH KOWBIIFAH Iap-
Trap Kepceriiren. Illemimuin 6ap 60Iybl, KAJFBI3ALIFEI MEH TETICTIN JI9JIEJIIEH i, COHBIMEH KaTap €pKiH
JOPeKeJTi O3Telle/IeHeTIH JUTHITUKAIBIK, TeHIEYIeP/IiH Oip KIachlHa KONBLIFAH KapThlaail mepuonrsr Jlu-
puxJie ecebiHiH CHHIYJISAPIIBIK, CAHAAPDI (S-CAaHAAPBIH) MEH MEHIIKTI CAHJAPBIHBIH GAFachl AJIBIHIBL.

Kiam cesdep: 3JLITMIITUKABIK, OIIEPATOP, MEKAPAJIBIK, €CEIl, CHHTYJISIPJIBIK, CAHIAp, JOPE’KEJIiK O3releseHy,
IIeITiM, YKAJFbI3/IbIK,.

C.2K. Urucunos, JI.J1. ZKymamesa, A.O. Cyneitmbexora, E.H. Basunnes

Tapasckuti pezuornasvrnti yrusepcumem umenwu M. X. JTysramu, Tapas, Kazaxcman

Ol1eHKN CUHTYJISIPHBIX YUCeJI (S-9mcest) JJjisi OJHOTO KJIACCa
BBIPOXK IAIOMINXCS 3JIMIITUIECKUX OIEePATOPOB

B crarbe usyueH ouH KJACC BBIPOKIAIONUXCS SJUIMIITHIECKUX YPABHEHUI C IMPOU3BOJIBHBIM CTEIIEHHBIM
BBIPOXK IeHUeM Ha, 1psiMoii. Ha ocHOBe ucciieioBaHumil, IPOBEIEHHBIX B X0/1€ PA0OTHI, AaBTOPAMHU [1PE/JIO?KEHbI
METO/IbI, TIO3BOJISIFOIIIE MTPEOIOIETh PA3JINYHbIE TPYIHOCTH, CBSI3aHHBIE C MMOBEIEeHMEM (DYHKIMi U3 00J1a-
cTu ompezieseHus auddEPEeHITNATBLHOTO OIEePATOPa ¢ KYCOIHO-HEIIPEPBIBHBIMU KOIMDMUITMEHTAMI B OI'Pa-
HUYEHHON 00JIACTH, KOTOPbIE BJIMAIOT Ha CIIEKTPAJIbHBbIE XapaKTEPUCTHUKHM KPAEBbIX 3a/a4 JIJIsi BBIPOXK A~
FOIUXCS JUIMIITUIECKUX ypaBHeHuil. [lokazaHbl ycI0BUs, HAJIOXKEHHbIE HA KOI(DMDUITUEHTHI IPU MJIAJIIITAX
WiIeHaX ypaBHEHUsl, 00eCIIeYnBaOIINe CYIECTBOBAHNE U €JIMHCTBEHHOCTD perieHus. Jloka3aHbl CymiecTBo-
BaHUe, eJUHCTBEHHOCTb U IVIAJKOCTD DENIeHNs, & TaK>Ke HaNIEHbl OIEHKN CHHIYJISIPHBIX THCEJI (S-9ucest) u
COOCTBEHHBIX YUCET IOy IEPUOANIEeCcKOil 3aaun Jlupuxiie 11t OJHOTO KJIacca BBIPOXKTAFOIIUXCS SJIIUITH-
YECKUX YPABHEHUI C IPOU3BOJILHBIM CTEIEHHBIM BBIPOXKICHUEM.

Kmouesvie cao6a: SJUTMITHIECKUAIN OllepaTop, KpaeBasl 3ajada, CUHIYJIsIpHbIE YUCJIa, CTEIIEHHOE BBIPOXK/Ie-
HUE, pelleHne, eTNHCTBEHHOCTD.
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A priori estimate of the solution of the Cauchy problem
in the Sobolev classes for discontinuous coefficients
of degenerate heat equations

Partial differential equations of the parabolic type with discontinuous coefficients and the heat equation
degenerating in time, each separately, have been well studied by many authors. Conjugation problems for
time-degenerate equations of the parabolic type with discontinuous coefficients are practically not studied.
In this work, in an n-dimensional space, a conjugation problem is considered for a heat equation with
discontinuous coefficients which degenerates at the initial moment of time. A fundamental solution to the
set problem has been constructed and estimates of its derivatives have been found. With the help of these
estimates, in the Sobolev classes, the estimate of the solution to the set problem was obtained.

Keywords: conjugation problem, heat equation, degenerating equations, discontinuous coefficients.

Partial differential equations of the parabolic type with discontinuous coefficients are studied in
the works [1-8]. Time-degenerate equations of heat conduction are studied in the works [9, 10]. The
conjugation problems for the periodic equations of the parabolic type with discontinuous coefficients
are slightly studied. We consider the Cauchy problem for a degenerating equation with discontinuous
coefficients: find functions uq(z,t), us(z,t) that satisfy the equations

tpaautl =aiAu + fi(z,t), (2,t) € D, 4 ={(z,t),2' € R" ', z, <0,t >0}, (1)
8u2 2 " , -
tpW :(ZQAUQ—’_fQ(x;t), ($,t> 6Dn+1 e {(l‘7t)7x GR 7$TL > 07t> 0}’ (2)

with initial conditions
ui(z,0) = p1(x), wu2(z,0) = p2(x), (3)

and with conjugation conditions

(51 = U9 y (4)
Tn=—0 Tpn=-+0
8U1 a’uQ
k1— =ko—— 5
189571 Tn=—0 28% — )

where ' = (21,22, ..., Tn_1),
ki>0,p<1,(i=1,2).

The feature of the problem is that equations (1) and (2) with discontinuous coefficients degenerate
at the initial moment ¢ = 0.

*Corresponding author.
E-mail: koylyshov@mail.ru

Mathematics series. Ne3(107)/2022 59



U.K. Koilyshov, K.A. Beisenbaeva, S.D. Zhapparova

Method of solving.
To solve problems (1)—(5) let us consider an auxiliary problem A: in the domain D,;(z € R,

t > 0), find functions wu;(z,t), ua(x,t) that satisfy the equations

0
%:Aul—’_fl(x’t)’ (x’t)GD;Jrl:{(%t)vx/eRn_lﬂ?n<07t>0}7 (6)
%2 Nyt o), (0.0 € Dl = {0t RN ma 0050 (0

with initial conditions

ul(xvo) = @1(13)7 ’LLQ(.’E,O) = 902(x)7 (8)

and with conjugation conditions

uy = U2 > (9)
Tn=—0 Tn==40
8’&1 8u2
k =k 10
'Oy 2n=—0 Oy Tn —to 10

where k; > 0, (i = 1,2). Applying to problem (6)7(10) the Fourier transform with respect to variables
2’ = (r1, 22, ..., y—1) and the Laplace transform with respect to variable ¢, we obtain an inhomogeneous
second-order differential equation

> u ~ = N

W; - (p+ ‘3/|2) up = —fl(s/,xn,p) - Wl(slawn)v Ty <0, (11)
n

T ~ = N

W; - (p + |8/|2) Ug = _f2(8/7xnap) - @Q(Slvl'n)v Tp > Oa (12)
n

where s’ = (s1, $2, ..., Sp—1). Conjugation conditions (9)—(10) take the following form:

U1 = U2 R (13)
rn=—0 =40
d, d s
k1—— = ko—— , 14
dl‘n rn=—0 dx" =40 ( )

The solutions to equations (11)—(12) have the form:

60

Tn
= 1 ~ - ,
Ul(s’,lﬂmp) =1c — W/Fl((s”gmp)e—\/mfn dén, e\/m$"+
D+ s

2 ‘ |2 / 6 p+|8 " d§ e p+|s’|2xn’ Tp < 07
VPt s

Tn
= 1 ~ - /
HQ(SIVTTMp) = dl - 2_'_‘/|2/F2(8/7€n7p)6\/p+75|25n dfn e\/mﬁn_i_
p+|s

Y, +\ |2/ p)eV P dg, | em VR g, > 0,
p S
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here F;(s',xp,p)

= 0 Fl(S, fnvp)

ui (s, zn,p) = [ /e

—0o0

e VPHS P (En—2n) ge

~ toE
Un(s', 2n,p) = [ Fa(s' &n,p)

0 2\/ p+|5/‘2

0 =
F ! 3 —\/ / -
—00
here A = P2, gy = 29— (i=1,2).

The solutions to equations (6)—(10

‘“7 §| +(zn §n)

= ?i(sl,xn,p) + @i(s, xn), (i =1,

(e—\/p+\51‘2|wn_§n| +)\e‘/p+|5/\2(x”+f")> d§n+

z, <0,

(e—\/pﬂs'mxn—m _ Aef\/W(xnm)) de, +

) have the form:

e’ =& P+ (@n+En)?
4

- [ | [y

+00 o/ €12+ (xn—€n)?
+ p2 / / ‘ - @2 (&
2/7t)"
e (2v/t)
0 &’ —¢' |24 (zn —€n)2

4(t—T)

+A S e \/;;)n }w(g’,gn)ds’dm

,&n) d€'dén+

e’ =& P+ (@n+en)?
e 4(t—T1)

T//M

+oo

t—T))

o’ &' 12+ (2 —En)?
4(t—T)

o’ —&'|%+(2n—En)?

} ful€ &, 7) d€'dgn+

4 (2 m(t — T))n

/ / 6(2 =k fol€ 60 7) dE'dE,, Dy,

e’ =& P+ (zn+en)?

Rfl [ e

2’ =24 (an—n)? +(xn &n)?

e

Rnl—

o1&

+00 o’ —¢’|2 +<zn &n)?

4(t—T)

A m) }m@',gn)ds’dw

,&n) d€'dEp+

2’ =&+ (@n+€n)?

0 _l/-¢1?+@n—tn)?
A(t—T1)

/[e(z i)

where d¢' = d&idés - ... - d&p—1, |2 =& =

/ 6(2 =k f1(€ €, 7) dE'de,,
w(t—T1

e 4(t—7)
A n :|f2(§,7§n77—) d£/d£n+
(2\/7‘(’(75 - 7'))

D+

no

Vi(wr —&)?

introduce the notation G(z' — &', xy, £&,,t) = £
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V)" . Then

+ (ajZ — 52)2 —+ ...+ (l'nfl - 5n71)2'

_ ‘xl—ﬁl\2+g$ni§n)2
Iz s A enZen)

2). We obtain a solution to problem (11)-(14):

We
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0
w(z,1) = / / {Gu'—s',mn—fn,o+AG<x/—s’,xn+§n,t>]w<§',§n>d§'d§n+

Rn—1 —oc0

+o0o
T / / (@ — € — s Opa(€', £0) dE'dEn+

e (16)
+ dT |:G<.T/ _517‘7:71 _£n7t_7—) +)‘G($/ _€I7$n+§n7t_7—):| f1(§17€n77—) dfldfn—’_
[=] ]
t “+o0
T / dr / / Gla! — €ty — Enit — 1) o€ &0 7) dE'dEn, Dy,
0 Re-1 0
“+o0o
U2(1‘7 t) = / / |:G(l', - 5/7 Tn — gna t) - )\G(l’l - 5,7 Tn + gna t):| 902(5/7 fn) dfldfn-i—
R-1 0
0
v [ 66 =€ - (€ 6 de'de
fnmt oo (17)

t +oo

+/dT/ /|:G($/—fl,$n_€n,t—7')_)\G(x/_g/axn+§nat_T)}fQ(glvfmT)dfldfn—'_

0 Rr—1 0

t 0
+ 1 dr G(I’l 7§I,xn *gnat 77')f1(§,,€n,7') df’dfn, D'r—i_
(]/ R/l 4

We have obtained the solution to auxiliary problem (6)—(10) in the form (16)—(17).
_lz?
Using [11], for the function I'(z,t) = ﬁ, we obtain an estimate:
Ce_‘;%
k
|Dg D{"I(z, )| < %ﬁ
This estimate is valid from [12]. Here § < 7.
For the function G(z' — &', 2,1 — &,—1,t) the same estimate can be given:
g2
o528

tn—é—k +m

IDEDY'G (2! — € a1 — &1, t)] <

Now consider the auxiliary problem B. Consider the Cauchy problem for a degenerate heat equation:
in the domain D}, | = {(z,t),z € R",t > 0} to find a function u(z,t) that satisfies the equation

tp?;Z = Au+ f(x,t), (x,t) € Dypy1 ={(z,t),z € R",t > 0}, (18)

with initial condition

u(z,0) = p(x). (19)
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By applying the Fourier transform in variables = (21, ..., z,) to equation (18)

(] (20)

we obtain a non-homogeneous differential equation of the first order. Here s = (s, s2, ..., Sn),
= /57 +s3+..+52, p< 1. The initial condition (19) takes the following form:

u(s,0) = @(s). (21)

Taking into account the initial condition (21), the solution to equation (20) has the form:

2 _@i=1h Tq) 2
(s, 1) = s f sl

dr, (22)

hereq=1—p
Applying the inverse Fourier transform to equality (22), using the convolution formula, formulas [13]
and (15), we obtain a solution to problem (18)—(19):

] 2 | 3 qlz—¢[?
uet) = [ e i e [T [ e W e e (2)
B <2\/ﬁ) 0 B (2 (4 —Tq))

% ||
If we introduce the notation I'y(z,t) = (ane_qM, then formula (23) can be written in the form:
2/ 7t )

(o, t) = / S —t) d£+/dT/ €t — 1) (6, 7) de. (24)

RTL

In [14], the function I'g(z,t) was constructed in one-dimensional space. As shown in [12|, for this
function we can accept the following estimate:

|2

k Ce®ir
|DEDIT (2, )] < ———— (25)

= tq(n;—k) +m

where § < i.
The results of research.

Now let us solve the main problem (1)-(5). Using the solutions to auxiliary problems A and B, the
solutions of which have the form (16)—(17) and (24), we can obtain the solution to problem (1)—(5) in
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the form:
= [ / [ = 60 8) + XG0 = €00+ 60,0)|1(€ ) A+
Rn—1—
v f / Go(a' = €00 — s )2 €, E) dE'dEt
o (26)
/ / / Gala’ = €00 = st = 7) 4 A Gyl = € - = )| (€1 6007 €l
0 Rn—1—
d +°°
+M2/7_; / / Gq(l‘,—f/,l‘n—fn,t—T)fg(f,,ng) dEldfn, D;,
0 Rn-1 0
“+oo
UQ(ZE, t) = / / |:Gq(lj - 6/7 ZTn — &n, t) - A Gq(xl - 5/’ Tn + Ena t):| 902(5/7 gn) d£/d£n+
RA1 0
| / T — s )1 (€, €0) dE A6+
Rt oo (27)
/ / / Gala’ = €00 = G0t = 7) = A Gyl €+ = )| Fl€' 7)€l
0 Rr-1 0
d
n / e / Gola' ~ €2~ &yt = DVA(E o) dE'd, DY,
0 Rn—1 —o0
n _—ale' =€ 2+ (zntén)?
where  Gy(a’ =&, z, £&,,1) = g2e (2\/£t)qn . Thus, we have completely solved problem (1)-

(5). It is easy to check that the obtained solutions (26)-(27) satisfy equations (1)-(2), initial conditions
(3) and conjugation conditions (4)-(5). A similar estimate can be obtained for the function Gy(2’ —
6/7 Tn — ény t)

lz—¢|
Ce 0

RSN,

| DED}" Gyl — € an — &n, )] < (28)
The solution to problem (1)—(5) and estimates (25) and (28) can later be used in the study of differential
properties and obtaining a priori estimates of initial-boundary value problems in the Sobolev and Holder
classes for non-stationary heat equations.

Let us consider the following potential of the initial condition:

“+o00

hel(a,t) = / /q

e~ YT (e €,) dE'dE,
e (wm)

|3

hy(a,t) = / / Gl — & 0o, &) de'de, = / Gyl — 6,00 (€', &) de'dey,
J
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here
* (/ _ 90(87571)7
® (§ 7€n) - {O,

S t) /G — & 0)" (€, &) dE =

&n > 0,

£ <0

Dihg(z,t) = /Dth(y,t)gp*(a: —y)dy.

As DiGy(—y,t) = DiGy(y,t) is a even function, at the same time, for any ¢ >0 [ D,G
Rn

(.) [mx Cy) - 20 @) + oMot y>] dy. Using

da:)

|D:Gy(y,t)| < Ce Stq , taking into account the inequality, we obtain the following estimate:

It can be written as follows: Dihg(z,t) = L [ D,G
RTL

Minkowski’s inequality:

(/‘Dthq(az,t) sd:c)i _ ;/
s

Rn
ly|2

C

I Debola, Ol < gy [ e

R’I’L

where  N(y) = ||¢*(z — y) — 29" (x) + ¢*(z + y)||s,rn. We write inequality (29) as follows:

C _lw?
Db Ol < /e e
RTL

where % + = = 1. Then using the Gelder inequality:

1
C W :
Dt Ol < g ([ 80 Noyay) ([t

Rn

taking into account 5 =1- % we get

So

Cy _
| Duhy(, ) ls.n < tH( / )
Rn

Now let us take a norm || Dihg(2,)||s, D,y -

Mathematics series. Ne3(107)/2022

ly|2
8td

2
lyl
8tq .

2
[y

. e_ 8tqs/ .

N(y)dy,

N(y)dy,

- N*(y) dy)

s

x—¢ —y‘ /G y, t)e*(x —y) dy,

D0 [ || =) - 207+ 9740
s

Then from the last inequality we get:

oy, t)dy =

0 |=

0.

(29)
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2
if we introduce % =z a replacement:

s
1

y) = 2¢"(2) + " (z +y) 1

N*5(y ‘ B s
[ Dehg(z,)]s,041 < C2< % ) <// P dxdy) ,
oyl lyl o

R™ R

s

ot 2 e ri)] s
L p> %_l </ da:/ - dy> i (30)
wa TR A, yls

Given that (30), then

[Dehg(z, )lls,0p1 SC<<9"> 2.2 .
W% (Rn)

As estimates Djhy(—x,t) = Dihg(x,t) and DjG4(x,t) are consistent with estimate D;Gy(z,t), the
estimate || D2hg(x,t)|s, is also taken similarly. Therefore, the following inequality is obtained:

||Da%hq(957t)”s,Dn+1 SCKP"> 2 2 .
qu qs (Rn)

Theorem 1. The potential of the initial condition satisfies the estimate:

L hg(x,t) >y, SO <" >

2_2 ;
qu qas (Rn)

where
<K he(z,1) W2 (Dpyr) = || ot ”s Dnyr T Z ”3 3$ lls,Dps1-
7]7

This notation < . > means the main part of the norm in the Sobolev classes.
Consider the following volume potential

gq(:c,w:/ / /G (2 — &t — 1) (€ &) dE'dEs,

0 Rn—1

Using the method [15], the following theorem can be proved.
Theorem 2. The following estimates are appropriate for the volume potential:

< gq(2,1) >>VV52’1(Dn+1)S CHfHWsQ’l(DnH)’ (1<g <o),

where
n

9’9
nt1 T Z Hax 8(.]1’ H57Dn+1'

7.7_

<L gq(z,t) >z p

n+1)

This notation < . > means the main part of the norm in the Sobolev classes.
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1 .
Oa-DPapabu amvndazv, Kasax yammok yrusepcumemi, Aamamoi, Kasarxcman;

2KP FBXX BowcE'M FK Mamemamuka scone Mamemamukaivr modeavdey uncmumymos, Aavamo, Kasaxcman;

3 Toeucmusa owcone xorik axademusco, Aamamot, Kasaxcman

KosddburmenTi y3iigicTi XKbLIyeoTKI3rinmTik Teqaey ymiia Komn ecebi

HIeNIiMiHiH co00JIeB KJIaChIHAAFbI allPUOPJIbIK Oarachl

Koaddunuenrrepi yaimicri napaboiaablk TANTI JepOec TYbIHIABLILI JuddepeHInaliIblK, TeHIEeYIep KoHe
YaKbIT OOMBIHIINA ©3rellejIeHIeH KbLITYOTKI3TIITIK TEeHJAEYIEPIiH 9PKANCHICH YKEKe-2KEKe KOITEreH aBTOp-
JIapMeH KakChl 3epTrenren. KoaddummenTi y3imicTi yakpIT OOUBIHINIA ©3TeIIeIeHreH TapabosIaIblK, THIITI

Mathematics series. Ne3(107),/2022 67



U.K. Koilyshov, K.A. Beisenbaeva, S.D. Zhapparova

TeHJIeyJIep VIIH Tyi#iHIec ecenTep ic XKy3iHge 3eprresmMered. Makasaga n-eJimeM i KeHiCTiKTe 6acTanKbl
yakpIT Me3eTingeri koadduimenTrepi y3iaicTi e3relenenres *KbUIyoTKI3MIITIK TeRaey yiuin 6ip Tyitiagec
ecen KapacThIpblLIFaH. Koiibutran ecenTiH ipresi mremmimMi TaOBIIABI KOHE OHBIH, TYbBIHIBLIAPBIHBIH Oarachl
aJIBIHIBI. AJIBIHFAH HOTHYKEHI KOJIIaHa OTBIPBII, GepijireH ecentiy mentiMiliy coboJIeB KIIaChIHIAFEI Oarachl
TaOBLIIbI.

Kiam ceadep: Tyitinznec ecen, »KbIIyOTKI3IIITIK TEH/EY, ©3relle/IeHIeH TeH ey, y3lricTi koaddunueHTrep.

V.K. Koitnermos!'?, K.A. Beiicenbaesa?, C./I. Kammaposal

! Kasazexuti nayuonarvnsdi yrusepcumem umenu Aav-Papabu, Asmamol, Kazaxcman;
2 Huemumym mamemamuky, u mamemamuseckozo modeauposanus KH MOH PK, Aamamo, Kazazcman;
3 Axademus nozucmuru v mpancnopma, Aamamo, Kazaxcman

AnpuopHas olieHKa pelieHus 3aga4un Korm
JJIS BBIPO2KJIATOIIET0CsT YPABHEHUS TEMJIOIIPOBOIHOCTI C PAa3PbIBHBIMU
KO3 PuIiimeHTaMu B COO0JIEBCKIX KJIaccax

Huddepenrmaabable ypaBHEHUS B YaCTHBIX ITPOU3BO/IHBIX [1apabOIMIECKOro TUIIA C Pa3pbIBHBIMHU KO3 dU-
[IMEeHTAMU W BBIPOXKIAOIINECS TI0 BPEMEHU YPaBHEHUS TEIJIOMPOBOIHOCTH OTIAETLHOCTH XOPOIIO U3y YEHbI
MHOTHMHY aBTOPAMU. 33/Ia9H CONPSI?KEHUS JIJIsT BBIPOKIAIOIIETOCS IO BPEMEHU yPABHEHUSIM TapabOoInIeCcKo-
ro THIIA ¢ Pa3PbIBHbIMHA KO3 UIMEHTAMY TPAKTUYECKU He U3y4YeHbl. B craThe paccMOoTpeHa OHa 3aa4a
COTIPSI?KEHUST JIJIsl YPaBHEHUSsI TEIJIONPOBOJHOCTH C Pa3pPBIBHBIMU KO3(MDUIMEHTAMHU, BBIPOXK IAIOIIEr0Cs B
HaYAJbHBII MOMEHT BPEMEH! B N-MepHOM mpocTpaHcTBe. I[locTpoeHo dyHmaMeHTaIbHOE PEIleHne TTOCTaB-
JIEHHOW 3aJIa4¥, U HaiijieHa OleHKa ee NPOou3BOAHBIX. C IIOMOIIBIO STUX OLEHOK II0JIyYeHa OIEHKA PEIIeHUsI
[TOCTABJIEHHOMN 3329l B COOOJIEBCKUX KJIACCAX.

Karoweswie caosa: 3aaada CONPSIPKEHNsI, yPABHEHUSI TEIJIOIIPOBOIHOCTH, BHIPOXKJAIOIIMECS yPABHEHNUsI, Pa3-
PBIBHBIE KOI(DDUITUEHTHI.
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Two theorems on estimates for solutions of one class of nonlinear
equations in a finite-dimensional space

The need to study boundary value problems for elliptic parabolic equations is dictated by numerous practical
applications in the theoretical study of the processes of hydrodynamics, electrostatics, mechanics, heat
conduction, elasticity theory and quantum physics. In this paper, we obtain two theorems on a priori
estimates for solutions of nonlinear equations in a finite-dimensional Hilbert space. The work consists of
four items. In the first subsection, the notation used and the statement of the main results are given. In
the second subsection, the main lemmas are given. The third section is devoted to the proof of Theorem
1. In the fourth section, Theorem 2 is proved. The conditions of the theorems are such that they can be
used in studying a certain class of initial-boundary value problems to obtain strong a priori estimates in
the presence of weak a priori estimates. This is the meaning of these theorems.

Keywords: finite-dimensional Hilbert space, nonlinear equations, invertible operator, differentiable vector-
functions, a priori estimate of solutions.

Introduction

The problem of describing the dynamics of an incompressible fluid, due to its theoretical and
applied importance, attracts the attention of many researchers. In mid-2000, the Clay Mathematics
Institute formulated this problem as The Millennium Prize Problems on the existence and smoothness
of solutions to the Navier-Stokes equations for an incompressible viscous fluid [1].

Countless works were devoted to the solution of this problem even before it was declared the
problem of the millennium. Since there are an infinite number of them, we simply do not list them.
The given article provides an incomplete list of works [2].

Many first-class mathematicians who managed to solve other important mathematical problems,
including those in problems of gas-hydrodynamics considered this problem. Such prominent mathe-
maticians of the 20th century as A.N. Kolmogorov, J. Leray, E. Hopf, J.-L. Lions provided significant
results in their works. Complete solution to the problem for two-dimensional case given by O.A. Lady-
zhenskaya [3]. In [4], a complete analysis of the current state of the problem and a review of the
available literature, as well as proposed methods for solving the problem, are given. In particular,
the main problem of the global unique solvability of the three-dimensional Navier-Stokes problem is
reduced to the question of finding a strong a priori estimate for all possible solutions. Works [5]-[12]
are devoted to the study of the solvability in the whole of equations of the Navier-Stokes type, the
continuous dependence of the solution to a parabolic equation and the smoothness of the solution. In
papers [13], [14] questions about the formulation and their solvability of boundary value problems for
high-order quasi-hyperbolic equations were studied.

In this article, we obtain two theorems on a priory estimates for solutions of nonlinear equations
in a finite-dimensional space. These theorems are proved under certain conditions, which are borrowed

*Corresponding author.
E-mail: koshanov@list.ru
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from the conditions that are satisfied by finite-dimensional approximations of one class of nonlinear
initial-boundary value problems, rewritten in "restricted notation".

1 Used conditions and designations. Formulation of the main results

Let H be a finite-dimensional Hilbert space (10 < dim H = N < o0) and G is an invertible operator
in H such that |[|G]| < 1, ||G™!|| < co. We will be interested in the following equation

f(u):=u+L(u)=g¢€ H.

Throughout this paper, f (u) will mean an operation of the form u + L (u), where L (+) is a non-linear
transformation.

If € is a parameter from [0,+00) and the vector u (§) is a vector function that is continuously
differentiable with respect to the parameter £, then we assume that the vector function L (u (§)) is also
continuously differentiable (as well as the expressions arising from L(u) and f(u) below).

We introduce the notation L, :

(L (u(€)))e = Luue-

It is obvious that L, (for every w € H) will be a linear operator

Lyv = (L (u(§)))e

Ug=v '

We have
(f (u(€)))e = ug + Luug = (E + Lu) ug.

Here and throughout follows, E is the identity transformation.
Operator adjoint to L, denote by L, that is L} = (L,)". Denote

u
Dy =E+ LDy f (u) = f(u) + Ly, f (u).
If w is a differentiable vector function, then we set
(D5, f(u))e = Myug.
Here M, is a linear operator for fixed is defined by the formula

Muv = (MU’LLg) ‘

Ug=v"

We will use the following conditions C1-C4.

Condition 1. If u, v € H, then the transformation L, and L continuous in H, L (0) = 0 and the
conditions are met

[1L(w) = L(v)|| < d(ull)[[u = vl,
1w = Lollr—n +[[Ly = Lyllr—m < d([Jul)llu =],
1Dl < (f[ulDlo]l,
Mo < @((lulDllv],

where || - || = || - ||&, () strictly monotonously increasing on [0, o) positive continuous function.
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This condition is natural, since H is certainly, as a rule, it is performed. Therefore, we will use this
condition often without stipulating. We will sometimes use the above designations without reservations.
In addition to them, we give often the frequently used designations

v(u) = (DX f(u), w)||u) 2,
p(u) = (|Gl 72,
S(u) = Dy f(u) = y(u)u — K (u)R(w)
R(u) = G*Gu — p(u)u,
<G*Gu__u@0uyDZf@0“Wﬁ7>
|G*Gul? |

J(u) = [ exp(=||f(w)[?).
Condition 2. If u-operator’s own vector G*G, then the inequality has been fulfilled

K (u) =

lull* < (IF (@)1 +2)™,

where m—integer number, m > 2.

