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Approximate solutions of the Riemann problem for a two-phase
flow of immiscible liquids based on the Buckley—Leverett model

The article proposes an approximate method based on the "vanishing viscosity"method, which ensures
the smoothness of the solution without taking into account the capillary pressure. We will consider the
vanishing viscosity solution to the Riemann problem and to the boundary Riemann problem. It is not
a weak solution, unless the system is conservative. One can prove that it is a viscosity solution actually
meaning the extension of the semigroup of the vanishing viscosity solution to piecewise constant initial and
boundary data. It is known that without taking into account the capillary pressure, the Buckley—Leverett
model is the main one. Typically, from a computational point of view, approximate models are required for
time slicing when creating computational algorithms. Analysis of the flow of a mixture of two immiscible
liquids, the viscosity of which depends on pressure, leads to a further extension of the classical Buckley—
Leverett model. Some two-phase flow models based on the expansion of Darcy’s law include the effect of
capillary pressure. This is motivated by the fact that some fluids, e.g., crude oil, have a pressure-dependent
viscosity and are noticeably sensitive to pressure fluctuations. Results confirm the insignificant influence of
cross-coupling terms compared to the classical Darcy approach.

Keywords: Darcy’s law, two-phase flows, phases coupling, Buckley—Leverett theory, isothermal filtration,
capillary pressure.

Introduction

S. Bianchini and A. Bressan |1] show that the solutions of the viscous approximations u;+ A(u)u, =
€Uy, are defined globally in time and satisfy uniform BV estimates, independent of . Letting ¢ — 0,
these viscous solutions converge to a unique limit. In the conservative case where A = Df is the
Jacobian of some flux function f : R” — R", the vanishing viscosity limits are the unique entropy-
weak solutions to the system of conservation laws u; + f(u)ug = 0.

Buckley and Leverett proposed and calculated a model of fluid behavior in a porous medium in
1942. In the process of further development, many different calculation methods were proposed, in
particular [2-5] and many others.

To read scientific studies on the relationships between phases in multiphase flow modeling, we refer
to [6] for an analysis and links to these papers.

We will provide a clear description of the displacement of an incompressible fluid during the
formation of a porous medium given by Dominique Guerillot et al. [6]. This is the mass conservation
equation for two phases (oil and water):

0poSo
quﬁ +V- (poVo) =0,

0pwSw
pait(ﬁ"i_v'(pwyw) =0

with the natural physical constraint S, + S,, = 1, where ¢ — the effective porosity of the reservoir;

*Corresponding author.
E-mail: timur-toleuov@mail.ru

4 Bulletin of the Karaganda University



Approximate solutions of ...

Pos So and p, S — the density and saturations of oil and water, respectively; v,, p, and v, pw — the
superficial velocity and the pressure of the oil and the water phases, respectively.

Fluid flow through a porous medium is common in many areas of technology and science. At
the same time, the problem of single-phase flow has been well studied both from an engineering and
mathematical point of view [7]. The classical Darcy’s law, widely used for practical purposes, can
be obtained by modeling a sluggishly current incompressible flow. In practice, a porous medium is
considered a periodic array of cells filled with a Newtonian fluid. The problem is formulated at the
cell scale (microscale), and then scaled by homogenization in the entire area, providing the classical
Darcy’s law.

According to Darcy’s equation, a porous solid has a resistance to the liquid in the pores, which is
directly proportional to the speed of the liquid relative to the solid, usually called the drag coefficient.

Oil production in most cases occurs when it is displaced in the pore space of the productive reservoir
by water or gas. This process is used in natural operating modes and in artificial methods of maintaining
reservoir pressure by flooding or gas injection. The theory of isothermal filtration serves as the basis
for calculating such processes [8-10].

Simulation can be without taking into account nonlinear effects [11], assuming that the flow of
immiscible two fluids is separated by a smooth boundary layer [12|. In such a formulation of the
problem, a solid matrix is considered an impenetrable rigid body, and the classical no-slip condition
is imposed on its boundary. The result is a system of equations for saturation and pressure. Such a
system is reduced to the classical Buckley—Leverett equation, when the viscosities of both fluids are
independent of pressure. It is found that the relative permeabilities depend on the pressure of the liquid
and when the solid matrix is considered rigid.

Some models consider the exchange of momentum between the phases of flows of two immiscible
fluids in a porous medium. Sometimes creeping flow models are used that include an explicit relationship
between two phases by adding cross-terms to the generalized Darcy’s law [13]. These models show
that cross-terms in macroscale models can significantly affect flow compared to results obtained using
generalized Darcy’s laws without cross-terms. Investigations with the availability of experimental data
for analytical solutions suggest that the influence of this dependence on the dynamics of saturation
fronts and stationary profiles is very sensitive to gravitational effects, the ratio of viscosity between two
phases and permeability. These results indicate that the effects of momentum exchange on two-phase
flow can increase with increasing porous medium permeability when the effect of liquid-liquid interfaces
becomes similar to the effect of solid-liquid interfaces.

In the parabolic case, solvability has been sufficiently studied by S.N. Antontsev, V.N. Monakhov,
O.B. Bocharov [14-16], and others. It should be noted that equations in the form (1) are the simplest
mathematical models of many natural phenomena, sometimes reflecting the essence of these phenomena.
In particular, the Leverett function is determined experimentally according to the materials of Kern.
This approach does not give the desired results in problems of filtration theory.

The Cauchy problem for a system of conservation laws in one space dimension takes the form [7]:

u + f(u), =0. (1)

Here u (0, x) = @ (z) is initial conditions, u = (u,, us) is the vector of conserved quantities (oil and

water, respectively), while the components of f = (f,, fw) are the fluxes of oil and water, respectively.

We assume that the flux function f : R? — R? is smooth and that the system is strictly hyperbolic;
i.e., at each point u the Jacobian matrix A = Df (u) has u real, distinct eigenvalues

AL (u) < oo < Ay (u) .

One can then select bases of right ¢ and left eigenvectors 7; (u) ,; (u) normalized so that

_ 1 if =,
|rl|:17l2'rl_{0 lfl%]
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Several fundamental laws of physics take the form of a conservation equation.

The lack of regularity is a major source of complexity since most of the standard differential calculus
tools are not applicable. Special methods are needed, in particular, the main building block is the so-
called Riemann problem [1, 17|, in which the initial data are piecewise constant with one jump at the
origin:

u” if z <O,
u(0,2) = { ut if z>0.

The viscosity solution of a Cauchy problem is unique and coincides with the limit of Glimm, and the
front-tracking approximations for a strictly hyperbolic system of conservation laws satisfy the standard
assumptions.

For each ¢ € {1,...,n}, the i-th characteristic field is either linearly degenerate, so that

DX (u)-r;(u) =0
for all u, or else it is genuinely nonlinear, i.e.,
DX; (u) - i (u) > 0,

0 for all u.

The definition given in [7] was motivated by a natural conjecture. Namely, the viscosity solutions
(characterized in terms of local integral estimates) should coincide precisely with the limits of vanishing
viscosity approximations. In the present paper, we adopt a similar definition of viscosity solutions and
prove that the above conjecture is indeed true. Our results apply to the more general case of (possibly
nonconservative) quasilinear strictly hyperbolic systems. In particular, we obtain the uniqueness of the
vanishing viscosity limit.

For a comprehensive account of the recent uniqueness and stability theory, we refer to |7, 8|.

A long-standing conjecture is that the entropic solutions of the hyperbolic system (1) actually
coincide with the limits of solutions to the parabolic system

Ut + f(u)a; = EUgy

when the viscosity coefficient ¢ — 0. In view of the recent uniqueness results, it looks indeed plausible
that the vanishing viscosity limit should single out the unique “good” solution of the Cauchy problem,
satisfying the appropriate entropy conditions. In earlier literature, results in this direction were based
on three main techniques [7]: Comparison principles for parabolic equations; Singular perturbations;
Compensated compactness.

In our point of view, to develop a satisfactory theory of vanishing viscosity limits, the heart of
the matter is to establish a priori BV bounds on solutions w (¢,-) of (1.8) &, uniformly valid for all
t € [0,00) and € > 0. This is indeed what we will accomplish in the present paper. Our results apply,
more generally, to strictly hyperbolic systems with viscosity, not necessarily in conservation form:

up + A (u) uy = lgy.

The modeling multiphase flows in porous media is of major importance in many fields of applications.
In particularly in enhanced oil recovery applications of petroleum engineering. The classical mathemati-
cal models for multiphase flows are based on a straightforward generalization of Darcy’s law for a single-
phase flow [9]. A natural question arises: How important is the influence of one phase on the other
phase? In some applications, it is shown that the coupling effects are small, and therefore negligible.

In [18-20], it was developed a mathematical model to apply Buckley—Leverett frontal advance theory
to immiscible displacement in non-communicating stratified reservoirs. The influence of the coefficient

6 Bulletin of the Karaganda University
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of viscosity and coefficient of variation of the Dykstra-Parsons permeability (VDP) on productivity has
been investigated. The introduction of pseudo-relative permeability functions is discussed. It was shown
in [21] that mass conservation in several layers unconnected with each other can be used to derive the
interlayer ratios of various emerging fronts. The ratio of flow areas in an immiscible two-phase flow
in a porous medium was studied in [22, 23|. They used dynamic pore network modeling that uses an
interface model used to simulate steady state two-phase flow.

Numerical modeling of the flow of immiscible fluids is of great importance in many areas for the
proper management of underground resources, in particular water. Recently presented high-resolution
numerical model that simulates a three-phase immiscible fluid flow in both unsaturated and saturated
zones in a porous aquifer [22] is relevant.

In the theory of immiscible two-phase flow presented in [23|, the conservation of mass is provided
by general equations, which require some additions for a porous medium. The basic equation can be
derived from the relative permeability data. It turns out that it has a surprisingly simple form when
expressed in the correct variables [24]. The resulting system of equations can then be solved for a
structured porous medium. However, the question remains what happens when the porous medium
has a nontrivial structure along its entire length.

1 Mathematical modelling

Consider filtration of a two-phase liquid in a porous medium in water-pressure mode. The field is
covered by a network of wells and their location schemes can be different. The oil-bearing formation
is considered unlimited, of constant thickness, the porous medium is non-deformable, and the ratio
of capillary pressure to the total hydrodynamic pressure drop is small, which allows to consider the
problem obeying the classical Buckley—Leverett model.

High precision modeling of immiscible two-phase flows in porous media is paramount. Nevertheless
even with such high-precision numerical modeling, the lack of information or its fuzziness, for example,
on the relative permeability and functions of capillary pressure in them does not allow a detailed
comparison with experiments [25].

Without taking into account gravity, two-phase filtration for the case of straight-parallel displace-
ment was considered by S. Buckley and M. Leverett in 1942, and later independently by A.M. Pirver-
dyan, who also studied the case of a more general filtration law for two-phase flow [10].

In the case of one-dimensional flow of incompressible immiscible liquids under conditions where
capillary pressure and the influence of gravity can be ignored, the displacement process allows a simple
mathematical description.

It should be noted that the equation of the form (1):

w+ f(u), =0

one-dimensional space variables have been considered by many researchers. A significant contribution to
the non-local theory of the Cauchy problem for this equation was made by O.A. Oleinik, A.N. Tikhonov,
A.A. Samarsky, and I.M. Gelfand. The Buckley—Leverett mathematical model belongs to equation (1).

A detailed specification allows to define a porous medium as either hydrophilic or hydrophobic.

It is known that if € > 0 is the coeflicient of viscosity, then the viscous friction force acting on each
particle of the porous medium x (t) and related to the unit of mass can be assumed to be equal to
€ - Ugg. Then returning to the mathematical model of Buckley-Leverett (then instead of u (¢, z) we will
write s (t,x) - water saturation)

S+ 8 -8, =€ Spx (2)

where F (s) = 15 is the Leverett function.

Mathematics series. Ne 2(106)/2022 7
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The equation of the form (2) was studied by O.B. Bocharov, B.N. Monakhov, [.L. Telegin [14, 15,
17].

If the viscous term tends to zero, the uniqueness of the vanishing viscosity limit is proved based
on comparative estimates for the solutions of the corresponding Hamilton-Jacobi equation, as stated
in [26, 27]. As an application, they obtained the existence and uniqueness of solutions for the class
of triangular systems of 2 x 2 conservation laws with hyperbolic degeneracy. However, the forecast
calculations did not give the desired results.

The assumed method at € — 0 is called the "vanishing viscosity"method. Given that

(%)
St = Sy —
2 x

we introduce the potential u (x,t) defined by the equality

52
du + <6-Sz— 2> dt.

In this case

Uy = 8,
ut:5'5$_§:5'um:v_ﬁ2x7
that is, the function u (z,t) satisfies the equation
1 5
ur + Sz =€ Uaa. (3)
Make a replacement in (3)
u=—2-Inz
Then
Z;
U = —2¢ - ;t,
Uy = —2¢ - 22, )
Ugg = —26 - 222 4 2¢ - g
Equation (3) will take the form
2 2
z z z z
—2e€-—t—i—2e€2-—32”:—252-ﬂ 2 2-—‘;,
z z z z

in other words, the thermal conductivity equation is obtained regarding to z (z,t):
2t = € Zpg- (4)

This method is often called the Florin—Hopf-Cole transformation. From the made, substitutions it
follows that the solution to equation (2) has the form:

Zx
S= Uy = —26-—
z

where z (z,t) is the solution (4).
Suppose that a wave of the form propagates through an injection well:

s+;s, (1 + sign(z — wt)) :{ s_,ats < wt

t) =s_
s(z,t) =5+ S4,ats > wt

()

8 Bulletin of the Karaganda University
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where w = const. Suppose that there is a generalized solution of the equation of the form (1) in the
sense of fulfilling the integral identity. To do this, it is necessary and sufficient that the condition is
met on the break line w = const

dr F(s)-F(s)
YT sy —s_

(6)

The idea of the "vanishing viscosity"method in this case is that this solution (discontinuous) of the
form (5), (6) is acceptable. That is, for x # w solutions of of s° (z,t) the equation

sp = +H(F (%)), = € 50y (7)

for e — 0, it is obtained as a pointwise limit.

Below, the proposed method by I.M. Gelfand has the desired result in applied problems.

Given the structure of the solution we will look for a solution s (x,t) to equation (7) and (8) in the
form:

T — wt

s*(x,1) = u(§),§ = : (8)

9

Substituting a solution of this type in (7), we get that the function U (&) is the solution of the
equation

—w U 4 (F (v)) =" (9)

At = # wt, the function s* = v ("”_th) pointwise approximates for ¢ — 0 function s (z,t) of the
form (5) if and only if the function v () satisfies the boundary conditions:

s(—n,t)=s_, s(n,t)=st (10)

where n is a sufficiently large distance from the well.

It should be noted that v (t) is not the only solution, i.e., there can be 0 = v (§ — &), for any
& € R.

Integrating (9) and (10), we get

vV=—w-v+® )+ C=2(v)+C,
C = const.

(11)

If these conditions are met, the solutions of equation (9) that interest us are given by the formula.

Following the method of I.M. Gelfand, in order for an autonomous equation (11) with a smooth
right part of P (v) + C to have a solution that tends to the constants s_ at n — —oo and sy at
n — +00, it is necessary and sufficient to meet the following conditions:

a) s_ and s, -special points of the original equation, i.e., zero the right side of the equation (11):

d()+C=d()+C=0,
that is, as a result, we have

P(s_)=d(sy) =—C;

b) another option between s_ and sy there are no other special points and the right part (11) on the
specified interval:
1) positive at s_ < s; the solution increases, i.e.,

Mathematics series. Ne 2(106)/2022 9
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P (v) —P(s_)>0,Vv € (s_,54) (12)

2) negative at s_ > sy, i.e., the solution decreases:

D (v) — @ (sq) <0,Yv € (54,5). (13)
If these conditions are met, the solutions of equation (9) that interest us are given by the formula

v

Vo

=& —&o

where vy = — location of wells.

Sy+S_
2
The given conditions (12), (13) are an analytical record of the tolerance condition.
By varying s_, sy, and F'(s), various converging sequences of valid generalized solutions can be
constructed. At the same time, any point-to-point limits of acceptable solutions are also considered

acceptable.
2 Numerical Results

As a result, we get that the solution s (x,t) can jump from s_ to s4 (in the direction of increasing
x). That is, in fact, this jump occurs during the transition from the water phase to the oil phase. In
this case, the conditions for an acceptable gap are met (Fig. 1):

1) for s_ < sy, the graph of the function F'(s) on the segment [s_, s;] must be located below the
chord with the ends (s_, F'(s_)) and (s4, F' (s4));

2) in the case of s_ > s, the graph of the function F'(s) on the segment [sy, s_] must be located
no higher than the chord with the ends (s_, F'(s_)) and (s4, F'(s4)).

T T T T T
050 55 060 065 070 075

Figure 1. Construction of chord (s, F(s)) front saturation

The obtained conditions make it possible to regulate filtration processes in the bottomhole formation
zone taking into account the initial information, in particular, some data from Table 1.

10 Bulletin of the Karaganda University
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Table 1

Initial data used in modeling with the one-dimensional Buckley-Leverett problem

Parameter Value
Porosity 0.28

Oil viscosity l.e-4 kg/ms
Water viscosity 0.5e-4 kg/ms
Oil density 881 kg/m>
Water density 1000 kg/m?
Water relative perm calculation for a given water saturation | 11.174

Oil relative perm calculation for a given water saturation 3.326
Cross-sectional area 0.4 m?

The gap tolerance conditions obtained by the "vanishing viscosity"method are in perfect agreement
with the forecast calculations. Indeed, the convexity property of the function F(s) in the Buckley-
Laverett mathematical model (up) down by definition means that any chord connecting points in a
straight line shows the validity of the Buckley-Laverett mathematical model itself.

Figure 2 presents water saturation profile.

10

0.8 1

0.6 1

0.4 4

0.2 4

0.0 T T T T T T T

Figure 2. Water saturation profile as a function of time “t” and distance “x”
Figure 3 illustrates derivative of fractional flow curve.

Derivative of fractional flow curve

0.700
0.675
0.650
0625
F 0600
0.575
0.550

0525

0500

T T T T T T T

0 1 2 3 4 5 [ 7
dfwidSw

Figure 3. Derivative of fractional flow dF /ds
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Table 2 shows the results of derivative of the fractional flow rate curve calculation.

Table 2
Results of numerical calculation of the derivative of the fractional flow rate curve

Su T

0.500 0.152
0.525 0.313
0.550 0.487
0.575 0.889
0.600 1.519
0.625 2.721
0.650 4.219
0.675 5.817
0.700 6.613

Presentation of the model of nonlinear wave propagation and how the use of the method allows
one to cope with sharp fronts (or discontinuities) and develop them correctly, as well as to follow the
formation of a jump and rarefaction (Fig. 4a, 4b). The formation of an abrupt jump (jump) is observed.

Saturation profile velocity

10
5
'@ :\.' shock
2
R
0.0 T T T T T |
0.0 0.5 10 15 20 25 30
Dimensionless Velocity, Vd = xd/td
Figure 4. a) Shock and rarefaction formation
10
e 2 ShOCR: 0,82
08 1
0.6 1
0.4 1
0.2 1
D.G T T T T T T T T

Figure 4. b) Shock and rarefaction formation

12 Bulletin of the Karaganda University



Approximate solutions of ...

Conclusions

The article proposes one of the methods for solving the problem of filtration of a two-phase
incompressible fluid. The problem of mathematical filtering is posed on the basis of the classical
Buckley-Leverett model and an approximate solution is constructed. For the effective use of the
described method, relevant data are needed, such as the coefficient of fluid viscosity, the density of
formation fluids, etc., to plot the curves of the viscosity ratio. The considered method, based on the
Buckley-Leverett theory, uses vanishing viscosity for frontal advance, but, in general, it can be applied
to various systems that use different technological approaches and open the way for further research.
In particular, stochastic analysis of two-phase flow in stratified porous media seems promising |28, 29].
Stochastic models, which include some assumptions about porous media, simplify and stabilize fuzzy
information. In the future, we plan to use stochastic data and analyze them.
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Bakan—JleBeperT MoeIiHiH HeTi3iH/e eKida3ajbl apaJjacnaiThbiH
CYUWBIKTap arbIHbI YHOIIH PuMaH ecebiHiH »KYBIK MIeNTiMaepi

Makasiasia KanuIspJIbIK, KbICHIM/IBI €CEIIKe AJIMACTAH, MIENIMHIH TYTACTBIFBIH KAMTAMAChI3 €TE€TIH «KOUbI-
JIATBIH TYTKBIPJIBIK» 9/iCiHE Heri3/esIreH KybIKTay oici yebiHbLIran. PuMan ecebi MeH mrekapaJsiblk ecebinin
TYTKBIPJIBIFBI YKOWBLIFAH MIermiMi KapacTeipbutran. 2Kyite KoHcepBaTHUBTI 6osiMaca, OYJI 9J/ICi3 mrermiM emec
EeKEeHIH ecKepy Kepek, Oipak OHBIH, TYTKBIPJIBIK, IIIENIM eKEeHIH JpJiesieyre 601a 1bl, OyJI IIBIH MOHIH/IE KO-
BLJIBIIT KETETIH TYTKBIPJIBIK IIENTIMHIH KapThl IPYIIAIapIbl OOJIIIEK-TYPAKTBI OaCTAIKbI KOHE ITEKAPAJIBIK,
mapTrapra Aefin keHedTyai Oinaipeni. Kanumnsapabik KbICBIMIBI ecenike aaMaranga, bakmm-JleBeperTt mo-
nesti Herisri 60J1bIn TabbLIATBIHBL Oesriii. HakTel 60osKaMIIbIK, ecenrreysepre cyiieHe OThIPBII, MOJEb KOIITe-
reH caJjiajap/a e3iH Josene/ . OJIeTTe, eCenTey TYPFBICHIHAH AJIFAH/Ia, €CeNTey AJITOPUTMIEPIH Kypy Ke3iH-
Jle YaKbITTBI KBAHTTAY VIIIH YKYBIKTaY 9micTepi KaXKeT. T'YTKBIPIBIFEI KBICBIMEA TOYEJ Il €Ki apaaciaiTbiH
CYHBIKTBIKTAP/IBIH aFbIHBIH TaJgay Dakin-JleBepeTT KIaCCHKAJIBIK, YIriCiH oraH opi KeHeilTyre okeseni.
Jlapcu 3aHBIHBIH KEHEIOIHe HETri3/esireH Keibip ekiasasbl arblH MOJEIbAEP] KAMJIISIPJIBIK, KBICHBIMHBIH,
ocepin Kocabl. By keitbip CyHBIKTBIKTAP/IBIH, MBICAJIBI, IITUKI MYHANRIBIH, KbICBIMFA TOYEJ/Il TYTKBIPJIBIFbI-
Ha 2K9He KBICBIMHBIH ayBbITKYbIHA afTapJIbIKTall ce3iMTa/apIFbIHa HeriznesreH. HoTmrkesep KiracCHKAJIBIK
Japcu ojiciMen caJibICThIpFaHa Kpocc-6ailylaHbIC 2Kar1ailylapbIHbIH eJIeyci3 ocepiH pacTail/Ibl.

Kiam cesdep: Ilapcu 3ampl, ekidasaabl arblHAap, (asablk Oaiyianbic, bakin—J/leBeperT Teopusichl, n30-
TEPMUSIIIBIK, CY3Y, KAIUJISPJIBIK, KbICHIM.

E.C. Annanos!, T.2K. Toneyos?, H. Tac6onaryanr'>

L Meotcoynapodnoii yrusepcumem <Acmanas, Hyp-Cyaman, Kasaxemar;
2 Axmiobuncrudl pezuonasbruill zocydapemeentuiti ynusepcumem umenu K. Xybanosa, Axmobe, Kazaxcman;
3 Kasaxckutl mayuonaiviuiti yruueepcumem ument asv-DPapabu, Aimamor, Kazaxcman

ITpubamkennbie permennsa 3aAa9n PumaHa /11 1ByX@da3HOro moToKa
HeCMeNInBAIoINnXCcs »KNJIKOCTell Ha ocHOBe Mojesm bakan—JleBeperTa

B crarpe mpemyioken mpuOIMKEHHBI METOJI, OCHOBAHHBIN HA <«MCUYE3AOIIEH BSI3KOCTH», KOTOpasi obec-
MeYNBAET IVIAJKOCTH PACTBOpa 0e3 ydera KaNWISIPDHOTO JaBieHusi. Mbl OymeM paccMaTpUBaTh pENIeHne
3asaun Pumana u kpaeBoil 3ajaun Pumana ¢ mucuesaromieil BaskocTbio. ObGparnre BHUMaHWE HA TO, 9TO
9TO He cjaaboe peIlIeHne, ecIu CUCTeMa He sBJIAeTCS KOHCEPBATHBHON, TO MOXKHO JI0Ka3aTb, ITO ITO BSI3-
KOCTHO€ pelteHne, (paKTHIECKH O3HAYAIONEe PACIINPEHNE MOJIYTPYIIIbl PEIEHUs] UCYE3AONIENl BA3KOCTH
JI0 KyCOYHO-IIOCTOSIHHBIX HAYaJIbHBIX ¥ I'PAHUYIHBIX JaHHBIX. MI3BecTHO, 4TO, 6€3 yuera KaluuISPHOIO JIaB-
Jienusi, Mosiesib bakian—JleBeperra siBistercst ocHOBHOM. OCHOBaHHAs HA PEAJIBHBIX MPOTHO3HBIX pacyeTax
MOJIEJIb TIOJIOYKUTEIBLHO 3apeKOMeH 10Basia cebst Bo MHOruX cdepax. OObIYHO, ¢ BBIUYUCIUTEILHON TOYKU
3peHwusi, TPUOINKEHHbIE MOJIEJN TPEOYIOTCs JJIsi KBAHTOBAHUSI BPEMEHU IIPU CO3JIAHUM BBIYHCJIMTEJIHLHBIX
AJITOPUTMOB. AHaJ'II/IB NOTOKa U3 JABYX HECMEHINBAIOIIUXCA }KI/I,‘I[KOCTEI‘/JI7 BA3KOCTHb KOTOPBIX 3aBUCUT OT JaB-
JIeHUs, TPUBOIUT K JAJIbHENIIEMY PACIIHPEHUIO Kaaccudeckoir moaenu Bakan-Jleseperta. HekoTopsie mo-
J1esi By Xpa3Horo MoToKa, OCHOBAHHBIE HA paciuupennn 3akona Jlapcu, BKII0YaoT 3G deKT KalnuisipHOro
JaBJIeHUsI. DTO MOTUBUPOBAHO TeM (PAKTOM, UTO HEKOTOPBIE XKUIKOCTH, HAIIPUMED, ChIpasi HePTh, NUMEIOT
BA3SKOCTDH, 3aBUCANIYIO OT JaBJACHUA, 1 3aME€THO 1YBCTBUTEJIbHBI K KOJ'I€68.HI/I${M JaBJICHUA. P€3y.HI)TaTI)I II0a-
TBEP/MJIN HE3HAYUTEILHOE BIIUSHIE YCIOBUN KPOCC-CBS3BIBAHUS IO CPABHEHMIO C KJIACCHIECKUM I10JIXOI0M
Hapcu.

Karoweswie caosa: 3axon lapcu, n1Byxdasnble NOTOKY, CBaA3b a3, Teopust Bakinun—JleBeperra, ndorepmute-
ckasi QUIbTpANUs, KaIUUISPHOE JABJICHIE.
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On the nonlocal problems in time for subdiffusion equations
with the Riemann-Liouville derivatives

Initial boundary value problems with a time-nonlocal condition for a subdiffusion equation with the
Riemann-Liouville time-fractional derivatives are considered. The elliptical part of the equation is the
Laplace operator, defined in an arbitrary N— dimensional domain €2 with a sufficiently smooth boundary
0. The existence and uniqueness of the solution to the considered problems are proved. Inverse problems
are studied for determining the right-hand side of the equation and a function in a time-nonlocal condition.
The main research tool is the Fourier method, so the obtained results can be extended to subdiffusion
equations with a more general elliptic operator.

Keywords: time-nonlocal problems, Riemann-Liouville derivatives, subdiffusion equation, inverse problems.

Introduction

Let 8 < 0,0 < p <1 and a function ¢(¢) be defined on [0, 00). Denote by Jtﬁq(t) and 0/q(t) the
fractional integrals and the Riemann-Liouville derivatives, respectively, defined as (see, e.g. [1; 14]):

Ity = W) _ge, gty = Lo a(w), t>0.
r(—mo/ o i

Let Q be an arbitrary N — dimensional domain with a sufficiently smooth boundary 0.
Consider the following time-nonlocal problem:

Hu(z,t) — Au(z,t) = f(z,t), z€Q, 0<t<T; (1)
u(xat)‘ag =0; (2)
Jtp_lu(x,t)‘t:g = a%i_{% JP u(z )+ o(z), 0<E<T, zel (3)

N
where f(x,t), p(z) are given functions, « is a constant, £ is a fixed point and A = > % is the
k=1 "k

Laplace operator. This problem is also called the forward problem.
We note the following property of the Riemann-Liouville integrals, which simplifies the verification
of the initial condition (3) (see, e.g. [1; 104]):

. p—1 _ . 1—p
t1—1>I—I|-10Jt u(x,t) F(p)tl_lg_lot u(x,t).

*Corresponding author.
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From here, in particular, it follows that the solution to the forward problem can have a singularity
at zero t = 0 of order t*7!.

When solving the forward problem, we will first solve various auxiliary problems for equations with
the Riemann-Liouville derivative. We will also consider inverse problems. The definition of a classical
solution in all these cases is exactly the same. As an example, we present the definition of the classical
solution to the forward problem (1)-(3).

Definition 1. A function u(x,t) with the properties

1 ti=Pu(z,t) € C(Q x [0,T)),
2 u(z,t), Nu(x,t) € C(Q x (0,T))

and satisfying conditions (1)-(3) is called the solution to the forward problem.

The main goal of this work is to study the influence of parameter o on the correctness of problem
(1)—(3). In this regard, we will apply the Fourier method, which ensures the consideration of the
following spectral problem

{ — Av(x) = w(x), =z )

v(:z)bﬂ = 0.

Since the boundary 02 is sufficiently smooth, this problem has a complete in Ly (2) set of orthonormal
eigenfunctions {vg(x)}, £ > 1, and a countable set of positive eigenvalues {\;}, (see, e.g., [2-4]). It is
convenient to assume that 0 < Ay < Ay - -+ — +00.

We note that the method proposed here, based on the Fourier method, is applicable to equation
(1) with an arbitrary elliptic differential operator A(x, D), if only the corresponding spectral problem
has a complete system of orthonormal eigenfunctions in La(€2).

We also note that if a = 0, then the considering forward problem passes to the backward problem,
which is well-studied in work [5]. The backward problem for equation (1) with the Caputo derivative
was studied in [6-8|. Therefore, further we assume that a # 0. About backward problems, we note
only the following: These problems are not well-posed in the sense of Hadamard, i.e., a small change
in function ¢ in condition (3) leads to a large change in the solution.

As will be shown below, if « ¢ [0,1), then, under standard conditions on the given functions f
and ¢, problem (1)—(3) is unconditionally solvable and has a unique solution. If @ € (0,1), then the
solvability of the problem depends on whether there exists an eigenvalue Ay, of the spectral problem
(4) such that E,(—Ag,t”) = o and what is the multiplicity py of this eigenvalue Ay, (here E, is the
Mittag-Leffler function, see the definition below). If such an eigenvalue exists, then for the solution
to the problem to exist, it is necessary that each function f and ¢ satisfy pg additional orthogonality
conditions. Moreover, the solution of the problem will not be unique. If there is no eigenvalue Ay, for
which E,(—\g,t”) = a, then problem (1)-(3) is again unconditionally solvable.

We will also study two inverse problems for determining the right-hand side of the equation and
function ¢ in the nonlocal condition (3), respectively. In this case, for both inverse problems, as an
additional condition, we take the condition

u(z,0) =¥(z), 0<O<T, 0+#E z€. (5)

Here, to avoid the uniqueness problem, we will assume that o > 1. In the case of the inverse problem
of determining the right-hand side of the equation, we will assume that f depends only on the spatial
variables z: f = f(z).

Note that all these problems for equation (1) with the fractional Caputo derivative were considered
in [9]. However, in this work, the existence of a generalized solution to the problems is proved. The
convenience of studying the generalized solution by the Fourier method lies in the fact that when
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proving the convergence of the corresponding series, one can use the Parseval equality and reduce the
question of the convergence of functional series to the study of the convergence of numerical series.
When proving uniform convergence, this approach does not work. Therefore, in the present paper, we
apply the lemma of Krasnoselskii et al. [10], which reduces the study of uniform convergence to the
study of convergence in Ly(€2).

Usually, to determine the solution of non-stationary differential equations uniquely, an initial
condition is specified. However, in some cases, non-local conditions are used, for example, in the form
of an integral over time (see [11], in the case of diffusion equations, [12] for fractional-order equations),
or in the form of a relationship between the value of the solution at the initial and final times (see [13],
[14]). We also note papers [15], [16], where boundary value problems given with fractional derivatives
are studied.

As for the inverse problem of determining the function ¢, we point that such a problem was studied
only in the work [17] (with the exception of work [9], which was mentioned above). The authors of [17]
considered this problem for the subdiffusion equation, which includes the fractional Caputo derivative,
the elliptic part of which is a differential expression with two variables and constant coefficients.

The inverse problems of determining the right-hand side (the heat source density) of various
subdiffusion equations have been considered by many researchers (see, e.g., [18]). We note that the
inverse problem of determining the right-hand side of the equation given in an abstract form f(x,t)
has not yet been studied. The obtained results deal with the separated source term s(t)f(z). The
appropriate choice of the overdetermination depends on the choice whether the unknown is s(t) or
f(z). It should be noted that studies of inverse problems, where the function s(¢) is the unknown,
are relatively few (see, e.g., [18] in the case of fractional order equations and [19]-[21] in the case of
equations of integer order).

Many authors have considered an equation in which s(t) = 1 and f(z) is unknown (see, e.g., [22]-
[40]). Let us mention just a few of these works. The case of subdiffusion equations whose elliptic part
is an ordinary differential expression is considered in [22]-[28|. The authors of the papers [29]-[33]
studied subdiffusion equations in which the elliptic part is either a Laplace operator or a second-order
operator. The article [34] examined the inverse problem for an abstract subdiffusion equation with the
Cauchy condition. In article [34] and in most other articles, including [29]-[32], the Caputo derivative
is used as a fractional derivative. Recent articles [35]-36] are devoted to the inverse problem for the
subdiffusion equation with the Riemann-Liouville derivative.

In [33], [38], [39], non-self-adjoint differential operators (with non-local boundary conditions) were
taken as the elliptical part of a subdiffusion equation, and solutions to the inverse problem were found
in the form of bioorthagonal series.

In our previous work [40], we examined the inverse problem for the simultanecous determination
of the order of the Riemann-Liouville fractional derivative and the source function in the subdiffusion
equations. Using the classical Fourier method, the authors proved the uniqueness and existence of a
solution to this inverse problem.

We also note works [41]-[44] close to the given topic in which inverse problems of determining
boundary functions in problems of control of heat propagation processes are studied.

1 Preliminaries

In this section, we formulate the lemma noted above from the study by Krasnoselskii et al. [10],
the fundamental result of V.A. Il'in [3] on the convergence of the Fourier coefficients and recall some
properties of the Mittag-Leffler function.

Let A stand for the operator acting in La(Q2) as Ag(x) = —Ag(x) with the domain of definition
D(A) ={g € C*() : g(z) = 0,z € dQ}. We denote the self-adjoint extension of A in Ly(Q) by A.

~

To formulate the indicated lemma, it is necessary to introduce the power of operator A.
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Let o be an arbitrary real number. The power of operator A, acting in L2(2) is defined as:

= ZAZ grvk(x),  gr = (9,vk),

and the domain of definition has the form

o

D(A%) = {g € Ly(®) : 3 A|gul? < o0}.
k=1

For elements of D(A?) we introduce the norm
gl = Z A gkl = [1A7g| .

The following lemma plays an essential role in our reasoning (see, e.g., [10; 453]).
Lemma 1 . Let o > %. Then operator A~ continuously maps the space Lo(Q) into C(Q), and

moreover, the following estimate holds

IA~gllc@) < Cllgllz )

When proving the existence of solutions to forward and inverse problems, it is necessary to study
the convergence of series of the form

ZA el?, 7> 5 (

where hy, is the Fourier coefficient of function h(x). In the case of integers 7, the conditions for the
convergence of such series in terms of the membership of the function h(x) in classical Sobolev spaces
I/V2 (Q) were obtained in the work of V.A. Il'in [3]. To formulate these conditions, we introduce the class
W5 () as the closure in the W () norm of the set of all functions that are continuously differentiable
in 2 and vanish near the boundary of €.