Condition 3. For any u € H evaluation is made
1Gul® < d||f(u)]*
For some 0 #u € H

IA{, f <Muaya> - W
=in ,
|Gall?

where the infinum takes on all such a € H, that
llal| = 1, (G*Gu,a) = (u,a) = 0.
Condition 4. If 0 #w € H, S(u) =0, K(u) > 0, then
Kd <1-4,
fair, where § € (0,1).

Theorem 1. If the conditions C1- C4 are met then for any w € H fair assessment

[ul* < C exp(]| £ (w)[[), (1)

where C-does not depend on u and depends only on the conditions C2, C3, C4.

Remark 1. Since G is an invertible operator, we immediately have from condition C3 that the
following estimate holds:

lull* < IGTHP 1 Gull* < dllf (u)]*. (2)

When approximating an infinite-dimensional problem, the finite-dimensional quantity ||G~!|| can
tend to oco. Therefore, from (2) it is impossible to obtain the estimate for ||ul|.

Theorem 1 is extended to infinite-dimensional problems, and this is its meaning.

We present one more result.
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Theorem 2. Let H be a finite-dimensional Hilbert space. Assume that L(-) is a continuous transforma-
tion in H and D is a linear invertible operator. Let us pretend that L(0) = 0 and for any H we have
the inequality

(Du, DL (u)) > —6||Dul?

at some 0 < § < % Then for any g € H equation
u+tL(u)=g
has a solution satisfying the estimate
IDull* < (1 —26)~" | Dg|*.
Various forms of this theorem are well-known.
Basic lemmas
Lemma 1. If 0 #£ u € H, then the orthogonality equalities
(u, R(u)) = (u, S(u)) = (R(u), S(u)) = 0.

Proof. These equalities are consequences of the definitions R(u) and S(u).

Lemma 2. For any C > 0 ,
Mes = {u: ||u”2675||f(U)|| > C}.

Proof. Since G'is an invertible operator and condition C3 is satisfied, then for u € M¢ s we have

C < |ul2 e @7 < |y |2 e~ IGul < jjqy||2 =0 IGTHI72lull®,
This implies the boundedness of the set M¢ 5. But then, since H is non-dimensional, we obtain the
compactness of the set M¢ 5. Lemma 2 is proved.

Let us put
b(u) = sup [|Gul|?, (3)

where the supremum is taken over all such a € H, then
J(u) > J(u). (4)
Lemma 3. If 0 # % € H. Then there is a vector u, such that
|Gl = b(u) > |Gull?, J(@) > J(a).

Proof. The existence of the vector w follows from Lemma 2, since over a compact set is achieved on
some element of this compact space, and the suprenum set over which is taken is compact by Lemma
2 (see (3) suprenum and (4)). The lemma is proven.

We define a vector function as a solution to the problem

~ (5)

{% = 2 G* Gu+y S(u),
u(€)|e=o = U.

here 7 is the vector constructed in Lemma 3 for some 0 # u € H. For functionality J(u(¢)) and for
the norm ||Gu(§)|| using the orthogonality equalities of lemma 1 we have

(IGu(€)I*)e = 2(G*Gu, ug) = 2 || G*Gul]?, (6)
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Te(u(€)) =2 7w(©) (s ~ Do (€)ue) =

= —2J(u(&)) ([K(u(€)G"Gu(§) + S(u(f))], ue
=2J(u(€)) [~ = K(u(@)IG"Gu©)|* - y 1S (u(€)]*].

Lemma 4. Let u € H, U be from Lemma 3. Then the conditions a), b), ¢), d), e):

Proof. Let S(w) # 0. Then in (5) we choose
z=1,y=—[IS@|7?[1+ K@|G*Gu(&)|].
Then from (6) and from (7) we find

(IGu(©)e >0, Je(u(8)) > 0. (8)

This implies the existence of a number & > 0 such that the strict inequalities

[Gu(&o)ll > [IGall, J(u(éo)) > J(w). (9)

These inequalities contradict the origin of the vector w. Therefore, S(u) = 0 and done a).

Let us pretend that K(uw) < 0. If we choose z = 1, y = 0, then it follows from (6) and (7) that
(8) is satisfied. From (8) it follows that there is a small {, > 0, such that (9) is satisfied. We obtain a
contradiction with the definition of w. Therefore, b) is satisfied.

We define a vector function as a solution to the problem

(a,G*Gu) v«
{u§ =0~ & G*Gu,
(©)le=0 = u,

where a € H and (a, G*Gu) = 0. Because dim H > 3, such a vector e € H, |le|| = 1 exists. Thus,

(IGu(©) P)e = 2 e, G*Gu) =0 (10
JE(u(E)) = 2 u©) (S (ul€)). ) = 2706~ [ 5yfum)anue) =
=~ J(u(©)) [s<sn<u<n>>,ug>|n:os+g o) =
(1)

U

=2J(u(§)) [< T2 ™ Myuy, + K(u)G*Guuy, a>|,7:0§ + 520(1)} =

]

= 2J(u(®)) |z

In the last transition, we used the condition C3 and the equality u,|,—o = e. By definition K () from
(10) and from (11) it follows that if K (u) > K(u), then there exists a vector a and &y > 0 such that

1Gu(éo)ll = lIGull, J(u(§)) > J(u). (12)

~ (Mza, a) + K(@)|Gal]?| € + €20(1).
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Now, we define the vector function g(£) from the problem

{gs(f) = G*Cy(¢),
9(&)|e=0 = u(&o).

Then for g(u(§)) we have

13
IGo(©)]? = IGu(&o)||? +2 /{ 1G=G(m)|2dn.

From here and from (12) it follows that there exists & such, that & > & as for g(&;) relations (9) are
fulfilled, in which instead of £ taken &;. We get a contradiction. Therefore item d) of the lemma is
proved.

Suppose J(@) > J(u) and define the vector function g(¢) how to solve a problem

{gg(&) = G*Cy(¢),
9(&)|e=0 = .

For ||Gg(€)|| we have
2 ~112 ¢ * 2 .12 ¢ * 2
IGg (I = Gal® +2 /0 1G*Gg(m)|Pdn > (| Gil® + 2 /0 1G*Gg(n)|2dn.

Since for small £ the strict inequality J(u) > J (&) will not get spoiled, then from the inequality for
|Gg(&)|| we obtain that there exists & > 0 such that the strict inequalities .J (u(&)) > J(w), ||Gg(&)| >

0, which contradict the origin of the vector &. That’s why J(@) = .J(u). Item €) of the lemma is proved.
The lemma is completely proved.

Lemma 5. Let 0 # weH , U be a vector constructed from m according to Lemma 3. Let us pretend
that R(u) # 0 and define the vector function u(€) as a solution to the problem

{u§ = R(u 3 (13)
u(§)le=o = u.
Then relations (15)—(17) are satisfied for 0 < £ < 1
e |IR@)|* < | R(u(&)I* < *|R@)]?, (14)
¢
IGul® > |Gaull* + 2 /0 IR(u(m)[*dn = || Gal® + 2¢|| R(@)|* — £28¢* || R(@)]|, (15)

J@) > J(€) = J@erp( -2 / K (u(n)) | R(u(n)) |2
i) exp (-2 / K (u(n) | R( ())||2d77)2 (16)
J (1) exp ( — 2 K ()| R(@)||* - e2||R<a>||201<||a||>),
J(@) = (@) exp [ K@ (IG@)] - 1G@@)?) - Ca(al))]. (17)

where C1(+), Ca2(-) — functions continuous on [0;00).
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Proof. Let R(u(§)) then we have

(IR@(©))I*)e| = 2(R(u(€)), (G*G — p(ul€)))ue — pe(u(€))u(€))| =

(18)
2/(R(u(€)), (G*G — p(u(€)))Ru(€)] < 4| R(u(€))].
This implies estimates (14). Further
(IG(€)))e = 2 (G*Gu, ug) = 2(G*Gu — p(uyu + p(u)u, R(w)) = 2(|R()|>  (19)
Je(u(€)) = 27(u(€)) [ (- K ()G Gu — S(u), R(w))| =
(20)

27(u(€)) | ~ K(@)|R@)? ~ (S(u), R(w)))

Integrating (19), using (18) and already proven inequalities (14), we obtain (15). Now we integrate
(20), and then using the definitions R(-), K(-), S(-) and the results of Lemma 4, we get

J(@) = (1) exp | 2K (@) | R(@)|P¢ -

[ (stmire? + (s, A >>>) andr]| =
()exp[zK R [ [ (Katiraomi
(—au(n) + Dl f(u(m) ~ K (u(n)G*Gun). R(uly >>>) andr| - (21)

s@e [2R @RI~ [ [0k o), REutn)] =
s@esp |2k @RI~ [ [ Ao, Bt 2

J(@) exp2 [~ K @) R(@)|1%¢ — | R@)Ci (1))

where C(+) — functions continuous on [0; c0).
To estimate the factor at &2, we used the equality ||u(¢)| = ||@||, which follows from the following
equality
(lu(©)11?) = 2(u(€), R(u(€))) = 0.

From (21) follows (16), from (15) and (16) follows (17). The lemma is proven.

Lemma 6. Let 0 # weH , u — the vector constructed from % in accordance with Lemma 3. Let us
pretend that R(u) = 0 and define the vector function u(§) as a solution to the problem

Ug = G Gujv (22)
w()lg=0 = u.
Then at 0 < £ < 1 relations (23)-(26).
e ¥ G Gu|? < |G Gu(§)|? < |GGl l? (23)

IGal* > |Gul* > ||Gall* = || Gal|*+

¢ (24)
+2 / |G*Gu(n)|Pdn < ||GT||* + 2£||G*Ga||* + 2¢678¢* || G*Ga|
0
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J((€)) = J (@) exp |26 K @)]|G* Gl — Ca([al2)i(e)| =
= J (@) exp | ~26 K (@)||G"Giil]* — €Ca([l)i(9)]

T(u(€)) = J(u)exp [Ny (1 = @) (|Gal* - || Gul®) — €2Cu([[all*)1(€)] , (26)
where C3(+), Cy(+) functions continuous on [0;00) a I(-) function with values from the interval [—1;1].
Proof. For |G*Gul| and ||Gu|| we have

(25)

(16" GullP)e| = 21(G" G, G*Gug)| < 2G" G,
(IGull?) = 2(G* G, ug) = 2 G*Gul >

Integrating these inequalities and using Lemmas 3 and 4, we obtain (23) and (24).

For Je(u(§)) we have
Je(u(8)) = 2J(u(€) [(~ K ()G Gu — S(u), G*Gu) | = 27 (u(€)) | - K(w)|G"Gul]?
Hence, using Lemma 4, we find
J(u(§)) = J(u) exp ( / K (u(n))||G*Gu(n )I!an> >

> J (@) exp (—2&K<u>||G*Gu||2 — 20 (l2)e))

(27)

Here C3(-) — continuous on [0;00) functions and I(-) function with values from the segment [—1;1].
When estimating the factor at £2, we used the equalities

| (lull?) ¢ | = 20{u, ug)| = 2(u, G*Gu) = 2[|Gul|* < 2]Jul*.
¢

From which it follows that
e X al* < flufl* < € alf*.

From (27) and from J(u) = J(u) (25) follows, and (24) implies (26). The lemma is proven.

Proof Theorem 1. Let 0 # uweH. If R(’IOL) = 0,, then u will be an eigenvector of the operator G*G.
Therefore, from condition C2 we have

J(@) = [lal? exp (=1 £(@)]2) = (|| f(@)]]* +2)™ e W@®IF <

< sup xme—x+2 — mme—m+2. (28)

r>2

If R(w) # 0, construct the vector u then by the vector . If R(ig) = 0, then for .J(Ty) we obtain
an inequality similar to (28) J(@p) < m™e~"™+2. Therefore, since by construction J(iig) > J (i) we
have that (1) holds. From this we draw the following conclusion.

Thus, if at least one of the conditions R(w) = 0 and R(%@) = 0, is satisfied, then Theorem 1 will be
proven.

It R(&) # 0 and R(ug) # 0, then we construct a sequence of pairs according to the following
algorithm.

Let the pairs be built (ﬂo,g), (U, 1), 0 < n, R(uj) #0,7=0,..,n.

: L~ 1
Let us build a pairs (U1, "l ).
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In Lemma 3, instead of the vector 7?1,, we take the vector 1 and construct the vector w, which we
take as Upy1.
For ,41, two cases are possible:
(I) R(tn41) =0,

(I1) R(tn41) # 0.

If (I) is satisfied, then we construct the vector e using Lemma 6. To do this, in (22) as u we take the

~ 1 L
vector uy+1 and for "4 we take the value u(§) at point &,:

—~ ~

+1
&n=6 "u =ul).
Then from Lemma 6, using condition C4, we have

I8 2 I exp [d7 (1= 0)(| Gl |2 = |68 |2 = €6 )] =

(29)
I2) — €2Ca(n11)]

> J (@) exp [d71 (1= 8)(|GHlI> — |G

When deriving (29), relations J(tu,41) = J (1), |Glns1|| > |G| were used, which follow from Lemmas
3 and 4 and the definition of %,+1. Let’s choose &, in the right place.

.~ 1y .
In the case (I) pair (unH,nz—; ) is constructed.
In the this case, we stop the process of constructing a sequence of pairs.
1 . L ~ ~
In case (II), we construct "% ) using Lemma 5. To do this, in (13) as u we take the vector 41

and for "4 we take the value (13) at point En:

0ol [ R (Tn-41) ||

0+ DG Tt + Collamsal) = T RGe T+ 11 (30)

gn:

here Cy(-), Ca(+)— continuous on [0;c0) functions from Lemma 5, d¢ is a small number. From Lemma

5 (17) and from (30) we find

n+1 n+1 - 52
IG |1 = |G |12 + 26| R(Tn1) 1> — 20,355 (31)

n+1 n _ n n+1 52
T > G exp [a1 0 - 9)(IGHIE - 16 ) - 20, 55]

Pair (ﬁnH,nﬁl) built. Let 1 < ng be an integer number, which holds for all j < ng

R(u;) # 0, R(tng+1) = 0.

Then from (31) we deduce

n 0 n ~
1G> > | Gull® + 2 3272 & R(;)||* — 10253,

n n 32
J() = J(w)exp [a1(1 = 9)(IGU| ~ |GH2) — 10253 . %
From the second inequality (32) we have
0 -1 012 2¢2 no —1 n0 12
J () exp [d (1-0)|Gu|? — 10 50} < J(#) exp [d (1-0)|G%| ] - )

— %2 exp [~ IS ()2 +a (1= S)IGRIZ| < %12 exp 3] £()]2]
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In the last transition, condition C3 is used.
From (33) and from Lemma 2 on compactness (see Lemma 2), since the left side of (33) does not
depend on ngy and the inequalities 0 < § < 1, it follows that

18] < J(@) < oo, (34)

where J (8) does not depend on ng. From (34) and from the first inequality in (32), due to the choice
of &,, follows that only two cases (A) and (B) are possible:

(A) There is an n > 0 such that R(u,,) = 0 and R(u;) # 0, if 0 < j < n4;

(B) For any j = 0,1, ... done R(u;) # 0 and lim,,_, || R(u,)| = 0.

Here lim means lower limit.

Indeed, if none of the conditions (A) is satisfied, then by virtue of (34) and the choice of A (see (30))
from the first inequality in (32) we obtain

n+1||2

J) > "8 = |G > Gl - 10252+2Z *— inf || (i) |

When n — oo, the right side tends to +00. So we got a contradiction. Therefore, at least one of
conditions (A) and (B) is satisfied.

Let condition (B) be satisfied. Then, by virtue of (34), if necessary, passing to sequences can be
considered

lim % = g, lim R(4) = R(§) =0, lim f(&) = f(3).

]—)OO ]—)OO ]—)OO

When deriving the equality for R(§) and f(§), we used the estimates for R(%) in terms of R(u;)
from Lemma 5 and choice &; (see (30)), as well as the divergence of the harmonic series.
Letting go to infinity and then using the conditions C2 and C3, we obtain

J(@) exp [d71(1 = 8)[|Gul2 — 10%63] < |32 exp [0l @)]] <

m 35
< (@I +2)" exp [<0(17 @) +2) +20] < supae =2 = (5)" e, )

Now from the definition of A and from (35) we deduce

02 < exp [|F @2 — a1 - a)Gal? - 10%3] (5)" < (%) epllf@I (30

In the derivation, we used that the possibility of choosing dg small and inequalities 0 < § < %, m > 1.
Theorem 1 follows from (36) in case (B).
If (A) is satisfied, then (29) is satisfied. From (29), since for all j < n the inequalities R(u;) # 0,

then choosing &, = £ small enough, we get

JOE) z ) exp 71 = o) (|GuP — 1670 2) — 10%63) (37)

Since "' is defined in terms of Un+1 by the equation (see (22))

ue = G*Gu,
u(§)|g=0 = Uny1.
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And "3 = u(gn), then choosing the number En = E small enough from (37) we obtain
I(iins1) = J (@) exp [d71(1 = O)(| Gl ~ | Gina][?) — 1053
Hence follows
J(@) exp [d71(1 = )| Gu|2 — 10%63] < [imslleap [~ (nsn) |2 + 47 (1 = D)l|Ginsa 7] . (38)
From (38), since u,+1 is an eigenvector of the operator G*G, we get the estimate
i < (%) exp 172

which are derived in the same way as we derived the estimate from (36). Theorem 1 is proved in case
(A). Therefore, Theorem 1 is proved completely.
Proof Theorem 2. We use the notation of Theorem 2. If g € H, then vector u = 0 is a solution to
the equation
u+ L(u) = 0.

Let 0 # g € H- arbitrary vector. Since D is an invertible operator, then || Dgl|| > 0.

Denote by M the set
2

M = fu: |Dulf < g Dol

Let’s put
. u+ L(u)—g
I1D(u+ L(u) — g)|l

F(u) = 1,

where the number 7 is chosen as follows:

2
=,/———1|Dgll?.

Suppose equation u + L(u) = g has no solution in M: Since equation u + L(u) = g has no solution,
the transformation F'(-) continuously translates from M to M. But then by the Schauder fixed-point
theorem ug we get that there exists such that

~up+L(uw) —yg
1D (uo + L(uo) — g

7 = ug. (39)
)l
From here and the choice of  we have

2
| Duoll* = = || Dy

(1—20)

We act on (39) with the operator D, and then multiply scalarly by Dug. Then, using (39) and the
condition of the theorem, we obtain

7| Duol*|| D(uo + L(uo) — g)|| = —[[Duo||* = {DL(uo), Dug) + (Dg, Duo) <

-1
5 1
< —||Du0|]2+5HDu0||2+—2 Jr§5HDUO||2-
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Let us take ¢ = 24. Then from the last inequality and from (39) we deduce

1 1 7
< —||Dugl*(1 — —|Dg|? = - 1-96)||Dg|*> + =||Dg||*> = ——=|Dgl>.
0 < ~[|Duo|[*(1 = 8) + I Dyl (1= 8)[[DglI” + 1Dy 15129l

(1203

We got a contradiction. Therefore, the equation u + L(u) = g has a solution. We act on the equation
u + L(u) = g by the operator D:
Du+ DL(u) = Dg.

Multiplying the resulting equality scalarly by Du, we obtain
1 1
|Dull* + (Du, DL(w)) = (Dg, DL(u)) < S||Dg||* + 5 [ Dul*

Now, using condition (Du, DL(u)) > —d||Dul|?, , we obtain the desired evaluation
(1—20)[| Dull* < || Dg]*.

Theorem 2 is proven.

Remark 2. Note that in Lemma 1 we can take K non-linear transformations as K.
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B.JI. Komanos'?, H. Kaxapman®, P.V. Cerns6aesa*, 2K.B. Cynranrasuesal

L Oa-Papabu amvmodaes, Kasax Yammuows ynueepcumems, Aamamu, Kasaxeman;
2 X anbisapanolk, GKNApAMMbLE METHOA0ZUALGD YrUusepcumemi, Armamst, Kasaxcman;
3 Mamemamura sicone mamemamuraivr, modesvoey uncmumymot, Aivamo, Kazaxcman;
4 Asamammun, asuayusa akademuaco,, Aimamos, Kazakeman

AXKpIpJblesneM/Ii KEHICTIKTeri ChI3BIKThI eMec TeHaeyJepaiH Oip
KJIACBhIHBIH, IITeNTiMiH OaraJiay/iblH €Ki TeopeMachl

DJUITMIITUKAJIBIK, YKOHE apaboJIaJIbIK, TeHJIeyJIep VIIH IIeTTIK ecenTep/ii 3epTrey KaXKeTTLIri rujipogauHa-
MUKa, JIEKTPOCTATUKA, MEXaHWKA, YKBLJIY OTKI3TIIITIK, CEPIIM/IIIK TEOPUsIChI, KBAHTTHIK (DU3UKaA TTPOIle-
CTEPIH TEOPUSJIBIK, TYPFBIIAH 3ePTTEyAe KOUTEreH NPAKTUKAJIBIK, KOChIMIIAIAPAbIH TYCIHAIpYiMeH Tikesei
OaitIaHbICTBI. Byl 2)KyMbICTa aKbIPJIBIOIIIEM/II KEHICTIKTE CBhI3BIKTBIK, eMeC TeHJEYJIEP/IiH IeiMaepi yImin
aIpUOPJILIK, baFasiayIapbl TypaJsbl eKi TeopeMa ajbiaFaH. 2KyMbic TOpT GesiMHeH Typasbl. Bipinm 6estiM-
Je TaiilaJaHbLIFaH Oesrijieysiep MEeH Heri3ri HOTHMXKEHIH TYXKBIPhIMIAMAChl KeaTipiaren. Exinmi GesmiMae
Herisri jiemMadsiap 6epinren. Yimiuin 6esim 1-11i TeopeMaHbIH, JIpJIe/IeMecine apHaJran. Teprinmn 6estim/ie
eKIHIII TeopeMa JJIeIeHreH. TeopeMaHbIH MapThl MBIHAIAN, OHBI HACTANKBI-IIEKAPAJIBIK, €CEIITEeP/IiH 6eJi-
risi 6ip KIacklH 3epTTEY KE3iH/Ie OJIap/IbIH MIEMTiM/IepiHe AITPUOPJIBIK, Oaraiay ajry YIIiH KOJITaHyFa OO Ib.
TeopemaHbIH M9HI OCBIHIA.

Kiam cesdep: axpipabiesmeM i ['mab0epT KeHICTIr, ChI3BIKTHIK €MeC TeHJIeysep, Kepi omeparop, audde-
peHIMATAaHATHIH BEKTOP-(DYHKIIASIIAP, MIENiMIEp/Ii AIIPUOPJIBIK, Oarasiay.
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B.JI. Komanos'?, H. Kaxapman®, P.V. Cernz6aena?, 2K.B. Cynaranrasnesa'

! Kazaxcxui nayuonaroronl yHusepcumem umeny Aav-DPapabu, Aimamo, Kazaxcman;
2 Meotcoyrapodnnidi yrueepcumem uHGOpMauuoHrsT mesnosoeut, Aimamo, Kazazcman;
3 Mnemumym mamemamuky, u Mamemamudeckozo modesuposanus, Aamamu, Kaszaxeman;

4 Axademus epastcdancroti asuayuu, Aamame, Kasaxemarn

JIBe TeopeMbl 00 OIleHKaX PeIeHnil OJHOro KJiacCa HEeJWHENHBIX
YPaBHEHHNII B KOHEYHOMEPHOM HPOCTPAHCTBE

HeobxomumocTs uccienoBannst KpaeBbIX 331a49 I SJUINNITHIECKAX W NapabOINIecKuX YpPaBHEHHUN Ipo-
JMKTOBaHA C MHOIOYUCJIEHHBIMU [TPAKTHIECKUMU IPUJIOKEHUSIMU IIPU TEOPETUIECKOM U3y YEHHUH [IPOIIECCOB
TUIPOIUHAMUKY, JIEKTPOCTATUKY, MEXAHUKH, TEILJIOTPOBOIHOCTH, TEOPUY YIIPYTOCTH, KBAHTOBON (DU3UKMU.
B aT0it pabore MBI mOyUMaN ABE TEOpeMbl 00 AIPHUOPHBIX OIEHKAX PEIEHUil HeJIMHEHHbIX yPABHEHUN B
KOHEYHOMEPHOM TI'MJILOEPTOBOM IIpOCTpaHCTBe. PaboTa cOCTOUT M3 4YeThbIpeX IIYHKTOB. B ImmepBoM ITyHKTE
MPUBEJIEHBI MCIOJIb3yeMble 0003HAUYEeHUsI U (POPMYJIMPOBKA OCHOBHBIX PE3Y/IbTATOB. BO BTOPOM — OCHOB-
HBIE JIeMMbI. TpeTnii MyHKT MOCBSIIEH TOKA3aTeIbCTBY TeopeMbl 1. B werBeproM — mokazana Teopema 2.
VcioBuSE TEOPEM TAKOBBI, YTO MOXKHO HCIIOJIB30BATH IIPU U3YyUE€HUN HEKOTOPOT'O KJIACCa HAYAIbHO-KPAEBbIX
3a/a4 TSl TIOJIyYEHUs] CUJIbHBIX allPUOPHBIX OIEHOK MPU HAJUYNU CJIabbIX alPUOPHBIX OIEHOK. B 3ToM u
COCTOWT CMBICJI 9TUX TEOPEM.

Karoueswie cao6a: KOHEIHOMEPHOE THIILOEPTOBO IIPOCTPAHCTBO, HEJIMHEHHbIE YPABHEHUsI, OOPATUMBIN Olle-
patop, guddepeHupyemble BeKTOP-MYHKIINN, allPUOPHAs OIEHKA PEIeHMUIA.
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A different look at the soft topological polygroups

Soft topological polygroups are defined in two different ways. First, it is defined as a usual topology. In the
usual topology, there are five equivalent definitions for continuity, but not all of them are necessarily
established in soft continuity. Second it is defined as a soft topology including concepts such as soft
neighborhood, soft continuity, soft compact, soft connected, soft Hausdorff space and their relationship
with soft continuous functions in soft topological polygroups.

Keywords: soft set, soft continuous, soft topological polygroups, soft Hausdorff space, soft open covering,
soft compact, soft connected.

1 Introduction

The real world is full of uncertainties. To support these uncertainties, we insert soft sets into
mathematical structures. As polygroups have the closest properties to groups among all hyperstructures,
we combine polygroups with soft sets and usual topologies, then introduce soft topological polygroups
and provide their examples. We are interested in making connections between complete parts in
polygroups with closure of soft topological polygroups, continuous function, and usual topology. Then
we enter the soft topology and present a combination of the polygroups and the soft sets with the soft
topology and another definition of the soft topological polygroups.

The efforts of many scientists were used in this direction, including G. Oguz [1], Heidari et al. [2],
Cagman et al. [3], Wang et al. [4], Shah and Shaheen [5], Davvaz [6], Maji [7], Mousarezaei and Davvaz
[8], Nuzmul [9], and Hida [10]. Figure 1 shows the relations between polygroups, topology and soft sets,
where each item is studied and investigated by many authors.

Topology

Polygroups

Topological Polygroups

Soft Topological Polygroups

Figure 1. Relations between polygroups, topology, and soft sets
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In [8], R. Mousarezaei and B. Davvaz made a soft topological polygroup over a polygroup. The ideas
presented in this article can be used to build more polygroups and more soft topological polygroup.

This paper aims to combine soft sets, topology, and polygroups from different point of view. Also,
the concepts of soft neighborhood, soft continuity, soft compact, soft connected, soft Hausdorff space
appear and their relationship with soft continuous functions in soft topological polygroups are studied.

To consider soft topological polygroups which represent a generalization of topological polygroups,
this paper is constructed as follows: after an introduction, Section 2 contains a brief review of basic
definitions related to soft sets and polygroups that are used throughout the paper. Section 3 studies two
different definitions of the soft topological polygroup. Attributes are given for each definition along with
examples. In continuing the connection between the complete parts and the soft continuous function,
soft Hausdorff space, soft Ty space, soft 71 space, soft open covering, soft compact, soft connected in
soft topological polygroups are studied.

2 Basic definitions
2.1 Soft Sets

Let U be an initial universe, P(U) denote the power set of U, and P*(U) be power set without &.
Suppose that E is a set of parameters and A is a non-empty subset of E. A pair (I, A) is said to be a
soft set over U, if F: A — P(U) is a function.