So, if function h(z) satisfies the conditions

w\z
|z

h) e W Q) and k), AhG), - A K@) e @), (7)

then the number series (6) (we can take 7 = % + 1if N is even, and 7 = % if N is odd) converges.
Similarly, if in (6) we replace 7 by 7 + 2, then the convergence conditions will have the form:

w2

@) and @), Ah). . A ) i (@), 8)

h(z) € WQ[

Next, let us remind some properties of the Mittag-Lefller functions. For 0 < p < 1 and an arbitrary

complex number p, by E, ,(2) we denote the Mittag-Leffler function with two parameters (see, e.g. [1;
12]):

o

Ep,u(z) = nZ:;) m

Z’I’L

If the parameter p = 1, then we have the classical Mittag-LefHer function: E,(z) = E,1(2).
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In what follows, we need the asymptotic estimate of the Mittag-Leffler function with a sufficiently
large negative argument. The estimate has the form (see, e.g. [45; 136])

C
1+t
where p is an arbitrary complex number. This estimate essentially follows from the following asymptotic
estimate (see, e.g. [45; 134]):

[Epu(=t)] < t>0, (9)

t_l

E,u(—t) = —— +0(t72). 10
We will also use a coarser estimate with a positive number A and 0 < € < 1:
Ctr1
tP B, (=) < <OXThEeTl 11
‘ ool )|_1+)\tp_0 ) >0, (11)

which is easy to verify. Indeed, let t?A < 1, then t < A™/? and
tp—l — tp—sptep—l < )\e—ltsp—l‘
I[ftPA > 1, then A7 < t°° and
)\fltfl _ )\71+€>\75t71 < )\sfltspfl'
Proposition 1. The Mittag-Leffler function of negative argument £,(—x) is monotonically decreasing

function for all 0 < p < 1 and
0< E,(—z) <1 (12)

Proof of this proposition can be found, for example, in [9].
Proposition 2. Let p > 0 and A\ € C. Then for all positive ¢ one has
¢
/ 1P Epp(M)P)dn =t Ep 41 (XF), (13)
0

and
JP (tﬂlEp,p(AtP)> = E,(\t"). (14)

Proof of this proposition can be found, for example, in [45; 120].
2 Well-posedness of the forward problem

First, we consider the problem for the homogeneous equation:
Hw(z,t) — Aw(z,t) =0, z€Q 0<t<T;
w(x,t)’aﬂ = 0; (15)
Jf*lw(:n,t)’t_5 = a%ir% JP w(a t) + (), 0<E<T, zel,
= —

where () is a given function.

Theorem 1. Let function v (z) satisfy conditions (7).

If « ¢ [0,1) or a € (0,1), but E,(—A\x&”) # « for all & > 1, then problem (15) has a unique
solution, which has the form

w(z,t) = Z Ep(—AiZP) — Oétp_lEp’p(*)\ktp)/Uk‘(x)v (16)

where v, is the Fourier coefficient of function v (x).

22 Bulletin of the Karaganda University



On the nonlocal problems...

If o € (0,1) and E,(—A,&”) = o for some eigenvalue Ay, with the multiplicity pg, then we assume
that the orthogonality conditions

Y = (Qﬁ,vk) =0, ke Ky= {ko,k‘o +1,...., kg4 po— 1} (17)

are satisfied. Then solutions to problem (15) have the form

w(z,t) = ) e ;ﬁ’gp) _atp—lEp,p(—Aktp)vk(a;)+ D btP By p(— Mt )ug(x),  (18)
k¢ Ko ke Ko

with arbitrary coefficients by, k € K.
Proof. In accordance with the Fourier method, we will look for a solution to problem (15) in the
form of a series:

w(z,t) =Y Tp(t)ve(x),
k=1

where Ty (t), k > 1, are solutions to the nonlocal problems:

85Tk(t) + )\ka(t) =0, 0<t<T, (19)
-1 . -1
J? Tk(t)‘tzg = alim U™ Ti(t) + Uy (20)
Let us denote
lim J~ T (t) = by. (21)
t—0

Then, the unique solution of the equation (19), that satisfies the condition (21) has the form Tj(t) =
bitP " E, ,(—Akt?) (see, e.g. [46; 173], [1; 16], and [47]).
Equality (14) implies

T = By (—AiEP).
t=¢
Therefore, from the nonlocal condition (20) we obtain
b (Ep(=Mg") — @) = . (22)

By virtue of property (12) of the Mittag-Leffler function, E,(=Ax£”) # a for all « > 1 and oo < 0
(note, & > 0 and A; > 0). Therefore, from (22) we have

g,

b, =
T E (A —a

bkl < Caltnl, k>1, (23)

where C,, is a constant.

Let 0 < o < 1. Then according to Proposition 1, there is a unique A\g > 0 such that E,(—Ao&”) = a.
If there is no eigenvalue equal to \g , then the estimate in (23) holds with some constant Cy, > 0.

Thus, if a ¢ [0,1) or o € (0, 1), but A\p # Ag for all k£ > 1, then the formal solution of problem (15)
has the form (16).

Finally, let 0 < o < 1 and there is an eigenvalue equal to \g, having the multiplicity po: A\ = Ao
for k = ko, ko + 1, ..., ko + po — 1. Then the nonlocal problem (19), (20) has a solution if the boundary
function ¢ (x) satisfies the orthogonality conditions (17). Since ¥ = 0, then arbitrary numbers by are
solutions of equation (22). For all other k we have

Py,
Ep(—)\kfp) —a’

b = bk] < Calte|, k¢ Ko.
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Thus, the formal solution to problem (15) in this case has the form (18).

Let us show that the operators A = —A and 9/ can be applied term-by-term to series (16) and the
resulting series converges uniformly in (x,t) € Q x (0, T7; for series (18), this question is considered in
a similar way.

Let S;(z,t) be the partial sum of series (16). Then

J
—ASj(z,t) = Z )\kE (_)\wzp) — tp’lEp,p(—)\kt”)vk(m).
k=1 P k

Using the equality
Ao (@) = Agun(a),

with o > % and applying Lemma 1 for g(z) = —AS;(x,t), we have

J 2
— AS; (@, )2y < €S A2 LZ: VB, (= Mt?)| Lt > 0.
=28 Ol < O N | gy gy =at BoeM)] o 0>
Here, to estimate the Ly(€2) norm, we applied the Parseval’s equality.
Apply estimates (9) and (23) to obtain
AS 2 <C 2p—2 d )\2(U+1) ¢k -2 AT 2 _ N
| = ASj(x, V)|l < Cat Z k m < Cat Z AL e

k=1

Therefore, if ¢)(z) satisfies conditions (7), then —Awu(x,t) € C(Q x (0,T]). From equation (15) one has
O u(x,t) = Au(z,t), t >0, and the above estimates imply

|0f w(z, t)HC(Q <C, t_QZ)\ [xl?, ¢ >0,
k=1

which means 9/w(z,t) € C(2 x (0,T7)).
For S;(z,t), taking into account estimate (9), we obtain

J

[t S (e, 1) HC Z M lgwl?, 7>

k=1

Hence t!~Pw(z,t) € C( x [0,T]), which was required by the definition of the solution to problem (15).
The uniqueness of the solution to problem (15) is proved in exactly the same way as in work [9].
For the convenience of the reader, we present this proof.
It is sufficient to show that the solution to the problem:

Hw(z,t) — Aw(z,t) =0, z€Q, 0<t<T;
t)’anzo?

Jtpflwzvt :a%in(l)Jfflw(:L‘,t), 0<EST, zeQ,
%

Mize

is identically equal to zero.
Let w(t) = (w(x,t), vk(x)). Since operator A = —A is self-adjoint, one has

Ofwi(t) = (Ofw(z, ), vi(@)) = (Aw(z, 1), vi(x)) = (w(@,t), Avp(z)) = —Awi(t)
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or
afwk(t) = —\pwi(t) (24)
and the nonlocal condition implies
p—1 _ . p—1
Ji wk(t)‘tzg = 04%1_>0 JP T w(t). (25)

Let us denote %ir% J? g (t) = bg. Then the unique solution to the differential equation (24) with
—

this initial condition has the form wg(t) = bytP~1E, ,(—At?) (see, e.g.[46; 174]). From equality (14)
and the nonlocal conditions of (25) we obtain the following equation to find the unknown numbers by:
b (Ep(—Ak€P) — a) = 0. (26)
If o ¢ [0,1), then by virtue of the Proposition 1 we obtain by = 0 for all £ > 1. If a € (0,1), but
Ak # Ao for all k, then E,(=Ay£”) # o and therefore by, = 0. Hence, if o ¢ [0,1) or o € (0,1), but
A # Ao for all &k, we have all by are equal to zero, therefore wy(t) = 0. By virtue of completeness of
the set of eigenfunctions {vi(x)}, we conclude that w(x,t) = 0. Thus, problem (15) in this case has a
unique solution.
Now, suppose that a € (0,1) and A\, = Ao, k € Ko. Then E,(—A\;&”) = a, k € Ky and therefore
equation (26) has the following solution: by = 0 if k ¢ Ky and by, is an arbitrary number for k € K.
Thus, in this case, there is no uniqueness of the solution to problem (15). Theorem 1 is completely

proved.
Now consider the following auxiliary initial-boundary value problem:

Rw(z,t) — Aw(z,t) = f(z,t), z€Q, 0<t<T;

w(ac,t)|89 =0; (27)
lim J? 'w(z,t) =0, zeq.
t—0

We have the following theorem for this problem:
Theorem 2. Let t1=° f(z,t) as a function of x satisfy conditions (7) for all ¢ € [0, T]. Then problem
(27) has a unique solution and this solution has the representation

0o t

wie, ) =3 / P B (M) filt — )i | vi(), (25)

k=1 |

where fi(t) are the Fourier coefficients of function f(x,t): fx(t) = (f(-, 1), vk)-

Proof. It is known that the formal solution of the problem (27) has the form (28) (see, e.g. [46; 173],
[47]). In order to prove that function (28) is actually a solution to the problem, it remains to substantiate
this formal statement, i.e., to show that the operators A = —/A and 9/ can be applied term-by-term
to series (28) and the resulting series converges uniformly in (x,t) € Q x (0; T).

Let S;(z,t) be the partial sum of series (28). Then

» ¢
J
~08w0) = Y | [ 07 Byt — ndn| M),
Let 0 > %. Repeating the above reasoning based on Lemma 1, we arrive at
j ! ?
= 885 )2 < || 477 DA (@) / W By (~ M) filt = mdn|| <
= 0 c@
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. ¢ 2
j
S At unte) [0 BNVl | <
P 0 L2(®)
(apply Parseval’s equality to obtain)
j p 2
<O N | [ B Ve = mdn| >0,

Then, by inequality (11) with 0 < € < 1 one has

t

J 2
| = AS(@, )80 <CD Un‘”‘l(t — )P TIATEE (=) P St — n)ldn] ,
k=1

0
or, by the generalized Minkowski inequality,

1

t
2 2 N
|—Asj<x,t>|\%m)sc[/n€pl 0 1<Z|m— it~ >|2) dn] r=oses
0

Since t!77 f(x,t) as a function of z satisfies conditions (7) for all ¢ € [0, T], then
| = A8j(, 1)) < C, t>0.
Hence —Aw(z,t) € C(Q x [0,T]) and in particular w(z,t) € C(Q x [0,T7]).
J
Further, from equation (1) one has 9/'S;(t) = AS;(z,t)+ > fe(t)vg(x), t > 0. Therefore, from the
k=1

above reasoning, we have 0/w(z,t) € C’(ﬁ x (0, T])

The uniqueness of the solution can be proved by the standard technique based on completeness in
L2(Q2) of the set of eigenfunctions {vi(z)} (see, e.g. [5]).

Theorem 2 is completely proved.

Now let us move on to solving the main problem (1)—(3). Let () and t!=° f(x, ) (for all t € [0,T7])

satisfy conditions (7). If we put ¥ (z) = p(z)— JI~ Lz, t)‘ and w(z,t) and w(z,t) are the solutions

of problems (27) and (15) correspondingly, then function u(x,t) = w(z,t) + w(z,t) is a solution to
problem (1)—(3). Therefore, we can use the already proven assertions.
Thus, if a ¢ [0,1) or a € (0,1), but A # Ao for all £ > 1, then

u(z, 1) = ,; [Eﬁ’“_ ;k?,i)({_) ~ T B (= Met”) + wk@)} o (), (20)

where
t

wi(t) = / P By (M) it — ).
0

The uniqueness of the function u(z,t) follows from the uniqueness of the solutions w(z,t) and w(z,t).
If « € (0,1) and A\ = N\o, k € K, then

or — wi(€) VB, (—Mit?) + wk(t)] opl(z) + Z bit? B, o (—M\t?)ug(z). (30)

u(z,t) = E,(—M\elP) — 5

k¢ Ko [
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The orthogonality conditions (17) have the form

(o, 1) = (Jtpilw(%t) e k), k€ Koy Ko ={ko,ko+1,.....ko +po — 1}.

Instead of these conditions, we can take orthogonality conditions that is easy to verify:
(np,vk) =0, (f(-,t),vk) =0, forall t € [O,T], ke Ky, Ko = {ko, ko+1,.....ko+po — 1}. (31)

Thus, we have proved the main result of this section:

Theorem 3. Let o(x) and 1= f(x,t) (for all ¢t € [0,7]) satisfy conditions (7). If a ¢ [0,1) or
a € (0,1), but A\g # Ao for all £ > 1, then problem (1)-(3) has a unique solution and this solution has
the form (29).

If « € (0,1) and A\ = Ao, k € Kp, then we assume that the orthogonality conditions (31) are
satisfied. The solution of problem (1)—(3) has the form (30) with arbitrary coefficients by, k € K.

3 Inverse problem of determining the right-hand side of the equation

Let us consider the inverse problem
Hu(x,t) — Au(x,t) = f(z), 0<t<T; z€

u(m,t)|8Q = 0; (32)
Jtpflu(:ﬁ,t)}t_5 = oz}in% JP  u(z, ) +o(z), 0<E<T, zeQ,
= —

with the additional condition
w(x,0) =¥(z), 0<O<T, 0#¢ z€Q, (33)

where the unknown function f(z), characterizing the action of heat sources, does not depend on ¢ and
U(z),¢(x) are given functions, o > 1, £ and 6 are fixed points of (0, 7.

Note that if § = &, then the nonlocal condition in (32) coincides with the Cauchy condition
%LH[l) JP u(z, t) = @1 with some ;. In this case, this inverse problem was studied in [35].

Theorem 4. Let functions ¢(x), U(x) satisfy conditions (8). Then the inverse problem (32), (33) has
a unique solution {u(z,t), f(x)} and this solution has the following form

B a— E,(—=A\&P)
o= k:Z:l [ep_lEp,p(_)\kep)ngp,pH(_)\kf’)) T O0PEp p1(=A0P) [ — Ep(=Aré?)] it

. 071, (—~\b°)
0P=LE, (= A0P)EPE ) pi1 (= AREP) + 0P B oy 1 (—Ap0P) [ — Ep(—=Aip&P)] ok

]vkm, (34)

u(z,t) = ; [Eipf)(\k_éﬁti)a " ok — [ Eppi1 (—AEP)] + fktpEp,pH(—)\ktp)} vg(z).  (35)

Proof. Let us first show that the series (34) and (35) are formal solutions to the inverse problem.
Then we show the uniform convergence and differentiability of these series.

Suppose f(z) is known. Then the unique solution to problem (32) has the form (29). Since f(z)
does not depend on ¢, then, owing to formulas

t

wi(t) = fk/nplEp,p(—/\knp)dn
0

and (13), it is easy to verify that the formal solution of problem (32) has the form of (35).
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Due to the additional condition (33) and completeness of the system {vi(z)} we obtain:

Ep,p(_)‘kep)
Ep(_)\kfp) -«

After simple calculations, we get

ep_l[Sok - fképEp,erl(—)\kgp)] + fkepEp,erl(_)\kep) = \Ijk

a— E,(—A&P)
ep_lEp,p(_)‘kep)prp,p+l(_)‘kfp) + apEp,p—l-l(_/\kep)[O‘ - Ep(_)\kfp)]
" 0P~ 1E, ,(—\i0°)

0p = Ep p(=Ak0P)EP Ep i1 (= AkP) + 0P By i1 (= A0P) [ — Ep (= AkP)]
Therefore, series (34) is a formal solution of the inverse problem.

Let us prove the convergence of this series uniformly in 2 € €.
If Fj(z) is the partial sums of series (34), then by applying Lemma 1 as above, we have

fk = \I/k—l-

Ok = fr1 + fro-

||Fj(x )HC(Q)<Z)‘I€ [feq + fr2l® <QZAQUfmﬂLQZ)\%ka:2f1j+212], (36)
= k=1 k=1

where o > %. Since & > 0, then 0P~ E, ,(=\t0P)EPE, i1 (—Ap&P) > 0. Therefore,

J
I; < Z
k

1 or Epp+1

2 J 20 2
e\
)\ia‘\yk’Z: § : k ’ k’| 3
k=1 |9pEp,p+1(—)\k9p)|

a — Ey(— &)
(=Ak0°) e = By (=AkP)]

Apply the asymptotic estimate (10) to get

Ild < Z

Since 6 > 0 and « > 1, then 6°E, ,11(=Ap0”)[oc — E,(=Ap&”)] > 0. Therefore,

J
I < Z

By virtue of (10),

j
N
<CY N0 7 =20> —.
1+0 (—Mb?)~1))? kzl’“ 2

9p YE, o(—A\i0”) ? g AZTD | |2

0P 1E, (= A0P)EPE) pr1(—AiP)

Flaf =Y .
2 6P B o1 (—iéP) [

k=1

1
U+ o

J
SC )\T“!‘Q‘SO |2’ >
1+O (“Aetr) 1)) ; koYK 2

IQ]SZ

Thus, if p(x), ¥(z) satisfy conditions (8), then from estimates of I; ; and (36) we obtain f(z) €
@)

Further, the fact that function u(z,t) given by the series (35) is a solution to the inverse problem
is proved exactly as in Theorem 1.

The uniqueness of the solution follows from the completeness of the systems of eigenfunctions

{ve(z)} (see [9]).
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4 The inverse problem of determining function ¢ from the nonlocal condition

Let us assume that in forward problem (1)—(3) not only function u(x, t), but also function ¢(z) from
nonlocal condition (3) is unknown. As an additional condition for this inverse problem, we again take
condition (5). We note that if § = £ in this condition, then the nonlocal condition Jtp_lu(:v t)}t:5 =

a}ir% JP u(x, t) + o(x) passes to the Cauchy condition %ir% JP (e, t) = @1 (x) (with some @y (z)),
— —

which is investigated, for instance, in [35].

Theorem 5. Let t'=7 f(z,t) as a function of x satisfy conditions (7) for all ¢ € [0, 7] and let function
U(z) satisfy conditions (8). Then the inverse problem (1)—(3), (5) has a unique solution {u(x,t), ¢(x)}
and this solution has the form

- —\efP) —
; |:0p— )\kep) [\Ijk - wk(e)] + wk(£):| Uk(x)a (37)
Z [ - ;;g]; _)a 7 By p (=it + Wk(t)} vk (), (38)
=1
where .
) = [0 Bpal-Nerf )it = )i
0

Proof. The solution to problem (1)—(3) has the form (38) (see Theorem 3). Therefore, condition (5)
implies:

o - QOk—Wk(f) p—1 - P w ve(z) = T
u<x,e>_;[Ep(_Ak§p)_ae Enp=Xu8") +(0)| (o) = ¥(@).

Passing to the Fourier coefficients, we have

@k_wk(g) p—1 P
J— — >
PO g1, () + ) = s K2 L

or

o= 0 — 0]+ )

Thus, equality (37) is formally established. Now, we show that series (37) converges uniformly in z € €.
Let ®;(z) be the partial sum of series (37). Then applying Lemma 1 as above, we arrive at

! (—AkF) —a ’
19,601 ey < SN |5ty | B4~k )] <
< 3ZA2"[ pre EEM? )Akep) [\\Ifk!2+ !wk(e)!ﬂ + !wk(é)\z] = ol + 02+ 07, (39)

where o > &', Since |E,(—=\;&P) — a| < C, then by virtue of the asymptotic estimate (10) we obtain

A tDger2(q - g N
L) 2 < oY AT =20 >
(1+0((=M\07)71)) pot 2

¢}<Cz

Mathematics series. Ne 2(106)/2022 29



R.R. Ashurov, Yu.E. Fayziev

Similarly, by estimates (10) and (11) we have

0 2

J 20422712
/\ 0-1T4(1 —
( )2 /n”‘lEp,p(—Am”)fk(H—n)dn <
0

CZ —\p67)~1))

2

J C )\20+2
=2

0
n O — )P0 — )P fu (0 — n)|dn
= (14+O0((=Mb7)~ 20/

(by the generalized Minkowski inequality)

0 2
2
< C. /5" 16 —n)” (ZAT”SIQ ' P (0 — n)l) dn| <
0 k=1
j
<C AT-‘rQE tl—p t 2.
< Ce max E TP ()]
k=1
For CID;’-’, one has
. ¢ 2
J
<Y AT /n”‘lEp,p(—Akn”)fk(f—n)dn <
k=1 0
0 j 3 2
<C P — 160 —n)' =P (0 — dn| <cC AT|ttP
< / n)” (kz_: ' fi( n)\) n| < ﬁ%z P fi(t)
; —

Since functions ¥(x), f(z,t) satisfy conditions of the theorem, then by virtue of estimate (39), we
have p(x) € C(Q).

The fact that the function defined by equality (38) is a solution to problem (1)—(3) is proved
similarly to Theorem 3.

The uniqueness of the solution of the inverse problem follows from the completeness of the system
of eigenfunctions {vi(z)} in the space La(Q2) in the standard way.
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Amypos P.P. O noctpoennn perennit inmeitHoro mnddepeHmaaibHOr0 ypaBHEHUS ¢ IPOOHBIMI

IPOU3BOJHBIMU U OCTOsIHHBIMEI KO3 duimentamu / P.P. Amypos, F0.9. Qaiizues // YsMZK.
— 2017. — Ne 3. — C. 23-41.

P.P. Amypos!, 10.3. ®aiisues?

L @s6excman Pouavim akademuacorvry, Mamemamura unemumymuo, Tawxenm, Osbexcmar;
2 .
Osbexcman yammok yHusepcumemi, Tawkenm, O©36excman

Puman-JInyBunaab TybIHAbICH 0ap cyOoauddys3usa TeHjaeysiepi yoiiH

YaKBbIT OoiibIHIIIA JIOKaJIbJIbIEMEC €ecellTep TypaJibl

VaxkprT 60tibraITA Goutek perti Puman-JIluyBusas TybiHapLIaps! 6ap cydanddy3ust TeHIeyIepi YIITiH yaKbIT
OOMBIHIIIA JIOKAJIbIbIEMEC IapThl 6ap OacTANKBI-IETTIK ecernTep KapacThIpbLIFaH. TeHJIey iH 3JIIUIICTIK
Geutiri Jf) »KeTKimiKTi Teric mekapacbl 6ap ke3 keiaren N — esmemMi {2 oOJIBICBIHIA aHbIKTa FaH Jlamiac
onepaTopbia 6epei. KapacThIpbLIbIT OTBIPFaH €CemTep/IiH, menmiMiaiH 6ap 60Tybl MEH >KAJTFBI3IBIFI 1916
neuzi. Tengeymiy OH 2KarblH 2KOHE yaKbIT OOUBIHINA JIOKAJIbIbIEMEC MAPTTHl (DYHKIUSIHBI aHBIKTAY YIIiH
Kepi ecenrrep 3eprreiai. Oypbe d1ici 3epTTeyiH Herisri KypaJsbl O0JIbIT TaObLIAIbI, COHJIBIKTAH AJILIHFAH
HOTHUKEJIEP aHAFYPJIBIM YKAJIIIhI SJUIAIICTIK OmepaTopsl bap cybanddy3ns TeHaeyiepine Tapaiybl MyMKiH.
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Kiam cesdep: yakpT GOMBIHINIA JIOKaJIbIbIEMeC ecenTep, Puman-JInyBuiib TybIHABLIAPEI, CyOmuddy3ust
TeHeyi, Kepi ecenrep.

P.P. Amypos!, 10.3. ®aiizues?

L nemumym mamemamuru B.M. Pomanoscrozo Axademuu nayx Yabexucmana, Tawwenm, Yabexucman;
2 Hayuonarvrod yrusepcumem Yabexucmana, Tawsenm, Vabexucman

O HeJIOKAJIbHBIX 33J[avYax 110 BpeMeHU /JIJisi ypaBHEHUt
cyonnddy3un ¢ npousBoaubiMu Pumana—JInyBuiiasa

PaccMoTpennl HauabHO-KpaeBble 33/1a4n ¢ HEJIOKAJIbHBIM 110 BPEMEHU YCJIOBUEM Jjid ypaBHeHusi cyOud-
dy3un ¢ IpoGHBIME 110 BPEMEHM NpOomM3BOAHBIMU Pumana—JluyBuiuis. Dimnrudeckas 4acTb ypaBHEHUsI
npejicTaBiisieT coboit oneparop Jlamiaca, onpejeseHHbI B TPOU3BOIBHON N-pasMepHoit obiactu ¢ Jo-
CTaTOYHO IIaAKo# rpanuneit 0f2. JlokazaHbl CyNECTBOBAHNE U €JUHCTBEHHOCTD PEIIEHUsI PACCMATPUBAEMBIX
zagaq. VceenoBanbl 0OpaTHBIE 387141 JIJIsl ONIPEJIEIeHNs] TPABOH JacTh ypaBHeHHs U (DYHKIWUU B HEJIO-
KaJLHOM BO BpeMeHH ycjioBun. OCHOBHBIM WHCTPYMEHTOM UCCJIEIOBAHUS sABJIsieTcsi MeToj, Pypbe, 09ToMy
MOJTyYEeHHBbIE PE3YJIbTaThl MOTYT OBITH PACIPOCTPAHEHBI HA ypaBHeHUsi cyoauddysun ¢ 6osee oOIIUM 3J1-
JINTITAIECKUM OIIEPATOPOM.

Karoueswie caosa: HeJIOKAJIbHBIE 10 BPEMEHHU 3aJla4du, Ipou3Boianble Pumana-JIuyBumiuis, ypasuenue cy6-
muddysun, obpaTHBIE 3a1a9H.
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On a second-order integro-differential equation with difference
kernels and power nonlinearity

The article studies a second-order integro-differential equation with difference kernels and power nonlinearity.
A connection is established between this equation and an integral equation of the convolution type, which
arises when describing the processes of liquid infiltration from a cylindrical reservoir into an isotropic
homogeneous porous medium, the propagation of shock waves in pipes filled with gas and others. Since
non-negative continuous solutions of this integral equation are of particular interest from an applied point
of view, solutions of the corresponding integro-differential equation are sought in the cone of the space
of continuously differentiable functions. Two-sided a priori estimates are obtained for any solution of the
indicated integral equation, based on which the global theorem of existence and uniqueness of the solution is
proved by the method of weighted metrics. It is shown that any solution of this integro-differential equation
is simultaneously a solution of the integral equation and vice versa, under the additional condition on the
kernel that any solution of this integral equation is a solution of this integro-differential equation. Using
these results, a global theorem on the existence, uniqueness and method of finding a solution to an integro-
differential equation is proved. It is shown that this solution can be found by the method of successive
approximations of the Picard type and an estimate for the rate of their convergence is established. Examples
are given to illustrate the obtained results.

Keywords: integro-differential equation, power nonlinearity, difference kernels, weight metrics method.

Introduction

In this paper, we study the second-order nonlinear integro-differential equation

x x

ut(z) = /h(x —t)u/(t) dt + / k(z —t)u"(t)dt, >0, a>1, (1)
0 0

with initial conditions:

u(0) =0, 4/'(0)=0.
On the kernels h(z) and k(x) of equation (1) the conditions:

h e C?[0,00), h"(x) does not decrease on [0,00), h(0) = k'(0) =0 and A”(0) > 0, (2)

k€ C3[0,00), K" (x) does not decrease on [0,00), k(0) = k'(0) = k”(0) =0 and E”(0) >0 (3)

are imposed.
The integro-differential equation (1) is closely related to the convolution type nonlinear integral

equation
X

uo‘(:v):/K(x—t)u(t)dt, x>0, a>1, (4)
0
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at K(x) = h/(z) + k”"(z), arising when describing the processes of fluid infiltration from a cylindrical
reservoir into an isotropic homogeneous porous medium |1, 2|, the shock wave propagation in pipes
filled with gas [3, 4] and others (see [5-7]).

Equations (1) and (4) have the trivial solution u(x) = 0. From the theoretical and applied points
of view, nontrivial nonnegative continuous solutions of these equations are of special interest. Since,
for 0 < a < 1, equations (1) and (4) can only have the trivial solution u(x) = 0 in the cone @ of
the space C[0, 00) consisting of all nonnegative continuous functions on [0, 00), then it makes sense to
study them only for @ > 1. Any solution of equations (1) and (4) in the cone @, including nontrivial
ones, satisfies the condition «(0) = 0. In addition, if u(z) € @ is a nontrivial solution to equation (1)
or equation (4), then for any ¢ > 0 its shifts:

us(z) =u(r—9) at *>0; us(x)=0 at x <6, and u_s(z)=u(r+9) at x>0

are also solutions to these equations, which is verified by direct substitution. Consequently, equations
(1) and (4) can have a continuum of nontrivial solutions in the cone Q). Therefore, to make the problem
of finding non-trivial solutions of equations (1) and (4) correct and since continuous positive solutions
for £ > 0 are of interest from the applied point of view, we will look for solutions to the integro-
differential equation (1) in the cone

Q5 = {u(z): u(z) € C[0,00)NC*(0,00), u(0)=u'(0)=0 and u(z) >0 at x>0},
and solutions of the integral equation (4) will be sought in the cone
Qo ={u(z): u(z) e C[0,00), u(0)=0 and u(x) >0 at x> 0}.
Conditions (2), (3) imply that the kernel K (z) = h/(z) + k" (z) of equation (4) satisfies the condition:
K(z) € C'[0,00), K'(x) does not decrease on [0,00), K(0)=0 and K'(0)> 0. (5)

We consider equation (4) based on the two-sided a priori estimates and the weighted metrics method,
an analogue of the Bielecki method (see [8; 218]).

In contrast to the Bielecki’s method, during the construction of the metric, this study uses an exact
a priori estimate from below of the solution to equation (4) as a weight function, which allows us to
prove the global existence and uniqueness theorem for the solution to equation (4) without restrictions
on the domain of its existence.

For the first time, in works [1, 2|, the method of weight metrics was applied to equation (4) under
the condition that K(0) > 0. In addition, in [1, 2|, when constructing the metric, the role of the
weight function is played by the difference between the upper and lower a priori estimates, and for
the correctness of this metric (so that the denominator does not vanish), a specially overestimated a
priori estimate from above is used. As a result, such a metric led to additional restrictions and rather
cumbersome calculations in |1, 2].

This paper shows that any solution to equation (1) in Q3 under conditions (2), (3) is simultaneously
a solution of equation (4) and vice versa, under the additional condition imposed on the kernel K(z) =
h'(z) + k" (x) any solution of equation (4) from Q belongs to the class Q3 and is a solution of equation
(1). The main result of the paper is that, using the above relationship between equations (1) and
(4), the global existence, uniqueness theorem is proved and the method for solving equation (1) is
found. The Picard successive approximation method is applied to solve the considered equation. The
convergence rate estimates are established. Examples are provided to illustrate the obtained results.

Mathematics series. Ne 2(106),/2022 39



S.N. Askhabov

Main part

Before proceeding to the study of equation (1), we first consider equation (4). The next two lemmas
contain information on the properties of non-negative solutions (if they exist) for equation (4).

Lemma 1. Let the condition (5) hold. If uw € Q) is a solution to the integral equation (4), then
the function w(z) does not decrease on [0,00) and is twice continuously differentiable for > 0 i.e.,
u € C?(0,00).

Proof. Let us first prove that the function u(z) does not decrease on the entire semiaxis [0, 00), if
u € Qo and is a solution to equation (4). Let x1,z9 € [0,00) be any number, and x; < x2. Since by
virtue of condition (5), K'(x) > K'(0) > 0 for any x € [0, 00), i.e., the kernel K () increases on [0, 00),
then

1

ua(xg)ua(xl):/[K(xgt)K(J:lt)]u(t)dt+/K(x2t)u(t)dtZO
0 T1

consequently, u(z2) > u(z1), which is required.
Finally, we prove that v € C?(0,00). Once both parts of identity (4) have been differentiated taking
into account K (0) = 0, obtain

() = éum(m) / K'(x — t)u(t) dt. (6)
0

This means that v/(z) is continuous at z > 0. However, then «”(z) exists and is continuous as the
product of two continuously differentiable functions for any = > 0. Accordingly, u € C?(0, 00) and the
lemma is completely proved.

Lemma 2. Let the condition (5) hold. If a function u € Qg and is a solution to the integral equation
(4), then for any = > 0 the inequalities

x 1/(a-1)
F(z) = c(a) - z¥@ D <u(z) < a; ! /K (t)dt = G(x), (7)
0
where La—1)
_ (K'(0) - (a = 1)>\ /T
C(O‘>_< 2a - (o + 1) > ’
are valid.

Proof. Let u(z) € Qo be a solution of equation (4). Lemma 1 implies that the function u(z) does
not decrease on [0,00) and u € C?(0,c0).
Prove the estimate F(z) < u(x). By differentiating identity (4) twice, in view of condition (5),

obtain:
X

(u*(z))" = /K”(x — tu(t)dt + K'(0)u(x) > K'(0)u(z).
0

Introduce the new function v(x), denoting u®(x) = v(x). The result is the second-order non-linear
differential inequality v” > K’ (O)vl/ @ that does not contain an explicitly independent variable x. By
substituting this inequality v = p, p = p(v) (then v/ = p - p') we get p-p’ > K'(0)v/*. Since

v(x) = /:K(:c —t)o /(@) dt and K (0)=0,
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then

T

V' (z) = / K' (z —t) v/ (¢) dt.

0

Hence, v(0) = v/(0) = 0 and v/(z) > 0. Therefore, writing the previous inequality as pdp > K’(0)v'/*dv
and integrating from 0 to x, we obtain

'(z)) '(0)) -« [2K'(0) - o
[U (2 )] > Ko(éo—i)_)l [,U(x)](a-&-l)/oz or ’U/(ZL‘) > 2[(0;(_2)1 . [U($)](a+1)/(2a).

Now separate the variables and integrate again from 0 to  and obtain

=i ()@ >y 2K,
a—1 a+1

' a-1\2 2K(0)-a ]
[o(a)]"/* > [( %0 > e e = F).

or

Recalling that u“(x) = v(x), from the last inequality we obtain the provable lower bound: u(z) > F(z).
It remains to prove the upper estimate, i.e. u(z) < G(x). Since K(x) and u(z) are nondecreasing
functions, by applying the Chebyshev inequality (17.6) [6] in (4) obtain:

u(r) < /K(t)u(t) dt for any x > 0. (8)
0
Hence,
T —1/a
K(z)u(x) /K (t)wu(t)dt < K(z).
0
Therefore, once the integration has taken place, get:
z 1o o 1\ WD) z 1/(a-1)
/K(t)u(t)dt g( . > /K(t)dt — G(a). )
0 0

Using estimate (9) by inequality (8) obtain: u(x) < G(x), which is required.
Ezxample 1. The function

u(z) = (w‘l)z))l/(al)xz/m—l)

2a- (a+1

is a solution to the equation (4) for K(z) = x.

Example 1 shows that F(z) = u*(x) at K(z) = z, i.e., a priori lower bound of the solution to the
equation (4) is unimprovable.

Obviously, Lemma 2 implies that the solution to equation (4) should be sought in the class

P ={u(x): u(z)eC[0,00) and F(z) <u(x)<G(x)},

as F(0)=G(0)=0and F(z) >0at x > 0.
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Now consider the operator 1

z 1/a
/ K(z—tu®dt| , >0
0

Lemma 3. The operator T' transforms the class P into itself.

Proof. Assume u(x) € P is an arbitrary function. Consequently, we have to prove that (Tu) (x) €
By Theorem 17.9 [6] (Tu) (x) € C][0,00). It remains to prove that F(z) < (Tu)(z) < G x)
u(z) > F(z) and by condition (5) K'(x) > K'(0) > 0, K (0) =0, then

!/Ka%% twm1Mt—d®a_1/}ﬂx—ﬂﬁwﬂym4%:

)&= 1 4 4(t1)/(a1) / (a+1)/ o

> t =

a+1/K dt > c() t [F(x)]%,
0

that is (Tw)(z) > F(x).

On the other hand, since u(z) < G(z) then taking into account condition (6) and the Chebyshev
integral inequality (17.6) [6], where the role of function wu(z) is already played by the function G(z),
which is non-decreasing either (see the proof of Theorem 17.12 [6]) we get:

/ KMG® =[G ie (Tu)(x) < G).

Lemma 3 is proved.
Now consider the class

={u(z): wu(z) € C[0,b and F(z)<u(x) <G(z)},
where b > 0 is any number, and introduce the metric in it p, by imposing Vu(x),v(x) € Py:

_ u(z) —v(z)| .
pp (u,v) = oilj:lg)b " 2/(a=T)gfa where [ > 0 is any number.

It is proved directly in view of the equalities F'(0) = G (0) = 0 and the complete metric space C]0, b]
with Chebyshev metric that the pair (P, pp) forms a complete metric space (see Theorem 17.13 [6]).
Choose a number p € (0,b) so that condition

K'(p) < a- K'(0) (10)

is satisfied and sets

1 K'(z) — K'(0)
—— sup ——————~.
K '(0) u<z<b x

Then, by lemma 18.5 [6], we obtain that the inequality

8=

K(2)e ™ <z K'(n) (11)

holds.
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Theorem 1. If the kernel K (z) satisfies condition (6), then equation (4) has a unique solution u*(x)
in the cone @y (and in P, for any b > 0). This solution can be found by the successive approximations
method using the formula w, = Tu,—1, n € N, which converge to it according to the metric p, at any
b < oo, and the convergence rate estimate

n

7_ e (T'wo, uo) (12)

o () < 1

is valid, where v = K'(p)/[aK'(0)] < 1, and ug(z) € P, the initial approximation (on arbitrary
function).

Proof. Write equation (4) as the operator equation u = T'u. First, show that the operator T acting
according to Lemma 3 from P, to P, is contractive.

Let u,v € Py, be arbitrary functions. It is clear that

[u(z) — v(@)] < 2@ Debp, (u,v)

Therefore, using inequality (11) get

/K(x —t) [u(t) —v(t)]dt| < pp(u,v) /K(:U — t)e Bt hry2/(e=1) gy <
0

(0= 1)K'(n) g

2a/(a—1)'
2a (a+1)

< PR (1) py(u, v / (z —t)t2/ (@Dt = Top(u,v)x
0

Next employing the Lagrange theorem (finite-increments formula) in view of the later estimate (see
the proof of Theorem 17.14 [6]) obtain

() (2) = (T0) ()] < 40— < e )
whence X
(T, 7o) < 00 oy (uv0), (13)

e., the operator T', by condition (10) is a contractive operator. Hence, based on the contraction
mapping principle, the equation u = Tu has the unique solution u*(z) € P,, which can be found by
the formula u,, = T'up—1, n € N, and the estimate (12) is valid.

The only thing left to show is that equation (4) has a unique solution in the cone (. Suppose
Py = Upsg Py. Since equation (4) has the unique solution in P, at any b > 0 and the contraction
coefficient in (13) does not depend on b, equation (4) has the unique solution u*(z) in Py. Since any
solution of equation (4) in Qo satisfies a priori estimates (7), this solution will also be the only one in
Qo-

Theorem 1 is proved.

Let us finally proceed to the study of integro-differential equation (1).

The following lemma establishes the relationship between integro-differential equation (1) and
integral equation (4).

Lemma 4. Let conditions (2) and (3) be satisfied. Then any solution of equation (1) in the cone
Q3 is a solution to integral equation (4) in the cone Q. Conversely, if conditions (2), (3), and the
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additional condition

= t 1/(a—1)
fK'(x—t)[fK(s)ds} dt
lim 2 0
z—0 [ (a—1)/«
[f K(z—t)- t2/(a1)dt}

0

=0, (14)

are satisfied, then any solution of integral equation (4) in the cone Qg belongs to the cone Q2 and is a
solution of equation (1).

Proof. Initially, prove the first part of the lemma. Assume u(z) € Q3 and is a solution to equation
(1). Then, applying the integration by parts formula twice by identity (1) taking into account conditions
(2) and (3), obtain:

xZ x T x

() = O/h(:):—t) du(t) +0/k(:r—t) d (1) :0/u(t)h’(x—t)dt—l—o/u'(t)k:’(x—t)dt _
= [ W (z —tu(t)dt + [ w(t)k"(x —t)dt = | K(x — t)u(t)dt,
/ / /

i.e. u(z) € Qo and is a solution of integral equation (4).

Next, prove the second part of the lemma. Let u(x) € Qo be the solution of integral equation (4).
Therefore by lemma 1, u(z) does not decrease on [0,00) and is twice continuously differentiable on
(0,00), i.e. u € C?(0,00) and satisfies the inequalities F(x) < u(z) < G(x). Prove that u/(0) = 0. By
identity (4) in view of condition (5) get

au®(z)u/( /K':U—t) (t)dt + K(0) /K':E—t t) dt,
whence . .
[ K'(x — t)u(t) dt [ K'(x — t)u(t) dt
/ 0 _ 0
R e [ T @/ =0 (1)
a- [f K(z — t)u(t)dt]
0
Employing a priori estimates (7), by (15) obtain:
x x t 1/(a—1)
[K'(x —t)G(t) dt [K'(z—t) [a;l [ K(s) ds} dt
/ 0 _ 0 0
0<u (I‘) < . (a—1)/a - (a=1)/a
a- [f K(z —t)F(t) dt] a- [f K(z — t)c(a)t2/(0‘—1)dt]
0 0
x t 1/(a—1)
o — 171D 1 [ K'(z 1) [f K(s) ds] dt
= [ ] — 0 0 —0 at x—0,
o o fe(a)) @7/

x (a=1)/c
[[ K(z—1t)- t2/(a—1)dt]
0

by virtue of condition (14). Therefore «'(0) = 0.
Thus, u € C%[0,00), u(0) = ¥/(0) = 0 and u(x) > 0 at z > 0, i.e. u € Q3. All that remains
is to prove that u(z) is a solution of equation (1). Employing the equality K(z) = h'(z) + k" (z),
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commutative property of convolution and applying the integration-by-parts formula twice, taking into
account conditions (2) and (3), by identity (4) we obtain:

() = / B (8) + K (8)]u(z — t) dt = / w(z — t)dh(t) + / w(z — t)dk () =
0 0 0
= [ h(t)d (x —t)dt + [ K' () (z —t)dt = | h(z —t)u'(t)dt + [ o' (x —t)dk(t) =
/ / / /
= [ h(z—t)d (t)dt + | k()" (x —t)dt = | h(x —t)d'(t)dt + | k(z —t)u"(t)dt,
/ / / /

i.e. u(x) is a solution of equation (1).

Lemma 4 is proved.

Lemma 4 implies that under conditions (2), (3), and (14) integro-differential equation (1) and
integral equation (4) are simultaneously solvable or not, while they have the same solutions. Therefore,
based on Theorem 1, the following fundamental theorem is true.

Theorem 2. If conditions (2), (3), and (14) are satisfied, then equation (1) has a unique solution u*
in Q% (and in the space Py at any b > 0). This solution can be found in the space P, using the Picard
successive approximation method u, = Tu,—_1, n € N, which converge to it according to the metric py
at any b < oo, and estimate convergence rate (12) is valid.

Ezample 2. When o > 1, h(z) = 22 and k(z) = 23, ie., at K(z) = 8z, in the cone Qp integral
equation (4) has the unique solution

271/(a=1)

U*(l‘) _ 4(0[ - 1) :EQ/(oz—l)'
ala+1)

When K (z) = 8z condition (14) takes the form

A(a) - lim 2B/ — o where A(a) =

z—0 a—+1

8- 4ﬁ(a — D a(a+1)]@ Ve
o=

Hence, for 1 < a < 3, the function u*(z) is also the unique solution of integro-differential equation
(1) in the cone Q3.

In particular, when a = 2, h(z) = 22 and k(z) = 23, equations (1) and (4) have the unique solution
u(z) = 222 in the cones Q2 and Qo, respectively.

Note also that u* € Q% only if 1 < a < 3, since

v [Aa =12 g (3—a)/(a—1)
e I

and therefore u* ¢ Q2 at o > 3. This shows that condition (14) is essential to the validity of Lemma
4 and Theorem 2.

Following the monograph [6; 211] it can be proved that for 0 < a < 1, as in the case of the
corresponding linear equations obtained for av = 1, equations (1) and (4) have only a trivial solution
u(xz) = 0 in the cone of the space of functions continuous on C' € [0, 00) consisting of non-negative
functions continuous on the half-axis [0, c0).

Consequently, based on the results obtained non-linear homogeneous integral and integro-differential
equations type (1) and (4) except for the trivial solution u(x) = 0 can have the non-trivial solution
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u(z) # 0 at a > 1 strictly positive at = > 0. This is the fundamental difference between the theory
of the considered nonlinear equations and the well-developed so far theory of the corresponding linear
homogeneous integral and integro-differential equations, which have only the trivial solution u(z) = 0.
In addition, the theory of nonlinear equations differs from the theory of the corresponding linear
equations not only in the obtained results but also in research methods related to the choice of space
and nonlinearity properties.

In conclusion, following the works [9-12], it is possible to study integro-differential equations of the
form (1) with variable coefficients and inhomogeneities in the linear part, as well as systems of such
equations. Other methods for studying nonlinear equations of the convolution type are given in many
research works, such as [13], [14].
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C.H. Acxabos

Hlewen memaekemmir nedaz0euKasbly YHUBEPCUMEMI;
A.A. Kadwpos amuindazo. [llewen memaexemmix yrusepcumemi, I'posnuti, Pecet

AMBIPpBIMABIK IAPOJIaPhl >K9HE JI9PEXKeJIK ChI3BIKTBIK eMecTiri oap
eKiHIT peTTi mHTerpo-andPepeHnnaJJIbIK TeEHAEY TYPaJibl

Maxkasiaia aiflbIpBIMIBIK, SITPOJIAPHI KOHE JIOPEKETIIK ChI3BIKTHIK, €MECTIri 6ap eKiHIi peTTi mHTerpo-audde-
peHnmaabIK TeHaey 3eprresred. Ocbl TEHIEY/IiH MUINHAPIIK pe3epByapaaH M30TPONTHI OipTEKTI Keyek-
Ti oprara CYHBIKTBIKTBIH WHQUILTPAIUASACHI, T'a3 TOJITBIPBLIFAH KYyObIpJIaparbl COKKbI TOJKBIHIAPBIHBIH
TapaJjybl »KoHe T.0. IIPOIeCTEpiH CHIATTay Ke3iHJe TYBIHIANTHIH YHIPTKI TYpiHmeri mHTerpajablk TeHe-
yMeH OailTaHBICHl aHBIKTAIIbI. Ko/imanbalibl KaFbIHAH OChl MHTETPAJIIBIK, TEHICYIIH Tepic eMec y3imicci3
HIenriMIepi epekiie KbI3bIFYIIbLIBIK, TYIbIPa/ibl, COHABIKTAH UHTEIPO-auddepeHInaIbiK, TeHJIEY/ IiH COUKeC
memriMaepi y3imiccis-auddepennnantanaTelH KeHICTIK KOHYChIHIa 13nemineni. Kepcerinren uaTerpasapk
TeHJEY/IH Ke3 KeJreH MIeNmiMi YIriH eKi »KaKThbl alpuopJibl Oarajgap aJbIHFaH, OHBIH HETi3iHJe IIerriMHiH
bap 6osybl MeH Gipereiyririnig raJsaMIbIK T€OpeMachl cCaJIMaKThl METPUKa 9/liciMeH oJsiesienred. bepinren
WHTErpaJIIBIK- 1 depEeHIMAIBIK TeHIEYIIH Ke3 KeJITeH MIentiMi 6ip Me3rijiie HHTerpaJsIblK TeHIeYIiH I1e-
mriMi OOIATHIHBI YKOHE KEPICIHITe SApOFa KOCHIMIIA IMAPT KONBIIFaH Ke3/e OCbl MHTErPAJIIBIK TEHIEY/IiH, Ke3
KEJIPEH IIEeNTiMi OChbl MHTErpasIblK-auddepeHnaiablK TeHAeyaiH memmiMi 6oaTbiHbl Kepceriiren. Ocbl
HOTUXKEJIEPl MaiilajlaHa OTBIPHIN, WHTErPo-auddepeHnnaIIblK TeHaeyaiH 6ap 6oJybl, Gipereityiri koHe
mrermiMin Taby oici TypaJsbl FasaMIblK TeopeMa masenneHmi. bym memivai moitexti [Tukapa tunTi xKybi-
KTayJsap 9/iiciMmeH Tabyra 60/1aThIHBI KOPCETIJIII, OJIaP/IbIH XKUHAKTBLIBIK, XK bIJT/IaM/IbIFbIHA Oara OeJIrijieHreH.
ATbIHFAH HOTHKEJIEP]l KOPCETY VIIMH MBICAJIIAD KeJITipireH.

Kiam cosdep: maTErpo-muddepEeHITNAIIBIK, TEHIEY, TOPEXKEITIK ChI3BIKTHIK, EMECTIK, affbIPDBIMIBIK, SIIPOJIAD,
CaJIMaKThl METPHUKA DJIiCi.

C.H. Acxabos

Yeuenckutl 20cydapcmseermviti nedazo2uteckutl YHUSEPCUMeE;
Yewenckutli 2ocydapcmeentnti ynusepcumem umeru A.A.Kadwposa, I'posunti, Poccus

O6 unTerpo-auddpepeHnnaILHOM ypaBHEHUN BTOPOTO ITOPSIKA
C PA3HOCTHBIMU SAPaMU U CTENEHHOI HEeJIMHEIHOCTHIO

B crarpe paccmorpeno muTerpo-mumddepeHinaibHoe ypaBHEHNEe BTOPOTO HOPSIKA C PA3HOCTHBIME $i]I-
paMU U CTEIEHHO} HEJMHEHHOCTHIO. YCTAHOBJIEHA CBA3b 9TOI'0 YPABHEHUs C MHTEI'DAJIBHBIM ypaBHEHHEM
TUIA CBEPTKY, BO3HUKAOIIMM TPU OIMUCAHWH IIPOIECCOB WH(MDUIBTPAIIUN KUJIKOCTHA W3 IUJIUHIPUIECKO-
ro pe3epByapa B M30TPOITHYIO OJHOPOIHYIO MOPHUCTYIO CPELY, PACIPOCTPAHEHHS YJIapPHBIX BOJIH B TPyOax,
HAIIOJIHEHHBIX T'a30M, U apyrux. 1IockosbKy, ¢ IpUKIIa HON TOYKU 3peHUs, OCOOBIil MHTEPEC IIPEeJICTABIIA-
IOT HEOTPUIATEJbHbIE HEIPEPLIBHBIE PEIIEHUs TOTO HHTErPAJHLHOIO yPABHEHUsI, PEIIeHUsl COOTBETCTBY-
IOIEro MHTErpo-a1nddepeHnuaibHOr0 YPaBHEHNSI PA3bICKUBAIOTCS B KOHYCE NMPOCTPAHCTBA HEIIPEPBIBHO-
muddepenupyembix dyskimit. [loyyeHbl JByCTOPOHHIE alpUOPHBIE OLEHKHU JJIsI JIFOOOTO PEIeHusl yKa-
3aHHOTO WHTEIPAJIHLHOTO yPAaBHEHUsI, HA OCHOBE KOTOPBIX METOJIOM BECOBBIX METPUK JIOKA3aHA TVIOOATbHAS
TeopeMa CyIeCTBOBAHUs U eQMHCTBeHHOCTH perienus. [lokazano, 4To m0b0e penrenne TaHHOTO MHTEIPO-
muddepeHnaIbHOIO YPABHEHUS SIBJISETCS OJITHOBPEMEHHO W PEIeHNeM WHTErpaJibHOTO ypaBHEHUsd, U, 00-
paTHO, TPU JTOMOJHUTEIBHOM YCIOBAU HA SIAPO, YTO JIIOOOE PEIeHWe 3TOTO WHTErPAJIBHOTO yPABHEHUST
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SABJISIETCSI PEIIEHUEM JTAaHHOTO MHTerpo-anddepeHnnaabHOro ypaBHeHus. VMcnonb3ys yKa3aHHbIE PE3YJIbTa~
TBI, JIOKa3aHa II00aJIbHAsI TEOpEMa O CyIIeCTBOBAHHY, €IMHCTBEHHOCTH U CIIOCOOE HAXOXKEHUs PEIICHUST
nHTErpo-auddepeHnnaabHOro ypaBaenns. [loka3ano, IT0 9TO pereHne MOXKHO HANTH METOIOM IIOCTIE0-
BATEJIbHBIX NIPHUOJINKEHNY TNKAPOBCKOT'O THIIA, IIPU 9TOM U YCTAHOBJIEHA OI[EHKA CKOPOCTH MUX CXOIMMOCTH.
IIpuBeneHs! IpUMeEDHI, WILIIOCTPUPYIONINE II0JIyYeHHbIE PE3YIbTAThI.

Kmouesvie caoga: maTErpo-nuddepeHnuaibHOe YPaBHEHNE, CTENEeHHAs HEJTMHEHOCTh, PA3HOCTHBIE sIIpa,
METOJ] BECOBBIX METPHUK.
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Boundary control problem for a hyperbolic equation
loaded along one of its characteristics

This paper investigates the unique solvability of the boundary control problem for a one-dimensional wave
equation loaded along one of its characteristic curves in terms of a regular solution. The solution method
is based on an analogue of the d’Alembert formula constructed for this equation. We point out that the
domain of definition for the solution of DE, when the initial and final Cauchy data given on intervals of
the same length is a square. The side of the squire is equal to the interval length. The boundary controls
are established by the components of an analogue of the d’Alembert formula, which, in turn, are uniquely
established by the initial and final Cauchy data. It should be noted that the normalized distribution and
centering are employed in the final formulas of sought boundary controls, which is not typical for initial
and boundary value problems initiated by equations of hyperbolic type.

Keywords: hyperbolic equation, distributed oscillatory system, damping problem, gas/liquid flows, loaded
equation, initial conditions, boundary conditions, analogue of the d’Alembert formula, boundary controls,
normal distribution, distribution function.

Introduction

Let an oscillatory system be described by equation

um—uﬁ=/\U<$;t,x;t) (1)

with the following initial and boundary conditions
u(x, 0) = po(x), w(z, 0) =1o(z), O0<z<l, (2)
u(0, t) = u(t), wu(l,t)=rv(t), 0<t<T, (3)

where A is an arbitrary real number.

The boundary control problem involves searching admissible boundary values p(t) and v(t), that
in a minimum time interval move the oscillatory system from the initial (2) to a predetermined final
phase

u(z, T) = ¢i(x), ulz, T)=11(x), 0<z <l (4)

Control (1) belongs to the class of loaded differential equations [1|. The point (”‘“OTHO, %) lies
on the characteristic curve  — y = 0 of equation (1), for an arbitrary point (xo, t) € R2. The point
(x0, to) also moves to the point (%, “Tﬂo) along the characteristic curve x +y = xo + yo of (1).
The boundary control problem for the equation (1) with the right-hand side of the form A\ wuy(xo, t),
which, according to [2], is called an essentially loaded equation, was studied in [3], [4]. Boundary
value problems for hyperbolic equations with a load along one of the characteristic curves are studied
in [5], [6]. For A = 0, the formulated problem is fully investigated in [7|. Here important special cases

*Corresponding author.
E-mail: attaev.anatoly@yandex.ru
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of the same problem were investigated, namely, the problem of complete oscillation excitation and
damping. The boundary control problem for equation (1) for A = 0 with various nonlocal, including
integral form conditions, were studied in [8-12].

A number of specific formulations for distributed control problems, with oscillatory nature of the
movement, are described in detail in the monograph [13], and moreover various solution methods are
proposed. For example, the damping fluid flow pulsation problem in automated long main pipelines
design and pipeline irrigation systems [14], [15]. As earliest works devoted to the study of boundary
control problems (1) at A = 0 the woks [16-18] are worth mentioning.

There are following main results in the work:

1. Necessary and sufficient conditions are established for the functions pg(z), ¥o(z), ¢1(x), ¥1(x),
which ensure the existence of the desired boundary values.

Yo(l) + o (1) — ¥1(0) — ¢1(0) = 0, (5)
10(0) — ¢6(0) — ¥ (1) + ¢4 (1) =0, (6)
Ao (D) + 5 (1) + 1(0) + ¢4 (0)] =0, (7)
w0 (1) + ¥ (1) — ¢1(0) — ¢1(0) =0, (8)
©0(0) = ¥5(0) — @i (1) + ¢ (1) =0, (9)

©0(0) — w1(1) + [po(l) — ¢1(0)] 6%4_

1 (1 a2 A /a2
ty [T W) - - 01de = [t )~ 0 - ) de = (10)
0 0
2. Under conditions (5)—(10), an explicit analytical form of the sought boundary controls is found
A
A

where

Filt, ) = % [po(0) — 91 (0] + 3 [olt) — pa(d — )] -

2
—% /Ot&; = [po(&) =1l = &)] d€ — é /Otek(#sgz) [Y0(&) — (I — &) d,
Bty A) = \/?‘I‘o (? t) [0(0) = ¢1(D)] +
+3 [ ) - 9 e
- Agﬁ/ot q)O(\?t) —‘I’0<\§§>]€6A§2 [po(§) = @r(l = €)] dE+
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2m (1 VA VA a2
Jr\/?/O [%(2’5) _¢0<25>] e & [1ho(&) — i (l — &)] de,

£ . o . . .
where ®y(z) = \/% fdr e~ 2 d£ is the distribution function for normalizing and centering processes.

1 Main part

1.1 An analogue of the d’Alembert formula
Using the characteristic variables { = x — ¢, n = x + ¢ equation (1) is written out as

A
ven = 4 v(0, 1), (13)

where v(&, n) = U(HTW, ’77_5)
Any solution to equation (13) is a solution to the following loaded integral equation.

o6 n) = 3€ [ o0t = 1) + g0, (19)

where f(£) and g(n) are arbitrary twice continuously differentiable functions. Since for £ = 0 by (14)
it follows that v(0, n) = f(0) + g(n), then solution (14) takes the form

o6 1) = 1€ + 9+ 5 ¢ [ 10 +g(0)dr

Replacing P(n) = [7[f(0) + g(t)] d¢ in the last formula and then renaming P(n) by g(n), we obtain

v@ﬂﬂ=f@%aﬂ®+9%ﬂ+%fﬂm-

Or when using the old coordinates, get

u(x, t) = f(x—t)— fO)+ g (x+1t)+ % (x —t)g(z +1). (15)

We call formula (15) an analogue of the d’Alembert formula for equation (1).

Formula (15) below is more convenient for further use. It should be noted that in (15) the functions
f(t) and ¢'(¢t) are twice continuously differentiable.

1.2 Searching algorithm for u(t) and v(t)

Before searching for boundary controls, let us remember that when A = 0 the minimum time ¢
required for the desired control is uniquely equal to I. As noted in [12], this time is determined by the
characteristics of the initial equation that simulates the oscillation process. From a mathematical point
of view, problem (2), (4) for equation (1) with A = 0 in the rectangle (0, 1) x (0, T") has a unique solution
if and only if T'= 1. If T < I, the problem is overdetermined, T" > [, the problem is underdetermined.
In our case when A # 0 the equation commands the condition T = [. This is due to the fact that
for any arbitrary point (z, t) € (0, I) x (0, T'), belonging to the point (Ztt, ZXt) € (0, 1) x (0, T) is
possible if and only if T' = [. Therefore, further we assume that T = [.

We introduce the following equation for the functions f(x) and g(x) in formula (15).

) fo(z), zel0,1],
f(x) a {fl(x)> S [_l7 O]a (16)
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g(:z:) _ {go($), T € [07 l]’ (17)

g1(x), zell, 2]].

We call the function u(z, t) € C* () N C? () a regular solution to equation (1) where Q =
(0, 1) x (0, 1).
Letting (15) satisfy (3) and taking into account (16), (17), we obtain

plt) = 1) = ol0) +gh(t) — T tao(0), £ € [0,1], (15)
A1) = ol — 1)~ Jo(0) + gl +0) + F U~ D) go(l-+1), +€[0,1]. (19)
Letting (15) satisfy (2) and (4) for T' = [ we obtain
o) — 1o(0) + go(x) + 5 7 90(x) = o(), (20)
/ " )\ >\ /

—fo(z) + go(x) — 190(35) T  go(x) = vo(), (21)
file 1) = o(0) + ghlz + D+ 5 (0 - Dara+1) = o1 (a), (22)

, , A A ,
—file =D+ 9@+ = Tole+)+ 7 (@ —-Dale+1) =), (23)

where z € [0, I].
Differentiating (20), (22), subtracting and adding term by term with (21), (23), respectively, obtain

o) + 5 90(z) = 5 (@) — 5 4o(a),
! )\ / 1 / 1
g90(z) + 19590(95) =5 wo(x) + B Yo(), (24)
Ao =D+ S oo +1) = @) — 3 (@),
G+ D)+ 5 @D gh(e+D) = 5 el(@) + 3 (e, (25)

Employing the second equation of (24) we obtain

[g()(x) e*fﬂl _

g5(x) = g4(0) e+ B e s s ©o(t) dt + 5 e s / s Yo (t) dt.
0 0

A2

e s [o(x) +vo(@)]

N

Using integration by parts for the first integral and taking into account that g{,(0) = ¢o(0), obtain

1 _ae? 1 A ae? [T a2 L _ae? [T a2
@) = 50O e+ S pnle) = 5 [ i 3o [N wan (20)
0 0
Hence

1 T a2 1 [
go(z) = go(0) + 3 ©0(0) / te™ % dt + 2/ wo(t) dt—
0 0
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A &2 re2 €

x 13 2 1 z 2
—/ e_kéi/tekggoo(t)dtdf—k/ e s [ €S ao(t) dtde.
8 Jo 0 2 Jo 0

Changing the order of integration in the last two integrals, get
2 VA I
go(x) = go(0) + Tﬂ ©0(0) o (2 $> t5 / po(t) dt—
0
_[Ar / %(ﬁl) _%(ﬁt>
8 2 2
T +2
ﬂ/zl / <I>0<ﬁ x) — @0<ﬁ t)] ™5 o(t) dt. (27)
A Jo 2 2
; A
fo(z) = ¢o(x) — go(x) — + 2 g0() + fo(0),

4

PV
te s @o(t)dt+

By (20) we have

Foll = 1) = oll — 1) = gbl1 — 1) = 5 (L= 1) go(1 ~ 1) + Fo(0). (28)

Employing the second relation of (25) we obtain

z—1)2 !
<gi<x+z>e“8” ) -

1 x 1 x
Gila+1) = g (20) R 4 ered” / XD’ G () dt + 5 e / e (1) dt.
l l

Taking into account g (21) = ¢1(l), integrating by parts the first integral, substituting = by | — z
and then substituting in both integrals ¢t =1 — t get

1
3 gl () 4 5 e80T n (a),

N[ =

1 21 A _as? 2
$2l-a)= o) T +opl-n)+ Tt | e il - tydi+
0
1 a2 [® 2
+2e—*s/ tem s (L —t) dt. (29)
0
Hence
1 T a2 1 [
gl(2l—x):g1(2l)+2cp1(l)/ e 8 dt+2/ e1(l —t)dt—
0 0

| >

x 9 5 2 1 xT 2 5 2
/ e%/t6¥¢1(z—t)dtd5+/ ekéé/ e il —t)d de.
0 0 2 Jo 0

Changing the integration order in the last two integrals we get

gl(2l—$):gl(2l)+\/?@1([)@()(?‘%)_|_;/Oscsol(l—t)dt_
—\//\‘?/Om [@0(?1‘) —(I)()(?t)] te% gOl(l—t)dt-i-
ﬂ/? /0 [<1>O<f:c> —@0<§t>] e gl — 1) dt. (30)
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By (22) we have

file—1) = o1(@) + fol0) — g (& +1) — 2 (& — D gn(a+1)

4
) Fil=0) = 1l = 1)+ fo(0) — (21— 1)+ tar(20— ) (1)
Substituting f1(—t) by (31) into (18), and fo(l — t) by (28) into (19), we obtain
(E) = o1(0 = 1)+ (1) — 6121 — 1) — 7 tgo(t) — ga(21 1], 32)
v(0) = ol = ) = [gh(1 = 1) = 640+ 0] = 5 (1= ) o1 = ) = 20 + )] (33)

Substituting g;(t), go(t), g1(21 —1t), g1(21 —t) calculated by (26), (27), (29), (30) into formulas
(32), (33), and taking into account, due to the assumed continuity of f’(z), that

2 190(0) — 91(20)] = ¢ — 0(0) ~ (D) + o)

obtain the sought result (11), (12).

In order for the solution to be regular, sufficient conditions must be satisfied that ensure the
existence of a boundary control. It is therefore only natural these conditions provide the functions f(x)
and g(z) with required smoothness determined by rule (16), (17) respectively, and by the initial and
boundary conditions

Jo(0) = £1(0), f5(0) = f1(0), f5(0) = f7'(0),
go(1) = g1(1), go()) = g1(D), 9o (1) = g1 (D), go'(1) = gi" (1),
1(0) = ¢0(0), u(l) = ¢1(0), v(0)=o(l), v(l)=ei(l),

1 (0) =1ho(0), 1'(I) =41(0), v(0) =vo(l), V(1) =¢n(l).
Satisfying the expression for the function fo(z), fi(z), go(x), g1(z), p(x), v(z) represented by
formulas (28), (31), (27), (30), (32), (33) according to the conditions above and after some simple

transformations obtain (5)—(10). It should be noted that for A = 0 the obtained results in this work
coincide with the results obtained in [7].
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A .X. ArTacs

PFA KBFO Koadanbaav, mamemamuka sicone agmomammandopy uncmumymst, Harvuuk, Pecet

Tl'uniepb6os1aJIbIK, TEHAEY YIIiH OHBIH CUIIATTAMAaJIapbIHBIH Oipi
OoiibIHIIIA >KYKTEJreH IIeKapaJibIK 0aKbLiIay ecebi

Maxkasiazia perysisipJibl MemntiM TYPFBICKIHAH Oip eJImeM/Ii KOJIIbIH, TepOesTic TeH eyl YIIiH chmaTTaMaia-
PBIHBIH 6ipi GOUBIHINA KYKTEJTeH IEKapaJbIK, OakbLiay ecebinin Gipereit mremimi 3eprrenren. lemry omici
OCBI TeHJIey YIImiH Kypblirad /lamambep dhpopMysTacbIHBIH, AaHAJOTBIHA HETi3/1e/reH. Y 3bIHIbIFbI Oipaeil KeciH-
Hminep OGoiibiHITa GacTanmKbl YKoHe COHFBI Kommu mepekTepi Gepinrenme Oy TeHIEYiH MIENTIMIHIH aHBIKTA-
JIy OOJIBICHI KBaJIpaT OOJIATBIHBI aTall eTiireH. KBaaparThiH, KaObIprachkl OepiJireH KeCiHIiHIH Y3bIHIbIFbIHA
TeH. [llekapasbik GakbLtayabiH, 31 Jlasambep dhopMyIachbiHBIH aHAJOIBIHBIH, KypaMaac 0esiikTepi 60MbIH-
I1a, aHBIKTAJIFaH, oJap 3 Ke3eringe Kommiain 6acTanKkbl »KoHE COHFBI JiepeKTepi OOMbIHINA Oipereil Typ/e
AHBIKTAIAIbI. [3eMiHal mekapasblK OakblIaysiapra apHajFaH COHFBI (DOPMYyJIaIapa HOPMAJIAHTAH YKOHE
OPTAJIBIKTAHIBIPBLIFAH VIECTIPIMAEP/IiH Tapaay (PYHKIMSICH KATHICATHIHBIH aTall OTKEH YKOH, OYJI 2KaJIIlbl
afiTKaH 2 THIePOOIANIBIK, TUITI TEHIEYIEPMEH 6aCTAIATHIH HACTAIKEI YKOHE IEKAPAJIBIK €CElTep VIIMH TOH
eMec.

Kiam cesdep: runiepOoJIasIbIK TEHIEY, TapaJraH TepOesMeni XkKyiie, ra3 HeMece CYUDIK, arbIHIaPBIHbBIH, IIyJIb-
calusChIH 6oceHIeTy ecebi, XKYKTeJINeH TeH/ ey, bacTalKbl mapTTap, MeKapaJblk maprrap, Jaaambep dop-
MYJIACBIHBIH, aHAJIOTBI, IIIEKAPAJIBIK, OAKbLIaY, KAJBIITHI YIECTipiM, yiaecTipiM dyHKIHUSICHI.

A X. ArTaes

Hremumym npuraadnoti mamemamuru u asmomamusdauyuu KBHI] PAH, Haavwuk, Poccus

3amadya TPaHUYHOTO YIIPpABJEHUS JIJII HArPyKEHHOTO
B/IOJIb OJ/THOII M3 CBOMX XapPaAKTEPUCTUK
rurepo0JIn9IecKoro ypaBHEeHUS

B crarbe ucciiesioBana ojHO3HaUHAST PA3PEIINMOCTD 331291 'PAHUYHOIO YIIPABJIEHUS JJIs HAIPY KEHHOI'O
BJIOJIb OJTHOM M3 CBOMX XapaKTEPUCTUK OJHOMEPHOTO YpaBHEHWs KOJIEOAHWS CTPYHBI B TEDMUHAX PETYJIsIp-
Horo pemrenusi. Meron perenusi ocHoBaH Ha anajore (opmysisl amambepa, MOCTPOEHHOTO JJTsi TAHHOTO
ypaBaenusi. OTmMedeHo, 9To 00JIACTBIO OIIPEJIeJIEHNUSI PEIICHNS IAHHOIO yPaBHEHUs, KOTJ[a HavaJbHble 1 (bu-
HaJIbHBIE maHHbIE KON 3a/1a10TCsT HA OTpe3KaxX OJMHAKOBOM JJINHBI, siBjisieTcs KBaapar. CToOpoHa KBaapaTa
paBHa JJMHE JAHHOTO oTpe3ka. CaMu IpaHWUYHbBIE YIPABJICHUS OIPEEIEHbl Yepe3 KOMIIOHEHTHI aHaJIora
dopmyibr Jamambepa, KOTOpble, B CBOIO O4Y€pe/b, OJHO3HAYHO OIPEJEJISIIOTCS Yepe3 HadaJbHble U bu-
HasbHble manHble Komu. Cregyer OTMETHTD, YTO B OKOHYATEIBHBIX (DOPMYJIAX JIJIsI UCKOMBIX TPAHUYHBIX
yIpaB/IeHui y4dacTByeT (DYHKIHUs PACIPEIEJeHIs HOPMUPOBAHHOIO M IEHTPUPOBAHHOTO PACIPEIEIICHUS,
9TO, BOODIIE IOBOPs, HE XapPAKTEPHO JJIsi HAYAJIbHBIX U I'PAHUYHBIX 33129 WHUIMIPOBAHHBIX YPABHEHUIMU
rUepOOIMIECKOTO THUIIA.

Karoueswie crosa: ruiepbomyeckoe ypaBHEHMe, PaclpeleséHHas KojebaTepbHas crucreMa, 3ajiada raiie-
HUS TIYJIbCAINN TOTOKOB Ta3a MM XKUJIKOCTH, HArPYKEHHOE YpaBHEHUE, HAYaJIbHBIE YCJIOBUS, TPAHUYIHbBIE
ycaoBus, aHayor ¢popmyssl /lamambepa, rpaHUYHbIE YIIPABIEHNs, HOPMAJIBLHOE pacIpeenenne, QyHKIHs
pacIpe/ie/IeHHsl.
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Inner boundary value problem with displacement for
a second order mixed parabolic-hyperbolic equation

This paper investigates inner boundary value problems with a shift for a second-order mixed-hyperbolic
equation consisting of a wave operator in one part of the domain and a degenerate hyperbolic operator of
the first kind in the other part. We find sufficient conditions for the given functions to ensure the existence
of a unique regular solution to the problems under study. In some special cases, solutions are obtained
explicitly.

Keywords: wave equation, degenerate hyperbolic equation of the first kind, Volterra integral equation,
Fredholm integral equation, Tricomi method, method of integral equations, methods of fractional calculus
theory.

Introduction. Notation. Formulation of the problem

In the Euclidean plane with independent variables x and y consider the equation
m m—2
0=1{ W) tae —uyy +A(=y) 2wz, y <O, (1)
Uxx_uyy+fa y >0,

where A, m are given numbers; m > 0, [A\| < % f = f(z,y) is a given function; u = u(z,y) is an
unknown function.

When y < 0 equation (1) is a degenerate hyperbolic equation of the first kind [1]

(_y)m Uggy — Uyy + A (_y)mT U, = 0, (2)
but when y < 0 coincides with the inhomogeneous wave equation
Uggy — Uyy + f(:n,y) =0. (3)

Equation (2) belongs to the class of the first kind degenerate hyperbolic equations [1; 21|, that
is, at no point of the degenerate line y = 0 the tangent line does coincide with the characteristic
direction of the equation (2). An important property of equation (2) is the fact that when |A| < %
the Cauchy problem is correct for it in the usual formulation with data on the parabolic degeneracy
line y = 0 despite that the Protter condition [2] is violated. When m = 2 equation (2) turns into
the Bitsadze-Lykov equation [3; 37|, [4], [5; 234], and for A = 0 from equation (2) we come to the
Gellerstedt equation, which, as shown in the monograph [6; 234], finds application in the problem of
determining the shape of the dam slot. Apart from that as well the particular case for equation (2) is
the Tricomi equation, which presents the theoretical basis for transonic gas dynamics [7; 38|, [8; 280].