Let (F, A) and (G, B) be soft sets over U. In this case, we have the following compliments:

o (F, A) is a soft subset of (G, B) and denoted by (F, A)C(G, B)) if A C B and F(a) C G(a) for all
acA

o (IF, A) is soft super set of (G, B) and denoted by (F, A)S(G, B) If (G, B)C(F, A).

e (F, A) is soft equal (G, B) and denoted by (F, A)=(G, B) if (F, A)C(G, B) and (G, B)C(F, A).

o (F, A) is a absolute soft set and denoted by U If F(a) = U for all a € A. The set Supp(F, A) =
{a € A :F(a) # @} said to be the support of the soft set (F, A). A soft set is called non-null if its
support is not equal to the empty set.

e (F, A) is a null soft set and denoted by & if F(a) = @ (null set) for all a € A. If A is equal to E
we write F instead of (F, A).

e Let 0 : U — U’ be a function and F(resp.F’) be a soft set over U(resp.U’) with a parameter set E.
Then 6(F)(resp.0~1(F)) is the soft set on U’(resp.U) defined by (8(F))(e) = 0(F(e))(resp.(6~1(F"))(e) =
0~1(F (e)))-

e Use hat (\) to distinguish "soft"objects from usual ones. For example, for a subset X of U, X
denotes the soft set satisfying that X (e) = X for all e € E.

e We write F;AFy for the soft intersection of F; and Fy, where it is defined by (FlﬁFg)(e) =
Fi(e) NFa(e) for every e € E.

e The soft union of F; and Fa, will be denoted by F;UF, is defined by (F1UF2)(e) = F1(e) UFa(e)
for all e € E.

e We will use the symbol F¢ to denote soft complement of F and is defined by F¢(e) = U \ F(e)(e €

e Let IF be a soft set over U and x be an element of U. We call z is a soft element of F, if z € F(e)
for all parameters e € E and denoted by 2€F.

2.2 Polygroups

e Let H be a non-empty set, the couple (H, o) is called a hypergroupoid if
o: H x H+— P(H*) be a function, the combination of two subset A and B of H is defined as

AoB=|JaoBandaoB= |J aob.
acA beB
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e A hypergroupoid (H,o) is called a quasihypergroup if for every h € H, ho H = H = H o h and
is called a semihypergroup if for every ¢,u,w € H, to (uow) = (t ou) o w. The pair (H, o) is called a
hypergroup if it is a quasihypergroup and a semihypergroup [11,12].

e Let (H,o0) be a semihypergroup and A be a subset of H. Say that A is a complete part of H if
for any n € N and for all aq,...,a, of H, the following implication true:

AﬂHai;é@:> HCLZQA
i=1 =1

The complete parts were introduced for the first time by Koskas [13].

e Let (P, o) be hypergroup and have other additional features. If there exist unitary operation ~
on P and e € P with the property that for all p,q,r € P, the following items be true;

(A) (pog)or=po(gor),

(B) eop=poe=p,

(C) Ifpeqor,theng€portandrcqglop.
In this case, hypergroup P is called polygroup.

e The following results follow from the above axioms:

ecpop tnplopet=c (pHt=p and (poq)~! =¢ top ! A nonempty subset Q of a
polygroup P is called a subpolygroup of P if and only if for all z,y € @ follows that z oy C @ and for
all z € Q follows that 2! € Q.

e Let P be polygroup and (I, A) be a soft set on P. Then (F, A) is called a (normal)soft polygroup
on P if F(x) is a (normal)subpolygroup of P for all € Supp(F, A).

1

1 1

Ezample 1. Let P be {e,a,b,c} and multiplication table be:

o ‘ e a b

ele a b c
ala {ea} c {bc}
b|b c e a
cle {bec} a {ea}

Then P is a polygroup. Let F, A) be a soft set over P, where A equal with P and define F : A — P(P)
by F(z) = {y € P|zRy < y € 2?} for all x € A. In this case, we will have F(e) = F(b) = {e} and
F(a) = F(c) = {e, a} are subpolygroups of P. In conclusion, (F, A) is a soft polygroup over P [4].

3 Soft Topological polygroups

Let (P, T) be a topological space, where (P,0,e,71) is a polygroup. Then the (P, T) is called a
topological polygroup if the following axioms hold:

(1) The mapping o : P x P —— P(P) is continuous, where o(z,y) = z oy,

(2) The mapping ~! : P — P is continuous, where ~!(z) = —z.

Definition 1. [8] Let T be a topology on a polygroup P. Let (IF, A) be a soft set over P. Then the
system (I, A, T) said to be soft topological polygroup over P if the following axioms hold:

(a) F(a) is a subpolygroup of P for all a € A,

(b) The mapping (x,y) — x oy of the topological space F(a) x F(a) onto P*(F(a)) and mapping
o+ z~! of the topological space F(a) onto F(a) are continuous for all a € A.

Topology 7 on P induces topolgies on F(a), F(a) x F(a) and P*(F(a)).

Ezxample 2. Let P be {1,2} and its hyperoperation be as follows:
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Hyperoperation % : P x P — P(P) and inverse operation ~! : P — P are continuous with topology
Ti ={@,P,{1}} but % : Px P — P(P) is not continuous with topology T2 = {&, P,{2}}. Therefore,
P with T1, Tais,Tnais is topological polygroup. Subpolygroups of P are &, P,{1}. Let A be arbitrary
set and a1, a2 € A and define soft set F:

{1} if z=ay,
Flz)=¢ P if z=as.,
%) otherwise.

Therefore, (F, A, T7) is a soft topological polygroup.
Example 3. Let b\4 be {1,2,3,4,5} and its hyperoperation be as follows:

«|1]2]3]4 5
1[1(23]4 5
212143 5
3/3[4]1]2 5
14]3]2]1 5
5/5(5]|55]{1,2,3,4}

Hyperoperation  : l/)z X l/)\4 — 73(13:1) is not continuous with the following topologies:

Ti = {2, Ds. {1}} T = {2, D1, {2}}
73:{@71/%1»{3}} ﬁ:{®7%7{4}}
7?’):{®79\47{5}} %:{Q)Q\ﬁh{172}}
7-7:{@713\4>{1a3}} 752{@71)/4\7{174}}
T {20y {15} Tio— {2, Du {2.3})
T = {®>Z/)ﬁ1’ {274}} T2 = {@,13\4, {Qa 5}}
Tiz = {@71/)\4, {374}} Tia = {Qagih {3’ 5}}
Tis = {®712i1a {475}} Tie = {Qvl/)\ﬁlv {L 2a3}}

Tir =1{2,D4,{1,2,4}}  Tis = {9, D4,{1,2,5}}
Tio ={2,D1,{2,3,4}}  Tao = {2.D4,{2,3,5}}
To1 = {@,9&, {2,4,5}} T2 = {Qa&lv {3’4’ 5}}
Tos = {9, D4,{1,2,3,4}}  Taa = {9, D4,{1,2,3,5}}
Tas = {2, D1, {2,3,4,5}}.

This means that (1/3\4,7711-8) and (5\4,’7;6;,-5) are topological polygroups. Subpolygroups of 5\4 are &,
Dy, {1},{1,2},{1,3},{1,4},{1,2,3,4}. Let A be a arbitrary set and aj,as,as,as,a5 € A. Then we
define a soft set F by

({1} ifx =ay

{1,2} if x = a

) {13} if v = ag

F(z) = {1,4} if z=ay
{1,2,3,4} ifz=uas

1%} otherwise.
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Since restriction of topology 75 = {@, Dy, {5}} to subspaces F(z) are discrete or anti-discrete topologies
(F, A, Ts) is a soft topological polygroup. With this method we can make many examples of soft
topological polygroups.

Definition 2. Let (F, A,T) be a soft topological polygroup over P. Then the closure of (F, A, 7T)
denoted by (F, A, T) and defined as F(a) = F(a) where F(a) is the closure of F(a) in topology defined
on P.

Theorem 1. |2] Let A and B be subsets of a topological polygroup P with the property that every
open subset of P is a complete part. Then

(1) AoBC Ao B,

(2) (A)1=(AD).

Theorem 2. |2] Let P be a topological polygroup with the property that every open subset of P is
a complete part. Then

(1) If K is a subsemihypergroup of P, then as well as K,

(2) If K is a subpolygroup of P, then as well as K.

Theorem 3. [8] Let (F, A, T) be a soft topological polygroup over a topological polygroup (P, 7)
and every open subset of P is a complete part. Then the following are true.

(1) (F, A, T) is also a soft topological polygroup over (P, T),

(2) (F,A, T)C(F,A,T).

e Now instead of the usual topology we use the soft topology to define the soft topological polygroup
based on [10].

e A family 6 of soft sets over U is called a soft topology on U if the following axioms hold:

(1) @ and U are in 6,

(2) 6 is closed under finite soft intersection,

(3) 6 is closed under (arbitrary) soft union.

e We will use the symbol (U, 0, E) to denote a soft topological space and soft set F is called a soft
close set if F€ is soft open set, where each member of 6 said to be a soft open set.

Ezample 4. Let U be Zy and 0 be {&, {es} x ZQ,Z;}, where E' = {e1,es} and {es} x Zy be soft
set F : B —— P(Zy) with the property that F(e1) = @;F(e2) = Za. Then (Z2, 0, E) is soft topological
space.

Ezample 5. Let P be {1,2} and hyperoperation % be as follows:

x]1] 2
11] 2
{1,2}

polygroup P with topology 8 = {&, {es} x P, ﬁ} is a soft topological space.
Ezample 6. Let P be {e,a,b,c} and hyperoperation o be as follows:

o]l

[ a [b] ¢ |

e b

e a b c
a|{e,a} | c|{bc}
b c e a
c| {byc} |al{ea}

polygroup P with topologies 8; = {3, {e1} x P, ]3}, 0y = {3, {ea} x P, 13} are soft topological spaces.

QOIS
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e The closure of F is denoted by F and is defined by soft intersection of all soft closed supersets of
F, where F is soft set over U.

e A soft set IF said to be a soft neighborhood of x if there exists a soft open set G with the property
that z€GCF, where z be an element of the universe U. The soft neighborhood system of x we will
consider the collection of all soft neighborhoods of z.

e Let V be a subset of the universe U. A soft set F said to be a soft neighborhood of V' if there
exists a soft open set G with the property that VCGCF (i.e. Ve € E : V C G(e) C F(e)).

In this section, we will define soft continuity and express its equivalent theorems, then define
soft topological polygroups with the idea of Hida [10] and study the properties of soft topological

polygroups.

Definition 3. Let Pj, P> be polygroups and (P, 601, E), (P, 62, E) be soft topological spaces. The
function ¢ : (P1,01, E) — (P, 02, F) said to be a soft continuous function if for all x € P; and for
all soft neighborhood F . of o(z), there exists a soft neighborhood F, of = with the property that
©(F2)CF ()

Theorem 4. Let ¢ : (P1,01, E) — (Py,02, E) be a function such that for all soft open set F' € 6
the inverse image ¢~ !(F’) is soft open set if and only if for every soft closed set F’ the inverse image
¢ 1(IF") is soft closed set.

Proof. This is easily seen to be an equivalence relation.

Theorem 5. Let ¢ : (P1, 01, E) — (P, 02, E) be function. For every soft closed set F’, the inverse
image ¢~ !(F’) is also soft closed if and only if for all soft set F, o(F)Co(F).

Proof.
(i) <= Let F’ be a soft closed set. Then we have (o~ (F'))CF. The soft closeness of ', together

with the assumption (for all soft set F, we have ¢(IF)Cp(F), proves that

(o7 1(F))) S (o~ (F))CF'.
Therefore, it holds that =1 (F)Ce ' (F')Cp~1(F'), which shows that o1 (F) is soft closed.
(ii) = We have FCyp~!(¢(F)) for any soft set IF. Since (for every soft closed set I, the inverse
image ¢~ !(F’) is also soft closed, we have FCp~!(¢(F)). Thus, we have

P(F) (e~ (0(F)) =0 (F).

Theorem 6. Let ¢ : (P1,01, E) — (P2,02, FE) be a function. If for all soft open set F' € 65, the
inverse image ¢~ !(F’) is also soft open set then ¢ is a soft continuous function.

Proof. For all x € Py and a soft open neighborhood F’ of ¢(z), ™ (F’) is a soft open set having x
as a soft element. Since (¢~ 1 (F'))CF, give F = ¢~ }(F’) in this case p(F)CF’.

Ezample 7. The opposite Theorem 6 is not true.
Let P, be < {e},61,{a1,a2} > and P, be < {e}, b2, {a1,a2} >, where

0 = {@a {(ahe)? (a2’6)}}’
o = {@7 {(a27e)}7 {(ahe)? (ane)}}'

The unique soft neighborhood of the point e is {a1, as} x {e} in O2. The inverse image of {a1,as2} x {e}
under id : P — Py is {a1,a2} x {e}. Thus id : P, — P» satisisfies in the second part of Theorem 6,
but id=*({(az,e)}) is not soft open in P;.

Definition 4. A bijection ¢ : P| — P5 said to be a soft homeomorphism between (P, 6, E) and
(P, 0o, F) if ¢ and ! are soft continuous.
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Theorem 7. Let ¢ : (P1,01, E) — (Pa,02, E) be a soft continuous function. Then for all soft open
set Fy € 6, there exists a soft open set Fq € #; with the property that for all € P;; z€F; if and only
if :Iz/égo_l(Fg).

Proof. For every © € P; with go(x)/E\IE‘g, choose a soft open F, € ; with the property that z€F,
and @(Fm)i]Fg. Then define F; = (J{F.|z € Py, o(z)€F2}, Fy; has the required properties.

Definition 5. Let (P,o,e,”!) be a polygroup and 6 be a soft topology on P with a parameter set
E. Then (P, 6, E) is a soft topological polygroup if the following items are true:

(i) For each soft neighborhood Fjo4 of p o ¢, where (p,q) € P x P there exist soft neighborhoods
F, and F, of p and ¢ with the property that I, o F,CFpoq,

(ii) The inversion function ~! : P — P is soft continuous.

Every soft topological group is a soft topological polygroup.

Ezample 8. Let E be {e1, ea} and @ be {&, {(e1,1)}, Z}} In conclusion, (Ze, 8, E) is a soft topological
polygroup.

Ezxample 9. Show that (R, 0, E) is a soft topological group, where E = {ej,ea} and 6 is the soft
topology generated by the following subbase:

{Z,R}U{{(e1,7), (e2,2)|r —e < & <1+ €}r € R,e > 0}.

Ezxample 10. Every polygroup with discrete or anti-discrete topology is soft topological polygroup.
Ezample 11. Let P be {e,a,b,c} and hyperoparation o be as follow:

[o]e] (o] ¢ |
el e a b c
all al{ea}|c|{bc}
) c e a
cllc|{bc} |al{ea}l

Let E be {e1, ea,e3}. Then polygroup P with topologies

61 ={2,{e} x P, P}

02 = {2, {e2} x P,P}

93:{§7{63}X{a7b}7p} R

03 = {?, {es} x {a,b},{e1} x {e,b}, P} R
0y = {9, {es} x {a,b},{e1} x {e,b},{e2} x {e,b,c}, P}

are soft topological polygroups.

Theorem 8. (P,0, E) is a soft topological polygroup if and only if for all =,y € P and for each soft
open set F with z o yilgﬁ‘, there exist soft open sets F,,IF, with the property that x@Fm,y/E\IFy and
F, o F,'CF.

Proof. = From item (i) of Definition 5 we know that there exist soft open sets F,,F,-1 with the
property that z€F,, y_l/éFy—l and Fy oF, CF. From item (ii) Definition 5 we know that there exists
a soft open set [, satisfying y€F, and (]Fy)_lé]Fy—l. In conclusion, z€F,, y€F, and F, o (Fy)_léFx o
Fy CF. < Let F be a soft open set with the property that z='€F. Since 7! = eoz ™!, there exist soft
open sets F., F, with the property that e€F., z€F, and F. o F;li}F. In conclusion, F;liFeg F;liﬂ?,
which that the item (ii) of Definition 5 is proved. Let F be a soft open set satisfying = o yCF. Since
roy =xzo(y )7t we can find soft open sets Fy,F,-1 with the property that m@]Fx,y_l/éFy_1 and
F,o (]Fy71>_1§]F. Since ~! : P — P is soft continuous, we can find a soft open set [F, with the property
that y€F, and F;lgﬁ‘yq. In conclusion, F; o Fy=F, o ((Fy)*l)*li]Fm o (Fy—l)iléF.
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Definition 6. Let (P, 6, E) be a soft topological polygroup and for all z,y € P with x # y, there
exists a soft open set F with the property that either z€F AVe € E(y ¢ F(e)) or y€F AVe € E(z ¢
F(e)) holds, then (P, 0, E) is a soft Tpspace.

Theorem 9. Let ¢ : (P1,01, E) — (Py, 603, E) be a soft continuous injection and (P, 02, E) be a
soft Tospace. Then (P01, E).

Proof. Let (Py,03, E) be a soft Topspace and ¢ be a soft continuous injection, if z,y € P; and
x # y then p(x),¢(y) € Py and p(x) # ¢(y), on the other hand, (P», 609, F) is a soft Tpspace hence
there exists a soft open set F with the property that ¢(z)€F or o(y)EF. Without loss of generality let
©(z)€F then since ¢ is continuous, there exists F, € #; with the property that z€F, and @(Fx)i]F
hence €F A Ve € E(y ¢ F(e)).

Definition 7. Let (P, 60, E) be a soft topological polygroup and for every distinct points z1,x9 €
P, there exist soft open sets Fq,Fy with the property that both z;€F; AVe € E(z2 ¢ Fi(e)) and
19€Fy A\ Ve € E(z1 ¢ Fa(e)) hold, then (P, 6, E) is a soft Tyspace.

Theorem 10. Let ¢ : (Py,01, E) — (P, 62, E) be a soft continuous injection and (P, 03, E) be a
soft Tispace. Then (P1,01, E).

Proof. 1t is simillar to the proof of Theorem 9.

Definition 8. Let ¢ : (P1,01, E) — (Ps, 62, E) be a soft continuous injection and for every distinct
elements x1,z9 € P, there exist soft open sets Fy,Fy € 0 with z1€F,22€Fy and F,1Fy = @, then
(P,0, EF) is a soft Hausdorff (or soft Taspace [14]).

Ezample 12. Let R be real number, FE be {e1, ez}, and 6 be the soft topology generated by the
following subbase:

{8, R} U {{(e1,7), (e2,2)[r —e < & <+ €}r € R,e > 0}.
It can be shown that (R, 0, E) is a soft Hausdorff space.

Theorem 11. Let ¢ : (P1,01, E) — (P, 602, E) be a soft continuous injection and (P, 03, E) be a
soft Hausdorff space. Then (P, 01, F).

Proof. Take distinct elements x and y from P;. We can separate ¢(z) from ¢(y) by soft open sets,
Fo@), Fo(y)- Since ¢ is soft continuous, we have soft open neighborhoods F,[Fy of x,y, respectively,

satisfying that @(Fz)@ﬁ‘cp(x) and go(Fy)§F¢(y). Clearly F, and [, separate x from y.
Definition 9. Let (P, 6, E) be a soft topological polygroup and for every x € P, every soft neighborhood
of = contains a soft closed neighborhood of z, then (P, 0, E) is a soft regular space [14].

Ezample 13. Let P be Zy and E be {ey, ea, e3}. Define soft topology 6 on P by 6 = {2, {(e2, 1)}, P}.
Since in soft topological polygroup, every point € P has only one soft clopen neighborhood P, it is
obvious that soft space is soft regular.

Definition 10. A family C of soft open sets over P is said to be a soft open covering of P if for all
x € P there exists an F € C with the property that z€F.

Definition 11. A soft space (P, 0, E) is soft compact if for any soft open covering C of (P,0, E),
there exist Fy,...,[F,, € C with the property that {Fy,...,F,} is a soft open covering.

Theorem 12. If V is soft compact with respect to 61, then so is (V') with respect to 62, where
¢ : (P1,01,FE) — (Pa,02, E) be a soft continuous function and V' C P; be a subset.

Proof. Let C’ be a soft open covering of ¢(V). For every v € V, there exists an Gfp(v) € C’ with
the property that g@(v)/E\G; ()" Since ¢ is soft continuous, there exists a soft open neighborhood G, of
v with the property that W(Gv)éG; () Then the family {Gy|v € V'} is a soft covering of V. V is soft

compact with respect to 61, there exist vy, ..., v, € V with the property that {G,, }?_; is a soft covering
n

of V. Thus we have @(Gvi)i(@:&(vi), in conclusion {G:O(Ui ?_, is a soft covering of p(V).
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Definition 12. If for any soft open covering Iy, of X subject to the condition that Pz €
X (2€F; \ z€Fy), cither Yz € X (z¢F;) or Vo € X(x¢F3) holds, then subset X of P said to be
soft connected.

Ezample 14. Let E be {e1, ez} and 0 be {3, {(e1, 1), (2, 0)},{(e1,0), (eg,T)},Z} on Zsy. In this
case, since both 0 and 1 have only one soft neighborhood Zg the soft topological polygroup (Zs, 0, E)
is soft connected.

Ezample 15. Let Z be integer numbers and consider soft topological polygroup (Z,0, F) where
= {e1,e2} and 6 = {@,Z} U {{e1} x S|S C Z}. Since Z is the unique soft neighborhood of i € Z
thus (Z,0, F) is soft compact and also soft connected.

Theorem 13. If both X; and X5 are soft connected then X; U X5 is soft connected, where X7 and
X, are subsets of P having non-empty intersection.

Proof. Suppose that {F1,Fy} be soft open covering of XU Xs Since {F1,Fs} is a soft open covering
also of X;. Without loss of generality assume Vz € Xl(z:éIFl). In particular, x%Fl holds for every
r € X1 N Xo. Suppose that for the contradiction that there were a z € Xy with the property that
2€F;. Since {F1,Fo} is a soft open covering of X, it would hold that ¥z € X3(2¢Fs). In particular,
CU%FQ holds for every x € X1 N X5, which gives a contradiction. Therefore, Vz € Xg(z%Fl) holds; so
has obtained Vz € X U XQ(Z%Fl).

Theorem 14. If ¢ : (P1,01,E) — (P,02,FE) is a soft continuous and X subset of P is soft
connected, then ¢(X) is soft connected.

Proof. Let X be a soft connected subset of P;. Select an arbitrary soft open covering ;{F’I,F’Z}
of ¢(x). By Theorem 7, there exist soft open sets F; € 6; with the property that ¢(F;)CF, and
Vy € Py(y€F, if and only if y€¢(F;))(i = 1,2). Thus for every x € X, exactly one of z€F; and 7€F,
holds. Since X' is soft connected, there is no loss of generality in assuming Vo € X (.%‘%Fl) Therefore
have Yy € o(X)(y¢»(F1)), and Vy € o(X)(y¢F7).

Theorem 15. If ¢ : (P1,61,FE) — (P2,02,F) is a soft homeomorphism, then X C P is soft
connected if and only if ¢(X) is soft connected.

Proof. We have showed a left-to-right direction in the previous theorem. The converse direction
follows from the same argument applied to ¢ .

Definition 13. We say that Property P of soft topological polygroups is a soft topological property
if the following condition holds for any soft space (P,0, E).

A soft space (P, 0, E) has the property P if and only if every soft space which is soft homeomorphic
o (P,0, E) has the property P.

Theorem 16. Soft compactness and soft connectedness are soft topological properties.

Definition 14. For every soft topological polygroups (Py, 01, E) and (Ps, 02, E), the set {F; xFo|F; €
01,Fo € 63} generates a soft topology 6% over P x Ps. The soft space (P, X P2, 6%, F) said to be

the soft product of (P, 01, FE) and (P», 602, FE), where F; x [Fy is the soft set on P; x P, defined by
(Fy x Fa)(e) :==Fi(e) x Fy(e) for every e € E.

Theorem 17. The soft product of every two soft Tospaces is a soft Tospace.

Proof. Suppose that (P,0, E) and (P',0', E) are soft Tospaces. Take distinct points (z,2'), (y,y') €
P x P'. Without loss of generality, suppose that x # y. Since (P, 0, E) is a soft Tpspace, there exists a

soft open set F with the property that either 2€F A Ve € E(y%Z\IF(e)) or y€F A Ve € E(xélﬁ‘(e)) holds.
Thus we have:

(z,2")EF x P AVe € E((y,y') ¢ F(e) x P)

Mathematics series. Ne3(107),/2022 93



R. Mousarezaei, B. Davvaz

or

(y,y/)EF x P AVe € E((z,2') ¢ F(e) x P).
Theorem 18. The soft product of every two soft Ty spaces is a soft Tispace.
Proof. It is clear.
Theorem 19. The soft product of every two soft Hausdorff spaces is a soft Hausdorff space.
Proof. 1t is clear.

Theorem 20. Let h be an element of a polygroup P and (P, 0, FE) be soft topological polygroup.
Then:

(i) ¢r(h) : P — {hoz}rep;z > hox( wr(h) : P — {hox}lep;z — x o h) is a soft
homeomorphism.

(i) ¢(h): P+—>{hoxoh '}ep;z+— hoxoh !is a soft homeomorphism.

Proof. For every h,x € P and a soft neighborhood F of h o x, by the definition of soft topological
polygroup, there exist soft neighborhood Fj, and F,, of h and x with the property that FpolF, CF. Thus,
we have @ (h)(F,) = (h o F,)CF}, o F,CF, in conclusion ¢z (k) is soft continuous. Since ¢, (h) is soft
continuous for each h € P, for both h and A, the first case follows at once by (o1 (h))™' = o (h71).
The second case can be proved similarly.

Theorem 21. For every soft topological polygroup (P, 8, F), the following items are equivalent:
(i) (P, 0, F) is a soft Tpspace,

(ii) (P,0,E) is a soft Tyspace,

(iii) (P, 0, F) is a soft Hausdorff space.

Proof. (i) = (ii) We prove that {/e\} is soft closed. For this, note that every x # e can be separated
from e by a soft open set. Take an = € p\ {e} arbitrarily. By the item (i), there exists a soft open
set F with the property that either 2€F A Ve € E(e ¢ F(e)) or e€F A Ve € E(x ¢ F(e)) holds. If
the first happens, it is done. In the second property, the soft continuity of ¢y (x) and the inversion
~1: p+—— P guarantees the existence of a soft set [/ satisfying that 2€F’ and x o (F’ )_1@?. Thus, we
have F'CF~' o z. If e were in F'(e) for some e € E, then we would have e € u! o z for some u € F(e).
Thus z is equal to u(€ F(e)), contradicting the assumption that Ve € E(x ¢ F(e)). Therefore, e is not
in ' (e) for any e € E, in conclusion {e}AF’ = & holds for this soft neighborhood F’ of x. Take every
distinct x, y from P. Since 2! oy is a soft subset of a soft open set {e}°, the soft continuity of ¢ (z 1)
implies the existence of a soft open set F with the property that y€F and ' o Fi{e}a. In conclusion,
this soft open set [ satisfies Ve € E(z ¢ F(e)).

(1i) = (i) it is clear.

(ii) = (4ii) Take x # y from P. Since e # ! oy, item (ii) implies thatA{:L’fl?y}c is soft open.
Take a soft neighborhood F of e with the property that F o F_lé{xfl?y}c. Suppose that for the
contradiction, for some e € F, the soft sets x o F(e) and y o F(e) had a common element, say g. Take
gexoh,ge€yok for h,k € F(e). However, then we would have

gltehloxlgcyokThusec h oz toyokthenh € x loyok hence hok™ Ca~loy
and ho k™! C F(e) oF(e)~" and F(e) o F(e)* C {z ' oy}® then (hok™1) C (L oy) N {z~toy}°.
This is a contradiction. In conclusion x o FNy o F=@. The soft continuity of o (z~1)(resp.or(y™1)),
presents a soft open F,(resp.F,) with the property that x@Fmix o F(resp.y@lﬁ‘yéy o IF. Obviously, F,
and Iy are soft disjoint, as

F.AF,Cx o Fiiy o F={.

(#i1) = (i1) it is clear.
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Definition 15. The soft connected component of x, is the largest soft connected subset of P
containing x, for every = € P.

Definition 16. The soft connected component of P is the soft connected component of e € P.

Theorem 22. Let N, be the soft connected component of P. Then, for each ¢ € P the connected
component of g is g o IV,.

Proof. If Ny be The soft connected component of ¢ by Theorems 14 and 20 ¢ o N. C N, since
go N is a soft connection containing of g. Notably N, oq C N, Nonetheless, N, C N, o ¢! C N, then
N, = N,oq ! in conclusion N, o g = N,.

Theorem 23. If N is a soft connected component of P, then N is normal subpolygroup of P.

Proof. Suppose that a,b € N Since ' : P — P is soft homeomorphism and

or(h) : P — {houa}ep;x — hox(resp.pr(h) : P — {x o h}zep;x — x o h) are soft
continuous. By Theorems 14 and 15 a o N~ is soft connected. Since a o N~! contains e € aoa™!, we
have a o N~! C N. Obviously, aob™! C ao N7!, thus have a o b~! C ao N~! C N. This proves that
N is a subpolygroup of P. Note that both a='o N oa and ao N oa™! are soft connected, and contain
e. Above all N is the largest soft connected subset containing e, we have a ™' o N oa and ao N oa™!

are a subset of IV, in conclusion, N is normal subpolygroup of P.

Theorem 24. Let H and K be soft connected subsets of a soft topological polygroup P. Then H o K
subset of P is soft connected.