Equation (1) is considered in the domain Q = Q; U Q9 U I, where €2 is the domain restricted by
) m+2 ) m+2

characteristics 01 = AC' : © — 25 (~y) 2 =0and o9 = CB: 2+ ;25 (-y) 2 = r of equation

*Corresponding author.
E-mail: GiraslanQyandex.Tu
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2
(2) for y < 0, outgoing from the point C = (r/2,y.), yc = — [@} ™2 passing through the points
A =(0,0) and B = (1,0), and the segment I = AB of the strait line y = 0; Q2 is the domain restricted
by characteristics 03 = AD : © —y =0, 04 = BD : x4y = r of equation (3), outgoing from the points
A and B intersecting at the point D = (7, f) and the segment I = AB.
Let us introduce the following notation:

B m— 2\ B m + 2\ B _m
T2y P 2mry T T gy
T () T2-¢)(2—2e)"
M=) 7 T(1— )
a(x) _ a2(x) +’Yla1($) b(z) — '71/61(-73) + 53(x)
az(z) —yroa(z)’ Y2b1(x) — Ba(w)’
_ a(x) / a' (s) o Lipf) = K (r, t), 0<z<t,
K(2,t) = (t_x)l—a +x/ (t — 8)1_5d » Liz,t) = { K (rjt)— K(x,t), t<z<rm,
= X) — T T ¢2(t) — T / S, S8 S
Fi(w) = 261(s) — 1 Hx/“?’(") O / O/f(t+ s)dsdt,
z/2 z—t ( )
= X S, S — 802 :E ;
F2(35) _b( ) 2901( ) @1 / /f t dsdt ’YQﬁl( ) /82('1:),

0

x m o+ 2% 2/(m+2) x el 1-e
Ooo(x) = (2, — <4> x = (5, —(2—-2) "z ) ,

o\ 2/(m+2)
0r0(x) = (T‘ ; 957 B <m2— ) (r— x)Q/(m+2) _ (7“ —12— xa (- 26)5_1 (r - x)l_‘f)

— affixes of characteristics intersection points that leave the point (z,0) with characteristics of AC and
BC of equation (3), correspondingly;

e = (3 2). e = (755, 757)

— affixes of characteristics intersection points that leave the point (x,0) with characteristics AD and
BD of equation (3), correspondingly;

L(p)T ()

1 o)
Bl = [ 0= 1) = [ exn (=) 7 B(p) = oY

— Euler integrals of the first and second kind and their relationship;

T
sgnx c
Doy = | FeT IR =0
[a]+1 -1
sgnlolt1 (z — >di[a]+1D" L@, a0
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— fractional integro-differentiation operator (in the Riemann-Liouville sense) of order || with starting
point ¢ [5], [6], [9]; the regularized fractional derivative (Caputo derivative) is defined using the equality
[10]

9% g(t) = sgn™ (x — ¢) DX "g™M(#), n—1<a<n, neN;

and it is related to the Riemann-Liouville derivative by the relation [10]

n—1 g(k
9(0) = Do) = 3 =4 £

wheren —1 < a<n,né€ N,

[e.e] o

Zn n

E,(2) = T;)F(H—np)’ E, (2, p) = ;Wa E,(2,1) = By, (2)

— the Mittag-Leffler function and the function of Mittag-Leffler type [11].

Assume the function v = u(z,y) of class C (Q) N C*(Q) N C? (0 UQy), ug, uy € Ly (1) in the
domain €2 is a regular solution, which by substitution transforms equation (1) into identity.

Problem 1. Find a regular solution of equation (1) in the domain €2 satisfying the conditions

ulbp(z)] =v1(z), 0<z<m, (4)
ai(@) (r— )7 Dy {ulf,0(6)]} + aa(x) Dy (t, 0) + as(@) uy(z,0) = ¢o(z), 0<z<r, (5
where aq(x), as(x), asz(z), ¥1(x), ¥o(z) are given functions on the line segment 0 < x < r, moreover

ad(z) +a3(x) +a3(z) #0 YV €l0,7]

Problem 2. Find a regular solution of equation (1) in the domain 2 satisfying the conditions

U [901(37)] = ¢1(x)7 0<z<r (6)
Bu@) (=)' D { (r = ) ulbro(t)]} +
+p2(x) Diw_luy (t, 0) + B3(z) u(x,0) = pa(z), O0<x<r, (7)

where 51(z), fa(z), B3(z), ¢1(z), w2(z) are given functions on the line segment 0 < x < r, moreover
B3 () + B(x) + B(x) £ 0 Va € [0,7].

Earlier, the Goursat problem for the first kind degenerate hyperbolic equations was investigated in
[12], [13]. The criterion of continuity for the Goursat problem for equation (2) is investigated in [12],
and the solution of the Goursat problem for a model equation degenerating inside the domain is written
in explicit form in [13]. The first boundary value problem for the hyperbolic equation degenerating
inside the domain is considered in [14]. Boundary value problems for degenerate hyperbolic equations
in a characteristic quadrangle with data on opposite characteristics were investigated in [15-17].

Inner boundary value problems 1 and 2 considered in this paper belong to the class of boundary
value problems with a displacement of the Zhegalov-Nakhushev [18-20] and are generalization of the
Goursat problem and problems with data on opposite characteristic lines for an equation of the type
(1). The displacement problems for the first kind hyperbolic equations degenerating inside the domain
were previously studied in [21-24]. The displacement problems for the first kind degenerate hyperbolic
equation of the type (2) were investigated in [25], presented as generalization of the first and second
Darboux problems. A rather complete bibliography of works devoted to the formulation and study of
the displacement problems for various types of partial differential equations is provided in [26-32|. In
this paper, sufficient conditions are found for the given functions «;(z), Bi(z), i = 1,3; ¢j(x), ¢¥;(z),
j =1,2; f(z,y) that insure a unique reqular solution of investigated problems 1 and 2. In particular
cases, when the relation a(x) = ca(@ptnanlz) _ o onst or b(x) = nh@)+Bs(@) _ p — copst the

) ag(z)—y100(x) L Y281 (x)—B2(x)
regular solutions of problems 1 and 2 are written explicitly.
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Research task 1

The following Theorem holds.
Theorem 1. Let the given functions ay(x), as(x), as(z), ¥1(x), ¥e(x) and f(z,y) be such that

ai(z), az(z), as(@), ¥a(x) € C[0, 71N C (0, 7), (8)
Y1(x) € CH{0, r]NC3 (0, 7), (9)

fla,y) € CH (D), (10)

az(z) —mai(z) #0 Yz elo,r]. (11)

Then there is a unique regular solution of Problem 1 in the domain €2.
Proof. Assume there is a solution of problem (1), (4), (5) and assume that

u(z,0) =7(x), 0<z<r, (12)

limuy(z,y) = uy(z,0) =v(r), 0<z<r. (13)
y—0
Find the relations between the functions 7(x) and v(z) brought from ; and Qg of the domain
Q2 onto the line I. The solution to problem (12), (13), when |A| < % for equation (2), is written out
according to one of the formulas [33]:

1
U(%Z/ /T 1 —€ ( y)i (2t — 1)] 21 (1 _ t)51—1 dt+
81,82
0
1
* /V (1—¢) (—y) ™= (2t - 1)} £ (L= t) =t A < (14)
B(l—El,l—EQ , 27
0

u(@,y) =7 [ﬁf +(1—e¢) (—y)i} +
1
vy [vfra-aat -] a-pFe A= )
0

u(wy) =7 o~ (1-2) (-y) 77| +
1

F—e)y /,,— er - -2n] (-0 Far A= (16)
0

First, consider the case for [A| < %. In this instance, employing (14) we get

1

—(2—2o)" (7”—37)1_8> (er e /T (r—az)t] 27 (1=t tdt—
1 2

0

r+x

ulbofe)] =u (

1
1 e—1 1—¢ — —€
- (2—-2e) " (r—x) vie+ (r—ax)t] t7° (1 —t) "2 dt.
0/

B<1—€1,1—€2)
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Introducing a new variable z = z + (r — ) ¢t we rewrite the last equality as

=)' [r(e) (r—2) ! (2 — 2)=" v (2) (r—2)"%
u[fro@)} = B (g1, €2) / (z — ) 72 dz - B(l—¢1,1—¢9) / dz.

In terms of fractional (in the sense of Riemann-Liouville) integro-differentiation operator, the previous
equality can be rewritten as

[Oro ()] = IF((;)) (r—ax)'7° D, 2 [T(t) (r — ) 1]
_rr((f__;)) (2—2e)° " DT [w(t) (r— )72 (17)

Further we use the following properties of the weighted composition of operators for fractional differentiation
and integration with the same origins [5], [6], [9]:

D 6Dct(10( ) @($)7 (18)
D& [t — |t Do (s) =[x — ¢’ DEFA |t — ¢ p(t), (19)

where 0 < a <1, 8<0,a+ 3> —1; p(z) € L|a, b], and when o + 5 > 0 the function ¢(x) contains
the fractional derivative D& o(t).

Applying to both sides of equality (17) the operator D! ¢t and using the above composition
properties (18) and (19) we find

Dy ulbo(t) = m (r—a) 2 D 7(t) =72 (r — 2)  v(a). (20)

Substituting the value D1t u [0,9(t)] from (20) into (5) we come to the ratio

[ (x) + 0 (@)] Dpz=r(t) + [as(x) — Mo (2)] v(z) = o (). (21)

The obtained relation (21) is the first fundamental relation between the functions 7(z) and v(x) taken
from the domain 2; onto the line I.

Next, we find the fundamental relationship between the functions 7(x) and v(z) taken from the
domain Qy onto the line I. The solution of problem (12), (13) for equation (3) is written by the
d’Alembert formula [34]:

) Tty 1 y zt+y—t
u(z,y) = = (z+y) ‘2” (x=y) | 3 / v(t)di + 5 / / F(t, s) dsdt. (22)
T—y 0 z—y+t
Satisfying (22) to condition (4), we obtain
) (r—x)/2 r—t
o (2)] = (T”, T“’”) T | / vity [ [ 10 dsdt= i) (23
2 2 2 2
0 T+t
Differentiating (23) we arrive at the relation
(r—z)
v(z) =7 (x) — 29 (2 / flx+t,t)d (24)
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Relation (24) is the second fundamental relation between the functions 7(z) and v(x) taken from
the domain €9 onto the line 1.

Excluding the sought function v(z) from (21) and (24) in view of the matching condition 7 (r) =
1 (1), with respect to 7(x), we arrive at the following problem for the first-order ordinary differential
equation with a fractional derivative in the lower terms

[a3(2) — yron ()] 7' (2) + [aa(x) + e (@) Dy o7 (t) =

(r—z)/
= 2[as(x) — Mo (2)] ¥ (x) — () + [as(x) — e (& / fla+t)d (25)

T(r) =41 (r). (26)

If condition (11) of Theorem 1 is satisfied, then by dividing each term in equation (25) by ag(x) —
~v1 a1 (z) with the subsequent integration of the resulting equation over x ranging from x to r we come
to the integral equation

@) - F}E) / K(,t) r(t)dt = Fi(2), (27)

which corresponds to problem (25), (26).

It follows from properties (8), (9), (10) that equation (27) is a Volterra integral equation of the
second kind with the kernel K(z,t) € Ly ([0, r] x [0, 7]) and with the right-hand side Fi(z) =
C'[0, 7] N C3(0, ). According to the general theory on Volterra integral equations the solution of
equation (27) exists, is unique and can be written out by the formula:

T

(2) = Fi(z) + rée) / Rlz, )y (t)dt, (28)

x
oo
where R(z,t) = > I'™" (¢) K,(x,t) is a kernel resolvent K (z,t); Ko(z,t) = K(z,t), Kpt1(z,t) =

t
[ K (z,s) K, (s,t)ds are iterated kernels of the basic kernel K (z,t); moreover, the resolvent R(z,t),

x
as well as the basic kernel K (z,t) of equation (27), will belong to the class R(z,t) € Lo ([0,7] x [0,7]),
and the solution 7(x) of equation (27), as well as its right side Fi(x), will belong to the class 7(z) €
cro, 7] nC3 (0, r).

The solution of equation (27) for a(x) = a = const is written explicitly by the formula:

T

7(x) = Fy(z) + a/ (t—x)° ! By [a(t —x)° ;€] Fi(t)dt. (29)

T

The sought function 7(z) for A = £% is found again employing formulas (28) or (29), but €2 = 0,
e=ea1 = n =17 =221 (1—e) T (1—¢)at A = —gande =0,e =6 = 5, 1 =0,
Yo =2"1(1—¢)f at A= 2.

Once the function 7(z) has been found, the second sought function v(x) is found employing formulas
(21) or (24). Then the solution of the studied problem 1 in the domain €; is written out according to
one of the (14), (15) or (16) formulas and in the domain 2y the problem (12), (13) for equation (3) is

solved by formula (22).
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Research task 2

Similarly as above, satisfying (14) to condition (7) we find the first fundamental relation between
the sought functions 7(x) and v(x) taken in the domain €; onto the line I:

[11B1(2) + B3(2)] 7(2) = ebi(x) — Ba(2)] Dig w(t) + o (). (30)

Employing (22) under condition (6), we find the second fundamental relation between 7(z) and
v(z) taken in the domain €y onto the line I:

T /2 z—t
7(z) = 2¢1(z) — 7 (0) — /I/(t)dt - / / f(s,t)dsdt. (31)
0 0 t

Excluding in (30) and (31) the sought function 7(z) in view of the matching condition 7 (0) = ¢ (0)
with respect to v(z) we obtain the equation
(1264 (a) = Ba(e)] Diz (0) + [aBao) + Ba(a)) [ eyt =

0
I/2 x—t
— 2161 (0) + Ba(a)) [p1(2) ~ 1(0)] - pa(o) ~ bnfa(e) + Ba(@)] [ [ 1G5, dsat
0t
Denoting v(z) = [wv(t)dt provided that y261(x) — B2(x) # 0Vz € [0,r] the recent equality is
0
rewritten as follows
DM (1) + b(z)v(z) = Fy(z), 0<a <, (32)
while
v (0) = 0. (33)
Once the operator D} ¢ has been applied to both sides of the equation (32) it could be represented
as follows
V' (z) + DLEb(t)u(t) = DL FFy(t), 0<z <7 (34)
Integrating equation (34) over x ranging from z to r taking into account (33) we arrive at the
equation of the form

1 / 1 /
V@) + g O/ WK (@, o)t =~ 0/ K (z,t) Fy(t)dt, (35)

Tl (t—2)t, 0<t<u,
et r<t<r

If b(x) € C1[0,7] N C3(0,r) is a positive non-decreasing function, then there is a unique regular
solution of equation (35) [6; 133|. Then v(z) = v/(z) and 7(z) are found by one of the formulas (30)
or (31).

In the case, when b(z) = b = const the solution of equation (34) is written explicitly by the formula:

equivalent to problem (32)-(33), where K (x,t) = {

14+b [(t—2) " By [b(t—2);eldt r
(@) = - DeFo(t) + b / 17V By (b1 €) D Fy () dt | +
140 [t By ) (b5 ) dt 0
0
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+D, S Fy(t) +b / (t— 513)571 By b (t - x)°; el DS F>(s)dt

T

T
provided that 140 [ ¢! E; Je (bt%5 €)dt # 0. If b > 0, then the fulfillment of this inequality is obvious.
0

Once the functions 7(x) and v(x) have been found similarly as for the previous problem 1, the
solution to problem 2 in the domain € is written employing one of the formulas (14), (15) or (16),
and in the domain €y the problem (12)-(13) for equation (3) is solved by the formula (22).
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2K.A. Bagkmsos!, 3.X. I'yuaesa?, A.X. Konzoxkos?

LPFA KBFO Koadanbaiv, Mamemamura sHcone asmomammandopy unemumymor, Hasvwuk, Pecei;
2X.M. Bepbexos amuvindaev. Kabapoun-Baskap memaexemmir yrusepcumemi, Hasvwur, Pecet

Ekinmmi perrti apaJjiac-runep0oJiajblK, TeHJley YITiH
BIFBICYBI Oap IMIKI-IIIETTIK ecerTep

MakaJrazia 06sbIcTBIH, Oip G6JIiriHe TOJKBIHIBIK, OllepaTop/JaH, ajl backachblHIa OipiHmm peTTi e3rerie ru-
1epOOJTaJIBIK, OTIEPATOPIAH TYPATHIH EKIHII peTTi apajgac-TUIepOoIaiblK TEHIEY YIIH BIFBICYBI Oap imKi-
meTTiK ecenTep 3epTrenren. bepinren dyuknusmap OOfbIHITA 3ePTTENETIH ecenTep il mmentiMiniyg 6ap 6o-
JIYBIH, Oipereiririn KaMTaMachbl3 eTeTiH »KeTKUIKTI maprrap aHblKTasabsl. Keiibip jgepbec Karmaitnapia
3epPTTeJETIH eCenTep/IiH IMeniMIepi alKblH TYP/Ie Ka3bLIFaH.

Kiam coesdep: ToNKBIH TeHaeyi, Oipinii perTi e3remre rumnepboJIablK, TeHAEY, BoabreppaHblH, MHTEMPAJIIBIK,
TeHieyi, exinmi Tunti PpeArosbM UHTErPAJIBIK, TeHeyl, TpukoMu 9iici, MHTErpaablK TEeHEYJIep 9JIic,
GeJIIIIeK ecenTey TEOPUSICHIHBIH OIICI.

7K. A. Bankusos!, 3.X. I'yuaesa?, A.X. Koazokos?

1 o
Hrnemumym npurasadhoti mamemamury u asmomamusayuy KBHI] PAH, Harvuuk, Poccus;
2 Kabapdumo- Baaxaperud 2ocydapemeennud yrusepcumem umenu X.M. Bepbexosa, Haavwur, Poccus

BryTpenHe-kKpaeBbie 3aJ/la4u CO CMeENIeHueM s
CMEIIaHHO-TUTIEPOOJIMIEeCKOTO YPaBHEHNS BTOPOTO ITOPSIKa

B craTbe ncciemoBannr BHyTpeHHE-KPAEBBIE 38[a91 CO CMENIEHNEM I CMENTaHHO-TUIIEPOOINIeCKOTO ypaB-
HEHUs BTOPOTO MOPSIKA, COCTOSIIETO U3 BOJTHOBOI'O OIIEPATOPA B OJHON YacTU 0OJIACTH U BBIPOXK JAIOIIEr0Cs
rUepObOJIMIECKOTO OlepaToOpa MEPBOTO Poja — B Apyroi. HaiimeHsl mocTaTodHble yCJIOBUS HA 33 aHHBIE
byHKINH, 06€CIIeINBAIOININE CYIIECTBOBAHNE €IMHCTBEHHOTO PETY/ISPHOTO PEIIEHNs UCCIeAyeMbIX 3a1ad. B
HEKOTOPBIX YaCTHBIX CJIydadX PeIIeHusd UCCIIedyeMbIX 3324 BbIIINCAHBI B ABHOM BH/IE.

Karoueswie cao6a: BOTHOBOE ypaBHEHUE, BBIPOXKIAIOIIEECS THIIEPOOINYECKOe YPABHEHNE IIEPBOrO POJa, MH-
TerpaJjibHOe ypaBHeHne Bosbreppa, nHTerpaabaoe ypapaenue @pearospma BTOPOro poaa, MeTo 1 pukomu,
MEeTO/T HHTErPAJIbHBIX yPABHEHUN, METOABI TEOPUU JTPOOHOIO UCUUCTIEHUS.
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Examples of weakly compact sets in Orlicz spaces

This paper provides a number of examples of relatively weakly compact sets in Orlicz spaces. We show
some results arising from these examples. Particularly, we provide a criterion which ensures that some
Orlicz function is increasing more rapidly than another (in a sense of T. Ando). In addition, we point out
that if a bounded subset K of the Orlicz space Ls is not bounded by the modular ®, then it is possible
for a set K to remain unbounded under any modular ¥ increasing more rapidly than &.

Keywords: conjugate (complementary) functions, relative weak compactness, Orlicz spaces, N —functions.

Introduction

We provide a number of examples of relatively weakly compact sets in Orlicz spaces based mainly
on criteria obtained by a classical work of T. Ando from 1962 (see [1]). It should be noted that there
is a shortage of such examples in the literature. Some (maybe the most important) examples may be
found in the classical book by M.M. Rao and Z.D. Ren [2]. Another paper, devoted to the study of
weak compactness in Orlicz spaces that we use extensively in this paper is by J. Alexopoulos [3].

On the contrary, weak compactness criteria in both Orlicz function and sequence spaces have been
stidied by many researchers, see, for example [1-14], and references therein.

In particular, T. Ando see [1] obtained weak compactness criteria in Orlicz (function) spaces from
the perspective of Kéthe duality. The study results of T. Ando were extended (with some restrictive
condition) from the setting of finite measure spaces to the setting of o-finite measure spaces in the work
of M. Nowak in 1986 [11]. The objective of this paper is to study such criteria and provide examples
that satisfy these criteria. We also prove some related propositions (see Propositions 2.13 and 2.17).

1 Preliminaries

Initially, the study provides the definition of an N-function (as in [1]), which will be used throughout
the text.

Definition 1.1. A convex function @ : [0, 00) — [0, 00) is called an N-function if
(i) (0) = 0,
(ii) wéooas)\—ﬂxx

We note that in the above definition by T. Ando, it is not necessarily true that 2N L pas A — 0+,

unlike in many other classical works (e.g., [15, formulae 1.12 and 1.15], [2; 13|, |3, Proposition 1.1]).
The following two definitions specify some important classes of N-functions.
Definition 1.2. (|2, Definition 1| and |3, Definition 1.5]) An N—function ® is said to satisfy the A

<I<;>((2920)) < 00. That is, there is a K > 0 so that ®(2z) < K - ®(x) for

condition (® € Ay) if limsup,_,
large values of x.

Definition 1.3. (|2, Definition 2| and [3, Definition 1.8]) An N —function & is said to satisfy the Vg
condition (® € V3) if there is a K > 0 so that (®(z))? < ®(Kx) for large values of z.

*Corresponding author.
E-mail: yerlan.nessipbayev@gmail.com
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1.1 Decreasing rearrangement

Let (I,m) denote the measure space, where I = (0,00) (resp. (0,1)), equipped with Lebesgue
measure m. Let L(I,m) be the space of all measurable real-valued functions on I equipped with
Lebesgue measure m. Define S(I,m) to be the subset of L(I,m), which consists of all functions f such
that m({t : |f(t)| > s}) < oo for some s > 0. Note that if I = (0,1), then S(I,m) = L(I, m).

For f € S(I,m), we denote by pu(f) the decreasing rearrangement of the function |f|. That is,

wu(t, f) =1inf{s > 0: m({|f| > s}) <t}, t>0.

1.2 Orlicz spaces

Definition 1.4. A function G : [0,00) — [0, 00] is said to be an Orlicz function if [9; 258|

(i) G(0) =0,

(ii) G is not identically equal to zero,

(iii) G is convex,

(iv) G is continuous at zero.

It follows from the definitions that not every N —function is an Orlicz function (e.g., an N-function
may be discontinuous at zero). The converse also does not hold. For example, the function G(t) =t is
an Orlicz function but not an N—function. For an Orlicz function (or N-function) G' we shall consider

an (extended) real-valued function G(f) (also called the modular defined by an N-function G) defined
on the class of all measurable functions f on I, by

G(f) = /I G (1))t

The set
Loa={feSUm): |[fllLe < oo},

||f||LG:inf{c>O: /IG<|‘£|>dm§1}

is called an Orlicz space defined by the Orlicz function (or N-function) G (equipped with Orlicz norm).
In fact, we have the following (|2, Chapter 3.5, Theorem 1|):

where

Proposition 1.5. If an N-function ® € Asg, then Lg is separable (provided the measure space is
separable).

It should be stated that notions of N-functions and Orlicz functions used interchangeably in many
situations. However, in this text we will denote N-functions by Greek letters ®, ¥ and Orlicz functions
by Latin letters G, F' to distinguish between them.

Using various (partial) order relations on Orlicz functions one may define the corresponding relations
in the Orlicz spaces. We also note that since (in this paper) Orlicz (function) spaces are defined on
finite measure spaces we only need local order relations. However, some results will be also stated for
Orlicz spaces on positive half-line (with small differences on local relations).

We define the notion of majorization for Orlicz functions (for o-finite measure spaces). Let G; and
Gy be two Orlicz functions.

Definition 1.6. (e.g., |16, Definition 16.1.1]) We say that
(1) G majorises Gy at 0 (G =¢ G2) if there exist positive numbers a, b, z¢ such that

Go(x) < bGi(ax) forall 0 <z < x.
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(2) G1 majorises G at 0o (G1 >0 G2) if there exist positive numbers a, b, ¢ such that
Go(z) < bGi(az) for all x > xo.

(3) G1 majorises G (G1 > G2) if G1 =¢ G2 and Gy > Ga.

Moreover, one can set b = 1 in the above definition (see [16, Proposition 16.1.2]). Also, the condition
G1 > G2 may be checked via the following (see |16, Proposition 16.1.3]):

Proposition 1.7. G1 = G» if and only if
Go(z) < bGi(az), x>0

for some b > 0 and a > 0.

Also, we provide a definition of equivalent Orlicz functions on o—finite measure space (see |16,
Definition 16.3.1]):

Definition 1.8. Two Orlicz functions G and G are called equivalent, denoted G1 =~ G, if G1 > Go
and Go = G1.

The following definition for equivalence of N-functions on finite measure space may be found in [3,
Definition 1.3]:

Definition 1.9. For N—functions @1, o we write &1 < Po if there is a K > 0 so that ®q(x) <
Oy (Kx) for large values of x. If &1 < &y and P9 < P then we say that ®; and Py are equivalent.

Note for finite measure space, the notion of majorisation is slightly different as we do not care
about majorisation at zero.

We will denote by ¥ the function complementary (or conjugate) to an N—function ® in the sense
of Young (with the condition y — 0+ as t — 0), defined by ([15; 11])

U(t) = sup{s|t| — ®(s) : s> 0}.
We notice that WU is again an N—function (see [9; 258]).

2 Weakly compact sets in Orlicz spaces

In this section, we recall known criteria of relative weak compactness in Orlicz spaces and provide
examples of such sets. We will also state some concluding remarks and prove related propositions.

The following theorem was proved by T. Ando in [1, Theorem 1].

Theorem 2.1. Let ® be an N-function and let (2,3, ) be a finite measure space. A subset K of
Lg is relatively o(Lg, Ly)—compact if and only if

P(A
()\f)—>a/ﬂlf(t)\du as A0

uniformly with respect to f(¢) € K, where a = limy_,9+ ®(\)/A\.

It is worthwhile to note that Theorem 2.1 (unlike many others) is valid for any N—function (in
the sense of Ando), that is, « is not necessarily zero by definition. We note that the extension of this
Theorem to the o-finite case was given by M. Nowak [14, Theorem 1.1| only in the case o = 0.

Below we provide examples of relatively weakly compact sets in Lg[0, 1] by using Theorem 2.1.
Later we will provide another criteria of weak compactness in Orlicz spaces and apply these criteria to
the following examples.
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Example 2.2. (i) Let ®(xz) = e® — 1. Then the subset K = {fy(x) = aP : p > 1} of L[0,1] is

relatively weakly compact. Indeed, K is bounded and since o = limy_,q L}\_l =1, it is enough to show
(by Theorem 2.1) that
L aep 1
edt —1 1
7&’ — / trPdt = ——
)\ 0 D + 1
uniformly with respect to p > 1 as A | 0.
Applying the L’Hopital’s rule, we get
1/ Ao 1 AtP
e — AtP —1)dt e —tP) dt
ALO A L0 1

1 , 1 e)\ -1
< lim <e/\t _ 1) dt < lim (e)‘t _ 1) dt = 150
MO0 Jo MO0 Jo A

as A — 0 uniformly with respect to f € K (independent of p).
For example, when p = 1, then

JpeMdt—1_S-1-x 1
A DY 2

as A | 0 as desired.
However, when p > 1, the integral fol eMPdt is not expressed in terms of elementary functions.
(ii)) Let ®(xr) = e®* — x — 1 and the subset K as in (i). Note in this case @« = 0 (so ¢ is an
N —function). Obviously
J (M =P — 1) dt
A

uniformly with respect to p as A | 0 as it is reduced to case (i). For example, when p =1

—0

S(Nf)  fot—A-t—1)dt 26> —2 N2 —2) o
A A B 2\
as A | 0. As in (i), The uniform convergence holds for every p > 1, however, as in example (i), the

integral is not expressed in terms of elementary functions either.

We note that in the statement of Theorem 2.1 the uniform convergence is crucial as the following
example illustrates, i.e., pointwise convergent is not sufficient.

Example 2.3. Let ®(x) = x-In(x 4+ 1) and K = {fp(z) = eP* : p > 0} be a subset of Ly[0,1].
Note that ® is an N—function with o = 0. Now we check the condition of uniform convergence as in
Theorem 2.1:

BNF)  Jo AP In(AeP 4 1)da

A A
CAe?-In(AeP +1) = A-In(A+1) — AP + A+ In(AeP + 1) —In(A + 1)
= o)
\eP 2 _ )2 2p 1
0@ - A1)
p-A p
as A | 0. However, it is easy to see that the convergence is not uniform with respect to p since
(\f)
sup =
p>0 A

for all A > 0. Hence, by Theorem 2.1, the subset K is not relatively weakly compact in Lg|0, 1].
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Note, however, if 0 < p <1, that is K = {f,(z) = e’ : 0 < p < 1}, then K is relatively weakly
compact in Lg |0, 1]. We also note that the set K in Example 2.3 is not bounded (in norm) in Lg[0, 1].
Hence, this fact clearly implies that K is not relatively weakly compact. In general, norm boundedness
does not imply weak compactness.

Also note that Lg|0, 1] is separable since ® € Ay by Proposition 1.5. Indeed, ®(2z) < K - ®(z) for
large x since In(2x + 1) < 3In(z + 1) = In(x + 1)3 or equivalently, 2z + 1 < (z + 1)? for large =.

Below we state another two criteria of weak compactness criteria in Orlicz spaces due to T. Ando.

Lemma 2.4. (see [1; 171]) A subset K of Lg|0, 1] is (relatively) weakly compact if and only if it is
weakly bounded and equi continuous in the following sense:

sup/ F() - g)ldp— 0 as w(E) >0, Ec 0.1, glt)€ Ly[0,1].
feEKJE

Lemma 2.5. (|15 172]) Let B be a o-algebra of subsets of (0,1). When B is atomless, boundedness
by modular ®(f) implies (relative) weak compactness, if and only if ®(\) has (Va), i.e.

P

1 f

oo B(N)
Remark. Note that Lemma 2.5 may also be applied to show that the set K in Example 2.2 (both (i)

and (ii)) is relatively weakly compact in Lg[0,1]. Indeed, as for (i), the boundedness by the modular
®(f) is obvious. Also, (with n = 2)

> 2n for some n > 0.

PR 102N R |
1 f =1 f
i ) i

>2-2=4.

As for (ii), we have

1 1 1
/ O (2P)dx = / (e — 2P — 1)dx < / e®dr <3, forall p>0.
0 0 0

Taking supremum over all p > 0, we obtain boundedness of a set K by modular ®. Also, by setting
1 = 2, we obtain )
liminf © 2" 1599y
A=soo e —A—1
Recall that a set K in Example 2.3 is not relatively weakly compact, which may not be proved via
using Lemma 2.5 since a set K is not bounded by the modular ®(f). Indeed,

®(f) = /01 O (eP?)dx = /01 eP¥ In(eP” + 1)dx =

1
=—[e’In(e? +1) —2In2—e’ +1+1In(e? +1)] 200 as p— oo.
p

Though ®()\) fails (Va),

lim inf UL lim inf —77)\ n(nA + 1)

— <2 forall .
it ooy R oy — 12 ferall n>0

Note that in general, if K is not relatively weakly compact, then it is not necessarily true that K
is not bounded by the modular ®(f).

Now we provide an example of a set K such that K is bounded by modular ® and ®(\) that does
not have (V3).
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Example 2.6. Let ®(z) =z -In(z + 1) and K = {f,(x) = 2P : p > 0}. Note K is bounded by the
modular ®(f). Indeed,
1
sup/ P - In(2P + 1)dx < 1.
p>0J0
However, since ®(x) fails (V3), we conclude that K is not relatively weakly compact by Lemma 2.5.

Now we state the relation between conjugate N-functions in terms of Ay, Vo relations (see [2,
Chapter 2.3, Theorem 3|).

Remark 2.7. ®(x) has V, if and only if its conjugate W(x) has A,.

For example, let ®(x) = e* —x — 1, x > 0. Then it is easy to see that ® € Va. Its conjugate
function ¥(z) =z -In(z + 1) —x + In(z + 1), z > 0 has As.

The following definition may be found in [17, Definition 53.1], [2, Chapter 1.3].

Definition 2.8. A function ® : R — R is called a Young function if and only if:

(i) ®(x) = fo‘x' ¢(s)ds for all x € R;

(i) ¢ : R4 — Ry is continuous and strictly increasing;

(ili) ¢(0) =0 and ¢(s) — 0o as s — 0.

Throughout this paper, however, we restrict our attention to Young functions ® : Ry — Ry. It
is noted that every Young function is not an N—function (in the sense of Ando). However, in most
papers the definition of a Young function coincides with the definition of an N—function (with the
condition limg_,o+ q)gf) = 0), for example, [3, Definition 1.1]|. Clearly, not every Orlicz function is a
Young (or N-)function. For example, ®(z) = z arctan x is such a function.

The notion of Orlicz functions (as well as of N —functions or Young functions) is known since 1940s.
Nonetheless, for the sake of convenience, we provide a list of Orlicz functions below. We note that some
of them are not N—functions, and some are not Young functions.

Examples of Orlicz functions ® : R4 — R, are:

®(z) = 2P, p > 1 (corresponding to Lebesgue spaces L,. If p > 1, then it is also both an
N —function and a Young function);

0 if 0<z<l,
d(x) = ?f - 313 ~ 7 (corresponding to the Lebesgue space Lo, neither Young nor N-
oo 1 x > 1;

3 x> 1;
2 if 0<z<1/2,
x—1/4 if x>1/2; etc.
While discussing relative weak compactness in Orlicz space Lg,, it is natural to ask whether there
is another Orlicz function ®3 # ®; such that Lg, coincides with Lg,. The following theorem shows

equivalent conditions when two Orlicz spaces L, and Lg, coincide on (0, 00) (as sets), see, for example
[16, Theorem 16.3.2].

function).
®(x) =e® —1 (neither Young nor N—function);
®(x) =€ —x—1 (both Young and N —function);
O(z) = e* — % —x —1, and in general e — "}, %].C for any n € N;
®(z) =xzIn(x+1) (not Young but N—function);
O(x) =(x+1)In(x+1) (neither Young nor N—function);
O(x) = xln(a:2 +1) (both Young and N —function);
®(x) = ze*”, where p > 1 (neither Young nor N —function);
O(x)=(x+e)ln(x+e)— (x+e) (neither Young nor N—function);
®(x) = xarctanz (not Young but N—function);
2 if 0<z<1

() = {x i <uz ,

x

T
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Theorem 2.9. Let &1 and ®5 be two Orlicz functions. The following are equivalent:
(1) @1 = Pg (ie., P; > Po and Py > P; as in Definition 1.6) ;

(2) Ly, (0,00) = Lg,(0,00) as sets;

(3) Il llLe, and |[ - ||z, are equivalent, i.e.,

arllfllee, <fllLe, < a2llfllLe,

for all f and some a; > 0, as > 0;
(4) a1Lq, (%) < Ly, () < a2pL,, (@) for all z > 0 and some a1 > 0, az > 0;
(5) @1(a1z) < Pa(z) < Py(agx) for all z > 0 and some a; > 0, az > 0.

In condition (4) above, ¢r, () stands for the fundamental function of an Orlicz space Lg, and is
defined as follows:

PLy () = [ Ljo,x) |-
Note that constants a; and as in the above conditions (3), (4), and (5) may be chosen the same.
However, if we consider Lg on a finite measure space, the notion of equivalent Orlicz functions is
slightly different (compare Definitions 1.6 and 1.9), which entails the corresponding changes in Theorem
2.9. For example, let

P(z) =

22 if 0<z<1/2,
x—1/4 if x>1/2.

Then Lg(0,1) = L1(0,1) while Lg(0,00) # L1(0,00). Indeed, ®(x) ~ = as in Definition 1.9,
thus Lg(0,1) = L1(0,1). To show that Lg(0,00) # L1(0,00), one may consider a function
f(z) = 1:_1/2)((0,1/2) (x), which belongs to L;(0,00) and does not belong to L (0,00). Or, on the other
hand, this is easily checked since one cannot have x < b®(ax) for all large = and some positive a and
b. Therefore, ®(x) is not equivalent to x on (0, c0).

Now we state Theorem 2.9 for Lg (0, 1).

Theorem 2.10. Let ®; and @2 be two Orlicz functions. The following are equivalent:
(1) &1 = Py (i.e., 1 = Py and Py = P, as in Definition 1.9);

(2) Ly, (0,1) = Lg,(0,1) as sets;

3) I - Iz, and [[ - [|z,, are equivalent, i.e.,

arl[fllee, <IfllLe, < a2llfllLe,

for all f and some a1 > 0, as > 0;
(4) a10L4, (%) < Ly, (2) < a2pr,, (@) for all > zo and some a1 > 0, az >0, ¢ > 0;
(5) ®1(a1z) < Po(x) < Py (agz) for all z > xp and some a; > 0, az > 0, xg > 0.

The following definition will be needed to state another weak compactness criterion in Orlicz spaces.
Definition 2.11. (see [1; 173]) We say that ¥(z) is increasing more rapidly than ®(x), if for any
1 > 0 there exist p, zg > 0 such that
U(px) >p-n-®(x) for > xg.

Sometimes it is convenient to use the following equivalent definition.
Definition 2.12. (see [1; 173]) We say that ¥(z) is increasing more rapidly than ®(z), if for any
€ > 0 there exist §, zg > 0 such that
d(0x)
)

e¥(z) > for x > x.
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We note that U(A) has (V3) if and only if ¥ is increasing more rapidly than itself [1; 173|. If
U(z) > ®(z) for all x > 0, then it is not necessarily true that ¥ is increasing more rapidly than
®. Now we prove a result, which allows one to check whether one Orlicz function is increasing more
rapidly than another.

Proposition 2.13. Let ® and ¥ be two Orlicz functions. If lim, . ggg = 00, then V¥ is increasing

more rapidly than &.
Proof. If limg_,00 % = 00, then for any n > 1 there exists z1 > 0 such that ¥(z) > n - ®(x) for
all z > x;. Since VU is convex there exist p, o > 0 such that U(pz) > p- ¥(z) for all x > z5. Hence,

Y(z)=p-¥(x)=p-n- (z)

for all > x(, where 9 = max{x1,z2} (this is even stronger statement than required).
The following theorem is also due to T. Ando [1, Theorem 2.

Theorem 2.14. A subset K of Lg|0,1] is relatively weakly compact if and only if it is bounded by
the modular defined by an N —function (depending on K) ¥(zx) increasing more rapidly than ®(z).

Ezxample 2.15. Let ®(z) = e* —1, then the Orlicz function W(z) = e** —1 is increasing more rapidly
than ®(z).

Indeed, fix any € > 0 and choose § = 1. Then we need to show that there exists xg > 0 such
that ¢ - (e””2 —1) > e* — 1 for all z > xzg. It is obvious that for any £ > 0 one can find such zg > 0
since liminf, 6;7:11 = o00. Note ®(z) = e* — 1 is an N—function (in the sense of Ando) with
q)gf) =1, while ¥ is an N —function with o = 0.

o = limx_>()

Now using the Theorem 2.14 we prove that a set K in Example 2.2 (both (i) and (ii)) is relatively
weakly compact in Lg[0, 1].

Ezample 2.16. Recall in Example 2.2 (i), ®(z) = e* — 1. It has been shown that the subset
K ={fy(x) =aP: p> 1} is relatively weakly compact in Lg|0, 1].

Alternatively, by Theorem 2.14 and Example 2.15 it remains to show that a set K is bounded by
the modular defined by an N—function ¥(z) = e — 1, that is, to show that SUp,>q fol U (zP)dx < oo.

Indeed,
Lo o 1,
/(e”” —1)dx:/ex dx—lg/exd:c—1<1/2.
0 0 0

Taking supremum over all p > 1, we obtain the desired result.

As for (ii), we note that ¥(z) = " — 1 is also increasing more rapidly than ®(z) = ¢* — z — 1,
since e —x — 1 < e® — 1 for all x > 0. Thus, by the previous argument we may conclude that the set
K in Example 2.2 (ii) is also relatively weakly compact.

Now we show the following proposition.

Proposition 2.17. If a set K is not bounded by a modular ®, defined by an Orlicz function @, then
it is not necessarily true that K is not bounded by the modular ¥, defined by an Orlicz function ¥,
increasing more rapidly than ®.

Proof. Indeed, it suffices to find an N-function function ®, another Orlicz function ¥, which
increases more rapidly than ® and a function f for which the inequality fol O(f(z))dr < fol U(f(z))dx
fails. For such purposes, one may choose ®(z) = z, ¥(z) = 2'° and f(z) = .

Thus, recall that a set K in Example 2.3 was not bounded by the modular ®, hence by Remark 2.17
it is not necessarily true that K is not bounded by the modular W, defined by some Orlicz function ¥,
increasing more rapidly than ®. However, since a set K is not relatively weakly compact in Lg[0, 1] we
conclude (by Theorem 2.14) that there is no such function ¥ such that K is bounded by the modular ¥.
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Recall that the complementary (or conjugate) function ¥ to ® in the sense of Young, is defined by
(see [15; 11])
U(t) = sup{s|t| — ®(s) : s> 0}. (1)

Since in this paper we work on positive half-line Ry (that is t > 0), we may omit the modulus sign
in the formula (1).

The following constructive way of identifying a conjugate function to a given Young function is
given in |2, Theorem 3, Formula (14) and Corollary 2, p. 10].

Theorem 2.18. Let @ : R4+ — R4 be a Young function, that is

O(x) = /0:E o(s)ds, x>0,

where ¢(0) = 0, ¢ : R4 — Ry is nondecreasing and left continuous. Let () be the (generalized)
inverse of ¢. Then the conjugate function ¥ to ® may be defined as follows:

U(z) = /Oxw(s)ds, x> 0.

Now we provide examples of pairs of mutually conjugate Orlicz functions.

Ezample 2.19. Let ®(z) = e® —x — 1, x > 0, then it is easy to find its conjugate function (via
Theorem 2.18) ¥(z) = - In(x + 1) — z + In(z + 1), x > 0, which, by definition, is also an Orlicz
(moreover, both of them are N —functions) function.

Indeed, ®'(z) = ¢® — 1 whose inverse is ¥'(z) = In(x + 1). Thus, integrating by parts we obtain
U(z) = [y In(t+1)dt =z -In(x+1) — 2z +1In(z + 1). It is easy to see that this function coincides with
the one defined by formula (1).

We note that ® is not equivalent to ¥ on (0, 00) (there is no C' > 0 such that ®(z) < ¥(Cz)).

2?2 if 0<z<l,
2 if oz > 1

We note that @ is an N—function and Lg(0,00) # L,(0,00) for any p > 1. However, Lg(0,1) =
L3(0,1). Its conjugate function is given by

Ezample 2.20. Let ®(x) =

¥(a) {f if 0<z<l,
T)=19 2 .3/2,1 2
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J1. Hoyitoex™?, E. Hecinbaes'?, K. Tenenos!?

L Mamemamuxa ocorne mamemamuranss; modeavdey urncmumymol, Aamame, Kaszaxeman;
20u-Dapabu amwmdaew Kasar yammuk yrusepcumemi, Aamams, Kazaxcman

OpJm4 KeHICTIKTepiHaeri 9JICi3 >KMHAKBI >KUbIHIAP/IbIH, MbICAJIIAPbI

Maxkanaga Opind KeHICTIKTEPIHIET CATBICTBIPMAJIBI 9JICI3 YKUHAKBI YKUBIHIAP/IBIH KEHOIp MbICAIIaphl KeJl-
Tipinren. CoHjaii-ak OCbl MBICAJIIAPJIAH TYBIHIAWTHIH Keibip HoTvKeaep KepceriireH. Aram aiiTkanza,
keitbip Opynd PpyHKIMACHIHBIH, €KIHINICIHE KapaFaHa >KbLIIaMbIpaK, ©CeTiHIH KaMTaMachl3 eTeTiH KPUTe-
puitiep Gepliren (T. Anno marbiHaceiHna). ConbimMen Karap, erep Lo Opusmua kenicririnig K 1mekresrexn
imKi KUBIHBI MOY/IsAp P-MmeH miekTesmereH 6osica, oHma K KubHBIHBIH P-Fa yiriH KaparaHIa KbLIIaM
oceTiH Ke3 KejreH W MOZyJIADHI IIIEKeJIMEreH KyiiHie Kaaybl MYMKIH €KeHi aHbIKTAJIFaH.

Kiam cesdep: Tyiiingec (TOMBIKTHIPFBIII) (DYHKIHUAIAP, CAJIBICTHIPMAJIBI 9JICI3 }KUHAKBLIBIK, OpJInd KeHicTiK-
Tepi, N —dyHKImsIap.
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J1. Hayntoex'?, E. Hecunbaes'?, K. Tymenos!»?

1
Hnemumym mamememury & Mamemamuseckozo modeauposanua, Aamamo, Kazaxcman;
2 Kasazcxutl Hayuonaibrod yrusepcumem ument asb-Papabu, Aimamo, Kasaxcman

ITpumepsbl ci1abo KOMIAKTHBIX MHOXKECTB B IIpocTpaHcTBax OpJnmya

B crarbe MBI npuBOIUM psij TPUMEPOB OTHOCHUTEJIHLHO CIa00 KOMIIAKTHBIX MHOXKECTB B IIPOCTPAHCTBAX
Opmmya. Kpome Toro, mosiydeHbl HEKOTOPbBIE PE3yJIbTATHI, BHITEKAIOIINE U3 ITUX MPUMEpPOB. B yacTHOCTH,
MOJTyYeH KPUTEPHUii, KOTOPBI rapanTupyer, 94To ofgHa dyukmus Opinda Bo3pacTaeT ObICTpee, YeM JIpyrast
(B cmbicsie T. Anzo). Kpome Toro, mokaszano, YTO €C/Id OIPAHUYEHHOE IIOJMHOMKECTBO K IIPOCTPAHCTBA
Opmmya Lo He orpanmdyeHo Moy isipom P, To MHOXKecTBO K MOXKET OCTaBaTbCsl HEOTPAHUYEHHBIM JIJIst
sroboro moaynsipa W, pacrymmm Obictpee, gyem .

Kmouesvie cao6a: conpsizkeHuble (I0MOTHATENbHBIE) DYHKIMN, OTHOCUTEIbHAS C1a0as KOMIAKTHOCTD, TIPO-
crpancrBa Opaunda, N-QyHKIUN.
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An analogue of the Lyapunov inequality for an ordinary
second-order differential equation with
a fractional derivative and a variable coefficient
This paper studies an ordinary second-order differential equation with a fractional differentiation operator
in the sense of Riemann-Liouville with a variable coefficient. We use the Green’s function’s method to find
a representation of the solution of the Dirichlet problem for the equation under consideration when the
solvability condition is satisfied. Green’s function to the problem is constructed in terms of the fundamental
solution of the equation under study and its properties are proved. The necessary integral condition for the

existence of a nontrivial solution to the homogeneous Dirichlet problem, called an analogue of the Lyapunov
inequality, is found.

Keywords: fractional Riemann-Liouville integral, fractional Riemann—Liouville derivative, Gerasimov—Caputo
fractional derivative, Dirichlet problem, Green’s function, analogue of Lyapunov inequality.

Introduction
In the interval 0 < x < I, consider the equation
Lu = u"(z) + q(z) D, u(z) = f(x), 0<a<l, (1)

where

W d 1 [ u®dt
Diu(x) = dzT'(1 - «) 0/ (x —t)

is the operator of fractional (in the sense of Riemann-Liouville) differentiation of order « [1], I'(2) is
the Euler gamma function, ¢(x) and f(x) are given functions, u(x) is the desired function.

In [2] (see Theorem 3), the unconditional and unambiguous solvability of the Dirichlet problem
u(0) = 0, u(l) = 0 for the equation (1) is proved for g(x) < 0. Also in [2], for ¢(z) = A, where
A = const, the question of the spectrum of the homogeneous Dirichlet problem for the homogeneous
equation (1) is investigated, in particular, it is shown that the numbers A < 0 cannot be eigenvalues of
the operator L, and the number A > 0 is an eigenvalue of the operator L if and only if Es_,2(—A) =0,
where

Epu(2) =) w0
s kzzo T(pk + 1)
— Mittag-Leffler type function [3; 117].
Lyapunov’s inequality plays an important role in the study of spectral properties of ordinary
differential equations. More detailed information can be found in [4-6]. Here we give the classical
Lyapunov inequality.

*Corresponding author.
E-mail: beslan_ efendiev@mail.ru
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If u(zx) is a nontrivial solution to the problem

u”’(z) + q(z)u(x) = 0, u(a) = u(b) =0,

where q(x) is a real, continuous function, then it holds true the inequality
b
[lat@idz > @)
x)|de > ——.
a b—a
a

There are works where various generalizations of the Lyapunov inequality (2) are constructed. For
example, in [7], for an ordinary fractional differential equation containing a composition of fractional
derivatives with different beginnings, the necessary integral condition for the existence of a nontrivial
solution to the homogeneous Dirichlet problem is found, namely: if u(x) is a nontrivial solution to the
problem

D2.0% u(z) — g(z)ulz) =0,  u(0) = u(1) =0, % ca<l,

where q(x) is a real continuous function, then the following inequality is true:

1
/’(J(l’)‘dm > (2a — 1)F2}(]JOZ), h= sup [(1 _ :1})20[71 i (1 o x2a71)2 )
0

0<x<1

The work [8] shows that for the existence of a nontrivial solution to the homogeneous Dirichlet
problem for an ordinary second-order differential equation with a distributed integration operator

B
/u a)Dytu(z)do = 0, u(0) =u(l) =0,
0

the condition must be fulfilled

B l
[ e [ la@las =3,

0 0

which is an analogue of the Lyapunov inequality.

In this paper, a representation of the solution to the Dirichlet problem for the equation (1), using
the Green function, is found in the case when ¢(z) < 0, and an analogue of the Lyapunov inequality
is proved.

Problem statement

We call a regular solution a function u(x) that belongs to the class C[0,1] N C2]0,![ and satisfies
the equation (1) for all z €]0,!].

Problem. Find a regular solution u(x) to the equation (1) in the interval ]0,[[ satisfying the
conditions

u(0) = ug, u(l) =y, (3)

where ug, u; are the specified constants.
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Supporting statements

Let g(x) be absolutely continuous on the segment [0,]. Consider two functions defined in the
compact Q = [0,1] x [0,]
Wiz, t)=x—1t— /(x — s)R(s,t)ds, (4)

t

Cla,t) = H(z — )W (2, t) — W(ll()) (W ow.n)]. (5)
Here -
R(z,t) =Y (-1)""Ky(z,t),  Ki(z,t) = 0%[(zx — t)q(t)],
n=1
Ko (z,) = /Kn(x,s)Kl(s,t)dt, neN,  o%u(z)= mla) / (Z'@)j)’;, a €0, 1]
t 0

— the operator of fractional (in the sense of Gerasimov-Caputo) differentiation of order o, H(x) —
Heaviside function.
Lemma 1. The function W (x,t) with respect to the variable x is the solution of the problem

Wae(z,t) + q(x) DE,W (2, 1) = 0, (6)
W(t,t)=0,  Wy(t,t)=1,  Vte[0,z], (7)

and according to the variable ¢ is the solution of the problem
Wit(z,t) + Oz la()W (2, t)] = 0, (8)

W(z,z) =0, Wi(z,x) = —1, vz € [0,1]. (9)

Lemma 1 is proved by directly substituting formula (4) into the equalities (6)—(9).

Definition. The Green function of the Dirichlet problem (3) for equation (1) is called the function
v(x,t), having the following properties:
1. v(x,t) is continuous in Q.
2. v(z,t) as a function of the variable x is the solution of the problem

Vo (2, 1) + q(2)DSv(x,t) =0, 0(0,t) =0, wv(l,t) =0, (10)
by the variable t is the solution of the problem
v (z,t) + O [g(t)v(x, t)] =0, v(x,0) =0, wv(z,l)=0. (11)
3. For t = x, the derivatives v,(x,t) and v;(x,t) have a jump equal to one, that is
Vp(z, 2 +0) —vg(x, 2 —0) = —1, (12)

v(x,x+0) —v(x,x —0) = 1. (13)

Lemma 2. Let the condition W(l,0) # 0 be fulfilled. Then the function G(z,t), defined by formula
(5), is the Green function of the Dirichlet problem (3) for equation (1).

Proof. The continuity of the Green function G(x,t) in the compact Q follows from the continuity
of the function W (z,t) in this compact Q.
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The second property is proved by direct substitution of equality (5) in formulas (10), (11) and
taking into account the relations (6) — (9)

Gaa(w,1) + q(2) DG, G, £) = H(w — t) [Waa(a,1) + a(w) DEW (w,1)| -

_ x((ll (t))) [Wm(a:, 0) + q(z) Dg, W (z, 0)} —0, 14
Gula, 1) + ()G, 1)) = Hlw — 1) [Waula, 2) + 04 la ()W ()] +
+I;[/‘//((l O)) [th(l t) + O lq(t)W (I, t)ﬂ 0. (15)

From the representation (5), by virtue of the relations W (0,0) = 0, W(l,l) = 0, we have the
equality

G0.4) =0, GULH=0, G0 =0, Gla.i)=0. (16)
Differentiating equality (5) by = and by ¢
G, ) = H(z — )W (a, 1) — W(llo) Wt 0w, 0], (17)
Gi(w, ) = H(z — )Wy(x, t) — vvéo) W, 0wi.)]. (18)

and substituting formulas (17), (18) into relations (12), (13), taking into account that W(zx) is a
continuous function, H(x) is a function discontinuous at zero, and taking into account the equalities
Wye(z,z) =1, Wi(z,z) = —1, we get

Gz(z,240) — Gy(z,2 — 0) = lim H(e)W,(z,x) [Wx )}—
e——0
lim H ()W, (2, 2) + — [W (1a)] = - (19)
e A T gy [ e
Gi(z,z +0) — Gy(x,z — 0) = limOH( eYWy(x, x) {W (z,0)W(1 x)}
e——
= Jim HEWia, ) + 5005 [W@,O)Wt(z,x)} —1, (20)
which proves the validity of formulas (12) and (13). Lemma 2 is proved.
It follows from the relations (17), (18), by virtue of formulas (7) and (9), the equalities
W (z,0)W(L,0) W (x,0)
Gt(‘r70) t(.T,O) W(Z,O) ’ Gt(x7 ) W(l, O) ( )

Presentation of the solution

At this point, we will find a representation of the solution to the problem (1), (3).

Theorem 1. Let g(x) be absolutely continuous on the segment [0,!], and ¢(z) <0, f(x) € L[0,]] N
(10, 1[. Then if the condition W (l,0) # 0 is satisfied, there is a unique regular solution to the problem
(1), (3). The solution has the form

l
(@) = —uoGa(z, 0) + wGil, 1) + / Glo (23)
0
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Proof. Let u(zx) be a regular solution of the equation (1). Multiply both sides of the equation (1)
by the function G(z,t) after changing the variable x into ¢, and integrate the resulting equality by ¢
in the range from 0 to I. Then we have

! l
/G:z:t "( dt+/Gmt q(t) Dgyu(t) /G (24)
0 0

Integrating in parts the first term of the left side of equality (24), given that the function G(z,t)
has a jump, having previously split the integration interval into two intervals from 0 to « and from x
to [, we will have

l—e

lin%) G(z,t)u" (t)dt = lim [u’(l —&)G(z,l —¢) —u'(e)G(x,¢) /Gt x, t)u' (t)dt—
E—

e—0

— / Gt(x,t)u’(t)dt] =u'(1)G(z,1) — u'(0)G(x,0) — u(l)Ge(x, 1) + u(0)Gy(z,0)+

+u(z) [Ge(z, z + 0) — Gy(z,x — /Gtt z,t)u (25)

According to the formula of fractional integration by parts and equalities (16), the second term of
the left part of the formula (24) can be rewritten as

l
/G (t)Dg,u(t)dt = q(1)G(z, l)Dg‘flu(t) —q(0)G(x, O)Dg‘(;lu(t)—
0
la / 9
- [ 5 a®GE Dt =~ [ w5 a0 . )it =
0 0
l
- / w(8)05[q(8) G, 1)]dt. (26)

0

Considering formulas (20), (25), and (26) by equality (24) we obtain

l
u(z) + / u(t) [Gr(e. 1) + B la(1)C e, 1)]| e =
0

!
= —u'(1)G(x,1) + 4 (0)G(z,0) + w(l)Gi(z,1) — u(0)Gy(x,0) + /G
0
from which, by virtue of the relations (15) and (16), we obtain the formula (23).
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Let us now show that the function u(x), defined by formula (23), is indeed the solution of problem
(1), (3). Differentiating equality (23) twice, taking into account the formula (19), we will have

l
u'(x) = —ug [Gt(x,(])} + u [Gi(w,1)] —F/GgC t. (27)
0

From formula (27) we get

x !
u"(z) = —uo[Gi(x,0)]” +w [Gi(x,1)]" + % / Gy (z, t) f(t)dt + / Go(z, ) f(t)dt| =
0 x
!
= o [Gil.0)]" + Gl )] + [ Guala, (DY + (2). (28)
0
Further, from formula (23) we have
!
D¢ u(x) = —ug DG, Gi(z,0) + w DG, G (z, 1) —|—/f ) D5, G(x, t)dt. (29)
0

Substituting formulas (28) and (29) into equation (1), by virtue of equality (14), we obtain that the
function defined by relation (23) is indeed the solution of equation (1). Taking into account formulas
(16), (21), (22), the direct substitution of function (23) into equality (3) gives the correct identities.
Theorem 1 is proved.

An analogue of the Lyapunov inequality

At this point, we reduce the homogeneous problem
W(2) + q(@)Du(z) =0, w(0) =0, u(l)=0 (30)

to the Fredholm integral equation of the second kind, with the help of which we obtain an analogue of
the Lyapunov inequality.
Since by the condition u(0) = 0, then through the property of the fractional differentiation operator
we have the equality
Dgu(x) = D "ol (a).

Given the last formula, we will act on both parts of the first equality (30) with the operator Do_ml.
Then, with respect to the function u/(z), we obtain the loaded integral equation

x

o' (z) + /q(t)DS‘t_lu’(t)dt =/(0). (31)

0

To determine the unknown constant «'(0) in formula (31), we will act on both parts of equality
(31) with the operator D;-'. Then we will have

l
w(l) — ulz) + / / o(8) D5l (s)dsdt = ! (0)(1 — ). (32)

t
z 0

88 Bulletin of the Karaganda University



An analogue of the Lyapunov inequality ...

Letting x tend to zero in equation (32) and taking into account the equalities u(0) = 0, u(l) = 0,

we get that
It
/ / q(s) D& M (s)dsdt. (33)
0 0

Substituting now formula (33) into equality (31), after simple transformations, we obtain the
Fredholm integral equation of the second kind with respect to the function u/(z)

N"—\

l—t

() = /Z q(t) [z — H(zx - t)] DEL/ (t)dt. (34)
0

Theorem 2. Let g(x) be continuous on the segment [0,[], the homogeneous problem (30) has a
nontrivial solution u(x). Then there is an inequality

l
[ lataidz > o (35)
0

Proof. First, we note that if u(x) is a nontrivial solution of equation (30) satisfying the conditions
u(0) = 0, u(l) = 0, then and the function «'(z) # 0. It is valid if u/(x) = 0, then u(z) = const, and by
the condition u(0) = 0, therefore, in this case, we have u(z) = 0, which contradicts the condition of
Theorem 2.

Suppose that

U= max |u'(2)].

Then from equation (34) we have the inequality

!
tl—oz
<u- — H(zx —t)| =—dt.
S U / ' (z )‘F(Q ~a) (36)
0
The function
F(.’IJ t)— l;t_H(x_t) i
o I'2—-a)

takes the largest value at x = ¢t = [, therefore, given the equality
ll—a

Frax = F(,1) = T2—a)

from the relation (36) we have the inequality

ll—oz !
— >
oy ] l0lar=1,
0

that is equivalent to (35). Let us call inequality (35) an analogue of Lyapunov’s inequality.
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B.U. 9denanen

PFA KBFO Koadanbaav, mamemamuka sicone agmomammardopy uncmumymst, Harvuuk, Pecet

Beamniek TybIHABLIBI KoHE aiifHBIMAJIbI KO3 duImeHTTi
eKiHII peTTi KapanaiibiMm audepeHIaaablK TeHJey
yiriH JIgmmyHoB TeHCI3airiHiH aHAJIOTbI

MakaJtazia aliabiMasibl Kodddunuentti Puman—/luyBusib MarbiHACBIHAAFBI O0JIITIEK TuddepeHnuaiiay omne-
paTopsl 6ap eKiHII peTTi KapamaiibiM nuddepeHInaiIbK TeHeY 3epTTeireH. [ puH OyHKITUSICHIHBIH, 9/1iCi-
MEH KapacCThIPBLIFAH TeHJEY/IiH e M/IUTK IIapThiH OpbIHIay1a dupuxiie ecebiniy mernmiMiniag MoHi TabbLI-
raH. 3epTTeJieTiH TeH ey IiH, iprei memnriMi GoiibiHina ['puHHIE THICTI PYHKIUICH KYPBLIIbI )KOHE OHBIH Ka-
crerTepi apsesaeH . JISmyHoB TeHCI3miriniy aHaJIOTHl e aTajaTeiH 6iprekTi upuxie ecebinin TpuBmat
eMec IIenriMi GOy bIHBIH KAXKeTTi MHTErPAJIJIbIK, TapThl TAOBLIIbI.

Kiam cesdep: Puman—JluyBuib Gesek muTerpasibl, Puman—J/InyBuib Gesiiek TybIHABICHI, ['epacnMoB—
Kamyro 6emnmex Tywiamapicel, Jlupuxie ecebdi, 'pun dyHKImsICH, JISTYyHOB TEHCI3MINrHIH aHAJJIOTH.
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B.U. 9denanen

Hnemumym npuxaadnot mamemamuryu u asmomamusavuy KBHI] PAH, Haavwuk, Poccus

AmnaJjior HepaBeHcTBa JIgmyHoBa 1y OOBIKHOBEHHOT'O
anddepeHImaIbHOr0 YypaBHEeHsT BTOPOTO MOPAIKa C APOOHOIT
MMPOU3BOJIHOM 1 C IepeMeHHbIM KO3 PUunmeHToM

B crarpe uccremoBano oObikHOBeHHOE IauddepeHInaIbHOe ypaBHEHNE BTOPOTO MOPSIKA C OIMEPATOPOM
npobuoro auddepeHnupoBanus B cMbiciie Pumana—JInyBuiis ¢ nepeMeHHbIM KoddduimenToM. MeTomom
dbyukun ['puHa HaliIeHO TIpe/iCTaB/IeHNe peleHus 3agadn Jlupuxie mjis paccMaTpuBaeMoOro ypaBHEHUsT
[IPU BBINOJIHEHUN YCJIOBUs paspermumoctu. [locTpoena coorBercrByomas (yHKnus ['puHA B TepMUHAX
dyHIaMEHTAILHOIO PEIIeH sl UCCJIelyeMOro YpaBHEHUsI U JOKa3aHbl ee cBoiicrBa. HalijleHo Heobxoumoe
WHTErPaJIbHOE YCJIOBHE CYIECTBOBAHUS HETPUBUAJIBLHOTO PEIEHUsT OTHOPOIHOM 3amaun Jlupuxie, Ha3BaH-
HOE aHAJIOTOM HepaBeHCTBa JIamyHoBa.

Karouesvie caosa: mpobubtit marerpan Pumana—Jluysunns, npobuas npoussonnast Pumana—JIuysusis, 1po6-
Has npousBogHas ['epacumoBa—Kamyro, 3amada dupuxie, dyuknus ['puna, anasor vHepaBercTsa JIsmyHo-
Ba.
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Integro-differential equations with bounded operators
in Banach spaces

The paper investigates integro-differential equations in Banach spaces with operators, which are a composi-
tion of convolution and differentiation operators. Depending on the order of action of these two operators, we
talk about integro-differential operators of the Riemann—Liouville type, when the convolution operator acts
first, and integro-differential operators of the Gerasimov type otherwise. Special cases of the operators under
consideration are the fractional derivatives of Riemann—Liouville and Gerasimov, respectively. The classes
of integro-differential operators under study also include those in which the convolution has an integral
kernel without singularities. The conditions of the unique solvability of the Cauchy type problem for a linear
integro-differential equation of the Riemann—Liouville type and the Cauchy problem for a linear integro-
differential equation of the Gerasimov type with a bounded operator at the unknown function are obtained.
These results are used in the study of similar equations with a degenerate operator at an integro-differential
operator under the condition of relative boundedness of the pair of operators from the equation. Abstract
results are applied to the study of initial boundary value problems for partial differential equations with
an integro-differential operator, the convolution in which is given by the Mittag-Leffler function multiplied
by a power function.

Keywords: integro-differential equation, integro-differential operator, convolution, Cauchy problem, Cauchy
type problem, degenerate evolution integro-differential equation, initial boundary value problem.

Introduction

In recent decades, the importance of fractional integro-differential calculus has grown markedly in
solving both theoretical and applied problems in many areas of mathematical modeling: In continuum
mechanics, in mathematical biology, in finance theory, etc. [1-4]. At the same time, over the past few
years, works have appeared containing the construction of new fractional derivatives, which in most
cases are compositions of a convolution operator and the operator of an integer order differentiation,
but unlike classical fractional derivatives, the kernel in the convolution operator has no singularities
[5, 6].

This paper considerers abstract integro-differential operators of the form of composition of a
convolution and an integer order differentiation and equations in Banach spaces with them. Using
the methods of the Laplace transform theory, we investigate the initial problems for such equations are
formulated and the issues of the unique solvability of such problems are investigated. If m — 1 < a <
m € N, the kernel in the convolution is a power function s™~%/I'(«) at the differentiation operator
of the order m, the integro-differential operator is the Riemann—Liouville or Gerasimov fractional
derivative, depending on the order of action of the convolution and the integer order differentiation.
In other cases, we obtain other integro-differential operators of Riemann—Liouville or Gerasimov type.
Note also that the kernel in the convolution is supposed to be operator-valued. This makes it possible
to study some systems of equations within the framework of the studied equations in Banach spaces,
for example, with fractional derivatives of various orders.

*Corresponding author.
E-mail: karQ@csu.ru
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The first section contains the Cauchy type problem for the linear equation in a Banach space with
an integro-differential operator of Riemann—Liouville type, when the convolution operator acts on the
function first, and with a bounded operator at the unknown function. A unique solvability theorem
was proved for the problem, the solution is presented in the form of a sum of the Dunford—Taylor
integrals. In the second section, the Cauchy problem is studied for the equation with an integro-
differential operator of Gerasimov type, when the convolution operator acts after the differentiation
operator. We show that there exists a unique solution to such problem, and present the solution in the
similar form as in the previous section. In the third and fourth sections, initial problems for analogous
linear equations with a degenerate operator at an integro-differential operator are studied under the
condition of relative boudedness of the pair of operators from the equation. The last section contains an
application of abstract results to initial boundary value problems with an integro-differential operator
of Atangana—Baleanu type [6] with singular kernel (with the Mittag-Leffler function multiplied by
a negative power as the kernel of the convolution) with respect to time and with some differential
operators in spatial variables.

Note that, by similar methods, various fractional differential equations in Banach spaces, including
degenerate ones, were researched in the works [7-10], see the references therein also. In this sense, it is
necessary to mention the monograph by J. Priiss [11] on evolution integral equations in Banach spaces.

1 Integro-differential equation of Riemann—Liouville type

Let X be a Banach space, E(:\i') be the Banach space of all linear bounded operators on X,
Ae LX), Ry ={aeR:a>0} Ry :={0} UR;, K € C(Ry; L(X)). Define the convolution

Kl’ = t — S|\ S S
(52 (1) /OKa Ja(s)d

and integro-differential operator of the Riemann—Liouville type

t
(D™ E ) (t) == D™ (JEz)(t) == Dm/ K(t — s)x(s)ds,
0
where D™ is a usual derivative of the order m. Consider the Cauchy type problem

JE)® () =2, e X, k=0,1,...,m—1, (1)

for the equation

(D™ z)(t) = Az(t), t > 0. (2)

A solution of problem (1), (2) is called a function = : R, — X, such that JXx € C™ 1(R,; X) N
C™(R4; X), conditions (1) and equality (2) for t € R are satisfied.

For a function h : Ry — X we denote its Laplace transform by 71\, or £[h], if the expression for h
is too long.

Suppose that Kisa single-valued analytic operator-function in the region

Qr, ={p € C:|u|l > Ry, |argu| < 7}

for some Ry > 0 and define the operators

1 ~
X(t) = 5 /(AmK()\) —A)TIANmIRAGN D >0, k=0,1,...,m—1,
v
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where v := YR Uyr4+ U~gr_ is a positively oriented contour, ~g := {Re®” : p € (—m,m)},
YR+ = {re™ :r € [R,00)}, yg,— = {re”™ :r € [R,00)}, R > Ry.

Theorem 1. Let A € L(X), K € C(Ry;L(X)), there exist K, which be single-valued analytic
operator-function in Qp, for some Ry > 0, and

>0 >0 YAEQR, KON gy > AN (3)

Suppose that for all A € Qp, there exists IA(()\)_I € L(X). Then for all xg,z1,...,Tm-1 € X there
exists an unique solution to problem (1), (2). It has the form

[y

m—
Xy ()
k=0
Proof. Due to condition (3) there exists 0 > Ry > 0 such that for all A € Qs H)\*ml?()\)*lHﬁ(X) <
cTHAPTXT™ < (2]|All£x)) ! Hence, there exists the inverse operator (AMK(A) — A)~ and

[e.e]

IAmE ) = A) gy = |)\\_m(”+1)\|f?()\)_1||2ﬁ)HAHZ(X) <
n=0
o —n— —x—m)(n n 2
<Y e A memED AR ) < AT

n=0

Here we obtain the inequality [|(] — )\_mAI?()\)_l)_lﬂﬂ(X) < 2 also. Besides,

IATE ) = A) A gy = (1= A EN) A TR TN g < 2e7T A TRX

and there exists the Laplace transform )?k fork=1,2,...,m—1and for £k =0, if y > 1. For k = 0,
X € (0,1) we have by the definition

o
2RIXeRt 9 QRIXeBE o7 (1 — )X 1
[ Xo(®)[| < U L2 ety = ° 4 (1=x)
C e C e
R

for k =0, x = 1, choosing R > 1, obtain

2eftt N o0 (1/2)t~1/2

C e

< Ct7 126l ¢ > 0.

There exists the Laplace transform )?0.
Take R > ¢ in the definition of . We have for [ € {0,1,...,m — 1}

TEX,(\) = KO)X ) = KO AR () — A)~Iam=1= = \=1={(1 — \mm AR (\) 1)L,

consequently,

1
JEX(t) 2/A U= A AK (W)Y teMdr, >0,
Y
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1 .
7 / N XM ARKR (V)Y T eMdN, >0,
e
ol

for k,l =0,1,...,m—1. Forevery k=0,1,...,0—1

(X)) W) =

1 g D=1y — 2
INTEHT = AT AR () ) gz < B

hence, (JXX;)®)(0) = 0. For k =1

1 ~
()00 = o / AT = ATMAR ()" LeMan =
T
J

L[S ko ren - [ S ko

27
¥ n=0 ¥

ST e AT AR gy =
L(X) n=1
AT Ay _ Al
AL = AP Al ggay) el A X
Therefore, (JXX;)D(0) = 1.
Now let k=1+1,14+2,...,m —1, then

A7 i ATTAK (A) "

n=1

1 .
(JEX) B (t) = zm/)\k_l_l_m(l—)\_mAK()\)_l) AR\ 'eMdN, t>0,
Y
eiem g B L1 A By 2||All
”)\k 1-1 ([—)\ AK()\) 1) IAK(/\) 1HE(X)§WXJ£1)

due to (3). Hence, (J¥X;)®)(0) = 0 and all conditions (1) are satisfied.

We have

1

D™(JEX))(t) = 5 Z/Am T = A AK (W)~ leMdn =
T

)
1 .
=5 A== RO WPK (N) — A) 7 eMdh = AX (1), >0,
T
)

hence, equality (2) holds.

If there exist two solutions y; and y, to problem (1), (2), then y := y; —y2 is a solution to the same
problem with zp = z1 = -+ = 1 = 0. Define y on (T, +0o0) at some T > 0 by zero. Then there
exists ¥, and due to (1), (2) ()\mK()\) A)y(A) = 0 for ReA > 0. Under the conditions of this theorem
y(\) = 0, therefore, y(t) = 0 for t € (0,T). Since we can choose an arbitrary T' > 0, then y(¢) = 0 and
y1(t) = y2(t) for all t > 0.

Consider the inhomogeneous equation

(D™ E2)(t) = Ax(t) + f(t), t € (0,T), (4)

96 Bulletin of the Karaganda University



Integro-differential equations ...

with f:(0,7] — X.