Proof. Suppose that {F1,Fo} is a soft open covering of H o K with the property that fig € H o K
satisfies both g€F; and g€F,. Due to the Theorem 14, h o K = (¢ (h))(K) is soft connected for
each h € H. Note that {IF1,Fs} is a soft covering of h o K for all h € H. Take an h € H arbitrarily.
We suppose that Vg € ho K (g;,‘é\IF 1) without loss of generality. Assume for the contradiction that
dg’' € h' o K(g'€Fy) holds for some B € H. Select a ¢’ from h' o K, and deposit ¢’ € M/ o k'(K' € K). In
conclusion, both (Vt € ho K’ )t¢IF1 and b’ ok’ 3 ¢’€F; are true, contradicting the soft connectedness of
Hok'. Thus, Vg € ho K(gg_fIFl) holds for each h € H. Notably, Vg € H o K(ggﬂﬁ‘l) Therefore, H o K

is soft connected.

Theorem 25. If H is a subpolygroup of P with the property that H is soft open, then H is soft
closed.

Proof. Suppose that P = HU(J,cq H ©ga) is a right coset decomposition. First, prove that m
is soft open for all @ € Q. For all h € H, from the soft continuity of pr(g;!), it can be select a soft
nelghborhood Fhog, of ho Jo with the property that Fjog, 0 galCH Above all for every |/ h € H, we
have heUheHIFhog 0 g CH. Therefore H= UheHFhoya ogyt, and H o g is soft equal to UheHIFhOga

As a soft union of soft open sets Fy,oq, , f_@ is also soft open.

~

In summary, |J aeQH/oEl is soft open as it is the soft union of soft open sets. Therefore H =
G\ UneaH © ga is soft closed.

Theorem 26. Let H be a subpolygroup of G. His soft open if and only if there exist an h € H and
a soft neighborhood F of h with the property that FCH.

Proof. = Select h and F as above. For every h' € H, there exists a soft neighborhood F}, of A’
with the property that ho(h')~ oIF‘;l,CIE‘ as or(ho(h')™1) : P+— {ho (h’ Lox}eep is soft continuous.

Since F;L,Ch’ oh~1oF and H is a subpolygroup we have F;,Ch/oh~! o FCH. Thus H= UheH , is soft
open.
<=: It is clear.
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Conclusion and Future Work

This study presented two different definitions of the soft topological polygroup. The authors
provided attributes for each definition along with examples. The connection between the complete
parts and the concepts such as soft continuous function, soft Hausdorff space, soft 7y space, soft Tq
space, soft open covering, soft compact, soft connected in soft topological polygroups was examined.

Lastly, necessary arrangements were made.
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P. Mycapezau, B./laBBa3

Mamemamuxa 2viavimoapsv. xKagedpaco, Hesd ynusepcumemi, Hesd, Hpan

2KyMcak TomoJIornsjiblK, MOJIMTPYIIIaJIapFra Tarbl 0ip Ke3Kapac

ZKyMcax, TOIOJIOTHSIIBIK, ITIOJIUTPYIIIAIap €Ki TYpJIi »KOJIMEH aHBIKTaJIa bl BipiHmi aHBIKTaMaa TYPAKThI
TOTIOJIOTHS, &J1 €KIHIIN AHBIKTaMAaIa YKYMCAK, TOIMoJIOrus 6ap. EXiHIN aHbIKTaMa a KyMCcak, MaHa, JKyMCaK,
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y3lmicci3mik, KyMcakK KOMIIAKT, »KYMCak OaijIaHbIC, KYMCAK, XaycIopd KEHICTIr CHUSKTBI YFBIMIAD Taii-
Ja 6oIaIbl XKOHE OJIAPJIBIH XKYMCAK, TOTOJIOTHSIIBIK, TOJTUIPYIIAJIapIaFbl XKYMCAK, Y3/IIKCI3 (OyHKIUIIAp-
MeH OaitaHbIChl 3eprresiedi. KomgiMri Tomoorusiaa y3aikci3aikTin 6ec baiaMalibl aHbIKTaMachl bap, bipak
OJIapAbIH OapJIBIFBI MIHAETTI TYP/E »KYMCAK Y3iIicCci3IiKTe aHbIKTaIMaFaH.

Kiam cesdep: KyMcak >KUbIH, )KYMCAK Y3LIICCI3AIK, »KYMCAK TOIOJIOIUSJIBIK, IIOJATPYIIIAJIAD, KYMCAK, Xa-
b Kl b
ycmopd KEeHICTIri, }KyMCAK, alllblK, 2Ka0blH, YKYMCAK, KOMIIAKT, YKYMCAK, OallylaHbIC.

P. Mycapezaun, b. /laBBa3

Hesdexut ynusepcumem, Hesd, Hpan

Jpyroii B3ryisga Ha MITKHAE TONOJIOTHYECKUe MOJIUTPY bl

Msirkue TONOJIOruYecKue MOJUTPYIIIBI ONPEIEISTIOTCS IByMsl pa3HbiMu criocobamu. IlepBoe ompenenenue
“MeeT OOBITHYIO TOMOJIOTHIO, & BTOPOE — MSTKYIO TOIOJIOTHIO. BO BTOPOM OIpesie/IeHUN TTOSBIISIIOTCST TAKHE
MOHATHUA, KaK MATKasg OKPECTHOCTb, MArKas HEIPePBIBHOCTb, MATKUI KOMIIAKT, MATKas CBA3HOCTb, MHAT-
KO€e Xayca0p@dOBO TPOCTPAHCTBO, U U3YYAETCsl UX CBSI3U C MSITKUMU HEITPEPBIBHBIMU (DYHKIIUSIMU B MSTKUAX
TOIOJIOTUYECKUX MOJIUTPYIIaxX. B 0OBIYHOM TOMOIOTUN €CTh MSITh SKBUBAJIEHTHBIX OIPEIe/IeHII HEITPEPHIB-
HOCTHU, HO HE BCe OHU OOS3aTE/IbHO YCTAHOBJIEHBI B MATKOM HEIIPEPHIBHOCTH.

Karouesvie cro6a: MATKOe MHOYKECTBO, MATKasl HEIIPEPBIBHOCTD, MAT'KHE TOIIOJIOTMYECKHE ITOJTUI DY b, M-
KO€e XayCcaopdOBO MPOCTPAHCTBO, MSITKOE OTKPBITOE MOKPBITHE, MATKUIM KOMIIAKT, MSITKAsT CBSI3HOCTb.
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Existence and smoothness of solutions of a singular differential
equation of hyperbolic type

This paper investigates the question of the existence of solutions to the semiperiodic Dirichlet problem for
a class of singular differential equations of hyperbolic type. The problem of smoothness of solutions is also
considered, i.e., maximum regularity of solutions. Such a problem will be interesting when the coefficients
are strongly growing functions at infinity. For the first time, a weighted coercive estimate was obtained for
solutions to a differential equation of hyperbolic type with strongly growing coefficients.

Keywords: resolvent, hyperbolic type equation, maximal regularity, unbounded domain.

1 Introduction. Formulation of results

Considered on the strip

Q={(z,y): -7 <z <7 —00<y<o0}
next problem:
(L + M)u = Ugg — Uyy + a(y)uz + c(y)u + Au = f(z,y) € L2(2), (1)

u(_ﬂ-vy) = u(ﬂ-a y)a um(_ﬂ-vy) = uz(ﬂ-vy)a —00 <y < oo. (2)

Further, we assume that the coefficients a(y), ¢(y) satisfy the conditions:

i) |a(y)| > do > 0, c¢(y) > 6 > 0 are continuous functions in R(—o0, 00);
ii) po = sup %<oo, [L= sup %<oo;
ly—t[<1 ly—t|<1

i) c(y) < co-c(y) for all y € R,cy > 0 is a constant number.

Here it has to be noted that a(y) and c(y) can be unlimited functions at infinity.

The existence and uniqueness, as well as the qualitative behavior, of solutions for differential
equations of hyperbolic type, were studied in [1-14]. In these works, Darboux and Goursat problems
and the Cauchy problem, periodic and some boundary value problems for differential equations of
hyperbolic type with constant or variable bounded coefficients were examined.

In this paper, in the space Ly(2), we study questions about the existence, uniqueness of solutions,
and also the smoothness of solutions to a periodic problem without initial conditions [13] for a
differential equation of hyperbolic type with strongly increasing coefficients at infinity.

In our previous paper [14], we studied a differential operator of hyperbolic type in the space Lo(R?).

In contrast to [14], in this paper, on a strip, we consider the so-called periodic problem without
initial conditions. Here we note that in the future, this work will allow us to study questions about
the compactness of the resolvent, about estimates for the singular (s-numbers) and eigenvalues of a
differential operator of hyperbolic type corresponding to problem (1)—(2).

*Corresponding author.
E-mail: musahan_m@mail.ru
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Existence and smoothness...

Definition 1. We say that function u(x,y) € L2(f2) is a strong solution to problem (1)—(2), if there
is a sequence {un} C CF% () such that

[un = ullLy@) = 0, 1L+ AD)un = fllry@) =0 for n— oo,

where C55 () is the set consisting of infinitely differentiable finite functions with respect to variable
y and satisfying conditions (2) with respect to variable x.

Theorem 1. Let the condition i) be fulfilled. Then for A > 0 for any f(x,y) € L2(Q2) there is a
unique strong solution to the problem (1)—(2), and the equality is true

o0

w(e,y) = LAAD T f= 3 G+ A fuly) - €™,

n=—oo

where f(z,y) € L2(Q), f(z,y) = Y. faly) - e™®, fuly) =< f(z,y),e™ > are fourier coefficients,

n=—oo

i2 = —1, < -,- > is the scalar product in Ly(2),

1"

(ln + M)u = —u (y) + (=n* +ina(y) + c(y) + Nu(y),u € D(ly).

Theorem 2. Let the condition ¢) be fulfilled. Then for A > 0 for any f(x,y) € L2(Q2) there is a
unique strong solution to the problem (1)—(2), and the equality is true

[uaz = vyyll2 + lluyll2 + la(y)uall2 + le()ullz < ¢ [ fl2,

where ¢ > 0 is constant number.
2 Proof of theorems 1-2

Using the Fourier method, we reduce problem (1)-(2) to the study of the following differential
operator with negative discrete parameter n (n = 0,+1,+2,...):

(In+ ADu = —u" (y) + (—n® + ina(y) + c(y) + Nu(y),u € D(l),

where D(l,,) is the domain of the operator [,,.

Consider two cases:

I. Let be (n = 0). In this case, the operator [y is the Sturm-Liouville operator.

This operator has been studied thoroughly in [15-21].

II. Let be n # 0. In this case, it is easy to see that the first term in the coefficient (—n? + ina(y) +
c(y) + M) tends to —oo , i.e. —n? — —o0 .

In this case, the [,, operator is not a semi-bounded operator. Consequently, the methods that have
been worked out for the Sturm—Liouville operator L = —% + ¢(z)u turn out to be poorly adapted to
the study of the Sturm-Liouville operator with a negative parameter.

Let us take {¢;} the set of non-negative functions from C§°(R) such that

Zcp? =1,sup p ¢; C Ay, UA]- =R,
J J

where Aj = (j — 1,5+ 1), j = 0,£1,£2, ... the multiplicity of the intersection of which is not higher
than three. The existence of such a covering follows from the results of [22].
Continue a(y) , ¢(y) from A; for all R . The resulting functions will be denoted by a;(y) and ¢;(y).
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These functions are bounded and periodic functions. Denote by (I, j.o + AI) the closure of operator
(In o+ ADu = —u’(y) + (=1 + in(a;(y) + @) + ¢;(y) + Nu

defined on C§°(R). We introduced the real number « to evaluate the norm of the operator Dy (1, j o +
AI)~!in the space Lo(Q2) , where D, = 8% . The sign of the number « is chosen as follows: a.-b(y) > 0
at y € R.

In the course of the proof using Lemma 3, we will get rid of this number.

Lemma 1. Suppose that the coefficients of the operator I, j o + Al satisfy condition ). Then for
A>0:

1) for the differential operator I, j o +AI at A > 0, there is a bounded inverse operator (I, jo+AI)™"
defined at all La(R).

2) the resolvent of the operator I, j o + Al satisfies the following estimates:

a) |(lnja + AI)7Hlame < m, ¢ > 0 — constant number independent of n, j, a;

b) H%(ln,j,a + A7 Hae < (6+C)\)21I, ¢ > 0 — constant number independent of n, j, «;

¢) (o + M) Hlam2 <

e " # 0, ¢ > 0 — constant number independent of n, j, a;
d) |(lnja + M) 7 Hlame < c(;ﬁ, ¢ > 0 — constant number independent of n, j, a;
J

1
Inl-la(y;

where || - |l2—y2 — is the norm of the operator (I, o + A)~! in space Lao(R), |a(y;)| = mizn la(y)|,
yeL;
|e(y;)| = min |e(y)].
yEAj
Lemma 1 is proved using functionals < (I, o + A)u,u >, < (lpnja + M)u,—inu > (n =
0,£1,42,...) and repeating the calculations and arguments for these functionals, which were used
in the proof of Lemma 2.1 [22] and Lemmas 4-6 [23].

Now, consider the differential operator

(lna + Au = —u" + (=n? +in(a(y) + @) + c(y) + A) - u,
which is a closure in Ly(R) of the following operator originally defined on C§°(R):

(lno + M)u = —u" + (=n? +in(a(y) + @) + c(y) + A) - u.

We introduce the operator

Knof =Y @ijllnja+ )"0 f, f € La(R).
{5}
The following lemma is proved with the help of calculations and arguments that were used in the
proof of Theorem 1.1-1.3 in [22] and Theorem 1 in [23].
Lemma 2. Suppose that the coefficients of the operator I, j o + Al satisfy condition ). Then there is
a number \g > 0 such that for the operator I, j o + Al for A > Ag there is a resolvent and the equality

(lnjia + M) f = Ky o(I — My o) ' f, f € La(R)

holds, where My of = 3 ¢} (Injia + M) 7 0 f + 23 @)t (lnjia + M) 7105 f, f € La(R).
{1} {1}

Lemma 3. Suppose that the coefficients of the operator I, j» + AI satisfy condition 7). Then there
is a number Ay > 0 such that for the operator I, + AI (n = 0,+£1,£2,...) for A > Ag there is a resolvent
and the equality

(ln +AD)7Hf = (Ina + AT = Myo) ™' f f € La(R)
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holds, where M) , = inoz(lma—%-/\f)_l (n =0,%1,+2,...) and the operator’s norm M} : || M) o[22 < 1.
Using the method used in the proof of Lemma 9 in 23], we obtain the proof of Lemma 3.
Proof of Theorem 1. Using the scalar product < (L 4+ Al)u,u > for all w € D(L) and taking into
account the condition i), we obtain that

1L+ ADullz = ¢ lull2,

where ¢(d) > 0 is a constant number. Further, repeating the calculations and arguments used in the
proof of Theorem 1 in [23], we obtain the proof of Theorem 1.

Proof of Theorem 2. Taking into account conditions #i)—4i7), and also using the method used in the
proof of Theorems in [24-26], we obtain the proof of Theorem 2.
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M.B. Mypar6ekos, E.H. Basunnen

M. X. Tysamu amvndazv, Tapas ewnipaix yrusepcumemi, Tapas, Kasaxeman

I'umep6os1aJIbIK, TUNITEr CUHTYJISPJILIK, AnddepeHImaaablK TeHaeyTiH

102

mienriMaepidia, 6ap 00JIybl »KoHe TericTiri

Makasazia rumepOoJIaIblK, TANTI CHHIYISAPIBIK, JuddepeHInalIblK, TEHIEYIep KIachl YIIH KapThuiait
nepuoAThIK Jlupuxie ecebiniy memiMiaepiHiy 6ap eKeHAIri TypaJibl Macese 3eprresreH. COHbBIMEH KaTap
MIENTMJIEP/IiH, TETiCTirl TypaJjbl Macese, SFHU MIENIMAEPAiH MaKCUMAaJIIbl PEryasapJIbIFbl KAPACTBIPBLIFaH.
Koaddbunuenrrepi 1mekcizmikre KbuigaM eceTiH MyHKIUAIAP OOJFaHa MyHJIall ecell KbI3bIKThI 00J1aIbI.
Ocs1 xymbIcTa OipiHmn per KoahdunueHTTEepl XKBLIIaM OCETiH MMIepOoIaIbIK THITI JuddepeHInallIbIK,
TeHJEYIH IIenriMaepi VITiH caJMaKThl KOIPIIUTUBTI Oaraiayiap aJbHFaH.

Kiam cesdep: pe3obBeHTa, TUIEPOOJIAIBIK, TUIITEC TEHJIEY, MAKCUMAJIIBI PETYJISIPIIBIK, IIEKCi3 00JIbIC.
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M.B. Mypat6ekos, E.H. Basnnen

Tapasckuti pecuornasvrnti ywusepcumem umenwu M. X. JTysamu, Tapas, Kazaxcman

Cy1iecTBoBaHUE U IVIAJJKOCTh PEHIeHNil CUHTYJISPHOIO
anddepeHImaIbHOr0 ypaBHEHsST TUIEPOOIMYECKOTO TUIIa

B crarbe m3yden BOIpOC O CyIIECTBOBAHWU PEIIEHWI TOJYepUOANYIecKoil 3amaun Jlupuxiie s oHO-
ro KJIacCa CHHIYJISIPHBIX JnddepeHnnalbHbIX ypaBHEeHUi rumnepbosmmaeckoro tuma. Takyke paccMOTpeHa
3a/a9a O TVIQJIKOCTU PEIleHni, T.e. MAaKCUMAJTbHAS PErYIsIPHOCTE perrenuii. /lanHast 3aga4ua GymeT nuHTEpEC-
HOM, KOrma KoM MUIIMEHTHI ABISIOTCS CUIBHO pacTymmMu GYHKIuIMA Ha 6eckoHedHOoCTH. lo-Buanmomy,
B HACTOsiIIell pabore BIIEPBbIE IOJyYeHA BECOBasl KOIPIUTHUBHASI OIEHKA perieHnil JuddepeHuajibHoro
yPpaBHEHUsT TUIIEPOOJINIECKOTO THIA C CUJIBHO PAaCTyIuMu KoddpUIMeHTaMu.

Karouesvie crosa: pe3obBEHTa, ypaBHEHNE TUIIEPOOINIECKOIO TUIIA, MAKCUMaJIbHasl PEryJIIPHOCTD, OECKO-
HeuHas 00JIACTb.
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Multipliers in weighted Sobolev spaces on the axis

This work establishes necessary and sufficient conditions for the boundedness of one variable differential
operator acting from a weighted Sobolev space WIZ,Y,U to a weighted Lebesgue space on the positive real
half line. The coefficients of differential operators are often assumed to be pointwise multipliers of function
spaces. The author introduces pointwise multipliers in weighted Sobolev spaces; obtains the description
of the space of multipliers M (W1 — Ws) for a pair of weighted Sobolev spaces (W1, Ws) with weights of
general type.

Keywords: Sobolev space, pointwise multiplier, weighted space, differential operator, admissible function,
slow variation condition, Otelbaev function.

The results obtained in this paper can be regarded as a natural extension of certain results (in
dimension one) of the monograph "Theory of multipliers in spaces of differentiable functions" by
the authors V.G. Maz’ya and T.O. Shaposhnikova [1]. Such a book is currently the only work in
which the theory of pointwise multipliers in unweighted spaces of differentiable functions is treated
systematically. A part of the chapters of this work are devoted to multipliers in classical Sobolev
spaces W]f, k > 1 —integer, 1 < p < oo.

For the latest developments of pointwise multipliers we refer to the monographs [1], [2], which are
entirely devoted to this topic. Let us point out some specific directions through the works [3-6].

Let X, Y be Banach spaces whose elements are functions y: Q@ — R (C). We say that a function
z: Q — R (C) such that a multiplication operator

Ty =zy, y € X,

is bounded from X to Y, is a multiplier for the pair (X,Y’). We denote by M (X — Y) the space of
all multipliers for the pair (X,Y). We introduce the norm

lz; M(X = Y)|| = |IT; X = Y],

in M(X — Y) [1]. Different kinds of problems arise in the theory of multipliers. The first problem is
the problem of describing the space M (X — Y') for the pair (X,Y). Further, there are problems with
studying differential operators as operators acting in the space of multipliers such as the problem of
norm evaluation.

We denote by L, ,(I), I =[0,00), the weighted Lebesgue space of all measurable functions in I
with the norm

1
q

[fllgw = IS Law (DI = /If(w)qu(x) dr | <oo (1<q<o0),
1

Ly(I) = Lgw(I), w = 1. Here w(-) is a weight in I, i.e., it is an almost everywhere positive locally
integrable function.

*Corresponding author.
E-mail: aigul.myrzagalieva@astanait. edu. kz
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Below A!(I) is a class of all functions % in I having absolutely continuous derivatives up to order
[—1in I.
Let wp, w1 be weighted functions in I. Let [ > 1 be an integer. We denote by Wé,wo,wl

weighted Sobolev space of all functions y € A'(I) equipped with the following weighted norm

The purpose of this paper is to obtain the description of the space M(W} (1) - Wi, (I)).

We define as a length function in I any positive and right-continuous function h(-) (h(-) is a Lf.).
We denote by A(z) the segment [z, z + h(z)] for the Lf. h(+).

Definition 1. A weighted function v in [ is called admissible with respect to the length function

h(-), if there exist 0 < § < 1, 0 < 7 < 1, such that the following inequality is true

(I) the

05 W soin (D) = [ Zaaoo || + 135 Lo (D]

1,
h(z) PI{I;{ / v(t)dt | > (1)

for all A(z), z € I. In (1) the infimum is taken over all measurable subset e of A(x) with Lebesgue
measure |e| < 0|A(x)]. We denote by II; ,(6,7) the set of admissible weights v with respect to the
LE h(:).

Let us give some examples.

Example 1. Since

P
h(z) "7 inf / oydt | > (1 -8 =,
(z)\e

the function v = 1 is admissible with respect to the Lf. h(-) = 1.

Definition 2. We say that a function w(-) > 0 satisfies the slow variation condition with respect to
the Lf. h(+), if there exist constants 0 < by < 1 < bg such that

biw(z) <w(t) < bsw(x) forall te A(z). (2)

Example 2. Let v(-) > 0 satisfy the slow variation condition (2) with respect to the Lf.
1 1
h(z) = wv(z) ™. Then v is admissible with respect to the Lf. h(z) = v(x)” ¥ with 77 = b1 (1 —J). The
proof is trivial.
Every power function v (z) = (1 4+ z)" (z > 0), 0 < u < +o0 satisfies the slow variation condition

with respect to the Lf. h(z) = (1 + x)_ﬁ in I. Indeed,

L+t\" I+t\"
<oM—py [~} >1>0H=p
<1+x> = 2 <1+3:) = !

for all t € A(z).

Definition 3. We say that a weight v satisfies the condition A5y (0 < 6,8 < 1) with respect to
the length function A(:) in I, if for any interval A = [a,b] C A(z) = [z,2 + h(z)] (x > 0) and any
measurable subset e of A with the Lebesgue measure |e| < §|A| the following inequality holds

e/v(t) it < BA/v(t) dt.

106 Bulletin of the Karaganda University



Multipliers in weighted Sobolev ...

We denote by A5 g) the set of all weights v which satisfy the condition A5 g) with respect to the Lf.
h(-). For example, if bob; 19 < 1 in (2), then v € A5 p) with 8 = baby 14
Let v* be an Otelbaev function [7]. Namely
z+h
v*(z) =sup{ h > 0: P~} / v(t)dt <1

We first show that 0 < v*(x) < oo for all z > 0. To do this, we note that

z+h

M(x, h;v) et pip—1 v(t)dt —— 0
h—0+

and that M(x, h;v) — oo if h — oo. Hence, there exist d, > 0 and T, > 0, such that
M(z,h;v) <1, if 0<h<dy M(z,hyv)>1 if h>T,.
Therefore, we obtain
(0,0) C Hyp ={h>0: M(z,h;v) <1} C (0, Ty), 05 < sup Hy, = v*(z) < T,.

The function v*(-) is right-continuous in I. By using absolute continuity property of the integral, we
can imply that
z4v*(z)

o ()11 / o(t)dt = 1.
Ezample 3. Any weight v € A5 g) (with respect to the Lf. h(z) = v*(z)) in I is admissible with
respect to the Lf. h(z) = v*(z). Thus, for all e C A*(z) = [z, + v*(x)] with the measure |e| <
O|A*(x)|, we have

v*(z)PL 1{1;{ / v(t) dt = v*(x)P! 1{161{ / u(t) dt — /v(t) dat | >
Ax(z)\e *() e

> (1— Bt ()"~ / o(t)dt =1 f 7.
Ax(z)
Let Clfa,b] (—0o < a < b < o0) be a space of all functions g, having continuous derivatives up to
order [ in [a, b].

Lemma 1. 8] Let v belong to II; (6, 7) with respect to the 1.f. h(-). Then there exists a constant
C* = C*(d,7) > 1 such that

z+h(x) z+h(x)
w [ owpaezer [ (O] v o) @ @20
x T

for all y € C' (A), where A = [z, x + h(x)].
Lemma 2. Let 1 < p,q < co. Let 0 < j <[ be integers. Let v € II; (4, 7) with respect to the Lf.
h(-). Let w € Lt (I), dw(t) = w(t) dt. Then

loc

max [y ()] < (¢ + 1)A( j.p)
fe.a+h(@)]
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) z+h(x) z+h(z) 1/p
<) ([ 0 [T o) )

T

z+h(x) ) 1/q )
/ y9 ()7 de(t) < (¢ + 1A j,p, )h(x) /P x

z+h(z) 1/q z+h(z) z+h(z)
x / oL / O )P dt + / y()Pu(t) dt

Here we consider a differential operator of the form

1/p

Ly=> p(@)y™ (x> 0), (4)
k=0

where pg(-) € Lioe(I), I =[0,00), m > 1 is an integer. In the sequel, we assume that L is defined on
a subspace D(L) of W[l)’v. Here we will investigate the boundedness of the operator L: Wé,v — Lgw,
[ >m>1.

Theorem 1. Let [ > m > 1 be integers. Let 1 < p < ¢ < co. Let v belong to II; ,(d, 7) with respect
to the Lf. h(-). Let (dw(t) = w(t) dt)

g1 z+h(z) é
Ry = sup h(x) P / ()| dw(t) p < o0

x>0

for k = 0,1,...,m. Then the operator L in (4) is bounded from Wé’v(I) to Lgw(I). Here the norm
satisfies the inequality

HL; W (1) = LW(I)H <¢Y Ry
k=0

Proof. Let y € D(L) C WA,U. For the k-th summand in (4), we have

Hpky(k)Hq _ /0°° }pky(k)‘q dw(t) = g%/Aj ‘pky(k)’q dw(t),

q?w
where the system of segments {A;}, j > 0, is constructed as follows
Aji1 = [z, 2j41], xjp1 = x5 + h(z;) (w0 =0).

By virtue of (3), we obtain

/OOO ‘pk(t)y(k)’q dw(t) = gAj ’,Ok(t)y(k)‘q duo(t) <

o q
(k) q
g]z:;(]%xy )/ k(0 et <

1\ 4
P

<> [+ Awkp o, [/A (TRIEOI dt] x

=0 i
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X
]:0 J

1749
o0 B _l q
X /A k()| dw(t) <&, S 1A ( / ok (£)]¢ dwm)
q
P
(01 P < pa
X [/Aj (‘y ‘ +v(t) |y| ) dt] < Clyk,ka’

where ¢, = A(l,k,p) (1 + c*)% )
As a result, we have

q

)

y Wi, (1 )‘

m m
12y: Lo (DI <3 o™ Lo < ¢ 37 s w0
k=0 k=0
Thus the proof of Theorem 1 is complete.
Let us assume that the operator L in (4) is bounded as an operator from Wll,v to Lgw, ie.,
D(L) ¢ W], and there exists a constant b > 0 such that

1

([1malr 20)" < vl Wil € D).

(5)

We take the function n € C§°(I), 0 < n < 1, with supp (n) C [0,1], such that n = 1 in [i,%].

Let A = [z,2 + h(z)], h(z) = v*(z), A = [z + %,:c + %] We set yo(t) = n (52) . Then yo(t) = 1,
Lyo(t) = po(t) for all t € A. Therefore,

</& ‘PO|qdw(t)>; = (/A ILyo\qdw(t)>; < blyo; WL, (A)].

o W (011 = </A s’ dt>; i (/A [wo(W)IPo (1) dt)é
(A (s

1
< (G 4 1),

= M.
| e ()]
Recall that the following equality holds in A

W (/A (t) dt>; =1.