Lemma 1. Let A € L£(X), K € C(Ry;L(X)), there exist K, which be single-valued analytic
operator- function in Qp, for some Ry > 0, and condition (3) hold. Suppose that for all A € Qp, there
exists K(A\)™! € L(X), f € C((0,T); X)NL1(0,T; X). Then there exists an unique solution to problem
(1), (4) with g = 21 = ... = zyp—1 = 0. It has the form

Proof. We have Z¢(\) = X1V FN) = AWK () — A)_lf()\), therefore,
TKzp(\) = RO)A"E () = A) 7T, T8t = / X(t - 5)f(s)ds,
0

where

Hence, | X ()| zx) < Ot F L forallt € (0,T), k=0,1,...,m—1; X®(0) =0,k =0,1,...,m—2,
and

t
(JEz ) ( /X f(s)ds, k=0,1,...,m—1,
0

t
I1(T52 )P (O 2y < C / 1f()lcyds,  (TFzp)®(0)=0, k=0,1,....m—1.
0

Finally,
Sl p)™] = AME N A"E(N) — A7) = AAME(A) — A) TN + FV),

therefore, equality (4) is fulfilled. Hence, x is a solution to problem (1), (4). The uniqueness of a
solution can be proved in the same way, as for the homogeneous equation.
The assertions follow immediately from Theorem 1 and Lemma 1 due to the linearity of equation (4).
Theorem 2. Let A € L£(X), K € C(Ry;L(X)), there exist K, which be single-valued analytic
operator- functlon in Qp, for some Ry > 0, and condition (3) hold. Suppose that for all A € Qp, there
exists K(\) ™t € L£(X), f € C((0,T); X) N Ly(0,T; X). Then for all zg,x1,...,%m_1 € X there exists
an unique solution of problem (1), (4). It has the form

—_

- t
X (t)zp, —l—/Xm 1(t —s)f(s)ds.

2 Integro-differential equation of Gerasimov type

Consider the integro-differential operator of Gerasimov type

(DE™g)(t) := JE(D™z)(t) == / K(t — s)z'™(s)ds.
0
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Consider the Cauchy problem
P =a,eX, k=0,1,...,m—1, (5)

for the equation
(DE™z)(t) = Az(t), t > 0. (6)

A solution to problem (5), (6) is called a function z € C™ 1(Ry;X) N C™(Ry; X), such that
JEz(m) ¢ C(Ry; X), conditions (5) and equality (6) for t € Ry are satisfied.

Theorem 3. Let A € L(X), K € C(R4+;L(X)), there exist IA(, which be single-valued analytic
operator-function in Qpg, for some Ry > 0, and condition (3) hold. Suppose that for all A € Qp, there

exists K(\)~! € £(X). Then for all 29, x1,...,2Zm_1 € X there exists an unique solution to problem
(5), (6). It has the form

m—1
z(t) = ) Yi(t)wg,
k=0
where .
Yilt) = 5 /(Amff()\) —A)TTKWAT IR AN B =0,1,...,m— 1.
T

Y

The contour -y is defined as in the previous section.
Proof. We have

[ATE ) — AR A E ey = ([ = AR L) IR oy < 20 7FL

So, there exists the Laplace transform lA/k fork=1,2,....m—1. For k=0

_ L -1 = —mn( 7o —1 g\n At
Yo(t)_I+2m,/)\ ;A (K(\)"TA)meMd,
) _

ST e AT A R g =
£(x) n=1
_ AT Al £ 2[|All £ (x)
IAN[(1 = A Al £ x)) — c|AP™

A i AT(E(N) A"
n=1

Thus, there exists the Laplace transform )?0.
For large enough R > 0 in the definition of v, k,l € {0,1,...,m — 1}

1 ~
v =5~ / M= AR ()T A) ey, > 0.
Y

By repeating the reasoning from Theorem 1, we get the fulfillment of conditions (5) with arbitrary
xz € X, x =0 for every k € {0,1,...,m — 1} \ {l}.
Further, we have

o — —

JEY, () = RY, ™ (A) = RN Ti(A) = Xm=11),

JEY (1) = = / AR (AL = AR (M) TTA) T - TeMdA =
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1 ~
= A AT = AR (W) TTA) TteMaN = AY(t), t> 0.
T
v

The uniqueness of a solution can be proved in the same way as in Theorem 1.
Consider the inhomogeneous equation with f: [0,7T] — X

(DFma)(t) = Ax(t) + f(t), t €[0,T). (7)

Lemma 2. Let A € L(X), K € C(Ry;L(X)), there exist K, which be single-valued analytic
operator- functlon in Qp, for some Ry > 0, and condition (3) hold. Suppose that for all A € Qp, there
exists K(\)™! € £(X), f € C([0,T]; X). Then there exists an unique solution to problem (5), (7) with
T0=21=...= Tm—1 = 0. It has the form

t
/Xm 1(t — s)f(s)ds.
0

Proof. For k =0,1,...,m — 2 we have X,S’f)_l(O) = 0, hence,

Since

2

IR = A ey = INTRO)H =X ARN ™) Me < gy

we have ||X£:Z1(t)“,c(x) < Ct™=*=24X consequently,
129 (D)l 22y < Cillfleqorpat™ %, e ) =0, k=0,1,....m 1.
Further,
S = AR (AWK (V) — A)TLF) = AQ™R (V) — AL + T,

hence, z ¢ is a solution to problem (5), (7). The proof of the uniqueness of a solution is the same as in
Theorem 1.

Theorem 4. Let A € L£(X), K € C(Ry;L(X)), there exist K, which be single-valued analytic
operator-function in g, for some Ry > 0, and condition (3) hold. Suppose that for all A € Qp, there
exists K(A)™! € L(X), f € C([0,T); X). Then for all o, x1,...,Zm_1 € X there exists an unique
solution to problem (5), (7). It has the form

m—1 t
Y5 (t)xy +/Xm 1(t —s)f(s)ds.
Example 1. Take m — 1 < a < m € N, K,(s) := F( )I then J%e := J is the operator of the
fractional Riemann—Liouville integration of the order o, D™®m-a := RL Do i5 the operator of the

fractional Riemann—Liouville differentiation of the order a, D¥m-am .= GC D ig the operator of the
fractional Gerasimov—Caputo differentiation of the order c.
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Example 2. Take X = R?, aij bi; € R, mi; —1 < aj; <my; €N, 4,7 =1,2,m:= ir]njlfiz mij,

m—aq1—1

ai; a2 b1 & b12fﬂmia127l
A:=(a " ) K(s)=(, afaptl | =g
21 22 21 T(m—az1) 22 T(m—a22)

then
Dm,K

< bllRLDOtn blzRLDal2 )

RL poo: RL a2

bo1 bao

for Gerasimov—Caputo derivatives similar construction case is possible in the general, if m1; = mio =
ma1 = Maz. S0, equation (2) has the form of the system of equations

by BED gy (1) 4 b Pl D229 () = agg21(t) + ar22(t),
leRLDOQlZL’l(t) + bQQRLDa22$2 (t) = azl.l‘l(t) + ag2x2 (t)

Note that

= by A= pg \¥2—m
K(Q\) = < bog NO2L=T oo \X22—M > )

therefore, condition (3) is fulfilled with some x € (0, + 1 —m), and the condition of reversibility of
K () for large enough |A| is not too restrictive. Indeed, K ()) is invertible, only if the matrix, consisting
of b;;, does not contain zero rows and zero columns, and ajia22 # a120i21, or biibaa # biabay in the
case (x11(x92 = (120217 .

3 Degenerate equation of Riemann—Liouville type

Assume that X and ) are Banach spaces, L € L£(X;)), i.e., it is a linear bounded operator from
X to Y, M € Cl(X;)), i.e., it is a linear closed operator with a dense domain Dj; in X, acting to
Y. Introduce the denotations p”(M) := {u € C: (uL — M)~' € L(Y; &)}, Rﬁ(M) = (uL — M)7'L,
Lﬁ := L(uL — M)~t. We will suppose that ker L # {0}, in other words, the operator L is degenerate.
An operator M is called (L, 0)-bounded, if

Ja>0 YpeC (lul>a)= (uept(M).

In [12; 89, 90|, it was shown that if an operator M is (L,o)-bounded, 7, := {u € C: |u| =r > a},
then the operators

p=_bt RY(M)dp € L(X), Q 1/L5(M) du € L(Y)

27 27
r r

are projections. Put X0 := ker P, X! := imP, )° := ker@Q, V! := imQ. Denote by L; (M) the
restriction of the operator L (M) on X* (Dyy, = Dy N X*), k=0, 1.

Theorem 5 |12; 91]. Let an operator M be (L, o)-bounded. Then

(i) My € L(XY; YY), Mo € CL(X0;)°), Ly € L(X%VF), k=0,1;

(ii) there exist operators Mgl € E(yo; Xo), Lfl € £(y1; Xl).

Denote G := M, 'Lo. For p € Ny := NU {0} operator M is called (L, p)-bounded, if it is (L, o)-
bounded, G? # 0, GPT! = 0.

Consider the initial problem

DFE(P2)(0) =z, k=0,1,...,m—1, (8)
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for a linear inhomogeneous integro-differential equation of Riemann—Liouville type
LD™ Ry (t) = Mx(t) + g(t), te (0,7, (9)

in which g € C((0,77;Y). This equation is called degenerate, since it contains degenerate operator L
at the integro-differential operator.

A solution to problem (8), (9) is called a function z : (0,7] — Dy, for which Mz € C((0,7];)),
JEPz € C1([0,T);Y), J5x € C™((0,T]; ), equality (9) is valid for all ¢ € (0, 7] and conditions
(8) are true.

Lemma 3. Let K € C(Ry;L(X)), H € L(X) be a nilpotent operator with a power p € Ny, a
function h : (0,7] — X be such that for [ = 0,1,...,p (D™FH)'h € C((0,T]; X), D™X(D™KH)!h €
C((0,T]; X). Then there exists a unique solution to the equation

D™ K Ha(t) = x(t) + h(t). (10)
It has the form )
2(t) ==Y _(D™FH)'h(t). (11)
=0

Proof. Let z = z(t) be a solution of (10). Act by the operator H on the both parts of (10) and obtain
the equality HD™® Hz(t) = Hz(t) + Hh(t). Under the theorem conditions there exists a continuous
derivative D™ for the the right-hand side of this equality. Acting by D% on the both parts of this
equality, we will get

Continuing such arguing, we obtain that
P
2+ Z(Dm,KH)lh — (Dm,KH)p+lz — (Dm,K)p+1Hp+1Z =0
=0

due to the continuity and nilpotency of the operator H. The existence of a solution can be checked by
the substitution of (11) into (10).

The difference of two solutions is a solution of equation (10) with A = 0, then (11) implies that the
difference is identically equal to zero.

Define

1
Uk(t) = 5 — /()\mK(A) LMy I ImkeMay >0, k=0,1,...,m— 1.
ol

Theorem 6. Let an operator M be (L,p)-bounded, K € C(Ry;L(X)), there exist K, which be
single-valued analytic operator- functlon in Qp, for some Ry > 0, and condition (3) hold. Suppose that
for all A € Qpg, there exists K(A\)™ € £(X), g € C(0,T);Y) N L1(0,T; ), (D™EG M T - Q)g,
DR (DMEGY My NI — Q)g € C((0,T); X) for I = 0,1,...,p, a1, € Xl, kE=0,1,...,m — 1. Then
there exists a unique solution to problem (8), (9), it has the form

—

m—

k=0 =0

Ust)as + [ Unes(t = )L Qals)ds = Y (D" G) M5 (I - Qo)
0

Proof. Acting on the both sides of (9) by L7'Q € L(Y'; &), obtain
D™ Fo(t) = Ly Myo(t) + Ly Qg(1), (12)
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where v(t) = Pz(t). Act by the operator My (I — Q) € £(Y°; X°) on (9) and get
D™ R Gu(t) = w(t) + My (I - Q)g(t), (13)

w(t) = (I — P)x(t). Here we use the evident equalities LP = QL, MP = QM and Theorem 5.

Conditions (8) can be rewritten in the form
DREyp(0) =2y, k=0,1,...,m — 1. (14)

By Theorem 2, problem (12), (14) has an unique solution, and it has the form

3
L

B
Il

o) = S Up(t)ag + / Ui (t — )L Qg(s)ds.
0 0

Due to Lemma 3, equation (13) has an unique solution
P
w(t) ==Y (D™FG) My (I - Q)g(t).
0

=

Remark 1. It is not difficult to make sure that for p = 0 we have Ly = 0, hence, initial conditions
(8) are equivalent to the conditions

D™ ELx(0) =ye, k=0,1,...,m—1, (15)

where y, = Lzy, or xp = Lflyk, k=0,1,...,m—1.
Remark 2. Tt follows from the proof of Theorem 6 that if we consider the Cauchy type problem

D™ (0) =2, k=0,1,...,m—1,

for equation (9), we obtain the necessity of conditions

p
(I - P)‘Tk = _Z(DWMKG)ZMO?l(I - Q)g(O), k= 07 17 cees M — ]-a
=0

for the problem solvability.
4 Degenerate equation of Gerasimov type
Now consider the initial problem
(Pz)®)(0) =z, k=0,1,...,m—1, (16)
for a degenerate linear inhomogeneous integro-differential equation of Gerasimov type
LD5™g(t) = Ma(t) +g(t), tel0,T], (17)
in which g € C(]0,T]; ).
A solution to problem (16), (17) is called a function x : [0, 7] — Dy, for which Mz € C([0,T];)),
Pz c ¢ 1([0,T);Y), LI%z™ € C([0,T];Y), equality (17) is valid for all ¢ € [0, 7] and conditions

(16) are fulfilled.
Analogously to Lemma 3 the next assertion can be proved.
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Lemma 4. Let K € C(Ry;L(X)), H € L(X) be a nilpotent operator with a power p € Ny, a
function h : [0,T] — X be such that for I = 0,1,...,p (DX™H)!h € C([0,T); X), DX™(DE™H)!h €
C([0,T]; X). Then there exists an unique solution to the equation

DEM™Hx(t) = x(t) + h(t).
And it has the form ,
— ey
1=0

Define

1 . .
Vilt) = 5 /()\mK(A) — L7 M) IR )N RGN >0, k=0,1,...,m —1,

~

Theorem 7. Let an operator M be (L,p)-bounded, K € C(R4;L(X)), there exist K, which be
single-valued analytic operator-function in {2g, for some Ry > 0, and condltlon (3) hold. Suppose that
for all A € Qp, there exists K(\) ™1 € £(X), g € C(0,T); D), (DKmG)lM YT —Q)g e C(0,T); x),
DEm(DEmGY M (T — Q)g € C([0,T); &) for I = 0,1,...,p, 2 € X', k = 0,1,...,m — 1. Then
there exists an unique solution to problem (16), (17), it has the form

3
L

B
Il

t
z(t) = ) Vi(t)zy +/Um—1(t —s)Ly ' Qy(s) z”: DEmG) MG (T - Q)g(t).
0 0 1=0
Proof. As in the proof of Theorem 6, reduce the problem to the system
Df™u(t) = Ly Mu(t) + Ly 'Qq(t),  DM™Gu(t) = w(t) + My (I — Q)g(t),
where v(t) = Px(t), w(t) = (I — P)z(t), endowed by the initial conditions
v®(0) = x4, k=0,1,...,m—1.

By Theorem 4 and Lemma 4 we get the required.
Remark 3. For p = 0 initial conditions (16) are equivalent to the conditions

D™ ELx(0) =y, k=0,1,...,m—1,

where yp, = Lz, k=0,1,...,m — 1.
Remark 4. For the Cauchy problem

e®0) =z, k=0,1,...,m—1,

to equation (17) the conditions

p

(I - Pz =—Y (DG My (I-Q)g(0), k=0,1,...,m—1,
=0

are necessary for the problem solvability.
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5 Application to initial boundary value problems

Take a € R, a > 0, B € (0,1), K(s) = s PE,1_p(as¥)I, then

R NotB-1
K\ = S

satisfies condition (3) with y € (0,8), and it is invertible for all |\| > a'/®. Here E, s is the Mittag-
Leffler function. Note that the kernel K (s) is singular at zero.
0 . 4 .
Let Py(A) = > N, Qp(N) = > djN, ¢5,dj € C, j = 0,1,...,0 € N, ¢, # 0. Suppose that
=0 =0
Q c R? is a bounded region with a smooth boundary 9,

lalqy( s _
(Au)(s) i= 3 ay(9) gl e c@),

0s1'9s® ... 9gld’
lq|<2r L =e2 d

dlaly(s)
(B b , b, € C°00N),1=1,2,...,1,
) ng:r, ta(s 83’{18352 .08k la (09) "
q=(q1,q2,---,4q2) €N& |g| = @1 + -+ qa, the operator pencil A, By, Bo, ..., B, is regularly elliptical

[13]. Define an operator A € Cl(L2(£)), acting on the domain
Dy, = Hip () :={v € H(Q) : Bio(s) =0,1=1,2,...,7, s € 00}

by the rule Aju := Au. Let A; be a self-adjoint operator, then the spectrum o(A;) of the operator Ay
is real, discrete, with finite multiplicity [13]. Suppose, in addition, that the spectrum o (A1) is bounded
from the right and does not contain zero, denote by {¢y : & € N} an orthonormal in Lo (2) system
of eigenfunctions of the operator A;, numbered in the order of non-increasing of the corresponding
eigenvalues {\; : k € N}, taking into account their multiplicity.

Consider the initial boundary value problem

t
k

gtk /(t —8) PEai-plat — s)*)u(&, s)ds|i—o = ur(§), k=0,1,...,m—1, £ € Q, (18)
0
BAFu(ét) =0, k=0,1,...,0—1, 1=1,2,...,r, (£t)€dQx (0,T], (19)

om |
PQ(A)aTm /(t —5) P Ean-p(a(t — s)*)ul(, s)ds = Qu(M)u(&,t) + h(¢, 1) (20)
0

in Q x (0,7]. Here

Kue.t) = [(6= ) Earalalt = 5)ulg.5)ds
0

is the Atangana—Baleanu type integral [6], but with a singular kernel, A : Q x [0,7] — R. Take
X ={ve H?(Q): BA*v(s) =0,k =0,1,...,0-1,1=1,2,...,7, s € 0N}, Y = La(Q), L = P,(A),
M = Q,(A) € L(X;)).

Let P,(\) # 0 for all k € N, then there exists an inverse operator L1 € £(); X) and problem (18)-
(20) is representable as problem (1), (4), where A = L™'M € L(Z), x1, = ui(-), k = coo,m—1,
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f(t) = L7'h(-,t). By Theorem 2 there exists a unique solution to problem (18)-(20) for any u; € X,
k=0,1,....,m—1,if h € C((0,T]; L2(2)) N L1(0,T; X).

Now assume that P,(Ax) = 0 for some k € N. If the polynomials P, and @, have no common roots
on the set {\;}, the operator M is (L,0)-bounded (see [14]), the projectors have the form

P = Z (o or)er, Q= Z (- @x) P,

Po(A)#0 Po(A)#0

where (-, @) is the inner product in Ly(€2). The initial conditions, taking into account Remark 1, can
be given in the form

¢
k
PQ(A)% /(t —8) PEy1_pla(t — s))u(&, s)ds|i=o = yr(s), k= 0,1,...,m — 1, s € Q. (21)
0

Then problem (19)-(21) is represented as (9), (15) with the spaces X, ) and the operators L, M
selected above. Theorem 6 implies the unique solvability of problem (19)—(21), if h € C([0,T7]; L2(12))
and yi € La(R2), k=0,1,...,m — 1, such that (yg, ;) =0 for all I € N, for which P,()\;) = 0.
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B.E. ®enopost, A.JI. Tonosal, B.T. Kuen?

Y Yepabunck memaexemmix yrusepcumemi, Yeanbunck, Peced;
2 Boemmam evavim scone merHoaoeus akademuacoimomy, Mamemamura uncmumymo, Xanot, Bovemmam

Banax keHICTiKTepiHeri 1meKTeJIreH ollepaTopJjapbl bap
nHTerpo-anddepeHIma abIK TeHaeysiep

Maxkanaza xkoHe quddepeHnmaigay KoHe YHIPTKI omepaTopIapblHBIH KypaMIapbl OOJIBIIT TAOBIIATHIH OIIe-
paropJsiapmen Banax kenicririazeri narerpaaapik-auddepeHnualiibk rergeysiep 3eprresred. Ockl exi ome-
PaTOPIBIH 9PEKET €Ty peTiHe 6ailIaHBICThI YilipTKi omtepaTopbl 6ipiHiii speker erkeHie Puman-J/Iuysuib Tu-
miggeri uaTerpo-auddepeHnnalIbK ornepaTopaap, aia backaiia ['epacuMoB TUIITI HHTErpo-audHepeHITnaIIbIK,
OomepaTopJsiap Typasbl alThLIaabl. KapacThIPBUIBIT OTHIPFAH OMEPATOPJIAPIBLIH JepOec Karaailaapbl Coii-
keciume Puman-JInyBuib xone ['epacumMoB 66JIIIIEK TYBIHIBLIAPEI OOJIBIT TAOBLIAIBI. 3€PTTEJIETIH HHTEIPO-
nudHepeHITIAIBIK, OTIePATOPJIAPABIH, KJIACTAPBIHA YHIPTKICI CHHTYJISIPJIBIKCHI3 WHTETPAJIIIBIK, IAPOCHL ap-
Jap na kipeai. Puman-JInyBuiis TUNTI CHI3BIKTHIK, HHTErPO-1nddepeHnuaabK Teqaey yiria Kommu taunrec
ecenTiy »KoHe i37esinal QYHKIMS YIIH HIeKTeIreH orneparopbl 6ap ['epaciMoB THITI CBI3BIKTBHIK, HHTEPO-
muddepeHmmanabk, TeHaey yirin Ko ecebinin 6ipereit memiMia Taby mapTTapbl aJablHALL. By HoTmxKe-
Jiep TEHAEYEH OIepaTopJiap KYOBIHBIH CAJIBICTBIPMAJIBI IIIEKTETY] ITaPTHIHAA UHTErPO-IuddepeHInaIbIK,
omepaTop YIIiH e3relle orepaTopbl 6ap YKCac TeHEeYIePl 3epTTey/ie KOJAaHbLIIbI. AGCTPAaKTIII HOTHKE-
sep Murrar-Jlepdaep dyarnmsceiMer GepiireH, ssFHU €PEKINEeTiKTeP] KOK, WHTErPOo-T1uddepeHIINaIbIK,
Y#ipTKi ortepaTopsl 6ap Jaepbec TYBIHIBLILI TEHIEYIEp YIINiH OaCTAlKbI-IIIEKTIK ecerTep/ii 3epTrey e maiiia-
JIAHBLIJIBIL.

Kiam ceadep: nurerpo-auddepeHIuaIblK, TeH ey, HHTerpo-uddepeHnuaiapk oneparop, yitiprki, Komn
ecebi, Ko Tunrec ecer, e3rerne nHTErpo-anddepeHnaaabk TeHIEY, OaCTANKbBI-IIIEKAPAJIBIK, €CEIl.

B.E. ®enopost, A JI. T'onosal, B.T. Kuen?

' Yenabunckuti ocydapcmeennoni yrusepcumem, Jeasbunck, Poccus;
2 Unemumym mamemamury Bvemmnamckot axademuu nayxu u mernosozuu, Xanot, Bvemmam

Nuarerpo-anddepenrmanbiubie ypaBHEHUS
C OrpaHMYEHHBIMHU OllepaTopaMy B 0aAHAXOBBIX IIPOCTPAHCTBAX

B crarbe ucciiejoBanbl nHTErpaIbHO- 1AM HepeHInaIbHbIe YpaBHEHNSI B OaHaAXOBBIX ITPOCTPAHCTBAX C OIle-
paTopamu, TPeACTABIISIONUMEA COO0 KOMITO3UIIUIO ONIEpPaTOpOB CBepTKU U audpepennuposanus. B 3aBu-
CAMOCTH OT TIOPSI/IKA JIEWCTBUSI ITUX JBYX OMEPATOPOB TOBOPHUTCS 00 MHTErpo-anddpepeHnnaaIbHbIX OIle-
paropax tuna Pumana-JlmyBuiuisa, korma mepBbIM JEHCTBYeT ONEpaToOp CBEPTKH, W HHTErpo-anddepen-
[UAJBHBIX OllepaTopax THUIlla l'epacMMoBa B IPOTHBHOM Cjiydae. JaCTHBIMH CJIYYasiMU PACCMATPUBAEMbIX
OIEPATOPOB SIBJISIIOTCST ApOOHBIE Mpon3BoaHble Pumana—/IuyBuias u 'epacumosa coorBercTBeHHO. B mc-
cJle/lyeMble KJIACChl HHTErpo-a1nddepeHnuaabHbIX OIePATOPOB BXOIAT U TaKue, B KOTOPBIX CBEPTKA MMeEeT
WHTErpaJibHOE sIApo 663 cuHTrysstpHOCcTel. [losydeHbl yCIoBusi OMHO3HAYHON Pa3peluMOCTH 33Ia49K THUIIA
Kot gt munetinoro waTerpo-auddepeHnuaabHOro ypapHeHus tuna Pumana-Jluysuiis u 3amagan Ko
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JUIsl JIMHEHOrO WHTErpo-anddepeHnaJbHoro ypaBHeHnusl Tuna [epacuMoBa C OPpAHUYEHHBIM OIEPATO-
POM TIPU UCKOMOM (DYHKIMHU. DTU PE3YIBTATHI UCIOJb30BAHbI IPYU UCCIETOBAHUY AHAJIOTUIHBIX yPABHEHU
C BBIPOXKIEHHBIM OIEPATOPOM IPHU MUHTErpo-AndHepeHInaIbHOM OepaTope MPU YCJIOBHU OTHOCUTEIBLHOMN
OrpaHMYEHHOCTH HAPbI OIIEPATOPOB U3 ypaBHeHUs. AGCTpaKTHbIE PE3yJIbTAThl UCIIOJIbL30BAHBI IIPU UCCJIE]I0-
BaHUM HAYAJIHLHO-KPAEBBIX 3384 JIJIsl YPABHEHU B YaCTHBIX MPOU3BOIHBIX C HHTETPO-IuddepEeHITHATBHBIM
OIEepaToOpoOM, CBEPTKa B KOTOpOM 3agaercs dyukimeit Murrtar-Jleddiepa, To ecth HEe nMeeT 0COOEHHOCTEIA.

Karouesvie caosa: naTerpo-auddepeHnuasbHoe ypaBHeHe, THTErpo-1rd depeHIuaabHbIi orepaTop, CBEpPT-

Ka, 3aga4a Komm, 3agaga Tuna Ko, BeipoxkieHHOE HHTErpo-auddepeHaabHoe ypaBHeHe, Ha9aIbHO-
KpaeBad 3a7ad4a.
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Generalized boundary value problem for a linear ordinary
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This paper formulates and solves a generalized boundary value problem for a linear ordinary differential
equation with a discretely distributed fractional differentiation operator. The fractional derivative is unders-
tood as the Gerasimov—Caputo derivative. The boundary conditions are given in the form of linear function-
als, which makes it possible to cover a wide class of linear local and non-local conditions. A representation of
the solution is found in terms of special functions. A necessary and sufficient condition for the solvability of
the problem under study is obtained, as well as conditions under which the solvability condition is certainly
satisfied. The theorem of existence and uniqueness of the solution is proved.
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Introduction and statement of the problem

In the interval 0 < < 1, let us consider the equation
Y Bidhulz) + dulz) = f(z), (1)
j=1

where o € (1,2), A\, B €R, 51 >0, aq > g > ... > quy, 9y, u(z) is the Caputo derivative [1; 11]:
O u(x) = sign™(z — s)DL"u™(2), n—1<~y<n,neN, (2)

and Dy, is the Riemann—Liouville fractional integro-differentiation operator of order v with respect to
the variable x [1; 9|, which is defined by the formula

sign(z — s) i u(t)dt
Dyuta) = = [0 <o

s

Dzzu(m) = U(.’L‘), Y= 0,
n

D] u(z) = sign"(x — s)d—anm_"u(w), n—1<y<n,neN.
x

Operator (2) is also known in the literature as the Gerasimov—Caputo operator [2, 3.

At present, differential equations of fractional order are being extensively studied in connection with
practical applications in various areas of physics and mathematical modeling. The theory of fractional
differential equations has proven itself well in the study of «classicaly viscoelastic models. All this is
supported by new applied problems [4-8|.

*Corresponding author.
E-mail: macaneeva@mail.ru
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One of the first works devoted to fractional calculus and its applications is the monograph [9]. The
main theoretical results and solution methods are reflected in the works [7], [6], and [10].

Linear fractional ordinary differential equations were studied by many authors; a detailed biblio-
graphy on this subject can be found in [1, 5, 6, 11|. A significant contribution to the study of fractional
differential equations was made by the authors of [12-15].

Differential equations with discretely distributed differentiation operator

m ao-k

z; M yr

/ i (w157 ) ante)

with a measure concentrated on a discrete set [16, 17].

can be treated as an operator

Differential equations with discretely distributed differentiation operators and continuously distri-
buted differentiation operators were studied in [18-20], where equations with discretely distributed
differentiation operators were used to search for approximate solutions of equations with continuously
distributed differentiation operators. We also note the papers [16], [17], [21], [22], where equations with
fractional discretely distributed differentiation operators were studied.

In this paper, we investigate a generalized boundary value problem (in the terminology of
M.A. Naimark) for equation (1) [22; 16]. An explicit representation of the solution of the problem
under study is constructed, a condition for unique solvability is found, and a uniqueness theorem
for the solution is proved. We specified boundary conditions in the form of linear functionals, which
makes it possible to cover a wide class of linear local and nonlocal conditions. Various boundary value
problems for equation (1) were studied in the works [23-25|. Note also that in work [26] a generalized
boundary value problem for an ordinary differential equation of fractional order with general conditions
was investigated.

A regular solution to equation (1) is said to be a function v = u(z) that has an absolutely continuous
first-order derivative on the closed interval [0, 1] and satisfies equation (1) for all = € (0,1).

Problem. Find a regular solution to equation (1) in the interval (0, 1), which satisfies the conditions

lo[u] = uo, (3)

O [u] = uy, (4)

where g, u; are given real numbers, £y, ¢1 are linear bounded functionals in C'*[0, 1].
Notation and auxiliary statements

We use the following notation (see [27])

o0

Gh () = G (2301, oy U3 Y1y ooy Ym) = /e_tSf,LL(:c;ult, ooy Ut Y1y ooy Y ) dE,
0
A B .
VG=—-——=, Vj:_ijv " =a, v = o — Qy, (]:27m)7
b1 b1

SE(L5 21, ey Zmi Y1y ooy Ym) = (h1 % ho % ..o x by ) (2),
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by

(g h)(x) = / o — )h(t)dt
0

we denote the Laplace convolution of the functions g(z) and h(x),
hj = hj(x) = 27 Gy, s 2ja0),

where
o0 k
z

o(p,¢;2) :gklf(plﬁ@‘)

is the Wright function (see [28]).
Further, we assume that the parameters G, (x) range over

x>0, zeR, >0, pj>0.

We note that the function Gl (z) is independent of the distribution of the numbers p; > 0, but only
m
depends on their sum = ) pu;.
j=1
The following equalities for the function G, (z) (see [24]) hold:

GH (z)=O(z*Y) mpm z —0,

Dy, G () = Gh 7V (x), ecm  p>v, (5)
m -1
D b () = xh
;1 Do Gle) = T 1> 0. (6)

In particular, from equalities (5) and (6) we obtain the formula (see [25])

Brat—oal

Z@G“ Y @)+ AG(w) = o

n > oq.

We also need the following auxiliary statement proved in (see [26]).
It should be noted that hereinafter the ¢ functionality is applied to the function depending on x.
Lemma. Let K (z,t) € C([0,1]x[0,1]) end (%K(:r, t) € C([0,1]x[0,1]), £— linear bounded functional
in space C1[0,1]. Then the following relation is true

1

K(z,t)dt| = [ (K (z, t)]dt. (7)
e - |

0

Main result

Theorem. Let a function f(z) satisfy the conditions
e (@) € C01] f(2) = DiyPg(w), g(x) € L0, p>0,
and the inequality

det A = lo[Wa(2)]01[Ws(2)] — Lo[Ws(2)]e1 [Wa ()] # 0 (8)
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be fulfilled. Then a function u(z) defined by the relation

1
UuQ
O/f T (z, t)dt + W(z )’H(ul), 9)
_ o
T(a,) = [L=-W@H]Wi(a — 1), W(z) = Wala) Ws(2)), 1= ( 2 )

Gri(@); Wa(z) =z +unGpl ™2 (2); Ws(x) =1+ nGH (),

ot — [ LoVa(x)] Lo[Ws(w)] IR OWs(x)] = bo[Ws(x)]
A=LW(2)] = ( GDVa(2)] 6 [Wa(a)] > H=A= detA( L0 LoDAa(e) )

is a regular solution to problem (1), (3), (4). The solution to problem (1), (3), (4) is unique if and only
if the condition (8) is satisfied.

Proof. Let u(x) be a regular solution to the problem (1), (3), (4). To find a solution to the problem
(1), (3), (4) we use the solution of the Cauchy problem for the equation (1), which can be represented
as [24, 25|

/1f Wlx—tdt—i—W()(g;). (10)
0

Further, taking into account the introduced notation and equalities (7), we satisfy (10) the boundary

conditions
/ C
. 1) _ [ Uo
/f YW (x t)]dt+A<02)—<u1>.
0

(g;>_ ( ) 0/1f () HEW1 (z — t)]d.

After elementary transformations, substituting the found value into (10), we obtain a representation
of the solution to problem (1), (3), (4) in the form (8). This, in particular, implies the uniqueness of
the solution.

Let us now check the fulfillment of the boundary conditions (3), (4).

From this we find

|
o

FOT (x,t)dt + W(z)H ( ZO )] =1+ I,

1
Wi(z)H < Z‘l) ﬂ .

where

1
L=/ /f(t)T(x,t)dt] end Ib="/
Lo

Taking into account (7), we have

| —

j /g[fr(x,t)] Ft)dt = /(z[wl(x )] — LV (@) HE W (2, 1)]) f(t)dt.
0 0
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By virtue of the equality /[\W(x)] = H ™!, we obtain that I; = 0. Similarly, for Iy we have

b:z[vv(@]%(Z? > :H1%<Z‘l) ) = < Z(l) >

Let us prove that the function u(x), given by equality (9), is a solution to problem (3), (4) for equation

(1).
{Z 8,003 + A] yi = f(z), i=13,

=1
X

Y1 = /f(t)W1(:v —t)dt, yo2 = /f(t)W(x)HEVvl(x _Bdt, g3 = W(a)H ( o ) '
0

u1
0

Taking into account relations (5) — (8) and since the functions y2 and y3 is a linear combinations of
the functions W;(z),i = 1,3 we have

{Zﬁjag‘; + A] vy =0, i=2,3.

=1

Considering that (see [25])

T

/ FOG (x — )dt + f(x),

0

m o z B \
;5jaox0/f(t)wl($—t)dt_ 7

B
we get
{Z Bi0s + )\] vy = f(x).
j=1

It means that the solution satisfies equation (1).
Let us show that if condition (8) is satisfied, that is,

boWa ()]0 [Ws(2)] — Lo[Ws()]61[Wa(x)] = 0, (11)

then the solution to the homogeneous problem is not unique.
Consider the function

~ C
o) = (o)l (€ )
where C7 and Cy are arbitrary constants,

o= (). i ().

Then it follows from (11) that the function u(x) is a solution to a homogeneous problem

S Bioi(x) + Ni(w) =0, Lofd] =0, 4[] = 0.
j=1
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JI.X. T'anzoBa

PFA KBFO Koadanbaav, mamemamuka stcone agmomammandopy uncmumymot, Harvuuk, Pecet

Bemmnek muckperri yiaecripiiaren nudpdepennunangay onepaTopbl 6ap

114

CBIBBIKTBIK KapanaiibiM auddepeHInaablK TeHAey YIIiH
KaJINbLIaHFaH MIETTIK ecell

Maxkanaga Gesek AUCKPeTTi yirecTipiirer auddepeHnuaiiay omepaTopbl 6ap ChISBIKTHIK, KaparmaibiM
nuddepeHITnANIBIK, TEHIEY VITH YKAJMBIIAHFAH IMETTIK €Cell KypPacCThIPBLIBIN YKOHE IIenriaren. besmek
TyerEAbI 'epacumon-KamyTo TybIHIBICH MarbIHACHIHIA TyciHimeni. [IleTTik maprTap CHI3BIKTHIK, (DyHKIIN-
OHAJIIAP TYPiHAEe 6eplireH, Oyl CHI3BIKTHIK YKEPTiTIKTI YKOHE YKEPTiTiKTI eMec KarmaiiapablH KETKUTIKTI
K€H KJIACBIH KaMTyFa MyMKiHmiK 6epesi. [lerrimuin Mo apHaiibl QyHKIUIIAD apPKBLIBI TAOBLIABI. 3epTTe-
JIETIH €CENTiH IIeNIijly MyMKIHJITNHIH Ka>KeTTi »KOHe KeTKIIIKTI MapThl, COHJIali-aK eIy IapThl Co3Ci3
OPBIHJAIATHIH mapTTap aablaabl. [lemivuin 6ap 60ybl *KoHe OGipereiiiri TeopeMachl T2/ IeHI].