1

([ il aat)" <zonts,
A

where ¢y = ¢f + 1. We take the function y;(t) = (¢ — x)yo(t). We have |y ()]

Moreover,

(6)

where ¢f = [ln0; C[0, 1]

By (6), (7), we obtain

(8)
(¢ =) (5)| =

[t —z| < h, |1 (&) = |(t—2)y,(t) +yo(t)| = 1, ‘ygk)(t)‘ =0 for any t € A, when k > 2. Therefore, from
(5) it follows that

</z \p1|qdw(t)>; = HLyl - L‘W(ﬁ)H _
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- ~ _ .l
< 1Ly Law(A)| + llpoyr; Law( B < bllyr; Wi (A +Gbh! 5. 9)
We have

l

(yl ’_ Z( ) (t — 2) D)1= <t—$> <

h

Hence, |
Hyl; W;i,v(A)H = Hy§l); Lp(A)H + (/A (t—=x)n (t ;x> pv(t) dt)p <
< By {(é) cf + (i>07—1 i 1} _ {1 +§; <;>C?j} . (10)

By (8)-(10), we have

1
1 [ - gl
(/ |p1|? dew(t > < b {1+2 (.)C}‘U}%—cabhl My =

=0 M

1

L z L

— b {§ (j>c7j+’50+1} — & bh' T,
=0

Let us assume that for any k£ (1 < k < m) following estimates hold

Hpj; qu‘“(ﬁ)H bR (0<j<k-1).
Then we take y(t) = (t — 2)*yo(t), and we have
ye(t) = (t —2)*,

IO =k(k=1).. . (k—j+D)t—2)7 (1<j<k),

for all ¢ € A. Thus,
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k—1

1
< 0 o 5] b )+ 3 s )]

=0

<.

1
p P

< lb / i ( ) ( (t—=x) )(j) hj_ln(l_j) <H) at | +
~ k! h

+ (/A|yk|pv(t) dt)’l’}Jr
ij)!hk_j </5 |Pj|qdw(t)> < bRt

_l_
<. =
||M|
o —
—~

ol

So, we have
+3h/4 1/a i
/ o1 ()7 duw(t) < bR (h=v"(2), 0 <k <m).
z+h/4

Theorem 2. Let | > m > 1 be integers, 1 < p < oo, 1 < ¢ < 00, Ip > 1. Let the operator L in (4)
be bounded from W}i’v to Lgw. Then (dw(t) = w(t)dt)

Q=

Ry = supv*(z)! ™ » / RO deo(t) o <@ | Ls Wiy Lo||- (11)
x>0 it
Proof. We have the fulfillment of condition (5) with b = HL; W]ﬁyv — LWH . In this case, we have

shown that the following inequality holds

1

+ 3111(:0) q

k-1 ~
ot (2) / oD do(t) ¢ < @ |Li W, = Ly
ot 0
for all > 0. Then it follows the validity of inequality (11). The proof of Theorem 2 is complete.
m
We set R* = Z R}, where R} = Rj, with h(z) = v*(x), and R* = Z Ry.

Theorem 3. Let l > m > 1 be integers, 1 < p < g < co. Let v be in A(5 3)- Let R* < oco. Then the
operator L in (4) is bounded from Wp’v to Lg,,. Furthermore,

R < |1 W, = Lo < R

The statements of Theorem 3 are direct consequences of Theorem 1 and Theorem 2.
Theorem 4. Let I > m > 1 be integers, 1 < p < ¢ < oo. Let v € II; ,(6,7) with respect to the
Lf. h(-) in I. Let p € A™(I). If

1
z+h(x) q
1

Moy = sup h(z) ™7 / @) deo(t) p <00 (=0,1,...,m),
x>0

T
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z+h(x)
_1
Mo =5 h(@)' 7 [ (ol din(t)} < ox,
>0
xT
then € M(W}, — Wi, ). Moreover,
MW}, — W <C M, M,
© ( - qwowl) Z k,,uwo+ O,p,w1 | s

=0

where C' = C(n,l,p,q) > 0.
Proof. We have

o
s W1 = [ (100) ™+ )

Since (uy)"™(t) = Ly, pr = k!(#ik)!u(m_k), it follows that

A W@Wmeﬁ=A Ly |0 (t) dt = | Ly; Lyas|°
and

/0 9w (t)dt < ¢ S Rl (/A Iﬂlqw1> lly; Wy, |7 <
j J

q

1/q
< Suph(x)l_l/p (/ |H|qw1> H?/?W;l;,qu-
xX Aj

Thus, the proof of Theorem 4 follows the lines of the proof of Theorem 1.

Theorem 5. Let 1 < p < ¢ < co. Let [ > m > 1 be integers. If € M(W}, — W, ), then
I

s MW, =W )

’ > C [ZMkng+MO,uw1] )

q,wo,wW1
0
where
4 31)1(3:) q
* o (o \l—k—2 (m—k) (1 |
My o = 51;1:0)1) (x) P i (t)| dwol(t) < 00,

xr= :E_l’_v*ix)

1
M =swo @53 [l den(t) p <.
sy xZO i

The constant C' does not depend on A(-),v and p.
Proof. By p € M (Wl — wm )it follows that

q,wo0,wW1

()™ Lo | oy Lo |

s MWL, — Wi = :
;s WL, | ly; WL

q,wo0,wW1

Then

1(19) "™ Lo |
s MW, = Wit o)l > sup e
0#yew} , H ) p,vH

= (1L Wp.» = Laaoll,
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m
where Ly = > pky(k), P = ck,u(m_k). By Theorem 3, we obtain

k=0

m
l *
i MW = Wity )| 2 0y Jsup My,

q,wWo,wW1
k—0 x>0

Next, we take a function yo(¢) defined as in Theorem 2. Then

z+3v*(x)/4 1/q
( J quw1>

) l m z4v*(z)/4
[l 145 M(Wp,v - quwo,wl)H > ot (2) 1/p ot (@) 1/p >
( Jolws dt) + ( I lwolro(t) dt)

x x

z+3v*(x)/4 1/q
( J \M\qu)

z4v*(z)/4

> ey M

- 1 1/p a+v* (x) p = Orpor
(h””f In@®1p d§> + ( I lwolPo(t) dt)
0

T

Thus, the proof of Theorem 5 is complete.
Corollary 1. Let 1 >m >1, 1 <p < g < oc. Let € C™(I). Then p € M(W} — W, ) if and

q,w0,W1
only if
z+1
U = sup / \,u(m*k)]qdwl <oo (k=0,1,...,m),
z>1
x
r+1
V = sup / |p|? dwoy < oo.
z>1
X
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Ocbreri canmakTbl CoboJieB KEHICTIKTEPiHAeTrT MYJIbTUILINKATOPJIAP

114

2Kymricra Wéw camarkTbl CobosieB KeHICTIriHeH caaMakThl JIeber KeHicTirine OH, HAKTHI KapPThLIAH Ty3Yy-
Jle ocep eTeTiH 6ip affHbIMabI ArddEePEeHITHAIBIK, OTIEPATOPIBIH IIEKTETY1 VIITH KAXKETT] YKoHe JKETKITIK-
Ti maprTap aubikTasarad. Jluddepennmnanabik omepaTopaapabiH Ko3MOOUIMEHTTEPIH MYIbTHILIHKATOPIAD
perinzie KapacToipy 3aHbl ekeni Gesrisii. Canmakrsl CoboJIeB KEHICTIKTEPiHIEe HYKTEIK MyJIbTUILIINKATOD-
aap enrisinren. 2Kasner tunti caamakrapsr 6ap (W1, Wa) canvakrsr CoGosieB KeHiCTIKTepiHIH »Ky6bl yIITiH
M (W1 — W>) KeHiCTITiHIH cHIATTAMACH] AJIBIHFAH.

Kiam cesdep: CoboseB KeHicTiri, HyKTeJiK KOOEHTKII, cajMaKThl KeHICTIK, JuddepeHualiIbIK, OePaATOp,
pykcatr erijireH GpyHKIMsA, Oasly Bapualus MapThl, OTe0aeB (OyHKIUSIICHI.

A. Meipzarauesa

Astana IT University, Hyp-Cyaman, Kasaxcman

MyabTUIINKATOPhI B BeCOBBIX ITpocTpaHcTBax CoboJieBa Ha ocu

B craThe ycraHOBIIeHBI HEOOXOUMBIE U JIOCTATOYHbBIE YCJIOBUS OIPAHUYEHHOCTH JIuddEPEHIUAILHOIO Olle-
paTopa OJHOI IepeMeHHOM, TeHCTBYIONEero u3 BecoBoro npocrpancrsa CoboseBa W,lw B BECOBOE IIPOCTPAH-
ctBO Jlebera Ha OIOXKUTETHHO BEIIECTBEHHON MOIYIPsIMOit. XOPOIITO H3BECTHO, ITO KOIMMUIIMEHTHI Tud-
depeHInaIbHBIX OIEPATOPOB ECTECTBEHHO PACCMATPUBATH KAK MYJIBTHIUIMKATOPLI. Mbl BBOJAMM TOYEYHbIE
MYJIBTHILTMKATOPBI B BECOBBIX npoctpancTBax Cobosesa. [lomyveno omucanme npocrpanctsa M (W1 — Wa)
JU1s Tapbl BecoBbix npoctpancts Cobosesa (Wi, Wa) ¢ Becamu obmiero tuma.

Karoueswie caosa: npocrpanctBo CobosieBa, TOYEUHBINH MYJIBTUILIMKATODP, BECOBOE IIPOCTPAHCTBO, Audde-
PeHIMAIbHBIA OIepaTop, JOnycTuMast (PYHKIMs, YCJIOBUE MeJJIEHHOro Kojebanusi, pyuknust OrennrbaeBa.
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Some Convergent Summation Theorems For
Appell’s Function I} Having Arguments —1,%

In this paper, we obtain some closed forms of hypergeometric summation theorems for Appell’s function of
first kind F} having the arguments —1, % with suitable convergence conditions, by adjustment of parameters
and arguments in generalized form of first, second and third summation theorems of Kiimmer and others.

Keywords: generalized hypergeometric function, Appell’s function of first kind, Kiimmer’s first, second and
third summation theorems.

Introduction

A great interest in the theory of hypergeometric functions (that is, hypergeometric functions of
several variables) is motivated essentially by the fact that the solutions to many applied problems
involving (for example) partial differential equations are obtainable with the help of such hypergeometric
functions (see, for details, [1; 47]; [2] and the references cited therein). For instance, the energy absorbed
by some non-ferromagnetic conductor sphere included in an internal magnetic field can be calculated
through such functions [3, 4]. Hypergeometric functions of several variables are used in physical and
quantum chemical applications as well [5-7].

The extensive development of the theories of hypergeometric functions of a single variable has led
to a full-scale investigation of corresponding theories in two or more variables. In 1880, Appell [8-10]
considered the product of two Gauss’s hypergeometric functions o F} to obtain four Appell’s functions
Fy, F5, F3, and Fy in two variables. Later in 1893, Lauricella [11]| further generalized the four Appell
functions F; (i = 1,2,3,4) to give the functions FXI), F](Bn), én), and F l()n) in n-variables. It is noted
that F{) = F) = F) = FY = or, FP = 7y, FY) = By, FY) = Fy and FY) = F.

Over eight decades ago Chaundy [12|, Burchnall-Chaundy [13], and recently several others [14—
24|, systematically, presented a number of expansion and decomposition formulas for some double
hypergeometric functions, for example, the Appell’s functions F;, in series of simpler hypergeometric
functions. Recently, Khan & Abukhammash [25] introduced and investigated 10 Appell type generalized
functions M; (i = 1,...,10) by considering the product of two 3F5 functions. Here, motivated by the
above-mentioned works, Choi et al. [16] aim to introduce 18 Appell type generalized functions k;
(1 =1,...,18) by considering the product of two 4F3 functions.

In the usual notation, let R and C denote the sets of real and complex numbers, respectively. Also
let

No:=NuU{0} , N:={1,2,3,...} = No\{0} ,

Zy :=40,-1,-2,...} =Z U{0} , 7z ={-1,-2,-3,...}
and Z = Zy; UN being the sets of integers.

*Corresponding author.
E-mail: ashfaqgmaths@gmail.com

116 Bulletin of the Karaganda University



Some Convergent Summation Theorems ...

For definitions of Pochhammer symbol, generalized hypergeometric function ,F, with convergence
conditions and other useful results, we refer the monumental work of Abramowitz & Stegun [26],
Andrews et al. [27], Erdélyi et al. [28], Prudnikov et al. [29], Rainville [30], and Srivastava & Manocha
[31]. Appell’s Function of First Kind is defined as :

F[A; B, C; Dz, yl=>

r,s=0

(A)T+S(B)T(C)s liyis
(D)rys rl sl

Convergence conditions of Appell’s double series Fy
(a) Appell’s series Fy is convergent when |z| <1, |y <1; A,B,C,D € C\Z,.

(b) Appell’s series F} is absolutely convergent when |z| =1, |y|=1; A,B,C,D € C\Zj;
RA+B-D)<0,RA+C—-D)<0and R(A+B+C—-D)<0.

(c) Appell’s series F} is conditionally convergent when |z| =1, |y| =1;z # 1,y # 1;
A B,C,DeC\Zy; R(A+B—-D)<1,RA+C-D)<land R(A+B+C—-D) <2,

(d) Appell’s series Fy is a polynomial if A is a negative integer; B,C, D € C\Z, .
(e) Appell’s series F is a polynomial if B and C' are negative integers; A, D € C\Z .

For absolutely and conditionally convergence (b,c) of Appell’s function Fj, interested readers may
consult the paper of Hai et al. [32] related to the convergence of multiple hypergeometric functions of
Kampé de Fériet.

A result of Appell and Kampé de Fériet[8], see also [31; 55, Equation 1.6(15)]:

NdI'(d—a—b—c)

ﬂm;@C;d;L”:rw—aww—b—@’ (1)

R(d—a—-b—c)>0; de C\Zy) .

Motivated by the work in equation (1) of Appell and Kampé de Fériet , we obtain some summation
theorems for Appell’s function of first kind £} having equal argument other than unity, in section 1,
by suitable adjustment of numerator and denominator parameters.

When the values of parameters leading to the results which do not make sense are tacitly excluded,
then using series iteration technique, the Appell’s function F; with equal argument can also be written
as [8; 23, Equation (25)]

Fl[A;B,C;D;m,:E]ZQFl[A’B—i_gf w], <|m]<1; A,B,C,DEC\ZO> . (2)
)

1 Some new Summations using the function Fi[A; B,C; D;x, x|

Further by putting = 1 in equation (2) and applying Gauss classical summation theorem [31; 30,
Equation 1.2(7)|, we get a known result (1) of Appell and Kampé de Fériet.

In equation (2), by putting A =a,B=bC =¢, D =14a—b—c—m and x = —1, using a
summation theorem [33; 1524, Equation (2.3)], we get

T(1+a—b—c—m) m (™59)
Rlabl+a—b—c—m—1,-1] = 2T (a) Z{<r>r(r+a+22b202m) ’
r=0 2
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(R(b+c) < —m iR(2b+¢) <2—m,R(2c+b) <2—m,a,b,c,b+c,

l+a—-b—c—meC\Z; ; m e Np).

In equation (2), by putting A=a,B=b,C =¢, D =1+a—b—c+m and z = —1, using another
summation theorem [33; 1523, Equation (2.2)], we obtain

P 4a—bectm) & (—1)T(55e)
Fila;b,c;1+a—b—c+m;—1,—1] = @)1 b0, Z{( > r+a+272b272c) ’
2

r

2+m

(R(b+c¢) < JRE2b+¢) <2+m ,RQ2ec+b) <2+ m; a,b,c,b+ec, 1+a—b—c+m,

1-b—-ceC\Z, ; m e Ny).

In equation (2), by putting A = a,B =b, C =¢, D = a—b—c—m and x = —1, using the
summation theorem [34; 14, Equation (3.1)], we find

Fila; b, c; a—b—c—m;—1,-1]

I'(a— b —c— " I(rta [(rtatl
= ( Z {( ) [ r+a—(2bz—21—2m) + F(T—i—a—(Qb—ch—;m—l—l)] } ’

r=0

R(Ob+c¢) < _m,%(2b+c) <1—m,R(2c+0b)<1-—m; a,b,c,b+c,
a—b—c—meC\Z; ; meN) .

In equation (2), by putting A =a,B=b,C =¢, D =a—b—c+m and x = —1, using another
summation theorem [34; 14, Equation (3.2)], we have

Fila; b, ¢c; a—b—c+m;—1,-1]

- T(a—b—c+m) m m (_l)rr(r+a) (_1)7‘F(%+1)
- 21‘\(@)(7() _ C)m rz: { <r) !F(r+a22b22c) + F(r+a2322c+1)] } ’

=0

1+m

(R(b+c¢) < JR(2b+¢) <1+m,R(2c+b) <1+m; a,bec,b+ec,
—b—c,a—b—c+meC\Z; ; meNy).

In equation (2), by putting A=n, B=C =5, D= —a—m and 2 = —1, using the summation
theorem [34; 14, Equation (3.3)], we get

aa . _Tem—a) " (D (emn = 1,0 ()
F [n, 5091 T ™ -1,-1| = O TZ:O PID(T=n=Ze=2m) ;
(?R(a)<§(1—m—n); n, a, —m —a € C\Z; m+n€N0U{—1}>.
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In equation (2), A=n, B=C =5, D= —a+m and x = —1, using another summation theorem

[34; 14, Equation (3.4)], we have

T'(1-a)T(m— a) mz":l { (14 n —m),[(=2) } |

a
F [ 5050 ;—1,—1}2
1|5 a+m 9T (n)T(m —a —n) v r!F(%Hz)

N

(%(a)<(1+72n"); n,a, m—a—n, m—ac C\Zj; m—nEN) )

In equation (2), by putting A =a,B=0b,C =¢, D = Ha“’# and x = %, using the summation

theorem [29; 491, Entry (7.3.7.2)|, we obtain

2 272 ['(a) ~ r F(HM#)

(a,b,c, W e C\Zy ; mGNO) )
In equation (2), by putting A =a,B=0,C =¢, D = H‘”'b# and x = %, using the summation
theorem [35; 827, Theorems (1), we find

2 279 p(a)(l—cwrb#)m ot r F(W)

(a,b,c, 1+a+g+c+m, 1_a+g+c_m € C\Z; ; m € No) .
In the equation (2), by putting A=a,B=0b,C =¢, D = M% and x = %, using the summation
theorem [36; 48, Equation (3.1)], we have

b+c—m 1 1
F a;b,C;—aJr Te m;*r
2 279

po-ip(tbpemm) { m [ r("5°) G ”
= + ,

I‘(a) r b+c+27"—m ) F( b+c+r2—m+1 )

(a,b,c,W e C\Z; mENO) )

In the equation (2), by putting A = a,B =0, C =¢, D = “‘H’Jrfc‘”” and x = %, using another
summation theorem [36; 48, Equation (3.3)], we get
a+b+c+m 11
F . . -
1|:a,b,C, 2 7272:|

_ geip(utbietm) {(m> [(—nrr(?";“) +(—1)’T<’“+‘5“)”

= F(@(W)m s r F(W#) F(W%H)

<a’ b, c, a+b§c+m’ b+c72afm c (C\Za; m e NO>~

Mathematics series. Ne3(107)/2022 119



M.I. Qureshi, M.S. Baboo, A. Ahmad

In equation (2), by putting A=a,B=b,C=1—a—b—m,D =dand z = %, using the summation
theorem [35; 828, Theorem (6)], we find

U

11 I'(d) L[ (m)\ T(4=Er)
F bl—-a-b—md= == —~ E — =
Lt mambemidigg 204mI(d — a) r_o{<?">F( ) )

(a,b,l—a—b—m,d, d—aecC\Zy ; mENo).

In equation (2), by putting A =a,B=b6C=1—a—-b+m,D =d and z = %, using another
summation theorem [35; 828, Theorem (5)|, we have

' 1 1] T(dT(a—m) s [ (m) (~1)T(d=gtr)
frjmblma=bimdiyg ‘2amr<a>r<d—a>§{<r>W;22m>}’

(a,b,1—a—b+m,a—m, d—a, de C\Zy ; m € Np) .

In equation (2), by putting A =a,B=b,C = —a—b—m, D =dand z = %7 using the summation
theorem [37; 144, Equation (3.3)], we get

Filaib,—a—b—mds o, 1] = W‘”*i{(m) [F(d—g“) . r(d—a;m)”

57 5] F(d I a) ~ P(d+a+r) P(d+a;r+1)

<a,b,—a—b—m,d, d—aeC\Zy; m€N0> )

In equation (2), by putting A = a,B = b,C = —a—b+m,D = d and = = %, using another
summation theorem [37; 144, Equation (3.5)], we obtain

1 1] 27%m=IP(d)(a —m)
F ‘b.—a—0>b d: = 2| =
! [a’ AT b, 2} ['(a)T(d — a)

mfmY, [ D) T(deegrel
X g { (7”)(_1) [F(d-i-a—i-zr—Qm) + F(d+a+r3—1—2m)] } ’

<a,b,—a—b+m, d, a—m, d—aeC\Z; m€N0> .

Remark

By the theory of analytic continuation some convergence conditions associated with each result can
be relaxed.
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Conclusion

We conclude our present analysis by observing that several interesting summation theorems for
Appell function of first kind can be derived in an analogous manner. Moreover, presented summation
theorems should be beneficial to those who are interested in the field of applied mathematics and
applied physics.
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On recognizing groups by the bottom layer

The article discusses the possibility of recognizing a group by the bottom layer, that is, by the set of
its elements of prime orders. The paper gives examples of groups recognizable by the bottom layer,
almost recognizable by the bottom layer, and unrecognizable by the bottom layer. Results are obtained for
recognizing a group by the bottom layer in the class of infinite groups under some additional restrictions. The
notion of recognizability of a group by the bottom layer was introduced by analogy with the recognizability
of a group by its spectrum (the set of orders of its elements). It is proved that all finite simple non-
Abelian groups are recognizable by spectrum and bottom layer simultaneously in the class of finite simple
non-Abelian groups.

Keywords: group, layer-finite group, bottom layer, spectrum, recognizability.

Introduction

The article discusses the possibility of restoring groups by the bottom layer under additional
conditions.

The bottom layer of a group is the set of its elements of prime orders.

A group is called recognizable by the bottom layer under additional conditions if it is uniquely
reconstructed by the bottom layer under these conditions.

A group G is called almost recognizable by the bottom layer under additional conditions if there
exists a finite number of pairwise non-isomorphic groups satisfying the same conditions, with the same
bottom layer as the group G.

A group G is called unrecognizable by the bottom layer under additional conditions if there exists
an infinite number of pairwise non-isomorphic groups satisfying the same conditions, with the same
bottom layer as the group G.

Many results for groups with a given bottom layer describe some of the properties of the groups.
For example, V.D. Mazurov proved that a group with a bottom layer consisting of elements 2, 3, 5, in
which all other non-identity elements are of order 4, is locally finite [1]. If the bottom layer of finite
group consists of elements of orders 2, 3, 5 and the group contains no non-identity elements of other
orders, then W. Shi proved that this is a group of even permutations on five elements |2].

The results on group recognition by the bottom layer were reported at the conferences [3-5] and
published in journals [6-8].

Main part

Let us give an example of a group recognizable by the bottom layer in the class of finite groups.
If the bottom layer of group G consists of elements of order 2 and the group contains no non-identity
elements of other orders, then G is an elementary Abelian 2-group. That is, group G is recognizable
by the bottom layer in the class of finite groups.

*Corresponding author.
E-mail: sen1112home@mail.Tu
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An example of unrecognizability by the bottom layer in the class of finite groups is given by the
following infinite series of groups: in the infinite row of the cycle groups of the orders p, p?, p?,... for
some prime p the same bottom layer consisting of p—1 elements of order p. In this example, the groups
are unrecognizable by the bottom layer in the class of finite groups.

Recall that a group G is called layer-finite if it has a finite number of elements of each order. This
term was introduced by S.N. Chernikov. The definition of a layer-finite group arose in connection with
the study of infinite locally finite p-groups provided that the center of the group Z(G) has a finite
index [9].

The groups in the following example are almost recognizable groups by the bottom layer in the
class of infinite layer-finite groups. V.P. Shunkov proved that if the bottom layer in an infinite layer-
finite group consists of one element of order 2, then the group G is either quasi-cyclic or an infinite
generalized quaternion group. The groups from the result of V.P. Shunkov are almost recognizable by
the bottom layer in the class of infinite layer-finite groups.

Earlier the recognizability of a complete group with a layer-finite center and a periodic quotient
group by it is obtained in the class of infinite groups:

Let G be a complete group in which Z(G) is layer-finite and G/Z(G) is a periodic group. If the
bottom layer of group G consists of an element p”~! of order p, then group G is recognizable by the
bottom layer in the class of groups satisfying these conditions [6].

Let us recall some results on the recognizability of groups in some classes of groups obtained earlier
by the authors.

If G is a complete group in which Z(G) is layer-finite and G/Z(G) is a periodic group containing
for each prime p only a finite number of p-elements, then group G is recognizable by the bottom layer
among groups with such properties [6].

Definition 1. Layer-finite group is called a thin layer-finite group if all of its Sylow subgroups are
finite.

Let G be a group in which the center contains a complete layer-finite subgroup R such that the
factor group G/R is a thin layer-finite group. The group G is recognizable by the bottom layer among
groups with such properties [6].

Let G be a complete nilpotent p-group with a finite bottom layer. Then group G is recognizable by
the bottom layer among groups with such properties [6].

Let G be a complete periodic group in which for each prime p there is only a finite number of Sylow
p-subgroups and for every prime p there is at least, one Sylow p-subgroup in G, which is a layer-finite
group. Then the group is recognizable by the bottom layer among groups with such properties [6].

A complete nilpotent p-group with a finite bottom layer is recognizable by the bottom layer in the
class of groups satisfying these conditions [6].

In articles |7,8], the recognizability by the bottom layer of the complete group is considered under
slightly different conditions: layer finiteness of the group or the existence of a layer finite subgroup S
in the center of the group G such that G//S is layer finite group. In the same papers, it was proved that
a group is recognizable by the bottom layer among locally solvable group without involutions with the
minimality condition.

It is convenient to consider the recognition of groups by the bottom layer in the class of layer-finite
groups. However, we can also consider other classes of groups.

Now we consider under which conditions it is possible to recognize groups by the bottom layer in
the class of infinite groups.

Periodic complete Abelian groups are not necessarily layer-finite. The next theorem establishes the
recognizability of a group by the bottom layer in this class of groups.

Theorem 1. Group G is recognizable by the bottom layer among periodic complete Abelian groups.
Proof. Indeed, let group G satisfy the indicated conditions. By Proposition 1, the complete Abelian
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group G decomposes into a direct sum of subgroups isomorphic to the additive group of rational
numbers or to quasi-cyclic groups, possibly for different prime numbers. There can be no rational
groups in this extension, since GG is a periodic group and, therefore, there are no elements of infinite
order in it. Since the direct product of quasi-cyclic groups is restored from the bottom layer, the group
G is recognizable by the bottom layer among groups with the properties as in the theorem. The theorem
is proved.

Definition 2. A group is called radically complete if for any of its elements a and for each natural
number n the equation 2" = @ has at least one solution in it [10].

Theorem 2. Group G is recognizable by the bottom layer among periodic radically complete groups
satisfying the normalizing condition.

Proof. Indeed, let group G satisfy the indicated conditions. By Proposition 2 the elements of finite
order of the radically complete group satisfying the normalizing condition G form a complete Abelian
group. As G is periodic, such a group G by Theorem 1 is recognizable by the bottom layer among
periodic complete Abelian groups. So G is recognizable by the bottom layer among periodic radically
complete groups satisfying the normalizing condition. The theorem is proved.

Radically complete groups are not necessaryily layer-finite. For example, direct product of infinite
number of quasi-cyclic groups for the same prime number is radically complete, but it is not a layer-
finite group.

The notion of recognizability of a group by the bottom layer was introduced by analogy with the
recognizability of a group by its spectrum.

The spectrum of a finite group is a set of orders of its elements. A finite group G is called recognizable
by spectrum if any finite group which has the spectrum coinciding with the spectrum of GG is isomorphic
to G. A group G is called almost recognizable by its spectrum if there are finitely many pairwise non-
isomorphic groups with the same spectrum as the group G. A group G is called spectrum-unrecognizable
if there are infinitely many pairwise non-isomorphic groups with the same spectrum as G.

Results on groups recognizable by spectrum could be found in the works of A.V. Vasil’ev, V.D. Ma-
zurov, A.M. Staroletov, A.A. Buturlakin, M.A. Grechkoseeva, and others [11-21].

An example of a group that is not recognizable by spectrum is group Ag with the spectrum 2, 3,
4,5, 8,9 (there are infinitely many groups, one of which is group Ag) [12]. Also the group L3(3) with
the spectrum 2, 3, 4, 8, 9, 13, 16, 27 is unrecognizable by spectrum [12].

It is proved in [14] that the symmetric groups S, are recognizable by spectrum for n ¢ {2, 3,4, 5,6, 8,
10,15,16,18,21,27,33,35,39,45}. In 1994, W. Shi and R. Brandl proved the recognizability of an
infinite series of simple linear groups La(q), ¢ # 9 15, 16].

A.V. Vasil’ev established the result on the almost spectrum recognition of the group Us(5) in the
class of finite groups:

Let G be a finite simple group Uy(5) and H be a finite group with the property w(H) = w(G).
Then H = G or H = G(), where 7 is a field automorphism of the group G of order 2. In particular,
h(G) = 2.

By h(G) it is denoted the number of pairwise non-isomorphic finite groups G with the same
spectrum [17].

Thus, the group Uy(5) is almost recognizable by its spectrum in the class of finite groups.

We established previously [6] that the group Us(5) is recognizable by both the spectrum and the
bottom layer in the class of finite groups:

If G is a finite simple group Uy(5), H is a finite group with the property w(H) = w(G) and the
bottom layer is the same as for the group Uy(5), then H = G. That is, Uy(5) is the only finite group
with such a spectrum and such a bottom layer.

Almost all finite simple non-Abelian groups are recognized by their spectrum in the class of finite
simple non-Abelian groups. However, there are some exceptions: different groups of this set have the
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same spectra.

Theorem 3. All finite simple non-Abelian groups are simultaneously recognizable by spectrum and
bottom layer in the class of finite simple non-Abelian groups.

Proof. Let us show the possibility of recognizing by the bottom layer such finite simple non-Abelian
groups with the same spectrum using the example of the groups Ss(2) and Of (2).

The group Og (2) is simple, has order 174182400 = 22-35-52.7. With the help of the GAP package,
it was established that there are 69615 involutions (elements of order 2) and 24883200 elements of order
7 in it.

The group Sg(2) has order 1451520 = 27 - 3* . 5. 7. Using the GAP package, it was found that it
contains 5103 involutions (elements of order 2) and 207360 elements of order 7.

Thus, the groups S(2) and Og (2) have different numbers of elements of the second and seventh
orders on the bottom layer and thus are recognized simultaneously by the spectrum and the bottom
layer in the class of finite simple non-Abelian groups.

In paper [11], it was established that among the finite simple non-Abelian groups, apart from the
groups Sg(2) and Og (2), there is only one more pair of almost unrecognizable by spectrum groups
O7(3) and Of (3).

The first group O7(3) from this pair is simple non-Abelian, has order 4585351680 = 2°-3%.5.7-13.
Using the GAP package, it was established that there are 38211264 elements of the fifth order in it.

The second considered group Oér(?)) has the order 4952179814400 = 2'2 . 312.52. 7. 13. Using the
GAP package, it was found that it contains 8253633024 elements of the fifth order.

Thus, the groups O7(3) and Og (3) have different numbers of fifth-order elements in the bottom
layer and thus are recognized simultaneously by the spectrum and the bottom layer in the class of
finite simple non-Abelian groups. The theorem is proved.

In proving the results of the paper, we used the following theorems, which were referred to as
propositions with the corresponding number.

Proposition 1 (Theorem 9.1.6 from [22]). A nonzero complete Abelian group can be decomposed
into a direct sum of subgroups isomorphic to the additive rational group or quasi-cyclic groups, may
be for different prime numbers.

Proposition 2 (Theorem 2.8 from [10]). If a radically complete group satisfies the normalizing
condition, then the elements of its finite order form a complete Abelian subgroup.

Conclusion
The possibilities of recognizing of some finite and infinite layer-finite groups by the bottom layer are
considered. Results are obtained for recovering groups by the bottom layer in the class of infinite groups
with some additional conditions. It is proved that all simple non-Abelian groups are simultaneously
recognizable by spectrum and bottom layer in the class of finite simple non-Abelian groups.
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B.. Cenamos!, N.A. INapanyx?

'PFA CB Ecenmix modeavdey uncmumymas, Kpacnoapcek, Peced;
2Cibip Ppedepardv. yrusepcumemi, Kpacroapcerk, Peceil

Temenri kadar 6olbIHIIA IPynHaJapAbl TAHY TYpPaJbl

MakaJtajia rpynmnanbl TOMEHIT KabaTTaH, SFHA OHBIH 9JIEMEHTTEDIHIH Kail peTTepi KUbIHBIH KAJIIbIHA KeJl-
Tipy MYMKiHIiri KapacTeipbuiran. 2KyMbicTa ToMeHTi KabaT apKbIIbI TAHBLIATHIH, TOMEHTT KabaT apKbi-
JIBL JIEPJTIIK TAHBIIATHIH KOHE TOMEHT1 KabaT apKbLIbl TAHBIIMANTHIH TONTAPIBIH MBICAJIIAPhI KeJTipiareH.
IITekci3 rpynmanap KJachIHIAFbI TOMEHIT KaOaTTaH IPyNIIAHBl KaliTa KYpy HOTHXKesepi Kelbip KOCBIMIIIa
mekTeysaep OoffbraIIa aabHAbI. ToMenri KabaT GOUWBIHINA TPYMIAHBI TaAHY TYCIHIT CIeKTp OGOMBIHIIA TPYII-
najapapl TaHyFa (OHBIH 9J€MEHTTEPIHIH KATap/apblHbIH YKUBIHTBIFBI) YKCAC €HIi3inai. Bapiblk akbIpibl
Kail abesIbiKeMec IpyIaap/IblH CIIEKTPI XKoHe TOMEHTT KabaThl OONBIHINA TAHBLIYBI aKbIPJIbI KapaltaibiM
abesipiikeMec rpymnnajiap K/aachblHia Oip yaKbITTa 19/ JeHIeH.

Kiam cesdep: rpymma, KabaTThl aKbIPJIbI TPYIIA, TOMEHTI Ka0aT, CIIEKTD, TAHBIMIBLIBIK.

B.. Cenamos!, .A. INapamyx?

! Hnemumym evucaumenvrnozo modeauposarus CO PAH, Kpacwospex, Poccus;
2 Cubupcruti edepanvroi ynusepcumem, Kpacroapex, Poccus

O PacClIOSHaBaHUU I'PYIIII 110 HU2KHEMY CJIOIO

B crarpe 06cyKIeHa BO3MOXKHOCTB BOCCTAHOBJIEHVSI IPYIIIBI IO HUXKHEMY CJIOI0, TO €CThb [0 MHOYKECTBY
€€ 9JIEMEHTOB MTPOCTHIX MOPSIIKOB. lIpuBeieHbI MpUMEPHI PACIIO3HABAEMBIX IO HUXKHEMY CJIOIO, TTOYTH PAC-
ITO3HABAEMBIX 110 HIPKHEMY CJIOI0 M HEPACIO3HABAEMBIX 110 HIXKHeMY cJioio rpynn. Ilomydyensr pesyapraTsl
BOCCTAHOBJIEHUsI TPYIIIIBI IO HUZKHEMY CJIOKO B KJIacCe BECKOHETHBIX IPYIII IIPU HEKOTOPHIX JOTOTHUTETBHBIX
orpannvenusx. [loHaTHE pacmo3HaBaeMOCTH TPYIIBI IO HUYKHEMY CJIOI0 BBEIEHO IO AHAJOTUU C PACIIO3HA-
BaEMOCTBIO I'PYIIBL O CHEKTPY (MHOXKECTBY HODSIIKOB €€ 371eMeHTOB). Jloka3aHa paclo3HaBaeMOCTb BCEX
KOHEYHBIX MPOCTHIX HeabeseBbIX I'PYIII M0 CIEKTPY M HUXKHEMY CJIOIO OJJHOBPEMEHHO B KJIACCE KOHEUHBIX
MIPOCTHIX HEabE/IeBbIX TPYIIIL.

Kmouesvie crosa: Tpyta, CIONHO KOHEIHAs TPYIINa, HUZKHUIA CJI0M, CIIEKTP, PACIIO3HABAEMOCTD, KOHEYHBIE
NIPOCTHIEe HeabesIeBbl I'PYIIIIbL.
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The Bessel equation on the quantum calculus

A large number of the most diverse problems related to almost all the most important branches of
mathematical physics and designed to answer topical technical questions are associated with the use of
Bessel functions. This paper introduces a h-difference equation analogue of the Bessel differential equation
and investigates the properties of its solution, which is express using the Frobenius method by assuming
a generalized power series. The authors find discrete analogue formulas for Bessel function and the h-
Neumann function and these are solutions presented by a series with the h-fractional function t;f‘). Lastly
they obtain the linear dependencies between h-functions Bessel on Tj,.

Keywords: Bessel function, modified Bessel function, Bessel difference equation, h-calculus, the h-derivative
and h-fractional function.

1 Introduction and Preliminary

Now a days, the theory of transformation operators is a fully formed independent branch of
mathematics, located at the junction of differential, integral, and integro-differential equations, functional
analysis, function theory, complex analysis, the theory of special functions and fractional integro-
differentiation, the theory of inverse problems and scattering problems, the theory of optimal control
and dynamic systems. The special area of application of transformation operators has become the
theory of differential equations with singularities in the coefficients, especially with Bessel operators.

The Bessel functions are widely used in solving problems in acoustics, radiophysics, hydrodynamics,
problems of atomic and nuclear physics. There are numerous applications of Bessel functions to the
theory of heat conduction and the theory of elasticity (problems of vibrations of plates, problems of
the theory of shells, problems of determining the stress concentration near cracks) [1-5].

The theory of fractional h-calculus is a rapidly developing field of great interest from both a
theoretical and an applied point of view. Especially we refer to [6-12] and the references in it. As for
applications in various fields of mathematics, we refer to [13-20] and references in them. Let h > 0 and
T, ={a,a+ h,a+2h...}, Va € R.

Definition 1. (see |9]) Let f : T, — R. Then the h-derivative of the function f = f(¢) has the form
and is defined as

th (t) (33) _ f((sh(t)li - f(t),t T, (1)

where 0p,(t) =t + h.
We assume f - g : T, — R. Then the product rule for h-derivation reads (see [9])

Dy (f (x) g(x)) = f(z + h)Dpg(x) + g(x) Dp f (x) (2)

*Corresponding author.
E-mail: shaimardan.serik@gmail.com
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and the h-integral (or the h-difference sum) is given by

z/h—1
/f ()t = Y f(kh)h, x € T,. (3)
k=a/h

Definition 2. (see [9]) Let t,a € R. Then the h-fractional function t;la) is defined as

t
T (h +1 a)

where I' is the gamma function of Euler, % > 0 and we use the convention that division at the pole
gives zero. Notice that

lim t(a) = t*.
h—0
Hence, from (1) we find that
1
a—1 _ — (@)
= = — Dy, [t
Let t € Ty. Then, for o, 8 € R,
e = (¢ — an)|?, (4)

Definition 3. (Foundamental theorem h-calculus) If F'(x) is an h-antiderivative of f(x) is continus
at x =0, we get

b

/ F@)dna = F(b) — Fla),

a

for a,b € T,.
2 The Bessel equation. Bessel functions.
2.1 The Bessel differential equation. We consider the h-difference equation in the following form:
12 DRy(t — 2h) + ) Dyy(t — ) + 47 y(t — 2h) — v?y(t) = 0 (5)

which is called the h-Bessel equation of the indicator in v, where v is a real number. This equation has
a special point ¢ = 0 (the coefficient at the highest derivative in (5) vanishes at ¢t = 0).

Theorem 2.1. Let v < 0. Then there is a particular solution to equation (5), given by a uniformly
convergent series

( 1 ) ktv+2k

Jon(t kTu+k+U%Hk (6)

which is the solution to the Bessel equation and is called the Bessel function of the first kind v-th order.
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Proof. Following the classical methods (see, for example, [6], p. 379), we will look for a solution to
this equation in the form of a series. Therefore, there is a solution to equation (5) in the form of a
generalized power series

—to‘Zak t—ah aoséO (7)

where « is the characteristic indicator to be determined. By (4) we can rewrite the expression (6) in
the form

o
k=0

and using Definition 2 and (1) we find the h-derivatives:

Diy(t—2h) = D}y ap(t—2n)* "
k=0

= (a+k)at+k—1) apt—2n) 2
k=0

and

Duy(t —h) = D> ap(t — )i
k=0

= (a+k) Zak a+k b,
Therefore, substituting (7) and its first and second h-derivatives into the equation (5), we get that

t2(a+ k) a+k—1)Y an(t—20) P i @+ k) S an(t - n) 4
k=0 k=0
tg) ak(t . 2h (a—f—k 2 Z ap t oz-‘rk)
k=0

so we can rewrite the equation:

(a+k)(a+k—1) Z aktEf) (t— 2h)§la+k72) 4 (atk) Z aktg)(t _ h)éaJrkfl)_’_
k=0 k=0

oo
Z aktgf) (t a+k Z ap ’UQt (a+k)
k=0

where tgf) (t — 2h)§1a+k_2) = %" and t;bl)(t — h)gwk_l) = 1otk
From here we get a general formula for all these series.

(a+k)(a+k—1) Z akt%aJrk (a+ k) Z a thaJrk) + Z a+k+2 Z ak v2t (ath)
k=0
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and .
Zak((a+k>(a+k—1)+(a+k)—v (‘”*’“ _,_Z a+k+2 0
k=0

and, finally

> ax (a4 kP —?) “*’MZ D — g,

Next, for a,a+1,...,a+ k, ...,, we are equating to zero the coefficients at the same powers of x, we
lead at the following recurrent relations for the coefficients:

t* |(a?® —v*)ag =
2

2) ag +ag =0, (8)

k| ((a+ k)2 —v?) ag + ag—2 =0, Vk > 2.

Since ag # 0, it follows from the first equation (8) that a? —v? = 0, or @ = 4v. Now from the
second equation (8) we will have a; = 0.

Let us consider the case o = v > 0 first. Let us rewrite the & — th (k > 1) equation of system (8)
in the following form

—Qk—2

W= L)

Considering that a; = 0, we get from here a3 = 0 and a9g;+1 = 0 in general. On the other hand,
each even coefficient can be expressed in terms of the previous one by the formula

don — — A2k—2
T TRkt k)
Consistent application of this formula allows us to find an expression ag; through ag :
ao
a = ————
2 2.1 (v+1)
N a2 agp
aqs = — =
T2 2 (v+2) 2012 -(u+ (v +2)
= a4 ap
ar = — [
07 7223 (w+3) 2631 (v+ 1)(v+2)(v+3)
—1)k
= Q9 = ( ) 0

- :
22k ] (v + 1)

The coefficient ag has so far been left arbitrary. If v # —n, where n > 0 is an integer, then assuming

_ 1
WO 2wt 1)
we find
_ (=D* 1
kT 9% D+ 2)(v £ 3) (vt k) 2°T(v+1)
(=D)*

2k pID(v+ k+ 1)
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Substituting this expression for the coefficients in (7), we get
( 1)ktv+2k
< BT (v+ ki + 1)20F2F

The proof is complete.
Corollary 2.3. The equation (5) does not change when v is replaced by —v, then the function:

( 1 ) kt—v+2k

ol Z KD (—v + k + 1)2-v+2k 9)

is also a solution to the equation (5).
Theorem 2.4. If v # n. Then the general solution to equation (5) has the form:

y(t) = C1Jyn(t) + Cad—y i (2). (10)

Proof. Now we prove that y(t) in the following form is also a solution to equation (8):
y(t) = C1J, h( ) + C2J—v h( )
C
! Z k:'F (v+k + 1)2v+2k

+ O kz% KT (—v + k + 1)2-v+2k’

Using (1) to find the h-derivatives from the formula (10):

. (—1)% (v + 2k) (v + 2k — 1))

° tg)D}% (CIJv,h(t — 2h) -+ CQJ,UJL(t — Qh)) = (1 Z k'P(U R 1)2v+2k
k=0 ’
Z (—v + 2k) (—v + 2k — 1)t
KT (—v + k + 1)2-vH2k ’

v+2k)

> (—1)k (v + 2k)E T
o DL Ot =)+ Cal aalt =) = O
-1 k —v+ 2k t( v+2k)
+ CQZ . it 2k
TN(—v+k+1)27vF

1) t(v+2k+2)

2
. tgl) (CrJupn(t —2h) + Cod_y 4 (t —2h)) = Cy Z k;lI‘ (v + k + 1)20+2k

C2 Z: k!F(fv Tk+ 1)27v+2k’

vy Z klI‘ (v+ k& + 1)2v+2k

o — 2 (ClJv,h(t) + CQJ—v,h(t)) =

+ CQZM v+k:—|—1)2 2k
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Now we substitute in equation (10):

. i (= 1)k (v + 2k) (v + 2k — 1)+ . i (= 1)k (v + 2k)t{" 2P
! KT (v + k + 1)20+2k KT (v + k + 1)2v+2k

ol v Z +
k:'F (v+ k: +1)2v2%k k'F(v + k: + 1)2v+2k

k=0 k=0

o i (—1)*(—v + 2k)(—v + 2k — 1)t§;”+2’“ +§:( 1)k (—v 4 2k)tl 20 .
2 KT (—v + k + 1)2-v+2k — KL v+k—|—1)2 —u+2k

ko (—v+2k+2) ko (—v+2k)
o (Y (=1, 2 Z (=D, _ 0
\ & WD (—v+ b+ D27vF2k KT (—v + k + 1)2-v+2k
If C1 = —Cy then y(t) = C1Jyp(t) +Cad_y p(t) is a solutlon to the equation (5). The proof is complete.
Example 2.5. Find a general solution to the following equation:
2 D2y(t — 2h) + 1V Dy (t — h) + 2 y(t — 20) — 2y(t) = 0. (11)
Proof. We consider two cases v = 1/2 and v = —1/2. 1) According to the definition (see (6)) of the

Bessel function J1 ,(t) we have:
2 I’

s (_1)kt(%+2k)

:Z b

ORI (L 4 k1) 2212

Since
T (;) = /e_tt_édt = /e_td(Q\/i) = z/e_gzd@\/g) =
0 0 0
L(t+1) = tL'(t), t>0,
then

k!F<k+;> = F(k+1)1“<k+1+;>

() 22 (e

C (e Dren.

22k—1

Considering also that I'(k + 1) = k! for k € N, we get
o0 $42k)
(—1)kt(2

Tinlt) = > I (3 ; 1ok
im0 KT (5 + k) 22
_1
(=1)ke 2 (¢ + Sn) Y
k1T (§ + k) 27 +2k

I
M8

B
Il
o

B i (t—|— lh)(ZkJrl)
= Pk (k+ )T (2k) 252
ﬂt;% X (—1)k (¢4 1h)PFY
RV 2k +1)!
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The row on the right hand side of the last equality represents the decomposition of the function
sinpt. Therefore, the following equality is true

1
N 1
J;h(t) = \/}% siny, <t+ 2h> . (12)

Now, using (1), (6), and (12) we find the h-derivatives of sinpt:

(2k+1)
1 ¥ (t+ 3h),

Dpsi = = D

KRSt (t+2h) hz 2k—|—1

& (CDFRE 1) (¢4 3n)
> (2’</‘)!(2k+1)2 "

k=0
i (~1)F (¢ + 3h)32"
poare (2k)!
1
= cosp |t+ ih .
2) Let us now consider the case when v = —1. By using (9) we have that
i 1)1%(;%“’“)
“1ok”
k= (-3 +hk+1)27242

Taking into account that

kT <k;+1> = kF(k)F<k+;>

we get that

= (kY

J—%,h(t) = Z

Zo R (k)2 i

e’} ( 1)kt§;%) (t—|— lh)(Zk)
N kzo RIT (k+ 1) 27 3+2k

D& (D (4 5n) Y

_ t}(l—a) 3

— kF(k)F (k+3)2-2+2

V¥ (t+ Lh) Y
- Z L L(2k) o — 5 +2k
k=0 92k
ﬂt,ﬁ 3) & (- (t+1h)(2k)

>

138 Bulletin of the Karaganda University



The Bessel equation ...

The row on the right side of the last equality is a function cosy t . Therefore,

J7%7h(t) = \/;2/757%2 cosy, (t + ;h) (13)

Now, using (1) we find the h-derivatives of:

(2k)
. s (—1)F <t—i— §h>h
Dy, cosy, (t + 2k> = Dy kz_o 571

(2k—1)

(—1)k2k<t+ §h)
2k!

. ) (2k—1)
(1) <t+ 2h>

(21<,-_1)!h

h

I
M8

i

1

[
hE

B
Il

1

(2n+1)
o (=1)" (t + ;h>

:_Z h

|
o (2n+1)!

1
= —sinp(t+ §h)

According to (12) and (13), we get a general solution to the equation (11):

(,l) _1
o, 2 o, 2
y(t) = Cy V2 siny, <t + ;h> + 02‘[ h cosy, (t + ;h>

va va

The proof is complete.
Theorem 2.6. We define the h-Neumann function for non-integers v (complex constant) by the
formula:
_cosp(vm)Jyp(t) — J_yp(t)

Ny,h (t) - Sir’lh(l/ﬂ') (14)

and it is a solution to equation (5).
Proof. Now, by using (1) we obtain the h-derivatives of the function (14):

cosp, (vm)

1
DyN,,(t) = DyJ, n(t) — ——DpJ_, n(t
nNun(t) siny, (vmr) nlvn(?) siny, (vm) nd—vn(t)
cosp(vm) o 9
D?N, ,(t) = D2J, (t) — D2J_,u(1).
wNon(?) sing (v) nlvn(?) sing, (v) nl v (?)

Substitute equation (5) into

2 (COS"WD,%JM(t —2h) — —

sing, (vm) siny, (vm)

DI%J—V,h(t - 2h)> +
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1
+1p MDhJu,h(t —h) — %DhJ—u,h(t —h) |+
sing, (v) siny, (vm)
@) (cosn(vm) ;o oy L o)
+t; (sinh(mr)Jy’h(t 2h) sinh(mr)J*”’h(t 2h)
(o) oy oL _
v (sinh(mr) Tun(t) siny, (v) J”’h(t)> =0
Consequently:
cosu(Vm) )2 - @7 oy 2 -
siny (7) (t, " DiyJyn(t = 2h) + tn DpJyn(t = h) + 6,7y n(t = 2h) — v Jy (1))

(D D3Iy (t = 2h) + thDpd s (t — h) + 10T (t — 2h) — 2T, 4 (1)) = 0.

~ sing, (vm)

We know that functions (5) and (9) of the first kind in the form J, 4 (t) and J_, ,(t) which is the
solution to the Bessel equation. Thus, we can say that the A-Neumann function (15) is the solution to
equation (9).

Let v > 0 and

b 1/2

12, (a0 = {/ - / F@R 220D gz | 3,

a

forVeabeT,.
The h-Bessel operator: In this article, we consider a discrete analogue of the Bessel operator, where
the h-Bessel operator has the following form:

oy 1
(Buy)(®) ==t "Dy [Dhy(t)ww]’
h

In addition, By, is a linear operator, that is

By(ay+ Bf) = aBy(y) + BBu(f), Yy, f € L2, (a,b).

Theorem 2.7. (Orthogonality of eigenfunctions). Let (A1,y) and (Ag, f) two pairs of eigenvalues
and eigenfunctions, and A1 # Ao. Then, for both regular and periodic problems, the corresponding
eigenfunctions y(¢) and f(t) are orthogonal with weight r (therefore (y(t), f(¢)) = 0).

Proof. The first two statements follow from the definition 3 and (1)-(3) for Yy, f € L, 2(a,b), we
get that

(f(t—l—h)Bhy?(;L—y_yl()H—h)Bhf(t)) — D, Dhy(t)t(_gl,,_l) f(t+h)
5 L h
— D, th(t)ﬁ y(t+h)
I b,
i 1
= Dy _f(t)Dhy(t)W
- y(t)th(t)(_gly_l)] (15)
th
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and
h

/ t+ h)Bpy(t) — y(t + h)Brf(t))

(2V 1)
0

And using (5), we see that

Bry(t) = 7551 . 1)Dh

and

Buf(t) =t "Dy

dpt = [f(t)Dhy(t) (_21V 1)
th
1 h
- y(t)th(t) (—2v 1)] (16)
th
D) gy | =~ Nt 1) (1)
sz
DS gy | = N+ B (18)
)

Now multiply the first of the obtained equations (17) and (18) by f(t), the second by y(t), and find
the difference. The resulting equation is reduced to the following form

Dpy(t)

e+ 0 B0) ~ -+ B = 47D 2P e

We can rewrite

- t§f21j71)Dh {th(t) ;

h

1

h

= (A= A)y(t+h)f(t+h).

(f(t+h)Bny(t) —y(t + h)Buf (1))

tg;Zufl)

From (2), (16), and (19), we may compute

1
/Dh|: Dhy )(21, 1)

ty
1
y(t)th(t)t(_QTl) dpt
h

h
()\%_/\%)/y(t—kh)f(wrh)dht _

(—2v-1)
0 th
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D1 Dat) | e+

h

D1 Daf0) - | ote 4

(A3 -

h

ADy(t + h)f(t+ h)t(‘;”‘l)' (19)
h

/ f(t+h)Bry(t) —y(t + h)Buf(t))

/Dh[

((—2=D) dpt

h

1 1
) Dpy(t) ——— ( 1) (t)th(t)t(_QTl) dnt

h

h
hgl 2v—1)

—h

—0+0.
hEL 2v—1)
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Here:
t=0= Jun(0) =1;Dpjun(0) =
t="h= jun(h) =1 Drjun(h) = h
Therefore,
' h)B h)B / h h
t t) —y(t t t t
/ (f(t+h) hy<(>_ zyf’ﬁ B, _ 2y / y( +(_;g‘_<1)+ Vit = 0
, ty 0 th
and

Ao # M = (y(t+h), f(t+h))=0.

It proves the claim.
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C. Iaiimapan!, H.C. Tokmaramberos!:?, E. Aiikpia!

YILH. Dymunes amovmdazss Eypasus yammo yrusepcumemi, Hyp-Cyaman, Kasaxeman;
2 Axademux E.A. Boxemos amuvmodaes. Kapazandv ynusepcumemi, Kapazandw, Kazaxcman

KBanTThIK ecenreyneri Becceanb TeHeyi

Beccens dyHKIustapbiH KoJIIaHy MaTeMaTHUKAJBIK (DU3NKAHBIH, O6AapJIbIK, JIEPJIiK MaHBI3IbI CaJIaapbiHa
KATBICTBI JKOHE ©3€KTI TEeXHUKAJBIK CypaKTapra »Kayamn Oepyre apHAJFaH OPTYDPJl €CenTepiiH Y/JIKEH Ca-
HBbIMEH bOaitanbicThl. 2KyMmbicTa Beccens nuddepeHnmaiaplk TeHAeyiHiH aHaJIorbl 60JIbIT TaObLIATHIH h-
afBIPBIMIIBIK TEHJEY1 eHTI31IreH XKoHe YKaJbIIaHFaH JopeXKesep KaTapbiH aabin, OpobeHnyc 9/1ici apKbLIbI
OPHEKTEHUTIH OHBIH, IIENMiHIH KacuerTepi 3eprrenred. bBeccenp dyukiuscet men h-Heiiman dyukmnusco
VIIH JUCKPETTI aHAJOITHIK (pbopMy/iajap TabbLIIbI, OJIAP/IbIH, IIeITiMaepi h-0erek QyHKIUICHI t;;” bap
KaTapmeH 6epinren. ConbiMeH Karap, 1, Goiibiaira h-Beccenb QyHKIUIIAPHI ApAChIHIAFBI CHI3BIKTHIK, TOY-
eJIIITIIKTED aJIbIHFaH.

Kiam cesdep: Beccenwb dpyHKImsICHI, MoauduKausiianFal beccenb GyHKIusichl, Becceb allbIpbIMIBIK, TEH-
neyi, h-ecenrey, h-TybrHabI 2KoHEe h-0eJieK QyHKIUICHL.

C. Iaiimapaan!, H.C. Tokmaramberos'?, E. Aiikbia!

1 oo .
Espasutickuti nayuonasvhold yHusepcumem umenu JI.H. lymunesa, Hyp-Cyaman, Kazaxcman;
2 Kapazandunckuti ynusepcumem umeru axademura B.A. Byxemosa, Kapazanda, Kazaxcman

YpaBHeHne Becceiiss B KBAHTOBOM HCYUCJIEHUN

C ucnosp3oBanueM GyHKIHUit Beccesst ¢cBsizaHo 60/BIITOE KOJTUIECTBO CAMBIX PA3HOOOPA3HBIX 33189, OTHO-
CANUXCA ITPAKTUYIECKHN KO BCEM BaKHEUIITNM pas3aenam MaTeMaTHUIeCKOn d)I/ISI/IKI/I U IIPU3BaHHBIX OTBETUTH
Ha aKTyaJIbHble TEXHUYECKUE BOIPOCHI. B cTaThe Mbl BBOAMM h-pa3HOCTHOE ypaBHEHUE, aHAJIOT JTuddepeH-
IUAJILHOTO ypaBHEHUs Beccesist, U UCCeLyeM CBOMCTBA €ro PEIIeHusl, KOTOPbIE Mbl BBIPAXKaeM € ITOMOIIILIO
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merona Ppobenunyca, mpemosaras 0000IIEeHHbIN cTerteHHoM psifl. HaiieHb! quckpeTHble (DOPMYJIbl-aHAJIOTH
st dysknun Beccenst n h-dynkmun Hefimana, pemreHust KOTOPBIX IPECTaBIEHBI PsA/IOM € h-1pobHOiA
byuknneit tia . Kpome Toro, Mbl nmostyunsn JuHeRHbIE 3aBHCUMOCTH Mexk 1y h-dyukiusvmu Beccemnst Ha Tyg.