Kiam cesdep: Gemmek muddeperuangay omneparopbl, KamyTo TYBIHIBICH, IMIETTIK ecem, (pyHKIMOHAJ,
Paiir dyHKImACH.
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JI.X. I'agzoBa

Hremumym npuraadnoti mamemamuru u asmomamusauyuu KBHI] PAH, Haavwuk, Poccus

O06ob1IeHHas KpaeBad 3a4a4a JIJIsd JIMHETHOI0 OObIKHOBEHHOTI'O
anddepeHInaIbHOrO YPaBHEHNsI C OIEPAaTOPOM JIPOOHOIro ANCKPETHO
pacnpegesienHoro auddepeHnnpoBaHus

B crarbe chopmynupoBana u pereHa oOOOIIEHHAsT KpaeBasl 3a/1a4a JJisl JIMHEHHOTNO OOBIKHOBEHHOT'O JTud-
depeHInaIbHOr0 ypaBHEHHsI C OIIEPATOPOM JIPOOHOrO JUCKPETHO PACIPEIEICHHOr0 UM depeHIIIPOBAHMS.
JlpobHast Tpou3BOIHAS IOHUMAETCS B CMbIcie mpousdBonuoit ['epacumoBa—Kamyro. Kpaesnie ycioBus 3ama-
10Tcsl B (hOpMe JIMHEHHBIX (DYHKIMOHAJIOB, 9TO IO3BOJISIET OXBATUTH JOCTATOYHO IUPOKHIA KJIACC JIMHEHHBIX
JIOKAJIbHBIX 1 HEJIOKAJIBHBIX YCJIOBHUI. B TepMumHax crenuaibHBIX (YHKIWI HANIEHO MPEICTABIEHNE Pellle-
uusi. [losydyeno HeobXoqUMOE U JOCTATOYHOE YCIOBHUE PA3PEIIUMOCTH UCCIIELyeMOi 3a/1aun, a TaKKe yCJIo-
BUsI, IIPU KOTOPBIX YCJIOBUE Pa3PENINMOCTH 3aBeJIOMO BbIosiHseTcs. Jloka3aHa TeopeMa CyIeCTBOBAHUS U
€/IMHCTBEHHOCTU PEITIEeHUSI.

Kmouesvie crosa: onieparop apobHoro mauddepenimpoBans, mpou3soanas Kamyro, kpaeBas 3a1a4a, QyHK-
nuoHaJs1, MyHKIus Paiita.
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An initial boundary value problem for
the Boussinesq equation in a Trapezoid

This paper considers an initial boundary value problem for a one-dimensional Boussinesq-type equation
in a domain, that is, a trapezoid. Using the methods of the theory of monotone operators, we establish
theorems on their unique weak solvability in Sobolev classes.
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Introduction

The theory of the Boussinesq equations and its modifications always attracts the attention of both
mathematicians and applied scientists. The Boussinesq equation, as well as its modifications, occupies
an important place in describing the motion of liquids and gas, including in the theory of unsteady
filtration in porous media. Here we note only the works [1-6]. In recent years, boundary problems for
these equations have been actively studied, since they model processes in porous media. The processes
occurring in porous media acquire special importance for deep understanding in the tasks of exploration
and effective development of oil and gas fields.

In this paper, we study the issues of the correct formulation of initial boundary value problems
for a one-dimensional Boussinesqg-type equation in a domain with a movable boundary. The domain is
represented by a trapezoid. Using the method of monotone operators, we prove theorems on the unique
weak solvability of the considered boundary value problems.

1 Statement of the initial boundary problem and the main result

Let Q = {0 < x < t}, and 9€; be the boundary of Q, 0 < tg < T < oo. In domain Q. =
Qy x (to,T), i.e., a trapezoid, we consider the initial boundary problem for the Boussinesqg-type equation

Oru — 0y (|u|Ozu) = f, {z,t} € Qut, (1.1)
with boundary
u =0, {I’,t} € Yt = 00y X (to,T), (12)
and initial conditions
u=mwug, =€ Qy = (0,t), (1.3)

where f(x,t), ug(x) are given functions.
We have established the following theorems.
Theorem 1.1 (Main result). Let

[ € Lgs((to, T); Wg;é(Qt))a up € H™1 ().

*Corresponding author.
E-mail: bekaaskar@mail.Tu
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Then initial boundary problem (1.1)—(1.3) has a unique solution

u e Lg(th)

Theorem 1.2 (On smoothness). Let

f € L3a(Qut), uo € La().
Then initial boundary problem (1.1)—(1.3) has a unique solution
€ Loo((to, T); La()),  ul'?u € La((to, T); Ho (%)), Oeu € Laja((to, T); W ().
2 Auxiliary initial boundary problem in a rectangle

To prove Theorem 1.1, we first consider an auxiliary initial boundary value problem. For this
purpose, we pass from variables {z,t} to {y,t} by formulas y = %, t = ¢ and transform the trapezoid
Q¢ into the rectangular domain Qu = Q x (to,7), 0 < tg < T < oo, where y € Q =
= (0,1), 992 = {0} U {1}, ¥z = 92 X (to,T). This transformation is one-to-one. Introducing the
notation w(y,t) = u(yt,t) = w($,t), wo(y) = uo(yto, to) and g(y,t) = f(yt,t), we write the auxiliary
initial boundary value problem for (1.1)—(1.3) in the following form:

1 )
Ow — 50y (Jwldyw) — S0yw =g, {y,t} € Qu, (2.1)
w=0, {y,t} € Sy, (22)

By virtue of the one-to-one transformation of independent variables {z,t} — {y,t} the given
functions in problem (2.1)-(2.3) obviously satisfy the conditions:

g € Lzys((to, T); W.

3/2(0 1)), wo € H'(0,1). (2.4)

The following theorems are true.
Theorem 2.1 Under conditions (2.4) initial boundary value problem (2.1)—(2.3) is uniquely solvable

w € L3(Qye).
Theorem 2.2 (On smoothness). Let
g € L3a(Qyt), wo € La().
Then initial boundary problem (2.1)—(2.3) has a unique solution

w € Loo((t0, T); La(Q)),  |w|"?w € La((to, T); H3 (), 94w € Laa((to, T); W;/;(Q)).

8 Auziliary statements

To prove Theorem 2.1, we first establish a number of auxiliary statements. Denote by A the operator
of problem (2.1)—(2.3)

1 1
A(t,w) = t—zAl(w) + ZAQl(w)’ where A;(w) = —0,(|w|0yw), Az(w)= —yd,w, (3.1)

and the operator Az(w) can be represented as:

As(w) = Agi(w) + Aga(w), where Asi(w) =w, Ap(w) = —0,(yw). (3.2)
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Let us show that the operator A;(w)+ Aaj(w) will have the monotonicity property if we introduce
the scalar product in an appropriate way. For this purpose, we take as a scalar product

1
o) = [ e[(-a3) o), v e @), (33)

-1

where di = %, ) = (—dz) (L —d?,d; =, 4(0) = P(1) = 0,V¢ € H ().

Let us show the validity of the following lemma.
Lemma 3.1. The operator A; + As; is monotone in the sense of the scalar product (3.3) in the space
H~1(0,1), i.e., the following inequality is true:

<(A1 + Agl)(’wl) — (Al + A21)(w2),w1 — U]2> >0, Vwi,ws € @(Q) (34)

To the proof of Lemma 3.1. It suffices for us to show that the operator A; is monotone and condition
(3.4) will be satisfied (according to |7], chap. 2, s. 3.1). Indeed, on the one hand, we have

1
(1(0) = An(w)o = 0) = 5 [ (=) el = 0l) (=)™ (o = ) dy =

2

On the other hand, the convexity condition of the functional
1 o
Jilp) =5 Jy le@)*dy, » € D(Q), implies

(J1(0) = J1(¥), 0 =) >0, Vo, h € D(Q).

1
=1/0 (lelo — [¥l0) (0 — ) dy, Yo, b € D).

Thus, we get
1

[tele = t)e = v)dy 20, Ve, v e D).
0
For the operator Ag; according to scalar product (3.3) we have:

1
(Ag1(p),v) = /sm,f)dyz
0
1 1
_ /gp(—di)llﬁdy - / ((-df,)*1 cp) bdy, Yo, €DQ), (3.5)
0 0

where 1) is the solution to the following problem: —dzﬁ =1, QZ)(O) = @Z)(l) =0.
Let us introduce the convex functional

1 [t -t 12
Jor () = 2/ [(—dy) 2 u} dy. (3.6)
0
For the Gateaux derivative of functional (3.6) we have
-1
Ty () = (=d3) " u, (3.7)

that is, taking into account (3.7), we obtain the following convexity conditions of functional (3.6):

1
(b (u) — Jhy (v),u — v) = /0 [(—dgj)*1 (u — v)} (u—v)dy >0 Yu,v € D(Q). (3.8)
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Remark 3.1. On the other hand, inequality (3.8) is a consequence of the positivity of the operator

(—di)_l. Further, based on relations (3.5) and (3.8), we establish that the following monotonicity

condition holds for operator As;:
(A21(t,u) — Ag1(t,v),u —v) >0 Yu,v € D(Q), VteE (to,T).
Thus, we have shown the validity of statement (3.4) of Lemma 3.1.
4 To the proof of Theorem 2.1

Let us preliminarily note that the nonlinear operator A(t,v) = (0.5t 2A1+t "' Ag1)v : L3(Q) — Lg3o(Q)
(3.1)—(3.2) of boundary value problem (2.1)—(2.2) has the following properties:

A(t,v) : L3(Q2) — Lg/2(Q?) is a hemicontinuous operator, (4.1)
1At )15 < cllvll,y0)s >0, Vo€ Ly(9), (4.2)
(A(T,v),v) > aHv||%3(Q), a>0, Yve L3(Q). (4.3)

This follows directly from Lemma 4.1, as well as from ([7], Chap. 2, Proposition 1.1).
Recall the definition of a hemicontinuous operator.
Definition 4.1. Every operator B : V — V'’ having the following property:

Vu,v,w €V function A = (B(u+ Av),w) is continuous as a function from R to R,

is called hemicontinuous.
Now we take as the main space:

H = H_I(Q)’ (ua U)H = (ua (7d121)—1,0) ) (44)
where (—dz)_lv = 0 is the solution to problem
25 _ S0 — (1) — -1
—dyv=v, 9(0)=9(1)=0, ve H (Q). (4.5)
Further, we have
V=1L3(Q), VcHCcCV, (4.6)

where each embedding is dense and continuous. In notation (4.4)—(4.6), we introduce a linear continuous
functional
L(v) = (g,v) = (g,7), i.e. the element g € L3/5(2) is defined.

Finally, we introduce

1
a(t’u7 U) = <A(t7 u)’v> = / |:21t2|u’u1} + % (—dz)_l U’U:| dy, \V/U,U S Lg(Q)
0

We have )

)

-1/2 u‘
L2(Q)

1 1
alty ) = (At w0 = 5l o + 7 | (-)

and
a(t,u,u —v) —a(t,v,u—v) >0 Vte (ty,T), (4.7)
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where the form a(t,u,v) corresponds to variational inequalities (3.4) and (3.8). Now, using (4.7), we
obtain the following variational formulation for initial boundary problem (2.1)—(2.3):

(w'(t),v) g + a(t,w(t),v) — b(t,w(t),v) = (9(t),v) Yv € Lz(Q) € H (), (4.8)

w(0) = wo, (4.9)
where b(t,w(t),v) =t~ { A (w),v).
We show that relations (4.8), (4.9) admit unique solvability.

4.1 Existence of the solution

Let us show that variational problem (4.8) and (4.9) has a solution. We will use the Faedo-Galerkin
method. Let vy, ..., 0y, ... be a "basis" in the space L3(2). According to relations (4.8) and (4.9), we
define an approximate solution wy,(t) of initial boundary value problem (2.1)-(2.3) on a subspace
[v1, ..., U] spanned by vy, ..., vy,

(Wi (£),v5) + alt, wn (1), v5) = b(t, wm(t),v5) = (9(t),v5), 1 <j<m, (4.10)

Wi (0) = Wom € [V1, ey U, Wom — wo in HH(Q). (4.11)

From equations (4.10)—(4.11), wy,(t) is determined on the interval [to, t,,], tm > to. However, due
to the validity of inequality (4.3) (A(t,v),v) > aHvHiS(Q), a > 0, from (4.10)—(4.11) we obtain

t t

1 C

Slum @00+ @ [ T (e 7 < 52 [ o DI o () gy dr+
to to

t
1
[ 19ty 10 () ) 7+ 5 ol -1 (4.12)
to

since )
[b(t, Wi (), wm (t))] < P [ A22wm (#)ll ., o (0) 0m ()]l Lae),

[Ag2wm ($)l L, ) < Collwm(B)llL, 50,

Cy 8 (o) 32 @ 3
Eme(t)HL:&/z(Q)me(t>HL3(Q) < ov3a \to me(t)HL3/2(9) + Zme(t)HLs(Q) <
8 O\ 32 3/4 ¢
< o=k (2] [lum@Bse) " + 1o Ol 0

where K is the embedding constant of (H_I(Q))/ — L3/2(Q2), since by assumptions (4.4) and (4.6):
L3() c HY(Q) = (H*I(Q))/ C Lg)p(Q) = (L3(2))" . Here we also use Young’s inequality (p~—! +
g t=1):
B d d
— (q\/P Va2 V| < 24P+ & 1B|Y
48] = (@) (@) < Sap + S pr,
where

2
A . lwm )L, )0 B = lwm@)lpy0), d= Jia PT 3/2, ¢=3.
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We have similar calculations for the expression from (4.12):

8 34«
901l (D10 < 5= K [loOlie]  + Glom Do

Now, using a variant of Bihari’s lemma from ([8], Chapter 1, p.1.3, Example 1.3.1; it is important
here that 3/4 < 1), it follows from (4.12) that ¢,, = T and that

wy, (t) are bounded in Leo((to, T); H™H(2)) N L3(Qye)-

Hence, we can extract such a subsequence of w,(t) that
w, — w *-weak in Loo((to, T); H (),
wy, — w weak in L3(Qy),
w,(T) — ¢ weak in H™1(Q),

A(t,wy) — x(t) weak for almost every t € (tg,7") in L3/2(Qyt),

due to condition (4.2) [[A(t,v)|L, @) < CH’UHL @ ¢ > 0, and hence A(t,w,) are bounded in

L3 5(Qyt)-
We extend wy, (t), A(t, wm(t)),... on the real axis with zero outside the interval [tg, T], and denote

the corresponding continuations by Wy, (t), A(t,wm(t)),... It follows from (4.10)—(4.11) that

—_—

(@ (1),07) g + (At wm (1)), 03) — £ { Az (8), v}) =
- (g(t)’ Uj) + (wﬁma Uj)5<t - tO) - (wm(T)v vj)(s(t - T)' (4'13)
Now we can pass to the limit in (4.13) at m = p and fixed j, whence we have
(@' (£),05) yy + (X(8) =t Aggw(t), v5) = (§(t), v;) + (w0, v;)8(t — to) — (& 05)8(t = T) Vj

and hence
W' (t) + X(t) — t 7 Agow(t) = §(t) + wod(t — 0) — £5(t — T). (4.14)
By restricting (4.14) (to,T'), we get that

w'(8) + x(8) — t7 Azpuw(t) = g(t), (4.15)

from where w'(t) € L3/2(Qyt), hence w(to) and w(T) make sense, and comparing with (4.14), we get
that w(ty) = wp and w(T) = £. So, we will prove the existence of a solution if we show that

x(t) = A(t,w). (4.16)

From property (3.4), i.e., (4.7), it follows that

T
:/ (twu(t)) — At v(t)), wu(t) — v(t)) dt >0 Yo € Ls(Qy). (4.17)
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According to (4.10)-(4.11),

T T T
Jeat ) w it = [ Az 0, wu0)dt+ (00,0 de+ ol — 5l D10
to to to
(4.18)
and, therefore,
T
X = [(g.wa)dt+ Gluolrosiey — 5 10u) B+
' 2 () o™k H-1(Q)
to
T T T
+/t‘1<A22wH, w,) dt — /(A(t,wu), oy di — /(A(t, o)y, —v)) dt,
to to to
whence (since lim inf Hw#(T)H%I_l(Q) > Hw(T)leq_l(Q)):
T
i sup X, < [ (9,10)dt+ 5 JunlBy ) — 5 () s+
to
T T T
+/t‘1<A22w, w) dt — /(X(t),v> dt — /(A(t,v),w o)) dt. (4.19)
to to to
From (4.15) we can conclude, since integration by parts is legal, that
T T T
[t sy des [ (g.w)dt+ Slunlly v — 5l = [
to to to
Comparing this equality with (4.17) and (4.19), and also considering (4.18), we get
T
/(X(t) — A(t,v),w —v)dt > 0. (4.20)
to

Now we use the hemicontinuity property (4.1) of the operator A(t,w) to prove that (4.20) implies
(4.16). Let v =w — Au, A >0, u € L3(Qy); then it follows from (4.20) that

T
)\/(X(t) — A(t,w — Au),u) dt > 0,

whence
T

/ () — At w — ), ) dt > 0; (4.21)
to
when A\ — 0 in (4.21), then we get that

T
/<x(t) — A(t,w),u)dt >0 Yu.

to

Therefore, x(t) = A(t,w). The existence of a solution to problem (2.1) and (2.3) is proved.
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4.2 Uniqueness of the solution

Let wi(t) and wa(t) be two solutions to problem (4.8)-(4.9). Then their difference w(t) = w1 (t) —
way(t) satisfies the homogeneous problem:

w' () + A(t,wi(t)) — A(t,wa(t)) — tF Agew(t) = 0, w(0) =0,

(w'(£), w(t)) + ((A(t, wi(t)) = A(t, wa(t)), wi(t) — wa(t)) =t~ {(Azw(t), w(t)) =0
and, due to (4.12) and the monotonicity property of the operator A(t,w), we have:

(0 (@0,0(0) = 3 010y < 2 [0y e w(t) =0,

where K is the norm of the operator (—dg) vz, H=YQ) = [H{(Q); H ()]
is an intermediate space [9].

Remark 4.1. Let us give the interpretation of the solution to problem (4.8)-(4.9) as the solution to
problem (2.1)—(2.3). By introducing v in (4.8), we obtain

1/2° [HS(Q)v H_I(Q)]1/2

1 1
- - 1 1 -
/@wvdy—k/[ 752]w|w—i— ( 8;) lw—i-%(—@g) 2 (yw) (—851)) dy =
0 0

1
= /g(t)ﬁdy, Vo € Hy(Q).
0

Hence, from here we have

1 1
1 1 - 1 —1
/ <8tw 82 [2752 |w|w + n (—85) Y+ : (—612/) 2 (yw)]) vdy = /g(t)f) dy+
0 0

K\J\)—'

1 2 2

+[;t2lwlw+t(—ay)—1w+1(—ay) (yw}@v} Vo € Hy(Q). (4.22)

Or, taking into account equality (3.5), the last identity can be written in the following form
1
1 Yy . 8
/ <3tw 20 Oy (lw|0yw) — n Oyw — g(t)> 0dy =0 Vv eD(Q), (4.23)
0

that is, the function w(y,t) satisfies a Boussinesq type equation (2.1). Now, returning to (4.22) and
taking into account (4.23), we get

l\:)\»—‘

1 1 _ 1
[%gywm—kt(_az) 1w+;(—8§) (yw]@vh =0 Vi€ HY(Q),

1 1 -1 1

K)\)—l

2 (yw) ] 0 U!l ,=0Voe HY(Q).
The last equalities imply the fulfillment of boundary conditions (2.2). Finally, from the continuity of

the function w : [tg,T] — H we get that initial condition (2.3) makes sense. This completes the proof
of Theorem 4.2.
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5 To the proof of Theorem

Since the transformation of independent variables {z,t} — {y,t} is one-to-one, there is a mutual
correspondence of functional classes defining the given functions and solutions of initial boundary value
problems. Therefore, from Theorem 2.1 we obtain the validity of the statement of Theorem 1.1 in terms
of the existence of a solution to initial boundary value problem (1.1)-(1.3). Let us show the validity of
the assertion of Theorem 1.1 in terms of the uniqueness of the solution to problem (1.1)—(1.3).

We show that the operator A;(t,u) in problem (1.1)—(1.3) will have the monotonicity property if
a scalar product is introduced accordingly. For this purpose, we take as the scalar product

o) = [ o [(a2) o] dn, Veorw e HTU@), Ve (o) (1)

where d2 = &5 ) = (=d2) " w1 —d20 =, $(0) = (t) = 0,y € H™(Q), Vte (to,T).

The following lemma is valid.
Lemma 5.1. Operator Aj(t,u) is monotone in the sense of the scalar product (5.1) in the space
H~1(€y), i.e., the following inequalities hold:

<A1(t,u1) — Al(t,uQ),ul — u2> >0, Yui,us € @(Qt), Vte (to,T). (5.2)

To the proof of Lemma 5.1. For each t € (tyo,T) operator A; is monotone and condition (5.2) is
satisfied (according to |7|, chap. 2, p. 3.1). Indeed, on the one hand, we have

(iltp) = Atw)o =) = 5 [ (~d) (el = ol) () (o = ¥) d =

Q

1
=5 [ (ole = 10lu)(e = ) da, Y. 6 € D@, VEE (10, 7).

t

On the other hand, the convexity condition of the functional J(¢,¢) = %fﬂt lo(x)Pdx, ¢ €
D(), YVt e (to,T), implies

<J,(t7 (10) - Jl@ﬂ/’)v@ - ¢> >0, V% TIZ) S Q(Qt)a Vit e (t07T)'

Thus, we get

[l = 0t = v 20, Ve, v € D), Vi€ (10,7,
Q
that is, inequality 5.2 is established. Lemma 5.1 is proved.
Now we are ready to show the uniqueness of the solution to problem (1.1)—(1.3). To do this, using

inequality (5.2), we obtain the following variational formulation for initial boundary problem (1.1)—
(1.3):

(W' (£),0) 10y + ao(t, u(t),v) = (F(E),0) 10,y Vo € La(0,8) € H (), Vi€ (to,T),  (5.3)

U(to) = Uup, (54)
where

ap(t,u,v) = (A1(t,u(t)),v) = / lu(z, t)| u(z, t)v(x)de, VYt e (to,T).
Q

Let w3 (t) and ua(t) be two solutions to problem (5.3)—(5.4). Then their difference u(t) = w1 (t) — ua(t)
satisfies the homogeneous problem:

(u'(t), u(t))H—l(Qt) + (A1(t,ui(t)) — Ar(t,ua(t)),u(t)) =0, Vt e (to,T); u(0) =0,
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and, due to the monotonicity property of the operator A;(t,u) (5.2), we have:

d .
(u/(t),u(t))Hfl(Qt) = Q—Cﬁnu(t)ﬂfq,l(ﬂt) <0, ie. u(t)=0.

Thus, Theorem (1.1) is completely proved.
Conclusions

The initial boundary value problems for a one-dimensional Boussinesq type equation in a trapezoid
domain are studied. Theorems on their unique weak solvability in Sobolev classes are proved by methods
of the theory of monotone operators.
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An initial boundary value...

M.T. 2Kuemomes!, A.C. Kaceim6exosa!, M.T'. Eprammes!, 9.9. Ocetos?

1
Mamemamura stcone mamemamuraivik;, modesvdey uncmumymaot, Aamamol, Kaszaxeman;
2 Axademur E.A. Boxemos amuvindaes. Kapazandv, yrusepcumemi, Kapaeandw, Kazaxcman

Tpanemusanarel Byccmaeck Turrti TeHaey yHIiH
DacTanKbI-IITeKapaJibIK, ecerl

MakaJjaga Tpalernusi 00JbIChIHAarbl Oip esmem i Byccuneck TunTi TeHgey yIniH 6acTalKbI-ITEKAPAJIBIK,
ecen KapacTbipblirad. CoboJeB KIacTapblHIaFbl OJIap/IbIH Hipereil 0JIci3 MeIiIeTIHIr Ty paJibl TeopeMaJiap
MOHOTOHJIBI OIIEPATOPJIAP TEOPHUSICHIHBIH, 9/IiCTEPIMEH AHBIKTAJIFAH.

Kiam cesdep: Byccuneck Tunti Tenjiey, meKapaJsiblK, €cell, Tpaleysi, MOHOTOH/IbI OIlepaTopJiap TEOPHUSCHI.

M.T. Tzxkenamues!, A.C. Kacoimbexosa!, M.I". Eprammes!, A.A. Aceros?

! Huemumym mamemamuru u mamemamureckozo modeauposarnus, Aimamo, Kazazcman;
2 Kapazandunckuti ynusepcumem umeny axademura E.A. Byxemosa, Kapazanda, Kazaxcman

Ha‘{aﬂbHO-FpaHI/I‘{Haﬂ 3adava AJid ypaBHEHU:d
TUIIA& ByCCI/IHeCKa, B Tpalienmuu

B crarpe paccmorpena madagbHO-TpaHWYHAsS 3aada JJIsi OJHOMEPHOrO ypaBHeHHUsi Tuna bByccumecka B
obJracTy, IpesCTaBIAmEel coboit Tpamenuio. MeTonaMu Teopur MOHOTOHHBIX OIIEPATOPOB yCTAHOBJIEHBI
TeopeMbl 00 MX OJHO3HAYHOH C1ab0il Pa3PEenInMOCTH B CODOJIEBCKUX KJIACCAX.

Kmouesvie caosa: ypaBHeHne Tuna bByccumHecKa, TpaHUYHAs 3aJa4a, TPAlelus, TEOPUU MOHOTOHHBIX OITe-
PaToOpOB.
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Inverse problems of determining coefficients of time type in a
degenerate parabolic equation

The paper is devoted to the study of the solvability of inverse coefficient problems for degenerate parabolic
equations of the second order. We study both linear inverse problems — the problems of determining an
unknown right-hand side (external influence), and nonlinear problems of determining an unknown coefficient
of the equation itself. The peculiarity of the studied work is that its unknown coefficients are functions of a
time variable only. The work aims to prove the existence and uniqueness of regular solutions to the studied
problems (having all the generalized in the sense of S.L. Sobolev derivatives entering the equation).

Keywords: degenerate parabolic equations, linear inverse problems, non-linear inverse problems, regular
solutions, existence.

Introduction

The paper studies the solvability of some inverse problems of finding the solution to a degenerate
parabolic equation and a certain coeflicient of the equation itself. If the unknown coefficient determines
the free term (external influence) in the equation, then such an inverse problem will be linear, but if
the unknown coefficient is a multiplier for one or another derivative of the solution, then it will be
nonlinear. In this paper, both linear and nonlinear inverse problems will be studied.

The problems studied in the work will have two features.The first of them is that inverse coefficient
problems for time-variable degenerate parabolic equations will be studied. The second feature is that
the unknown coefficient in our problems will also be a function of the time variable only.

Inverse problems for parabolic equations without degeneracy and with unknown coefficients depen-
ding only on the time variable seem to be thoroughly studied (see [1-12]. As for similar problems
for time-variable degenerate parabolic equations, there are few works here — only works [13-15| can
be named, and in these works either the nature of degeneracy is different, or the problem itself is
completely distinct.

Note the following. The presence of degeneracy in parabolic equations means that the well-posed
boundary value problems for them may differ significantly from the classical initial boundary value
problems for non-degenerate equations (see [16-19]). This is the situation that will be studied in this
paper — a situation in which the boundary conditions in linear problems will be different than in natural
initial boundary value problems.

All constructions and reasoning in the work will be conducted based on the Lebesgue L, and
SobolevWé spaces. The necessary definitions and description of the properties of functions from these
spaces can be found in monographs [20-22].

The purpose of this work is to prove the existence and uniqueness of regular solutions to the
problem, i.e., solutions having all the generalized in the sense of S.L. Sobolev derivatives, included in
the corresponding equation.

*Corresponding author.
E-mail: ashurova.guzel@gmail.com
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The presence of additional unknown functions in inverse problems requires that, in addition to the
boundary conditions natural for a particular class of differential equations, some additional conditions
are also set — overdetermination conditions. In this paper, overdetermination conditions, called integral
overdetermination conditions in the literature, will be used. Inverse coefficient problems, linear and
nonlinear, with integral overdetermination conditions are well-studied for both classical (elliptic, parabolic
and hyperbolic) and non-classical differential equations. However, for time-variable degenerate parabolic
equations, inverse coefficient problems with integral overdetermination have not been studied before.

Overall, the content of the work consists of four parts. The first part provides studied linear and
nonlinear problems statement. The second part investigates the solvability of linear inverse problems
for degenerate parabolic equations of the second order. The third part studies the solvability of some
nonlinear inverse coefficient problem for degenerate parabolic equations of the second order. Finally,
the fourth part describes some generalizations and amplifications of the results obtained in the second
and third parts of the work, discusses their possible development.

Problem statement

Let © be a bounded domain from the space R™ with a smooth (for simplicity — infinitely differentiable)
boundary I', @ be a cylinder Q x (0,7") variables (z,t) of finite height 7', S =T x (0,7") be the lateral
boundary of Q.

Next, let ©(t), c(z,t), f(z,t), N(x), h(z,t), u(t) and ug(z) be the given functions defined at = € €,
t € [0, T], respectively. L is a differential operator whose action on a given function v(z, t) is determined
by the equality

Lv = ¢o(t)vy — Av + ¢(z, t)v

(A is the Laplace operator for variables x1, xa, ..., Zy).
Inverse problem I: Find the functions u(z,t) and ¢(¢) connected in the cylinder @ by the equation

Lu= f(xa t) + Q(t)h(xat)v (1)
when the conditions for the function u(z,t) are met

u(z,t)|s =0, (2)

/ N(z)u(z,t)dz = 0,t € (0,T). (3)
Q

Inverse problem I1: Find the functions u(z,t) and ¢(¢) connected in the cylinder @ by the equation
(1), when the conditions (2) and (3) are met for the function u(x,t), as well as the conditions

u(z,0) =u(x,T) =0,z € Q. (4)

The inverse problems I and II are linear inverse problems for the parabolic equation Lu = F. Note
that in the problem I there are no boundary conditions for the variable ¢, in the problem II, on the
contrary, two boundary conditions are set for the variable ¢. Both of these situations do not seem to
be characteristic of first-order differential equations (with respect to a time variable), nevertheless,
sufficient conditions will be specified for each of them to ensure the existence and uniqueness of regular
solutions to the corresponding inverse problems.

Along with the inverse problems I and II, is easy to study linear inverse problems for equation
(1) with the setting of one boundary condition for the variable t at t = 0 or at t = T". The sufficient
conditions for the existence and uniqueness of regular solutions to such problems is presented in the
fourth part of the work.
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Let us consider the problem statement of a nonlinear inverse problem for degenerate parabolic
equations.
Inverse problem III: Find the functions u(x,t) and ¢(t) connected in the cylinder @ by the equation

Lu + Q(t)u = f(xa t)a (5)
when the function u(z,t) fulfills the condition (2), as well as the conditions

u(z,0) = ug(z),x € Q, (6)

/Q N(@)u(z, )dz = p(t), ¢ € (0,T). (7)

The inverse problem III corresponds to the usual first initial-boundary value problem for parabolic
equations of the second order, the inhomogeneity of conditions (2) and (7) is explained by the nonlinea-
rity of the problem.

Solvability of inverse problems I and II

Let us put
ho(t) = / N (@)h(z, t)da,
Q
h

(,t)
ho(t) ’

folt) = /Q N()f(z, t)dz,

fi(z,t) = f(x,t) — hy(z,t) fo(t).
Next, by the given function v(z,t), we define the functions A (¢;v) and As(t;v):

hl(a:, t) =

Al(t;v):/QN(x)Av(x,t)dx,

Ag(t;v):/ﬂc(m‘,t)N(az)v(az,t)daj.

0
For the function w(z) from the space W3 (Q) N W2 (Q) there are inequalities

2 - 2 2 2
/Q W (z)ds < ngz:; /Q W2 (2)de < &2 / [Aw(z)2dz (8)

Q

with the number dy defined only by the domain © (see [20-22]). We will need these inequalities and
the actual number dy below.
In addition to the number dy, we will also need the following numbers:

hy = max |hy(z,1)],
Q
N1 = ElHNHLQ(Q)meslﬂﬁ,
Ny = doh; max [/ A (2, t)N?(z)dz] *mes'/?Q.
Q

0<t<T
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Theorem 1. Let the conditions be satisfied

p(t) € CH([0; T1), (0) < 0,p(T) > 0; (9)
()30, Ao 23 o (o € o st > @)
20— (t)>T >0, 2co+¢ (t)>¢ >0 at (z,t) € Q; (11)

N(x) € Wao(), h(x,1) € Loo(Q), he(w,t) € La(Q); (12)
|ho(t)] > ho >0 at t € [0, T]; (13)
N+ Ny < 1. (14)

Then for any function f(z,t) such that f(z,t) € La(Q), fi(z,t) € L2(Q), the inverse problem has
the solution (u(x,t), ¢(t)) such that u(z,t) € W' (Q), q(t) € La(Q).

Proof. Consider the boundary value problem: Find the function u(z,t), which is the solution to the
equation in the cylinder Q).

Lu = fi(z,t) — ha(z, 1)[A1 (5 u) — Az(t; u)] (15)

and such that the condition (2) is satisfied for it. In this problem, equation (15) is a degenerate parabolic
integro-differential equation (similar equations are also called "loaded" [23|, [24]). We will prove its
solvability in the space W22 ’1(Q) using the regularization method and the continuation method by
parameter.

Let € be a positive number. Consider the boundary value problem: Find the function u(z,t), which
in the cylinder () is the solution to the equation

—euy + Lu = fi(x,t) — hi(x,t)[A1(t;u) — Aa(t; u)] (16)

and such that condition (2) is met for it, as well as the condition

ut(x,0) = u(z,T) =0, x € Q. (17)

This problem is a mixed boundary value problem for an elliptic (non-degenerate) "loaded" equation
(16); its solvability in the space WZ(Q) is not difficult to show using the continuation method by
parameter [25].

Let A be a number from the segment [0;1]. Consider a family of problems: Find the function u(z,t),
which in the cylinder ) is the solution to the equation

—eug + Lu = fi(z,t) — Aha(z,t)[A1(tu) — Azt u)] (18)

and such that conditions (2) and (17) are met for it.

Boundary value problem (18), (2), (17) in the case of A = 0 with a fixed ¢ and if the conditions of
the theorem are met, it is solvable in the space W2 (Q) for any function f(x,t) belonging to the space
Ls(Q) (see [21]). Further, integrating by parts in equality (19)

. / vy Auddt — / Luludzdt = — / (Fa(t) — Mo, O[As () — Aot w)]}Audadt  (19)
Q Q Q
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(which is a consequence of equation (18)), using conditions (9)—(14) and applying the Helder and Young
inequalities, it is easy to obtain that for all possible solutions u(z,t) to the boundary value problem
(18), (2), (17) we take an estimate

ey /Q w2 dxdt + /Q (Au)?dzdt < M /Q fAdadt (20)
=1

with a constant M, defined only by the functions ¢(t), ¢(x,t), h(x,t), N(x), as well as the domain Q.
Consider now the equality

c / 2dadt — / Luugdedt = — / CFa(t) — Mo, O[As () — Aot w)Jugdadt.  (21)
Q Q Q

Integrating again by parts, using conditions (9)—(14) and applying the Helder and Young inequalities,
we obtain that for all possible solutions u(z,t) to the boundary value problem (18), (2), (17) a priori
estimate is performed

5/ utztd;vdt—i—Z/ uiitd:z:dt < M2/ fPdzdt, (22)
Q i=17@ Q

where the constant My is defined by the functions ¢(t), ¢(x,t), h(z,t) and N(z), the domain 2, and
the number e.

From estimates (20) and (22), as well as from the second basic inequality for elliptic operators [21],
it follows that for solutions u(x,t) to the boundary value problem (18), (2), (17) the next estimate is
true

lullwz @) < Msl|fllLaq)» (23)

where the constant M3 is defined by the functions ¢(t),c(x,t), h(x,t) and N(x), the domain €, and
the number e.

From estimate (23), from the solvability in the space W2(Q) of the problem (18), (2), (17) in the
case of A = 0, as well as from the theorem on the continuation method by parameter [25], it follows
that for a fixed e, for an arbitrary A\ from the segment [0,1] and if conditions (9)—(14) are met, the
boundary value problem (18), (2), (17) will be solvable in the space W2(Q) for any function f(z,t)
from the space L2(Q).

Let {em}m=1 be a sequence of positive numbers converging to zero. According to the above, the
boundary value problem (18), (2), (17) in the case of € = &, and A = 1, there is a solution u,(z,t)
belonging to the space WZ(Q). For the family {u,,(z,t)}°_;, there is a priori estimate (20) which is
uniform by e. Next, on the right side of the equality (21) with € = &,,, we will integrate by parts with
respect to the variable ¢. Further, using the conditions of the theorem and applying the Helder and
Young inequalities, we obtain that for the functions w,,(z,t) there is a true estimate

Em /Q uppdadt + /Q Uz, dadt < My /Q (f* + f2)dzxdt, (24)
=1

the constant My where is defined only by the functions ¢(t),c(x,t), h(z,t) and N(z), as well as the
domain €.