Karouesvie crosa: dyukuusa Beccenst, momudunupoBannas Gyukiusa beccensi, pasnocrHoe ypasaenue bec-
censi, h-ucuucnenune, h-npoussogHas u h-apobHas OYHKIUN.
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Well-posedness of the initial-boundary value problems for the
time-fractional degenerate diffusion equations

This paper deals with the solving of initial-boundary value problems for the one-dimensional linear time-
fractional diffusion equations with time-degenerate diffusive coefficients ¢” with 8 > 1 — a. The solutions
to initial-boundary value problems for the one-dimensional time-fractional degenerate diffusion equations

—a

with Riemann-Liouville fractional integral I;;$ of order « € (0,1) and with Riemann-Liouville fractional
derivative Dg, ; of order a € (0,1) in the variable, are shown. The solutions to these fractional diffusive
equations are presented using the Kilbas-Saigo function Fu m,i(z). The solution to the problems is discovered
by the method of separation of variables, through finding two problems with one variable. Rather, through
finding a solution to the fractional problem depending on the parameter ¢, with the Dirichlet or Neumann
boundary conditions. The solution to the Sturm-Liouville problem depends on the variable z with the
initial fractional-integral Riemann-Liouville condition. The existence and uniqueness of the solution to the
problem are confirmed. The convergence of the solution was evidenced using the estimate for the Kilbas-
Saigo function Fq m,i(z) from and by Parseval’s identity.

Keywords: time-fractional diffusion equation, method of separation variables, Kilbas-Saigo function.

Introduction

Many mathematicians have attracted most interest to the fractional diffusion equations. Inverse
source problems for degenerate time-fractional PDE were studied in [1]. In [2, 3], Al-Refai and Luchko
analyzed the initial-boundary value problems for the linear and non-linear fractional diffusion equations
with the Riemann-Liouville time-fractional derivative. Various types of fractional derivatives and
their properties were investigated in the monograph [4-8|. Fractional calculus can be applied in
mechanics, physics, mathematics, etc. [8-12]. Note that degenerate fractional evolutionary equations
were investigated in [13, 14]. In [15], maximum and minimum principles for time-fractional diffusion
equations involving fractional derivatives were proposed. Luchko studied initial-boundary value problems
for a generalized diffusion equation with a distributed order [16].

In our previous work [17], we studied the Cauchy-Dirichlet and Cauchy-Neumann problems for
the Caputo time-fractional diffusion equation. This paper considers the Cauchy-Dirichlet and Cauchy-
Neumann problems for the diffusion equation with Riemann—Liouville time-fractional derivative. A
solution is discovered by using the Kilbas-Saigo function and by the method of separation of variables.
The existence, convergence, and uniqueness of the solution are proved.

1 Dirichlet problem

Let us consider the one-dimensional case of the time-fractional diffusion equation

Dgy yu(t,x) — tﬁum(t,x) =0, (t,x) € (0,00) x (0,1), (1)

*Corresponding author.
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with the Dirichlet boundary condition
u(t,0) =u(t,1) =0, t >0, x €[0,1], (2)
and the Cauchy initial condition
Iy $u(0,2) = ¢(x), = € [0,1], (3)

where 8 > 1 — «a, Df, , is the Riemann-Liouville fractional derivative of order a € (0,1) defined by
[5; 79]

1 d [t f(s)ds
DB (1) = G lorif (1) = T(l- a)dt/ ({()S)a'

Here I17% is the Riemann-Liouville fractional integral given by [5; 80]

04,¢
w1 [ f(s)ds
B0 = 7=y |, e

Let H?(0,1) is a Hilbert space, defined by

H%(0,1) = {u: u € L*0,1); uz € L*(0,1)},
where the norm is

llulFr20,1) Zm (u, ex)]* < o0.

Definition ] The solution to problem (1)7(3) is t172u € C((0,00); L%(0,1)), which satisfies
tl-a- BD0+t =y, € C((0,00); L2(0,1)).

Theorem 1. Let ¢(z) € H?(0,1), then there exists a unique solution u to problem (1)-(3), which
has the form

o0

toc 1
Z@cEa 148 1 (= k2P sinwka, (t,2) € (0,00) x (0,1),

u(t,z) =

where ¢ = 2f01 ¢(x)sinmkxdr, k € N and FE,;,(2) is the Kilbas-Saigo function defined as
[8, Remark 5.1]

Ma(ym+1)+1)
Eom, 2t cg=1, ¢ ="} Q> 1. 4
d ZC I=OT(a(jm+1+1)+1) ' = @

For the function £~ 1 (=Akt?T) the following estimate holds [4, Proposition 3.6
1 _ Bta

I'(1+am) 1+#’ @
<1 + F(1+a(m+1)))"€tﬁ+a>

E AptPTe) < , t>0. (5)

oamm—f(
[e3

Proof Theorem 1.

Ezistence of solution. Since the Sturm—Liouville operator has eigenvalues {\; > 0, & € N} on
L?(0,1) and the corresponding orthonormal eigenfunctions {Xz(x), k € N} in L?(0,1) and ¢(z) €
H?2(0,1), then we can write the solution to problem (1)—(3) as follows

$) = ZTk(t)Xk($)7 (t,ZL‘) € (0,00) X (O> 1)a (6)
k=1
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=> e Xp(x), z € (0,1),
k=1

where
1
o = 2 / 6(2) Xp(2)dz
0

Substituting (6) to diffusion equation (1)-(3), we gain the next problem

DG, Tr(t) + At Ti(t) = 0, ¢ >0, (7)

Io+ k(0) = o, (8)

Xi(0) = X(1) = 0. (10)

The orthonormal eigenfunctions and the corresponding eigenvalues of the Dirichlet problem (9)—(10)

are Xi(z) = sinwkz and A\, = (7k)2, respectively. It is known that a unique solution to problem

(7)-(8) is [5; 227]
toz—l

Ti(t) = —n2k2 ), (11)

() e g2
Substituting (11) and the orthonormal eigenfunctions X (x) = sin mkx to (6), we can get the solution
to problem (1)—(3) in the next form

o0

to— 1
Zd)kEa 14814821 L (—m 220 sinwka, (¢, 2) € (0,00) x (0,1). (12)

u(t,x) = (o)

Convergence of solution. Applying (5) to (11), we get

|fre| [t B+a
Ti(t) < T M
I'(a) (1 + w%ﬂk%ﬁm)

By Parseval’s identity, it follows from (12) that

1 & 2
ey, |12 _ 2| g L (=Pt <
igg“ u(t, )HL?(O,1) i‘zlg |F(a)’2;’¢k’ ‘ a,1+§,1+%( g )| <
1 |/
= TP ; o) 205 =
<]. + I‘(l—&m&(’m—&-l))Tﬂk?tﬁ—i_a)
1
< sup Z!¢k!2<2|¢kl2— 16()11Z2(0.1)- (13)

t>0 9 I(14am) 21 2( 1+
|F(Oé)’ <1 + mﬂ' t +a>

Solving Dg, yu and ug, we get

oo

a—1 21.2,.8+a) _

Dy, yu(t,r) = Z ok DGy 4t a1+§,1+%(_ﬂ-kt )sinkx =
k::
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toz-i—,@—l oo
=— (o) 71'2k2q§kEa71+571+@(—7T2k2t5+a) sin Tkx, (14)
and
ta ' & 21.2 s N
Uz (T, T) Z¢kEa 148 14821 L (—m2 k2P sin ke =
to 1 >
= o) TROE, | 5 1,5 (—T KT ) sin Tk, (15)
k=1 “

Applying (13)—(15) we get

st1>1p|!t1 o ﬁDt u(t, ')"%2(0,1) < 2774]‘34‘%\2 = H‘b(')”%ﬂ(o,n < 0
=1

and

oo
sup (It o MIZz0) < 27 K10k = 60 Iz 0,1y < o0
= k=1

Uniqueness of the solution. Suppose that u; and wug are solutions to problem (1)—(3) and we choose
u = uj — ug in such a way, that u satisfies the diffusion equation (1) and boundaries, initial conditions
(2), (3). Define

1
Ti(t) = / u(t,z)sintkxdz, ke N, t> 0. (16)
0

Applying Dg, , to left-side (16) equation by using (1) we obtain
Dgy Ty (t) / Dgy u(t, ) sin mkxdz
1
= tﬁ/ Ugy (t, ) sin Thkaxdr
0
1
= tﬁ/ u(t, x) sin” mkxdx
0

1

= —t57r2k:2/ u(t, x) sin rkxdx
0

= —tPn2k2 T, (t), ke N, t > 0.

From (2), (3) we have
1—01-1-?; (O> = 07

which means that u(t,z) = 0. Hence uq(t,z) = wua(t,x), therefore the problem (1)—(3) has a unique
solution.

2 Cauchy-Neumann problem
Let us consider time-fractional diffusion equation
Dgy u(t, ) — tPug(t,z) =0, (t,z) € (0,00) x (0,1), (17)
with the Neumann boundary condition

up(t,0) = up(t,1) =0, t >0, € [0,1], (18)
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and the Cauchy initial condition
Ié;ot‘u((), x) = ¢(x). (19)
Definition 2. The solution to problem (17)-(19) is !=%u € C((0,00); L?(0,1)), which satisfies
P Dg, u, 1 YUy, U,y € C((0,00); L2(0,1)).
Theorem 2. Let ¢(x) € H?(0,1). The unique solution to problem (17)—(19) is the function u, which
has form

tafl &

By Do o142 1 (R ) conh, (1) € (0,00) x (0,1),
k:0 (e «

u(t,x) =

where ¢g = fol ¢(z)dx and ¢p = 2 fol é(x) cosmkrdz, k€ N and E, ,;(z) is a Kilbas-Saigo function,
which is defined by the formula (4) and (5).
It can be easily proven by the idea of Theorem 1.
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AT Cumanuesa

Oa-Dapabu amwuimdazv. Kasax yvammok ynusepcumemi, Aamamo, Kasaxcman;
Mamemamuxa srcone mamemamuranssry modeavdey uncmumymat, Aamame, Kasaxcman

Beaniek perTi TybIHABLIBI ©3rereljieHreH Audy3us TeHaeyaepi
YIIiH O0acTallKbl HIETTIiK €CelTiH KUCHIHIbLIbIFbI

Makanana t°, 8 > 1 — a auddysusnbik kosddunmenTrepi 6ap 6ip emmeMl ChI3bIKTHIK GOJIIeK perTi
TYBIHIBLIBI ©3TeleseHreH nuddy3nust TeHaeyIepi YImH 6acTamKbl METTIK €CEeNTep/l ey KapacThIPbLI-
rai. € (0,1) ymin 6emmexk perri Puman-JInyBuis naTErpasibt I&_T_?; xoHe « € (0,1) ymin Gesek perTi
Puman-JInysumie tysmapicsr Di , 6ap 6ip esmemai yaksIT OoiibiHIIa OOJIIIEK PETTi TyBIHIBLIbI ©3rele-
Jenren auddy3us TeHmeysepi yIimiH 6acTankbl IMETTIK eCerrTep/IiH, menrimaepi kepceriiren. besmmek perti
nuddysusansk rergeyaepain memriMaepi Eo m,i(z) Kunbac-Caiiro dyukimscsl apkplisl 6epinren. Ecern-
Tep/iH Irentimi afHpIMaIbLIaAPAbl aXKBIPATY O/iCi apKpLIbI, Oip allHBIMAJILICEL Oap eki ecenTi Taly apKbLIbI
anbikTataabl. lemek, [lupuxiae nemece Heliman mrekapasbIk mapTTapbIMeH ¢t mapaMeTpine Toyesi bestimek
perTi ecebiniy mremimin koHe x napamerpine Toyesdi [rypm-JInyBus ecebine KoibLIFaH 6acTankbl IIap-
TeI Gestmrek perti Puman-JInyBusut naTerpasisl apKplLibl OepiireH ecentiy mrerriMia taby apkplibl. Ecenrin
nrerrimMinin 6ap 60JIybl MEH KaJIFBI3IABIFGL mseagenred. [emivuin xunakrouibrsl Kilbas-Saigo Fo,m,i(2)

(BYHKIUSICHIHBIH, Oarajiaybl KoMerimeH >koHe [lapceBast TeH N H KOIIaHy apKbLIbI AR/ IeH/T].

Kiam ceadep: GeIek peTTi TYBIHILLILI ©3relie/ieHren nuddys3usi TeHIeyl, allHbIMaIbLIAPBIH aXKbIPaTy
ouici, Kunbac-Caiiro dyHKuusico.

A.T'. Cmanuesa

Kaszazxcrutll Hayuonasvroli yrusepcumem ument Aav-Dapabu, Aamamo, Kasarcman;
Hncmumym mamemamury u Mamemamuseckozo modeauposanus, Aasmameol, Kaszaxcman

KoppekTHOCTh HaYaJIbHO-KPAaEBbIX 33aJa4 IJIst JIPOOHBIX
BBIPOXKIeHHbIX AN(dPY3MOHHBIX YpaBHEHUIA

CraTbsl TIOCBSIINEHA PENTEHN0 HAYATbHO-KPAEBBIX 3a1a4 JJIsi OTHOMEPHBIX JIPOOHBIX BBIPOXKIEHHBIX JINHET-
HbIx 1uddy3UOHHBIX ypasHennii kosdgdurmentamu mubdysun t* npu 8 > 1— @, HATAILHO-KPAEBBIX 33,124
JIJIsT OJTHOMEPHBIX yPaBHEHUN BhIpOXKJaoleiics nuddysun ¢ gpobHBIM BpeMEHEM C JAPOOHBIM UHTEIPAJIOM
Pumana-JIuysuaas I&;‘i‘ nopsizka « € (0,1) u ¢ npobuoit npoussoguoit Pumana-JInysuns DG, , mopsaka
a € (0,1) no nepemennoit. Pemmenns stux 1pobHbIX 1udDy3MOHHBIX yPABHEHUI [IPEICTABIECHBI C TOMOIIBIO
dyuxun Kunbaca-Caitro Fq, m,i(2), IX DOSYYUIN METOIOM Pa3/IeJIeHus IePEMEHHBIX, IIyTeM HAXOXKICHIS

IBYX 3aJIa9 C OJHOU TepeMeHHOI. BepHee, myTeM HaXOXKIEHUsI PEIIEHUsT APOOHON 3a1a49M, 3aBUCHIIEH OT
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10

11

12

13

14

15

16

17

mapaMeTpa t, ¢ TpaHHYHbIMEU ycaoBuamu Jupuxie niau Heltmana, u pemenne 3anadun Htypma—/Inysuiis,
3aBUCHIIEN OT EPEMEHHOM T C HA49aJIbHBIM JIPOOHO-MHTErPAJIbHBIM yesioBueM Pumana-JInysums. JJokasa-
HBI CYIIIECTBOBAHNUE U €JMHCTBEHHOCTD pelneHns 3a1a4u. CXOIUMOCTb B PeIeHns HOATBEPKJACHA C IOMOIIBIO
ouenku pyuknun Kunbaca-Caiiro Eq m,i(2) n Toxxnecrsa [lapcesadis.

Karoueewie crosa: qpobHO-BBIPOXK IeHHOe 1 dy3MoHHOE ypaBHEHUE, METO L, Pa3Ie/IeHNs] [IEPEMEHHBIX, (DYHK-
muga Kunbaca-Caiiro.
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Construction of stochastic differential equations of motion
in canonical variables

Galiullin proposed a classification of inverse problems of dynamics for the class of ordinary differential
equations (ODE). Considered problem belongs to the first type of inverse problems of dynamics (of
the three main types of inverse problems of dynamics): the main inverse problem under the additional
assumption of the presence of random perturbations. In this paper Hamilton and Birkhoff equations are
constructed according to the given properties of motion in the presence of random perturbations from
the class of processes with independent increments. The obtained necessary and sufficient conditions for
the solvability of the problem of constructing stochastic differential equations of both Hamiltonian and
Birkhoffian structure by the given properties of motion are illustrated by the example of the motion of an
artificial Earth satellite under the action of gravitational and aerodynamic forces.

Keywords: stochastic differential equation, class of processes with independent increments, stochastic equations
of Hamiltonian and Birkhoffian structures, the main inverse problem.

Introduction

At present, the theory of inverse problems of dynamics in the class of ODEs is fully developed [1-9]
and goes back to the Yerugin’s fundamental work [10]. In [10], there is constructed a set of ODE that
have a given integral curve.

Methods for solving inverse problems of dynamics are generalized to the class of Ito stochastic
differential equations in [11-19].

Let the set

A(t): Mz, 2,t) =0, A€ R™, x€ R", (1)

be given. It is required to construct a set of stochastic equations of Hamiltonian and Birkhoffian
structure

p 0H
k— 7 >
Op
: __§H+U, p0)f, (k=T (2)
pk - aC_Ik; k’] Qapa ) - 9

=Tyiby, (5,0=T1,2n, p=T,n+r) (3)

ORi(z,t) ORi(2t)] . [9B(21) N ORy(z,1)
92 82 |7 2 ot

so that the set (1) is an integral manifold of the constructed stochastic equations of the Hamiltonian
(2) and Birkhoffian structure (3).

Here {&1(t,w), ..., & (t,w)} and {¥1(t,w), ..., Ynir(t,w)} are systems of random processes with
independent increments that can be represented as a sum of Wiener and Poisson processes [20]:

*Corresponding author.
E-mail: v_ gulmira@mail.ru
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1) € = & + [c(y)PO(t, dy), where & is a Wiener process, PV is a Poisson process, P°(t,dy) is
the number of the jumps of P? in the interval [0, ] that fall onto the set dy, c(y) is a vector function
mapping the space R?™ into the space R" of the values of the process £(t) for all t;

2) Y =o+ f YPO(t, dv), v is a Wiener process, P is a Poisson process, P°(t, d7) is the number
of the jumps of P in the interval [0,¢] that fall onto the set dv, &(y) ¢(y) is a vector function mapping
the space R?" into the space R™*" of the values of the process ¥(t) for all t; B = B(z,t) is a Birkhoff

function, W = (W;;) Birkhoff tensor with components W;; = 8R§S’t) - aRéS’t) )

The stated problem was solved for the class of ODEs in [21]. In particular, the stochastic Helmholtz
problem, i.e., the problem of constructing equivalent stochastic equations of the Lagrangian, Hamiltonian,
and Birkhoffian structures by a given second order stochastic Ito equation was considered in [22].
In |23, 24], the above problem of constructing stochastic equations of the form (2) and (3) by a
given integral set (1) is considered under the assumption that systems {&(¢,w), ..., & (t,w)} and
{1(t,w), ..., Ynir(t,w)} are systems of independent Wiener processes (as a special case of random
processes with independent increments).

Let us give the scheme of solving the set problems: at the first step by the quasi-inversion method
[3] in combination with Yerugin’s method [10] and by virtue of stochastic differentiation of the complex
function in the case of processes with independent increments [20] by the given set (1) the second order
Ito differential equation

i = flx,i,t) + oz, &, t)E (4)

is constructed so that the set A(t) is an integral manifold of the constructed equation (4). Further, at the
second step, equivalent stochastic equations of Hamiltonian and Birkhoffian structures are constructed
by the constructed stochastic equation (4).

1 Construction of stochastic Hamiltonian equation (2) by the given properties of motion (1)

Previously, by virtue of the Ito formula for stochastic differentiation of a complex function, the
equation of perturbed motion

oX O\ oA oA

A= ZZid S f+ 81+ So 4 S5+ =0 5
ot T aat T ag! TS S Gt (5)
, _ 192X A T
is compiled. Here S; = - ool’; following [20], : D, D = oo" is understood as a vector,
T 12

the elements of which are the traces of the products of matrices of the second derivatives of the
corresponding elements A, (z,,t) of the vector A(z,4,t) with respect to the components & and the

matrix D .
02\ 9*\ 9\,
—:D=|tr | —=D D :
9 [’”(a:r? ) ’”(aaﬂ )] ’

Sy = /{)\(x,dt +oc(y), t)— Nz, z,t) + g;\ac(y)} dy;

So= [NGo.i + oclu). ) = Aa. 1P (t.dy).
Further, in order for the set (1) to be an integral manifold of equation (4), we introduce arbitrary
Yerugin functions [10]: a vector function A = A(\, z, &,t) and a matrix B = B(\, x, &, t) with properties
A(0,z,2,t) =0, B(0,z,&,t) = 0, and such that

A=A\, i,t) + B\, z, &, t)E. (6)
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Equations (5) and (6) imply the following equalities

D fea—D 23555,

gi ot

=B,
Frad

To determine the desired functions f and o from relations (7), we use the following statement:
Lemma 1 [3; 12-13]. The set of all solutions of the linear system

(7)

Hv = g7H = (h,uk)uv = (/Uk)ag = (gu)nu’ = 17m7k = 17n7m S n, (8)

is determined by the expression
v=ovl +vY, (9)

where the rank of the matrix H equals to m. Here « is a scalar value,

€1 €n
hi1 hin,
T
v = [HC] = [hl...hmcm+1...cn_1] = hml hmn
Cm+1,1 -+ Cm+1n
Cn—11 -+ Cn—1pn

is the cross product of vectors h, = (h,) and arbitrary vectors ¢, = (cyx),p = m+1,n —1; e are

unit vectors of space R", vT = (v])
0 1 0
h11 hik hin
T
VU = hm1 hmk hmn y VY = H+g,
Cm+171 cm+l,n Cerl,n
Cn_171 cn—l,k cn—l,n

where HT = HT(HHT)~!, H is the matrix transposed to H.
By Lemma 1, using (8), (9) we determine the form of the vector function f and the columns o; of

the matrix o

12D\ oM\ "t ON O\,
o)) ON\ T Je—
0; = S9; |:8.%‘C:| + (8.7)) B;, (l = 1,7”) . (11)
Here 0; = (014,09, . . ., Jm)T denotes the i-th column of the matrix o = (0,5), (1/ =1,n, j=1, 7") .

B; = (B, B, - - -, Bmi)T is the i-th column of the matrix B = (B,;) , (u =1,m, j= 1,7“). By s1, 592
are denoted arbitrary scalar quantities.

The forms of the vector function f (10) and matrix ¢ (11) imply the general form of the set of
second-order Ito differential equations (4) with a given integral manifold (1)

. o)) O\ T oN O\,
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O\ N T O\ N\ T :
+ <321 |:81UC:| + <ax) Bl, cee SQT |:aJ,‘C:| + (81‘) BT‘) é

To construct the Hamilton function, we first introduce a new variable y, = &; and rewrite the
constructed equation (4) in the form

x‘k = Yk, 3
{ Yk = fr (2, y,t) + ogj (z,y,1) & (12)

Here the vector function f = (f1, f2,..., fn)? and matrix columns o = (01,09, ...,0,) have the form
(10), (11), respectively.
. g R o 0, forj=1,n,
Then, using 2 = { Yk G = { Jr vi= { g forj=n+1,n+2,...,n+m,

p= (pr;) = < Onxn Onxm ) , 0 = (ok;) we rewrite equation (12) in the form

Opnxn  Onxm

2= Gr (2,1) + g (2,1) ¥j. (13)
: _ a, k=1,n _ _ Onxn  Inxn
Further, using v, = { Dhn ken+ln+2. . .20 and ¢ = (pry) = < L O )
OH
_ N Onxn Onxm o — _ OH )
p = (prj) = , , and also taking into account Opg = | Yr»=— |, We rewrite
Onxn Onxm -4 81/1/
I
the stochastic equation of the Hamiltonian structure (2) in the form
OH -
e — Pk =— = Dk Vj- 14
Uk = Pk~ = Pty (14)
If we introduce the inverse matrix (wpy) = (@p) "+ = ( Onxn —Inxn > for (pr,) and vector zp =
Ian Oan
Wty = (PR k=ln then equation (14) is transformed to the equivalent equation
kvt qk;_n, k:n+1,2n ) q q q
. OoH .
Wykk = 5 = WykPujVj- (15)
2

Consider the problem of indirect representation of equation (13) in the form of an equation of the
Hamiltonian structure (15), i.e., using some matrix I' = (’y’j), consider the relation

. ; . OH .
" (Zk — G — Mkﬂ/Jj) = Wukdk — 5~ WukPujY;

or =

Corir — Du(2,1) = Yo pinjihj = Wukie — 9, WrkPvi¥s (16)
where C,p =75 D, (z,t) = vFGy.
To fulfill the identity (16) it is necessary the conditions
0H

Cor = Wrk, DV(Z7t) = _57 (17)
Vﬁuk’] = WykPrj, (V> k=1,2n, j=1,n+ ’I?’L) ) (18)
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75 = Wyk (19)

to be satisfied. From relations (16) and conditions (17)-(19), ug; = py; follows. This entails the
fulfillment of the equality o%; = o} 5, (k=1,n, j=1,m).

Theorem 1. For the indirect construction of Hamiltonian structure stochastic equation (2) by the
given set (1) so that the set (1) is an integral manifold of equation (15), it is necessary and sufficient
that conditions (17)—(19) be satisfied.

2 Construction of the Birkhoffian structure stochastic equation (3)
by the given properties of motion (1)

To solve the problem, consider the relation
Corzi — Dy(z,t) — ,uvjd}j =

_ [ORk(2,t)  ORy(z,t) 5 0B(z,t) N OR,(z,1)
o 0z, 0z, " 0z, ot

:| _Tlljwja (Vﬂ'{: 1a2n7 ]: 17n+m) (20)

(20) is fulfilled identically under the following conditions

o :{ Cn=T. (21)

ORy(2,1)  ORy(z,t) D — 0B(z,t) n OR,(z,1)
0z, 0z Y 0z, ot

Theorem 2. To construct the Birkhoffian structure stochastic equation (3) by the given set (1), so
that set (1) is an integral manifold of equation (3), it is necessary and sufficient that conditions (21)
are satisfied.

3 Example

Consider the stochastic problem of constructing Hamilton and Birkhoff functions for a given
property of motion by the example of the motion of an artificial Earth satellite under the action
of gravitational and aerodynamic forces [25].

Let the properties of motion

A(t):A=60%+a10% +az =0, A€ R! (22)
be given. Then the equation of perturbed motion (5) takes the form

A =200+ 20100 + Sy + So + S3 = 200 + 2010 f + Sy + So + S5 + 20100, (23)

where S1 = ay0?, Sy = [ {2alac(y) [40 + ac(y)]} dy, S3=[ {2alac(y) 40 + ac(y)]} PO(t,dy).

Let us introduce the scalar Yerugin functions a = a()\,e,é,t), b= b()\,Q,é,t) with the property
a(0,0,0,t) = b(0,6,0,t) = 0 and such that the relation

A =a\(8,0,t) + b6, 6,t)¢ (24)

takes place. In our example from relations (23), (24), it follows that a set of equations (4) is written as
0= f(0,0,t)+0(0,0,t)¢ and it has the integral manifold (22) if f and o have, respectively, the forms

= a0’ + 016’ +a2) —200 — 1 — Sy =S5 _ b(E* +nf® + )

(25)
20&10 20&19
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Following [25], we write the equation of motion of an artificial Earth satellite under the action of
gravitational and aerodynamic forces in the form

where 6 is pitch angle, fand & have the forms

f=Qisin20 — Q[g(6) +nb], &= Q5[g(9) +nb].

Before constructing the Hamilton and Birkhoff functions, we first construct the Lagrangian by (26).
In (26), relations (25) should be taken into account, which ensure the integrality of the given set (22).
From f = f, o0 = &7, it follows that the four parameters Q, §,n, [, determining the dynamics of satellite
motion, must satisfy the following relations
(02 + 16% + as) — 200 — Sy — Sy — S3 = 2016 {Qz sin 20 — Q[g(6) + ne’]} :
b(0% + a10% 4 an) = 2010Q5[g(0) + nd).
Then, considering definition [26] and the action of random perturbations, equation (26) admits an

indirect analytic representation in terms of a stochastic equation with a Lagrangian structure if there
exists a function A such that the identity

oL oL . " .
dl — ) — = —0'(0,0,) = hlf — f — 27
(%) - % - e.0é=nii- 1 - oq @0
. . 0l ol
takes place. We find the function h = h(t) from the Helmholtz condition [26; 107] 26~ ot
9%, which is necessary and sufficient for constructing the Lagrange equation equivalent to the

scalar equation [ (0, 9,t)9 + 12(6, é,t) = 0. In particular, function h = e~ " satisfies this condition.
Substituting h in (27), we get

82Lé+ 82L9-+ &L IL /é
a0z " oo agat ot

eI~ f—of] =

Then we construct the desired Lagrangian in the form

L= e—Qnt[ééQ _ Q(%lcos 20+G), G= / 4(6)d6), (28)

which provides an indirect representation of equation (27) in the form of the Lagrangian structure
equation
d oL 0L .
— - = =950, 0)E.
Using the Lagrange function (28) and the Legendre transform, we define the Hamilton function as
) ) oL ) )
H = x0 — L(0,0,t) H=0(0..) Since x = % then x = e 90 and therefore § = €97y, Then the

canonical equation corresponding to the stochastic Lagrangian structure equation (27) will take the
form

a‘—‘?)H,
b - ) (29)
X__%—FO-()Xa )5)
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where o= o’(6,6,t) 6=0(0,.1)» @nd the Hamilton function is defined as

1
H = 56Q”tx267Q77tb(0). (30)

To solve the problem of representing the Birkhoffian by a given equation (26), we use Theorem 2.
According to the above constructed equation (29) and Hamilton function (30) from relations (21) for
C = < g g > functions R,(v = 1,2), R = (R1, R2) and B are defined as R = {x, (1 + ¢)0},B =
$peQM\ 2 — e=@n'h(6), where ¢ is an arbitrary constant.
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M.BI. Tiney6eprenos'?, I'K. Bacummmal?, C.P. Ceiicenbaena'??

! Mamemamuxa ocone mamemamuranvs; modesvdey urncmumymol, Aamame, Kaszaxcman;
2 .
On-Dapabu amwvindazer Kasax yammok ynusepcumemi, Aamamoi, Kasakcemar;
3F. Jloyxees amoimdaess Aamamo, snepzemuka sicone batiranvic yrusepcumems, Aavmamuo, Kasaxeman

KaHoHIBIK aifHbIMAJIbLIAPAaFhl KO3FAJIBICTHIH, CTOXaCTUKAJIBIK
anddepeHInaJIIbIK TeHAeYJIePiH KYPY

A.C. Tajmuy/ine [UHAMUKAHBIH KE€Pi €CeNTepiHiH KIacCUPUKAIUSICHIH KapamnaibiM 1uddepeHInaIIblK TeH-
Ieyaep KiachblHZa ycbiHabl. Makagama KapacThIPBLIATHIH €Cell NUHAMWKAHBIH Kepi ecenTepinin Oipinmmi
TypiHe KaTaapl (JUHAMUKAHBIH Kepl ecelrrepiHiy Herisri yur Typiniy iminge) Ke3jaeiicox Typrkinepaiy 6ap
6OJIyBI TypaJibl KOCBIMIITA, GoJzKaMIaFrbl Heri3ri kepi ecenke. CoubiMen 6ipre [amumabron kome Bupxodd
TeHeyIepl Toyesici3 ecymresepi 6ap mporecTep KIachiHaH Ke3efCOK TYypTKisep 6ap GoaraH Ke3je KO3fa-
JIBICTBIH, OepijireH KacueTTepiHeH KyPaCThIPbLIFaH. AJl ajbIHFaH KO3FaJbICTBIH GeplireH KacuerTepi yIniH
Tamunbronapik Ta, BupxoddTHIK Ta KypbUIBIMILI CTOXACTUKAJBLIK TEHJEYIepiH Kypy ecebiHiH Imermimin
Taby YIIMH aJBIHFAH KAXKETTi JK9HE JKeTKIMIKTI MapTTaphbl aybIPJIbIK, KYIITEPIHIH KoHE adpOIMHAMIKAIIBIK,
KYIITepiHiH ocepinen zKepiy »KacaHpl cepiriHiH KO3FaJIbICHI MBICAJIBIHIa KOPCETIIrEeH.

Kiam ceadep: cToXacTUKAJIBIK, JUdEPEHITUANIBIK, TEHIEY, TOYeJICi3 eciMInesi yaepicrep Kjachl, ['aMuiib-
TOHJIBIK, kKoHe BupxoddTHIK KYPHUIBIMIBI CTOXACTUKAJIBIK, TEHIEY/IeD, HETI3T1 Kepi ecerr.

M.I. Tney6eprenos™?, I' K. Bacumna®?, C.P. Ceiicenbaesal?

L Mnemumym mamemamuky, U Mamemamuieckozo modeauposanus, Aamamol, Kasaxcman;
2 Kasazcrkutl nayuonarvrod yrusepcumem umeny Aav-Dapabu, Armame, Kaszazcman;
3 Anmamuncruti ynueepcumem snepzemuru u ceasu umeny 1. Jaykeesa, Aamamo, Kazazcman

ITocTpoenne croxacTudyeckux auddepeHna IbHbIX YPaBHEHUIA
JBU>KEHUdA B KAHOHUYECKUX IepeMeHHbIX

A.C. TagmymmabiM 6bLIa TIpeIoXKeHa KIacCuMUKAIHs 0OOPATHBIX 3a/1a9 JUHAMUKY B KJIacCe OOBIKHOBEH-
HBIX auddepeHmatbHbIX ypaBaenuit. Y paccMaTpuBaemasi B HACTOsIINEH paboTe 3a1a9a OTHOCUTCS K TIep-
BOMY THITy OOPATHBIX 33189 JIMHAMHUKH (M3 TPEX OCHOBHBIX TUIIOB OGPATHBIX 387184 JUHAMAKN) — OCHOBHOM
obpaTHOIl 3a/lade IIpU JOIOJHUTEILHOM IIPEIIIOJIOKEHNN O HAJIMYHHU CJIydailHbIX BO3MylleHuil. B crarbe
cTposiTcst ypaBHeHust [amubToHa n Bupkroda mo 3alaHHBIM CBOMCTBAM JIBUYKEHUs IPU HAJIUIUN CJTydaii-
HBIX BO3MYIIEHUI M3 KJIACCA IPOIECCOB C HE3ABHCHUMBIME NpupalieHusMu. VY mosydeHHbIe HEOOXOIUMbIE
U JOCTATOYHBIE YCJIOBUsA PAa3PEHIMMOCTH 33Ja49d ITOCTPOCHUsA CTOXACTUYECKUX ypPaBHEHUU KaK TaMHJIbTO-
HOBOM, Tak U OMPKrodUAHOBOU CTPYKTYPHI MO 3aJaHHBIM CBOWCTBAM JIBUKEHUs TPOUJIIFOCTPUPOBAHBI HA
[pUMepe JBUKEHUsI UCKYCCTBEHHOT'O CIIyTHUKA 3€MJIM TI0JI JIECTBUEM CUJI TATOTEHUS U adPOJUHAMUIECKUX
CcHIL.

Karoueswie caosa: croxacrudeckoe quddepeHipaabHoe ypaBHEHNE, KJIacC IPOIECCOB ¢ HE3aBUCUMBIMHY 1P~
pAIeHUSIMHU, CTOXaCTUIECKOE YPAaBHEHNSI TAaMUJIBTOHOBON M OMPKrOMUAHOBON CTPYKTYD, OCHOBHasi 0O6paT-
Has 3aJa4a.
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Forcing companions of Jonsson AP-theories

This article is devoted to the study of the forcing companions of the Jonsson AP-theories in the enriched
signature. It is proved that the forcing companion of the theory does not change when expanding the theories
under consideration, which have some properties, by adding new predicate and constant symbols to the
language. The model-theoretic results obtained in this paper in general form are supported by examples
from differential algebra. An approach in combining a Jonsson and non-Jonsson theories is demonstrated.
In this paper, for the first time in the history of Model Theory. This will allow us to further develop the
methods of research of Jonsson theories and expand the apparatus for studying incomplete theories.

Keywords: Jonsson theory, perfect Jonsson theory, AP-theory, forcing, forcing companion, enrichment of a
signature, expanding theory, differential field, differentially closed field, differentially perfect field.

Introduction

In recent years, Model Theory has increasingly revealed its potential in solving important problems
from various areas of mathematics. Thus, many significant facts concerning differential algebras, namely
differential fields of zero and positive characteristic, were established through the use of model-theoretic
methods in the studies of D. Marker, L. Blum, K. Wood, and others. At the same time, there is an
increasing need to develop their own apparatus of Model Theory, especially in the study of incomplete
theories. In the 1980s, among inductive theories, a special subclass of Jonsson theories was singled out,
which are incomplete. Examples of Jonsson theories are the theories of well-known classical algebras,
such as group theory, fixed characteristic field theory, linear order theory, etc. are provided. The
methods used in the study of this class largely demonstrate their usefulness due to the numerous
results obtained by B. Poizat, T.G. Mustafin, A.R. Yeshkeyev, E.T. Mustafin.

In [1], the authors began the study of the Jonsson differential algebras: results were obtained for
differential fields of characteristic 0 and p. Here we continue to develop this direction while expanding
the language of these theories and considering forcing companions in a new enrichment.

In the framework of the study of Jonsson theories, earlier works [2—4] considered theories obtained
as constructions of Jonsson theories. In this paper, we work with a theory that is a union of two
theories, where the first one is Jonsson and the other is not.

1 Preliminary information

We start with the main definitions and facts concerning the subject of the study. Recall the
definitions of a model companion and a forcing companion.

Definition 1. [5;156] Let T and Th;c be some L-theories. The theory Tysc is called a model
completion of the theory T if:

1) T and Th¢ are mutually model consistent, i.e., any model of the theory T' is embedded in the
model of the theory Th;c and vice versa;

*Corresponding author.
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2) Thc is a model complete theory;
3)if AT, then Tyrc UD(A) is a complete theory. The theory Ty¢ is called a model companion
if conditions 1) and 2) hold.

Definition 2. [6; 129] Let T be a theory of the language L. A forcing companion of the theory T is
a theory T7 which is the set of all sentences of the language L weakly forced by 0.

The following results were proved by J. Barwise and A. Robinson:

Theorem 1. [6; 133| Let T; and T» be the theories of the language L. Then T} and T3 are mutually
model consistent if and only if Tlf =T 2f .

Theorem 2. [6; 134] Let T be mutually model consistent with some inductive theory 7”. Then
T' C T7. Therefore, if T is an inductive theory then T C T,

Definition 3. [5; 80] A theory T has the joint embedding property (JEP) if for any models U, B
of the theory T there exists a model M of the theory T and isomorphic embeddings f : U — M,
g:B— M.

Definition 4. [5; 68] A theory T has the amalgam property (AP) if for any models U, B;, By of
the theory T' and isomorphic embeddings f1 : U — By, fo: U — By there are M |= T and isomorphic
embeddings g1 : By =& M, go : Bo — M such that g; o f1 = g2 0 fo.

Since the work relates mainly to the study of the Jonsson theories, we will give the main definitions
concerning them. More detailed information about the Jonsson theories can be found mainly in [7].
In works [8-11], newer and more specific results have been published, and the apparatus for studying
Jonsson theories has been expanded.

We are working within the framework of the following definition of Jonsson theory published in the
Russian edition of [5].

Definition 5. |5; 80] A theory T is called Jonsson if:
1. the theory T has at least one infinite model;
2. T is an inductive theory;
3. T has the amalgam property (AP);
4. T has the joint embedding property (JEP).

Many classical objects from Algebra satisfied such conditions, and these theories are Jonsson
1) group theory;
2) theory of abelian groups;
3) theory of boolean algebras;
4) theory of linear orders;
5) field theory of characteristic p, where p is zero or a prime number;
6) theory of ordered fields;
7) theory of modules.
The following concepts and facts play a crucial role in the construction of a model-theoretic
apparatus associated with the study of Jonsson theories.

Definition 6. [7; 155] Let T be a Jonsson theory. A model Cr of power 2/71 is called to be a semantic
model of the theory T if Cr is a |T'|"-homogeneous |T|*-universal model of the theory T

Theorem 3. |7; 155] T is Jonsson if it has a semantic model Cy.
The following definition was introduced by T.G. Mustafin.
Definition 7. |7; 155] A Jonsson theory T is called perfect if its semantic model Cr is saturated.

Definition 8. [7; 161] The elementary theory of a semantic model of the Jonsson theory T is called
the center of this theory. The center is denoted by T%, i.e. Th(C) = T™*.
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Theorem 4. [7; 158] Let T be an arbitrary Jonsson theory. Then the following conditions are
equivalent:

1) the theory T is perfect;

2) T* = Th(C) is the model companion of the theory 7'

The following theorem is of particular importance for this study:

Theorem 5. |7; 162| Let T be a perfect Jonsson theory. Then the following statements are equivalent:
1) T* is the model companion of T

2) ModT™* = Er;

3) T* = T, where T/ is a forcing companion of the theory 7.

Theorem 6. [12; 1243] Let T be a Jonsson theory. Then for any model A € Ep theory TY(A) is
Jonsson, where T%(A) = Thys(A).

We can see that in the case of the perfectness of T its center T™ is also a Jonsson theory.
The following definition will help us to specify the class of Jonsson theories which we will deal with
in this paper.

Definition 9. [13; 120] A Jonsson theory is said to be hereditary if, in any of its permissible
enrichment, it preserves the Jonssonness.

As mentioned before, Jonsson theories should have joint embedding and amalgam properties. At
the same time, it is known from [14; 270] that these two properties are generally independent of each
other. However, theories with AP and JEP form special subclasses among inductive theories that
are of interest for studying the internal structure of their model classes. In work [1], A.R. Yeshkeyev
introduced the following concepts:

Definition 10. [1; 130] A theory T is called an AP-theory if, from the fact that it has the amalgam
property, it follows that T" also has the joint embedding property, i.e. AP — JEP.

Definition 11. [1; 130] A theory T is called a JEP-theory if T' has the joint embedding property
and this implies the presence of the amalgam property, i.e. JEP — AP.

Definition 12. [1; 130] We call a theory T an AJ-theory if the properties of the amalgam and the
joint embedding are equivalent for T, i.e. AP <> JEP.

Examples are various classes of unars [14; 270|. In addition, in [1], it is shown that the theory of
differential fields of characteristic 0 and the theory of differentially perfect fields of characteristic p,
which will be discussed later, are AP-theories.

2 Forcing companions of theories in an enriched signature

Now we move on to the problem statement. We consider the theories Ay, Ay, Ajg satisfy the
following conditions:

1) A; is an inductive theory that is not a Jonsson theory but has a model companion which is the
theory Ag,

2) Ag is a hereditary Jonsson AP-theory that has a model companion, which is also Ag.

Based on the conditions set, we can draw the following conclusions. All three theories are mutually
model consistent, because Ag is mutually model consistent with both Ay and As, for which Ag is the
model companion, which means that A; and As are mutually model consistent with each other. At
the same time, according to Theorem 1, the forcing companions of mutually model consistent theories
must coincide, which means that A{ = Ag. Ay is a perfect Jonsson theory, while A5 = Th(C) = As,
C' is a semantic model of Ay, which follows from Theorem 4. In addition, Theorem 5 gives us reason
to assert that Ag is also a forcing companion of As, i.e. Az = Ag. So we get A{ = Ag = Ag.

Mathematics series. Ne3(107)/2022 165



A R. Yeshkeyev, [.O. Tungushbayeva, M.T. Omarova

Consider the following extensions of the theories A1, Ag, Ag in various language enrichment L by
adding new constant and predicate symbols ¢ and P. Let A; be a theory extending A; by enriching
the language L with the predicate symbol P as follows:

E:AlLJA{U{Pag}?

where { P, C} is an infinite list of 3-sentences and interpretation of P is an existentially closed submodel
in model of Aj.
Let Ay be a theory that extends Ay when a new constant symbol ¢ is added to the language L and
defined as follows:
KQ =AU Ag U Thvg(c, C),

where C' is a semantic model of Jonsson theory As. Since A is a hereditary Jonsson theory, As is also
a Jonsson theory.

Here we pose two questions:

1) How will the addition of new symbols P and ¢ to the language L and the subsequent expansion
of A1 and Ay affect the forcing companion of the received theories?

2) When combining the theories A and A, can a consistent theory be obtained and what will be
its forcing companion?

The answer to the first question is the following theorem.

Theorem 7. Ef = A{.

Proof. According to Theorem 2, because A; is an inductive theory, Ay C A{ . This means that
AL UAT = A{ = Aj. Therefore, Aj can be written as Az U {P, C}. Since the set {P, C} consists only
of existential formulas, theories Az and A; do not differ in universal formulas, which means they are
mutually model consistent. As is known from Theorem 1, the forcing companions in this case of these
two theories must be equal. At the same time, Az, which is a forcing companion of Ay and Ao, is
forcing-complete, because A§ = (A{)f = A{ = Ags. Hence, A§ = Ef = Ag, and Ef = A{.

Thus, we can conclude that the forcing companion of the inductive theory A; does not change
when enriching the language of this theory with a new predicate symbol P.

Theorem 8. A72f = Ag.

Proof. The proof is similar to the proof of Theorem 7. Since A, is a Jonsson theory, it is inductive,
which means by Theorem 2 A, C Ag and Ay U Ag = Ag = A3. So Ay = A3 U Thy3(C,c). All
the sentences in Thys(C, ¢) are V3-formulas, which means that theories Az and Ay do not differ in
universal formulas, i.e., they are mutually model consistent. We can conclude from this that their
forcing companions are equal, with A?{ = Kgf = As, and Kgf = Ag.

This means that the addition of the new constant ¢ to language L did not affect the forcing
companion when expanding theory A to As.

To answer the second question, we recall the Robinson’s consistency theorem.

Theorem 9. |5; 77| Let T be a complete theory of language L, languages L; and Lo are extensions
of language L such that Ly N Ls = L, and theories 77 and T5 are consistent extensions of theory 7" in
languages L1 and Lo respectively. Then T3 = T1 U T3 is a consistent theory.

Now we can formulate and prove the following result.
Theorem 10. i) The theory A; U A is consistent.
ii) (A UA,) = A =)
Proof. i) As noted above, A = Az U{P,C} and Ay = A3 U Thys(C,c). Applying Theorem 9,
we will consider Ag as the theory T, A as the theory T, acting as an extension of Ag by adding a
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new predicate symbol P to the language, and Th as the theory As, which is an extension of Az by
adding the constant symbol ¢ to the language. In this case, L = L1 N Lo, where L; is the language of
theory A1, Ls is the language of theory As. Therefore, the theory obtained as the union of A; U Ay is
consistent.

ii) Obviously, A; U Ay = A3 U {P,C} UThy3(C,c). Theorems 7 and 8 allow us to assert that the
forcing companion of theories Az U {P, C} U Thys(C,c) and Az is theory As. Hence, (A; U Ag)/ =
Al = AL

8 Application of the result to differential algebra

The results formulated above, described for the general situation in model theory, can be interpreted
using examples of differential algebra, namely, when considering the theory of differential fields of
characteristic 0, the theory of differentially closed fields of characteristic 0, the theory of differential
fields of characteristic p, the theory of differentially closed fields of characteristic p. First, we will give
the basic definitions and theorems concerning these theories. All concepts whose definitions are not
given here can be found in [1].

We use the following notation: DF for the theory of differential fields, DPF for the theory of
differentially perfect fields, DCF for the theory of differentially closed fields. The lower index 0 or p
indicates the corresponding characteristic of the underlying field.

Definition 13. [15; 7] The differentiation of the ring A is called the mapping a — D(a) rings A into
itself satisfying the relations
D(z +y) = D(z) + D(y),

D(zy) = xDy + yDx.

Definition 14. |15; 8] A differential ring is a commutative ring with a unit in which some differentiation
is given.

In the case where the differential ring is a field F', we will talk about a differential field. Differential
fields are models of the theory of differential fields DF, given by the axioms of field theory and the
following two sentences:

VaVy D(x +y) = D(z) + D(y),

VaVy D(zy) = xD(y) +yD(x),

where x,y € F.

The language used to study differential fields is the language L = {+,—,:,D,0,1}. Here the
differentiation operator D plays the role of a single functional symbol.

The concept of a differentially closed field was first proposed by A. Robinson [16; p. 2|. However,
A. Robinson did not formulate axioms for the theory of differentially closed fields, which was corrected
later by L. Blum for the case of characteristic 0. The situation with characteristic p was studied in
detail by C. Wood and looks similar.

Definition 15. [17; 9] A differential field F is called differentially closed if whenever f(z),g(z) €
F{X}, g(x) is nontrivial, has a nonzero value and the order of f(z) is greater than the order of g(z),
there exists a € F such that f(a) =0 and g(a) # 0.

Thus, the theory of differentially closed fields DC'F is a theory consisting of the axioms DF and
the following two axioms:

1) Each nonconstant polynomial from one variable has a solution.

2) If f(z) and g(x) are differential polynomials such that the order of f(x) is greater than the order
of g(x), g(z) is nontrivial, then f(x) has a solution not being the solution of g(z).
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The following are some basic facts about the theories of differential fields and differentially closed
fields of various characteristics.

Theorem 11. |18; 581| DCF, is complete and model-complete.

Theorem 12. [19; 131] DFj has the joint embedding and amalgam properties.

Theorem 13. [19; 128] The DCFy theory is a model completion of the DFj theory.

Theorem 14. [18; 578| The theory DF), of differential fields of characteristic p does not admit the
amalgam property.

The author notes that the main reason is the absence of roots of the p-th degree in some constant
elements of the field in the general case.

Theorem 15. |20; 92| DF, has a model companion, but does not have a model completion.

Definition 16. [20; 92| A differential field F is called differentially perfect if any of its extensions is
separable.

Theorem 16. |20; 92| In order for the differential field F' of characteristic p to be differentially
perfect, it is necessary and sufficient that p =0 or p > 0 and FP = C.

Thus, the theory DPF differentially perfect fields of characteristic p is given by the axioms DF
and the following axiom:
Vady (D(z) =0 — y* = x).
Theorem 17. |18; 579] DPF, is a model consistent extension of DF),.
Based on this fact, it is easy to see that theories DPF, and DF, are mutually model consistent,

since each differentially perfect field is a model of theory DF}, and there will always be some model of
theory DPF,, in which any differential field of characteristic p can be embedded.

Theorem 18. |18; 578| The theory DPF), of differentially perfect fields of characteristic p admits
the amalgam property.

Theorem 19. [18; 581| The theory DCF), of differentially closed fields of characteristic p is the
model companion of the theory DF), differential fields of characteristic p and the model completion for
the theory DPF, of differentially perfect fields of characteristic p.

In work [1], the following statements related to the theories described above were proved.
Theorem 20. [1; 131] DFy is a perfect Jonsson theory.

Theorem 21. |1; 131] DCFy is the center of the Jonsson theory DFj.

Theorem 22. |1; 131] DF, is not a Jonsson theory.

Theorem 23. |1; 132] DPF, is a perfect Jonsson theory.

Theorem 2. |1; 132] DCF,, is the center of the Jonsson theory DPF,.

In addition, DFy and DPF), are strongly convex theories in the classical Robinson sense, which
allows us to state the following:

Theorem 25. |1; 132] DFy and DPF,, are Jonsson AP-theories.

Due to the above facts, we can project the results described in the previous paragraph to the
case of differentially closed fields of zero and positive characteristic. However, while in the case of
characteristic 0 the results are trivial by virtue of Theorem 20, the situation with differential fields of
characteristic p is of greater interest. As the theory Ay, we can consider DF},, which is not Jonsson, as
stated in Theorem 22, but inductive (because of universality) and has a model companion according
to Theorem 19, which is DCF,. The role of the theory Ay will be played by the Jonsson AP-theory
DPF),, whose model completion (and, consequently, model companion) is DCF,. As is replaced by

168 Bulletin of the Karaganda University



Forcing companions of ...

DCF),, which is the center and the forcing companion of DPF,,. We additionally impose a condition
on DCF,, considering it to be hereditary Jonsson theories with respect to enrichment with a new
constant symbol c. Since DCF), is the center of DPF),,, and also due to the saturation of the semantic
model C' of DPF,, the heredity of DCF), is sufficient for DPF), to be a hereditary Jonsson theory as
well. According to Theorem 17, DF,, and DPF, are mutually model consistent (which is also clear
from the fact that they have a common model companion). We obtain that, by virtue of mutual model
consistency, the forcing companions of the theories of differential fields and differentially perfect fields
of the characteristics of p are equal and represent DCF),:

! — ppFS —
DF! = DPFE! = DCF,.

Since we are going to add a new predicate symbol P later, it will not affect the mutual model
compatibility of these theories in any way, because P does not generate new elements in the models
DPF, and DCF),. The situation is similar with the new constant c: since the constant can be
represented as a single predicate symbol, mutual model compatibility is preserved for the new specified
theories.

Finally, by enriching the language of differential field theory with the new predicate symbol and
constant, as was done in Section 2, we can obtain the following theories:

DF, = DF, UDFJ U{P,C}, (1)

DPF, = DPF,UDPF/ UThys(C,c). (2)
Note that the equalities (1) and (2) can be written as

DF, = DCF, U{P,C},

DPF, = DCF, U Thys(C,c).
Thus, based on the reasoning and conclusions of the previous section, we can draw the following
conclusions:
Theorem 26. Dpr = DFJ.

Theorem 27. Wpr = DPFJ.
Theorem 28. i) DF, U DPF,, is consistent.
ii) (DF, UDPF,)/ = DF} = DPFE].
In the future, the authors plan to continue the study of theory A; U Ay obtained within the

framework of constructing the central types in the Jonsson theory and the Jonsson spectrum in the
sense of the works [21-23].
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A.P. Emkees!, 11.0. Tynrymo6aesa', M.T. Omaposal?

L Axademux E.A. Boxemos amwmdaew. Kapazandv ynusepcumemi, Kapazandw, Kasaxeman;
) ol ol
2 Kasmymuwnyodaew. Kapaeandv ynusepcumemi, Kapazandw, Kasaxcman

Moncouapik AP-teopusinapabis, ¢hopCHHI-KOMIIAHBOHIEPI

Makasa toHCOHABIK A P-TeopusiiapblHbIH, (POPCUHI KOMIIAHBOHIEPIH GANBITBIIFAH CUIHATYPAJIA 3epTTeyre
apHayiFaH. TeopusiHbIH (POPCHHT-KOMIIAHBOHBI TL/ITE YKaHA MPEeIUKATTHIK, KoHE TYPAKThI CUMBOJIIAPBIH KO-
Ccy apKbLIbl Oesrisi 6ip KacuerTepi 6ap KapacTHIPBHLILII OTBIPFAH TEOPUJIAPIBIH, KEHEIOIHE o3repMenTiHi
soutesiier . OChbl )KYMBICTA YKAJIIBI TYP/IE AJbIHFAH MOJIEJIb/Ii-TeOPETUKAJIBIK, HOTHKeJIep auddepenimal-
JTbI aJIrebpaHbIH MbICAIAAPbIMEH pacTasaabl. COHBIMEH KaTap MOJEbIIEP TEOPUSCHIHBIH TAPUXBIHIIA AJIFAIIL
peT HOHCOHIBIK *K9HE MOHCOHIBIK, eMeC TeOPHUsIapabl OipikTipyre meren ke3kapac kepcerinred. Byn iton-
COHJBIK, TEOPUJIAPIbl 3EPTTEY OJIICTEPIH O/IaH 9pi JAMBITYFa KOHE TOJIBIK €MeC TeOPHUsIap/bl 3epTTeyre
apHAJIFAH almapaTTbl KEHEUTyre MyMKIHIIK Gepei.

Kiam cesdep: HOHCOHIBIK, T€OpUsi, KEMEJ HOHCOHBIK Teopusi, A P-reopusi, Gopcunr, (popCUHI-KOMIIAHBOH,
CUTHATYpaHbl OAUBITY, TEOPUAHBI KEHENTY, nudpepeHnaibK, epic, auddepeHuaaibl TYHbIK epic, gud-
depeHImaI bl KeMe epic.
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A.P. Emkees!, 1.O. Tynrymb6aesa!, M.T. Omaposal-?

1 o
Kapazandurckuti yrusepcumem umeny axademuxa FE.A. Bykemosa, Kapazanda, Kaszaxcman;
2 Kapazanduncrui ynusepcumem Kasnompebeowsa, Kapazanda, Kazaxcman

dopcuHr-KOMNnaHbOHBbI HTOHCOHOBCKNX A P-Teopmnii

CraTbsl OCBSIIEHa U3YYeHNIO (DOPCUHI-KOMIIAHBOHOB MOHCOHOBCKUX A P-Teopuii B 000raléHHON CUTHATY-
pe. Hokazano, 9To (pOpCUHT-KOMIIAHEOH TEOPUU HE MEHSIETCS [IPYU PACIIUPEHUH PACCMATPUBAEMBIX TEOPHIL,
00JIaaIoMMUX HEKOTOPBIMU CBOICTBaMM, C IIOMOIIBIO JOOABJIEHUS B SA3BIK HOBBIX IIPEINKATHOTO M KOH-
CTaHTHOTO CUMBOJIOB. TeOpeTHKO-MO/Ie/IbHBIE PE3YJIbTAThI, MTOJyYeHHbIE B TaHHOW paboTe B OOIIEM BHUJIE,
[IOJIKPEIJIEHBI puMepaMu 13 auddepeHnuaibHoli aaredpbl. ABTOpaMu CTAThbU BIIEPBBIE B HCTOPUU TEOPUN
MoJeseR POIeMOHCTPUPOBAHBI MIOAXO0, K KOMOMHUPOBAHUIO HOHCOHOBCKOI U HEMOHCOHOBCKO# Teopuit. 1o
IO3BOJIUT B JAJIbHEUIIEeM Pa3BUTh METO/IbI HCCIeJOBAHNUsI HOHCOHOBCKUX TE€OPUI U PACHINPUTD allllapaT JJisd
U3y4YCHUdA HEIOJIHbIX TCOPUI.

Kmouesvie caosa: HOHCOHOBCKAsI TEOPHUsI, COBEPIIEHHAs HOHCOHOBCKas Teopusi, A P-reopusi, dpopcunr, dpop-
CHHI-KOMITAHBOH, 0DOrallleHue CUTHATYDbI, paciiupenne teopud, auddepeHnuaibHoe mose, puddepeHm-
aJIBHO 3aMKHYTOE I0JIe, uddepeHnaIbHO COBEPIIEHHOE HOJIE.
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