Estimates (20) and (24) for functions u,(z,t), the reflexivity property of the Hilbert space 25|, as
well as embedding theorems [20-22] mean that there are functions w,,, (z,t),k = 1,2, ..., and u(x,t)
such that for k& — oo there are convergences
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U, (2,t) = u(z,t) weakly in W22’1(Q),
Uz, (T, 1) = ug, (x,t) strongly in Lo(Q) for 3=1,...,n,
Uz, (T,1) = ug, (z,t) strongly in Lo(S) for 8=1,...,n,
Emp Umytt(T,1) = 0 weakly in Lo(Q).

From these convergences, as well as from the representation

Al(t§umk) = - Z fQ Nﬂci (x)umlcl‘z (I,t)dx - fF N(x) agjk ds
i=1

it follows that for the limit function u(x,t), equation (15) will be fulfilled. The function u(x,t) belongs
to the space W22’1(Q).
Let us put

The functions u(z,t) and ¢(t) are connected in the cylinder @ by equation (1). We show that the
condition (3) holds for the function u(z,t).

We multiply equation (1) with the function ¢(¢) defined above by the function N(z) and integrate
over the domain Q. Considering the form of the functions hg(t), fo(t), h1(z,t), A1(t;u) and As(t;u), we
obtain that for the function w(t) which is defined by equality

w(t) = [o N(z)u(z,t)de,
the equation is performed
o(t)wr + cow = 0.

Multiplying this equation by the function w and integrating over the segment [0, 7], we get

w(t)=0 at te[0,T].

Hence, it follows that for the function w(z,t), which is the solution to the boundary value problem
(15), (2) the overdetermination condition (3) is satisfied.

All of the above means that the found functions u(z,t) and ¢(t) give the desired solution to the
inverse problem I.

The theorem is proved.

There is a similar result to the above for the inverse problem II.

Theorem 2. Let the condition (25) be satisfied

p(t) € CH([0;T1),0(0) > 0,0(T) < 0; (25)

as well as conditions (10)—(14). Then for any function f(z,t) such that f(x,t) € L2(Q), fi(x,t) €
Ly(Q), f(z,0) = f(x,T) = 0 for z € § the inverse problem II has a solution (u(zx,t),¢(t)) such that
u(z,t) € Wa(Q), q(t) € Ly([0,T7)).

The proof of this theorem is carried out in general analogous to the proof of Theorem 1, the only
difference is that in the boundary value problem for equation (16), conditions are not (2) and (17),
they are (2) and (4).
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Solvability of the inverse problem II1

The study of the solvability of the nonlinear inverse problem III will also be carried out by
using the transition to integro-differential (loaded) equations. For simplicity, we will limit ourselves
to analyzing the case of ¢(z,t) = 0; the general case will differ from the one considered only by the
greater cumbersomeness of conditions and calculations.

Let us put

2 xX
M, = d fQ fw((t’)t) drdt + [, ud(z)dz.

Theorem 3. Let the conditions be satisfied

o(t) € C([10; T)), [(t)] ™" € La([0;T)), (t) > 0, when t € [0;T); (26)
c(z,t) =0 at (z,t) € Q; (27)
0 0

N(w) € W) N W), p(t) € WA(0.T), uo(a) € W) N W (€), (28)

f(,1) € Loo(0, T; W (Q));
pu(t) > po > 0, fo(t) — e(t)p'(t) > pn >0 at t €[0,T7; (29)
M| AN Ly < s (30)
/Q N(@)uo(x)dz = u(0), (31)

Then the inverse problem III has a solution (u(z,t),q(t)) such that u(z,t) € Loo(0,T; W2(2) N

0
W3(Q)), w(=,t) € La(Q), q(t) € Leo([0,T1), g(t) >0 at ¢ € [0,T].
Proof. Let {e,,}2°_, be a sequence of positive numbers converging to 0. Denote ¢, (t) = ¢(t) +em.
Next, we define the cutting function G;(€),€ € R :

&, if|¢l < M,
Gu(€) =M, it &> M,
—M, if € < —M.

Let My be a number from the interval (0, u1]. Consider the boundary value problem: Find the
function u(x,t), which is the solution to the equation in the cylinder @

L
p(t)

and such that conditions (2) and (6) are met for it, as well as the condition

Pm(t)us — Au+ empm () A%+ —<[fo(t) — o) (t) + Gar (Ar(tw)]u = f(,1) (32)

Au(z,t)][s = 0. (33)

In this problem, equation (32) for a fixed m is a non-degenerate parabolic equation of the fourth
order with bounded nonlinearity in the lower term. Using standard energy estimates for parabolic
equations [26], the Galerkin method or the fixed-point method, it is easy to establish that the problem
(32), (2), (6), (33) has a solution w,,(z, t) belonging to the space W2471. We show that using the functions
um(x,t) it is possible to find a solution to the inverse problem III.
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Multiply equation (32) by the function [p(t)] ™ um (z,t) and integrate over the domain € and over
the time variable from 0 to the current point. After integrating by parts and reassigning variables, we
get equality

Jo ud (z,t)dx + Z fo Jo TZ;“Ef T)d$d7'+€m fo JolAup, (z, 7)|?dadr+

+ fo fQ u Jo(m) = o(T)p' (1) + G ary (A1 (75 um) )| ddT = (34)

= fo fQ (px(:))um x,7)dxdr + 5 fQ ud(z)dw.

Due to conditions (26) and (29), all the terms of the left side of this equality are non-negative.
Applying the Young’s inequality and inequality (8) to the first term of the right part (34), taking
into account also condition (28), we obtain that for functions wu,,(x,t) for ¢ € [0,T], the evaluation is
performed

/ W2, (2, £)dz < M. (35)
Q

Analyzing  the equalities obtained after multiplying equation (32) by the functions
~[pm )] L Aup (2, 1), [0m ()] A%y, (2,t) with subsequent integration over the domain  and over
the time variable from 0 to the current point, we obtain by using conditions (26), (28) and (29), and
the Helder inequality and the inequality (35) that for the functions w,,(z,t) the evaluation is performed

Z Jo U2, (@, t)dz + [o[Aum (2, )2 dz + em Z fo Jo(Aupa, (2, 1)) 2dudr+
+em fo Jo (A% (z, t))le‘dT < M,

with a constant My defined only by the functions ¢(t), u(t), N(x), f(x,t) and ug(z), as well as the
domain © and the number 7. To obtain the last necessary estimate, multiply equation (32) by the
function [pm ()] ume(x, t) and integrate over the cylinder Q. After simple transformations using the
conditions of the theorem, the Gelder inequality and estimates (35) and (36), we obtain that for the
function wu,,(z,t) the inequality holds

(36)

/ u?,,(z,t)dedt < My (37)
Q

with a constant M3 defined only by the functions ¢(t), u(t), N(x), f(x,t) and ug(z), as well as the
domain §2 and the number T'. Let’s clarify the value of the number My: My = 1. With this choice of
the number My, it follows from the estimate (34) and condition (30) that G, (A1 (t;um)) = A1(t; um)
is satisfied in equations (32). Further, from the estimates (34)—(37) and from the reflexivity property of
the Hilbert space, as well as from the embedding theorems, it follows that there exists a subsequence
{ump(z, ) }o°_; from the sequence of solutions to the boundary value problem (32), (2), (6), (33), and
the function wu(z,t) such that for k& — oo there are convergences:

U, (x,1) = u(z,t) weak in W22’1(Q) and strong in Ls(Q),
Emp A% U, (7,1) — 0 weak in La(Q).

Let us put )
q(t) = T[fo( ) — et (t) + Ar(tu)], (38)

/N u(z, t)dr — p(t). (39)

For the function u(x,t) and for the function ¢(¢) defined by equality (38) in the cylinder @, equation
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(5) is fulfilled. Further, for the function u(z,t), conditions (2) and (6) are fulfilled. We show that
the overdetermination condition (7) is satisfied for the function wu(z,t). Multiply equation (5) by the
function N(z) and integrate over the domain Q. Comparing the obtained equality with equality (38),
we come to the equation for the function w(?):

p(t)w'(t) + q(t)w(t) = 0. (40)
Since the function w(#) is bounded on the segment [0, T, the function [¢(t)]~! belongs to the space
Ly([0,T]), then (40) can be written as

W () + Sdw(t) = 0.

Multiplying the last equality by the function w(t) and integrating, we come to equality

Lo Pa(r) Lo
v (t) —l—/o mw (r)dr = i (0). (41)

Since the function ¢(t) is non-negative on the segment [0,7"] and w(0) = 0 (due to condition (31)),
then from (41) it follows that w(t) is an identically zero function on the segment [0, 7).

The equality to zero of the function w(t) and the formula (39) mean that the overdetermination
condition (7) is satisfied for the found function u(x,t).

So, for the functions u(z,t) and ¢(t) defined above, equation (5) is fulfilled, boundary conditions
(2) and (6) are fulfilled, as well as the overdetermination condition (7). Belonging of the functions
u(z,t) and ¢(t) to the required classes follows from a priori estimates (34)—(37). Consequently, these
functions will give the desired solution to the inverse problem III.

The theorem is proved.

Comments and additions

1. Throughout the work, it is assumed that certain inequalities or conditions for functions from the
Lebesgue or Sobolev spaces (conditions (13), (14), etc.) are fulfilled in the sense of their truth almost
everywhere on the corresponding set, that is, truth everywhere except, perhaps, for some set of zero
Lebesgue measure.

2. The approaches to proving the solvability of the corresponding inverse problems in clause 3 and
clause 4 are significantly different. First of all, we note that the statement of problem III does not
imply, despite the possible reversal of the function ¢(t) to zero at t = 0, the liberation of the set
{z € Q, t =0} from carrying the initial condition. Further, the conditions of Theorem 3 do not imply
differentiability of the function ¢(t), which is required in Theorems 1 and 2. All this is explained by
the fact that the conditions of Theorem 3 allow only weak degeneracy at t = 0, with weak degeneracy
and the nondifferentiability of the function ¢(t) at the points of its vanishing, the liberation of the
initial manifold of the initial data does not occur.

Note also that the conditions on the right side of f(x,t) in Theorems 1, 2, and 3 differ significantly.

3. The paper studies the solvability of some inverse problems for model parabolic equations. Similar
results (with minor changes) can be obtained for more general equations, for example, with the
replacement of the Laplace operator by an elliptic operator

-

8?34 (aij ($)u$j)?

7

=1

or for equations with first derivatives in variables x1, ..., z,,, etc.
4. Let one of the conditions be satisfied in equation (1)
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©(0) >0, ¢(T) >0,
©(0) <0, (T) <0.

In these cases, the inverse problems of finding the functions u(z, t) and ¢(¢) connected in the cylinder
Q@ by equation (1) will be correct when conditions (2) and (3) are set, as well as the initial or final
conditions:

u(z,0) =0, z € Q,
or
u(x, T)=0, z € Q.

The proof of the corresponding existence theorems is carried out analogously to the proof of
Theorem 1, the only difference is that in regularized problems either such conditions are given

u(z,0) = u(x,T) =0, x € Q,
or else such
ur(x,0) = u(z,T) =0, z € Q,

and for the function f(z,t), f(x,0) =0 or f(z,T) = 0 must be executed for z € (2.
5. The condition of turning the function N(z) to zero at x € I' (see condition (28)) can be
abandoned. Let the condition be true for the function f(z,t)

Flat) € Loo(0,T: WE(Q) N WA ().

Consider the problem: Find the function u(x,t), which is the solution to the equation in the
cylinder @

p(t)ur + s lfo(t) — o' (t) + [o N(y)uly, t)dylu = Af (1)

and such that the condition (2) and the condition are fulfilled for it
u(z,0) = Aug(x), x €.

The existence of regular solutions to this problem (under conditions similar to conditions (26)—(31))
is easy to prove by the method by which Theorem 3 was proved. Finding the function @(x,t), it will
not be difficult to further find the desired solution (u(x,t),q(t)) to the inverse problem III.

6. On the contrary, if in the inverse problems I and II the function N(x) vanishes at x € T" and
belongs to the space W2(f2), then using the representation

Ai(t;u) = Jo AN(y)uly, t)dy

it is not difficult to obtain a condition other than (14) for the solvability of inverse problems I and II.
7. The conditions of theorems 1 and 2 are satisfied if the measure of the domain € is small, the
functions ¢(z,t) and () are small.
We show that in the inverse problem III, the set of initial data for which all the conditions of
Theorem 3 are satisfied is not empty.
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Letn=1,Q=(0;1), N(z) = #(1—2), ug(x) and f(z) be functions from the space W2(Q)NW}(Q)
positive in . Next, let v be a positive number, a number for which the inequality holds

%A%wm>

If now p(t) is an arbitrary decreasing on the segment [0,7] continuously differentiable function
such that

e

<5 /Q f(z)N(z)dz.

M@ZAN@WWM

f(z,t) and ¢(t) are functions of vf(z) and t*, 0 < a < %, then all the conditions of the Theorem 3
will be executed for sufficiently small numbers T
Other examples can be given for the inverse problems I, II, and III.
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AN. Koxkanos!?, V.V. A6piikanpos>?, I.P. Amyposa®

LC.JI. Cobones amuvindaes Mamemamuxa urncmumymuo, Hosocubupex, Peceti;
2 Hosocubupck memaexemmir yrusepcumems, Hosocubupcek, Pecet;
3 0n-Dapabu amwmdaes. Kasax yammuk ynusepcumemi, Aamama, Kasaxeman;
4 Mamemamuxa orcone mamemamuraios modeavdey urncmumymot, Aamamor, Kasaxcman

OsrenieseHreH 1ceBaA0NapadoJIadbIK TeHJAeyre KONbLIFraH
KO3 punmeHTTi Kepi ecenrep

MakaJjia e3rerreseHreH eKiHIl peTTi mapadboJiaiblK, TeHIeyIep YIIiH KOd(MUIMEHTTI Kepi ecenTepIiy 1e-
misiiMaiirig 3eprreyre apraaral. ChI3BIKTBIK, Kepi ecenTep peTine Tenaeyaiy 6eiricis oy »KarblH (CBIPTKBI
ocep) aHBIKTay ecenTepi KoHe Genrici3 6ip ko3 dUIMEHTT] aHBIKTAaY/IBIH, CHI3BIKTHIK, eMeC ecebl KapacThbl-
pbUIFaH. 3epTTeseTiH *KYMBICTaP/IbIH ePeKIIesIiri — oaapiarsl 6eiricis KoadduimeHTrep TEK yaKbIT aifHbI-
MaJIBICHIHBIH, (DYHKIUAIAPBI OOJIBIT TaObLIaabl. 2K YMBICTBIH MaKCaThl — 3€PTTEJIETIH €CENTEPAIH, TYPAKThI
mermimzepinin (Tegaeyre karbicatsi dyarmusaapasH, C.JI. Co6omeB MarbIHACBIHIA GAPJIBIK, KAITHLIAMA
TYBIHABLIAPEL 6ap) 6ap »KOHE MKAJIFBI3BIFBIH JIDJIEIIEY.

Kiam cesdep: e3rerienenrer napaboiasblK TEHIEYIED, ChI3BIKTHIK, KEPi ecenTep, ChI3BIKTHI eMecC Kepi ecer-
Tep, peryisp menriMaep, menimMuig 6ap O00JIybl.

AN. Koxxanos!?, V.V. A6euikanpos>?, I.P. Amyposa®

L Bvemumym mamemamuxy umernu C.JI. Coboaesa, Hosocubupcr, Poccus;
2 Hosocubupcruti zocydapcemeenmitl yrusepcumem, Hosocubupes, Poccus;
3 Kasaxcrutl mayuonassruili ynusepcumem umeny ans-Papabu, Aimams, Kazaxcmar;
4 HMnemumym mamemamury, U MamemamuMeckozo modeauposanus, Aimamo, Kazazcman

Oo6parHble 3aga4un onpeaesieHust KO3 UIMEHTOB BPEMEHHOI'0 TUIIA B

140

BBIPOXKJaI0oNIeMcsa MapadboMmIecKOM ypaBHEHUN

Crarbsl IOCBSIIEHA HMCCIEIOBAHUIO PAa3PEIIUMOCTH OOPATHBIX KO(DMUIIMEHTHBIX 3a/ad JJIsi BBIPOXKIAI0-
UXCsT TapabOIMIeCKUX yPaBHEHUI BTOPOTo Topsijika. M3ydeHn! Kak JIMHEHbIE 0OOpaTHBIE 33/ 1a49d — 33241
OTIpE/IEJICHNsT HEM3BECTHON MPaBOil 9acTh (BHEITHErO BO3MEHCTBUA), TAK W HEJUHEHHBIC 38189 ONPEIeIe-
HUsl HEKOTOPOro KoaddurimenTa camoro ypaBHerus. OCOOEHHOCTBHIO M3yYaeMbIX PabOT SABJISETCS TO, UTO
HEU3BECTHBIE KOI(DMDUINEHTHI B HUX SIBJISTFOTCsI (DYHKIIUSIMHE JIMIIL OT BpEMEHHOH niepemenHoii. [leas paboTsr
— JIOKA3aTeJbCTBO CYNIECTBOBAHUS U €INHCTBEHHOCTU PErYJISIPDHBIX PEIeHUH N3yIaeMbIX 3aad (pereHuii,
nmeromux Bee 0606mmennpie, mo C.JI. Co6oseBy, TpOU3BOAHBIE, BXOJSIIIE B YPABHEHHUE).

Karoueswie cr06a: BHIPOXKTAIOIIAECS TapabOINYecKue ypaBHEHNUsI, JUHEeHbIe 0O0paTHbIE 3a/1a4Uu, HeJIUHel-
Hble OOpATHBIE 337441, PETY/IsIPHBIE DEIeHNsI, CyIIeCTBOBAHNE.
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Boundary value problem for a system of partial differential equations
with the Dzhrbashyan—Nersesyan fractional differentiation operators

A boundary value problem in a rectangular domain for a system of partial differential equations with the
Dzhrbashyan—Nersesyan fractional differentiation operators with constant coefficients is studied in the case
when the matrix coefficients of the system have complex eigenvalues. Existence and uniqueness theorems for
the solution to the boundary value problem under study are proved. The solution is constructed explicitly
in terms of the Wright function of the matrix argument.
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Introduction

Consider the system of differential equations

Lu(z,y) = D™ (e, y) + ADGP e, y) = Bulw,y) + f(,9), M
in the domain Q = {(z,y) : 0 <z <a, 0 <y < b}, a,b < oo, where Dégo’al’“"a’“} and Dégo’ﬂl"“’ﬂm}
are the Dzhrbashyan—Nersesyan fractional differentiation operators [1] of orders o = iai —1>0and

i=
B =3 B —1>0, respectivly, ai, 8 € (0,1], (i = 0.k, j = m); flary) = [[1(@), s Fulery)]
and Za?gc, y) = ||ui(z,y), ..., un(z,y)|| are given and desired n-dimensional vectors, respectively, A and

B are given constant real square matrices of order n.

Dé%,’nwﬁk}
t

The Dzhrbashyan—Nersesyan fractional differentiation operator of the order v =

k

d>ovi—1>0,v €(0,1], (i =0, k), associated with the sequence {79, 71, ..., V& }, is determined by the
=0

relation |[1]

’ [ARRS] -1 -
Do () = Dy DG DY Do (o)
where Dy, is the Riemann-Liouville fractional integro-differentiation operator [2; 9].

The operator Dét%m"”’%} was introduced in [1|, where the form of the initial conditions for the
ordinary differential equations with such an operator, and the Cauchy problem was studied. The
Dzhrbashyan-Nersesyan operator generalizes a number of definitions of fractional derivatives, including
the Riemann—Liouville and Gerasimov—Caputo derivatives.

A review of works related to the study of the equation (1) with Riemann-Liouville and Gerasimov—

Caputo derivatives, including in the scalar case n = 1, can be found in [3] and [4].

Equations of the order not higher than one containing operators of the form Dé;’ 07} are studied

in [5-10]. In [5], for a linear partial differential equation of fractional order with many independent
variables a fundamental solution is constructed and a boundary problem is solved.

*Corresponding author.
E-mail: mamchuev@rambler.ru
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In papers [6], [7], boundary value problems in a rectangular domain for first-order partial differential
equations with variable coefficients are studied. In papers [8] and [9], a boundary value problem with an
integral condition and a boundary value problem in a rectangle, respectively, are studied for equations
with constant coefficients. The study [10] considers an equation containing the Dzhrbashyan—Nersesyan
operators in two independent variables, and in one of the variables the equation includes a linear
combination of two Dzhrbashyan—Nersesyan operators, the orders of which are associated with the
sequences {«, 5} and {7,d}. The question of the influence of the distribution of the values of these
parameters on the setting of the initial conditions is studied.

We also note the papers [11, 12] where the unique solvability of initial problems for some classes of
linear equations with operator coefficients in the Banach spaces are studied.

In papers [3], [4], [13-15], boundary value problems in rectangular domains and the Cauchy problem
for systems with sign-definite eigenvalues of matrix coefficients in the main part, with Riemann—
Liouville partial derivatives whose the order does not exceed one, are considered. For these systems, the
situation with the formulation of boundary value problems is similar to the case of a single equation. In
this paper, we extend the class of such systems to include systems with eigenvalues of the coefficients
of the main part lying in some corner of the complex plane, and with more general Dzhrbashyan—
Nersesyan operators of fractional differentiation.

1 Auziliary assertions

The Riemann-Liouville fractional integro-differentiation operator Dy, of order v is defined as follows
[2; 9]:

y
sign(y —a) [ g(s)ds
DY = , <0,
ayg(y) T(—v) / ly — 5|71 v
a
for v > 0 the operator Dy, can be determined by recursive relation

v : d v—
Dayg(y) - Slgn(y - a)ijay 1g<y)7 v=>0.

The following series

> k
z
¢(Paﬂ:z>: E T (ol 1+ 1) p>_17 MEC
— kIT(pk + 1)

defines the Wright function [16], [17] which depends on two parameters p and .

The following relation holds [4]
1

P(n)
If B €(0,1), u € R, then the following estimate is valid [1§]

d(p 3 2)|,_ =

1
(=B, 15 —2)| < Cexp (~0l2 77 ), (3)
where C' = C(8, u,0) and
B 1-—
a<(1—,8)61§ﬁcos argzj 0<|argz| < Bﬂ'.
1-5 2
Under the condition 5
Be(0.1), 0<|ag) < —m, (4)

2
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the inequality
(=B, s —Awy )| < Ca Pyt 2 >0, y >0, (5)

holds [18], where C' = C(u,3,60,X), 0 >0 for p #0,—1,—-2,..., and § > —1 for p =0,—1, -2, ....
The following differentiation formula is valid [17]:
d
0 2) =dlpntpiz), p> -1 (6)
Let 8 € (0,1), u,v € R, and the inequality (4) holds, then the formula [18]
Dy o (=B =y P) =y (=B — vi =y P (7)

is true. By (7), we have

Dé;g,...,’}/j}yu—l¢(_l3’ L _/\y—ﬁ) — yﬂ_ﬂj¢(_67 o=y + 1; —)\y_’g), (8)

J
where p1; = > ;.
i=0
Formulas (6)—(8) give the equality

J

(3 + )\D{“/o,.“ﬁj}> yufl(f)(—,@, 1 _)\xy*ﬁ) =0, A= Z% —1<1. (9)

Oy
iy
0 i=0

Using the integration by parts formula and the relations (2) and (3), one can show that the equality

[e.e]

/t%(—ﬁ,u; —At)dt =

0

n!
AL (p+ (n+ 1)8)

n=0,1,.. (10)
holds under the condition (4).
For A = 1, the equality (10) was obtained in [19].

2 Special solutions
2.1 Wright matriz function

In papers [3], [4] the Wright matrix function was defined

$(p; A) =Y e, p>—1, peC

and its following properties were established.
1. Let the matrix A be reduced with the help of the matrix H to the Jordan normal form J()), i.e.

A=HJNH™,

where J(A) = diag[J1 (A1), ..., Jp(Ap)] is the quasidiagonal matrix with cells of the form

Ao 1 ... 0
MNe ... 0

Jk: = Jk()‘k) = 0 . : ; k= 17"'7p7
Ak
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A1, ..., Ap are the eigenvalues of the matrix A, Ji(A\r) are the square matrices of order ry + 1,
P

> 1k + p = n. Then the function ¢(p, u; Az) can be represented as
k=1

d(p, s Az) = Ho(p, pi; J(N)2)H (11)
where
o(p, w5 J(N)z) = diag[o(p, s Jl()\l)z) (p,u,J (Ap)2)]s
bl
(

2#()\;@,2) Aez) oo opk(Ak2)
A

z) ... Tkl)\z
Ops s Je(M)2) = k>._ P ) |

0
p,M(AkZ)
1 o™ zZm
piu(A2) = s dlps s A2) = 5 d(p, A+ pm; Az).
2. Using the representation (11) and equality (2), we obtain
1
(p, 3 Az)| g = o= 1, 12
(o1 49)] o = 50 (12
where I is the identity matrix of order n.
3. The following differentiation formula is valid
d
7,900, 1 A2) = Ad(p, p + 1 Az). (13)

Further, we assume that all eigenvalues A1, ..., A, of the matrix A satisfy the condition

1—

0 <larg\| < ?ﬂ
Due to the relations (2), (3), (5), (6), (7), (10), the following properties proved in [3], [4] remain

valid under the condition (14).

4. Due to (7) and (11), for 5 € (0,1), u,v € R, we have

DYy (=B —Ary P =y (=B, — v — ATy P, (15)

™, i=1,p. (14)

From (15) it follows
{20,075 y
Doy Iy G (=B, s —Ary Py =yt (=B — g+ L= ATy F), =Y v (16)
5. The equalities (13), (15) and (16) imply the equality
9 J
(6 + ADJ ) Y (=B —ATy ) =0, B=) y-1<L (17)
i=0

6. By virtue of (10) and (11) it follows

[ AV — 2 a1
J¢<@% Az)dz = oA (18)
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7. Let A(x,y) be the matrix with entries a;;(x,y). By |A(x, y)|« we denote a scalar function taking
the maximum absolute value of entries of the matrix A(z,y) for each (z,y), ie. |A(z,y)|. =
max |a;;(z,y)|. Likewise, for a vector b(z,y) with components b;(z,y), we set |b(z,y)|, = max |b;(z,y)|.

2, 7

From the estimate (5) it follows that
" OB, = ATy )| < OOy r >0,y >0, (19)

where g € (0,1) and 8 >0 for v #0,—1,—-2,..; and § > —1 for v =0,—1, -2, ....
8. Formulas (3) and (11) yields the estimate

|6(—5, &5 —Az)|, < Cexp (-mﬁ) . 2>0, (20)

where § € (0,1), e € R, 0 < (1 —9)d1=3 5)\1’ , Ao = mm {|)\ I}, A1, ..., Ap are the eigenvalues of the

matrix A.
2.2 Properties of the function ‘Dg’g(x, Y)

In 3], the following function is defined
o (e y) = / Brat =g (—a, s —ra ™)y’ "o (= B,v; —Ary~)dr. (21)
0

The estimates (3) and (5) imply the convergence of the integral (21) for any u,v € R, and 2% + 52 # 0.
The following assertions are true.
Lemma 2.1. For all u,v € R the following equalities hold:

DSxQZ:E(x,y) = @ZT;”’(@", y), a+pu>0, (22)

k7 V=0
Dqu’g,g(%y) = q)Z,B (JJ, y)a 6 +v>0. (23)

Lemma 2.1 follows from the formulas (7), (15), (21).
Lemma 2.1 implies the equalities

J
o€ —pi+1lv
Déi()a €J}¢Z:g(l’,y) = (I)Z,ﬁuj+ ($’y)’ o+ i > 0’ /‘L] = Zgi’ (24)
{80,..-,0;} i+1 J
Dy, RN (,y) = BN (wyy), B4y >0, =) 4 (25)
=0

Lemma 2.2. The estimate

04 ()| < Cartrmet L g e [y, 0y) (26)

Lop70, No = {0,1,2,...}, and the

holds for all = € [0; x¢], where 6 = { _07 e by = { 2, u=0

17 -V E NOv
constant C depends on zg.
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The validity of Lemma 2.2, under the condition (14), follows from the formulas (3) and (19),
similarly to the case when all eigenvalues of the matrix A are positive [3].

k1 mi
Lemma 2.3. Let AB = BA, Y e;=a+1, Y §; =0+ 1, then the following equality holds:

i=0 i=0
(D{Eo,.‘.,skl} + AD{50,...7(5m1} o B) (bu7y (x ) B xu_lyl/—ll (27)
0 0 R (I
Proof. Let us denote
hh(a,m) = ot o(—a, s~ Ry, ) =y o=, vs Ay P).
Using the fact that due to (9)
pleomd 4 O g By 1y~ o
Ox or a4 )
the integration by parts formula and relations (2), (3), (12) and (20), we obtain
D{‘507"'761€1}¢M v Bt {507“'78161} “w v _
Ox ( y) e DOw ha(wv T>hﬁ(y7 T)dT -
0
= lyy 1 3
= =1+ B®L(x +/£&%“xri1@,m (28)
M) J ’
By virtue of (25), we get
Dyt gt (o j[eBTh“ ) DE ey, 1) dr, (29)
0

By (28) and (29), taking into account the equality
<AD§§O""’67”1} + 9 B) eBThfé(y, T7) =0,
or
which follows from (17), we get (27). Lemma 2.3 is proven.
8 Problem statement and main theorem
Let all eigenvalues Ap, ..., A, of the matrix A satisfy the condition (14). We formulate a boundary

value problem for the system (1).
Problem 3.1. Find a solution u(z,y) of system (1) with the boundary conditions

h%DW““’}u—¢4y 0<i<k—1, 0<y<b (30)
T
I%D{ﬂo’ﬁl’ ’ﬂ]u—zpj( ), 0<j<m-1 0<z<a, (31)
y

where ¢;(y) and 1j(x) are given n-vectors functions.
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A regular solution of system (1) in the domain €2 is defined as a vector function u(x,y) satisfying
at all points (z,y) €  the system (1) and the inclusions

Dégo,...,ak}u, Dé?fo,---,ﬁm}u c C(Q); (32)

Dy e c(ufz =0}), DL Phue c@u iy =0,

2 ploo-eily, g‘yp%’ Py e c@)NL©Q), (i=0k—1,j=0,m—1);

21y =0z, y) € C(Q), for some ¢ > 0 and § > 0.
We accept the following notation:

J k i i m J
_ = i _ . _ = J_
My = E Ap, Hj = E Qp,  Hj = E Qp; Vi = E ﬁpa v = E 51)7 v, = E /Bp-
p=0 p=j p=j p=0 p=1

p=1

(33)

Theorem 3.1. Let AB = BA, all eigenvalues Ap, ..., A\, of the matrix A satisfy the condition (14),
aot+ag > 1, Bo+ B > 1,

0i(y) = Do, @5 (y), ¥y i), ¥ er-1(y) € C[0, 8],

. 34
77j>07 pj>max{uj+11§71 ﬁm}a J=0k—2; ( )

vily) = Do j (), 2! 754 (x), 2171 (2) € C[0,a],

& >0, Ji>max{uﬁjl%,l—ak}, 1=0,m—2;

Fle) = Do Dol (), =Sy f (2.y) € C(D), %)
o>1-— oy, p>1_6ma §>0, n > 0;

(35)

whereinto ¢ < min{ag, 0y + &,0 + & p}, 0 < min{Bo, p; + ni,p + n,v}. Then there exists a unique
regular solution to problem (1), (30), (31) in . The solution has the form

k-1 Y
— /D{a’“’ak b ’%“}G(x,y— s)p;(s)ds+
Jj=0 0
m—1 % Yy x
+ Z /Dégm"gm“"’ﬁi“}G(x —t,y) Ay (t)dt + //G(x —t,y — s)f(t,s)dtds, (37)
=079 00

where
0,0
G(.Z',y) = q)aﬁ(xay)'
Remark 3.1. If we put

then £ < ay, 0 < fp, and the conditions (34)—(36) will take the form

i(y) = D293 (y), @i(y), v Per_1(y) € C[0, 1], (38)
Bo > max {8 — MB, —Bm}, i=0k—2

Yi(y) = Do ¥ (2),  ¥f (@), ' %m_(2) € C[0,al,

a0>max{a—%a,l—ak}, 1=0,m — 2;
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fla.y) = DDy f*(x,y), [ (z,y) € C(Q). (40)
Remark 3.2. In the case of a system with Riemann-Liouville derivatives, i.e., when &k = m = 1,

Dégo’l} = Dy?, Dégo’l} = Dg;, the conditions (38)—(40) will take the form

yliﬁowo(y) € C[O’ b]’ xliaodjo(‘r) € C[O,CL], f(x,y) = D()_xaoD(;yﬁof*(xa y)v f*(xvy) € C(Q)

The solution has the form

Yy T
u(e.9) = [ Gy = pn(s)ds + [ Gla o) dun(t)de+
0 0

Yy x
+0/0/G(x—t,y—s)f(t,s)dtds.

Remark 3.3. In the case of a system with Gerasimov—Caputo derivatives, i.e., when &k = m = 1,
Déi’m} = O » Dé;”gl} = 85;, the conditions (38)-(40) will take the form

eo(y) € C[0,b], wo(x) € Cl0,a), f(z,y) = Dy, Dy f*(z,y), f*(x,y) € CQ).

The solution has the form

Y x
u(,y) = / DS G,y — s)go(s)ds + / DETAG( — 1, y) Ado (1)t +
0 0

Yy x
+O/O/G(a:—t,y—s)f(t,s)dtds.

In what follows, for brevity, we will denote

y
Uy, (x,y) = /Dézk"”’aﬁl}G(m,y — 8)pji(s)ds,
0

g, (@, y) = / DB Gl — b, y) Aty (t)dt,

T

0
y
Uf(;v,y)://G(:U—t,y—s)f(t,s)dsdt.
00

3.1 Representation of solutions

Lemma 3.1. Every regular solution u(z,y) to problem (1), (30), (31) in © can be represented in
the form (37).

Proof. Let u(x,y) be a solution to problem (1), (30), (31), and matrix V = V(x — ¢,y — s) be a
solution to the equation

LYV = Di?k,ak—lvwao}v + Défyn,ﬂmq,---,ﬁo}VA =VB+1, (41)
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satisfying the conditions

lim D010y g ] < <k, (42)
t—z

lim Dyl — o0 1< <m, (43)
S*)y

where [ is the identity matrix.
Lemmas 2.2 and 2.3 show that V(x —t,y — s) = @;15(30 —t,y — ) is the solution to the problem
(41)—(43). From (22) and (23) we see that

Vay(z,y) = G(z,y). (44)

We have the following formula [20]

T

/ [, ) Do g 1) — DIgmem -t p (1) - ()] dt =
0

Am,0m—1,--,Qm i QOO 5oy O — 5 t=x
_ ZD{ 1 1 }h( t) - Déto 1 }g(t) . (45)

By (1) and (41) we get
V(z —t,y—s)Lu(t,s) — L'V(x —t,y —s) -u(t,s) =V(x —t,y —s)f(t,s) —u(t,s),

or

(VDé?O"“’ak}u . Ditak,...,ao}v ) u) + (VADéfO"“’ﬁm}u _ Défm,...,ﬁo}VA . u) =Vf-u.
Integrating the last equality, taking into account the formula (45), we obtain

T Y z Y

//u(t, s)dsdt = //V(:c —t,y — s)u(t, s)dsdt—

0 0 0 0

t=x

k )

Z/Di?k:ak1>~~~,ak+1i}v($7y . S)Dégéo,al,makfi}u(t? S)‘ Odsi
t=

=1 0

. (46)

s=0

m x
_Z/Défm,ﬂm1,...,ﬂm+1_j}v(x i y)ADéfo,ﬂl,...,ﬁm_j}u(t7 5)
j=1

Therefore, differentiating (46) with respect to = and with respect to y, taking into account (30), (31),
(42), (43) and (44), and then changing the order of summation, we get (37). Lemma 3.1 is proved.

3.2 Properties of the fundamental solution
Lemma 3.2. |3] Let AB = BA, then the equality
(Dg; +AD] — B) G(z,y) =0 (47)

holds.
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Lemma 3.3. Let the vectors ¢;(x) (i = 0,k —1), and ¢;(y) (j = 0,m — 1), satisfy the conditions
of Theorem 3.1, then the relations

. s 0 iF# ]
1 D{ao, i} ) —_ ) ] .7 4
lim Dg, U, (2, y) oiy), g, V>0 (48)
: {/BOwa'} Oa i 7é jv
lim D g, () = 0, x> e >0, 49
y—0 Y #:(@3) { biy), =4, 49)
. {Bo,.--.B;5} _
il_r% Dg,” g, (x,y) =0, x>e>0, (50)
lim Dé;‘o""’ai}uw,(x,y) =0, y>e>0, (51)
z—0 J

hold, where the limits (48) and (51) are uniform on any closed subset (0;b), and the limits (49) and
(50) on any closed subset (0;a).
Proof. Using (22), we write

y
1—1541,0
g, (z,y) = /@aﬁ””l (,y — s)p;(s)ds.
0

By virtue of the formula (24) and the estimate (26), we obtain

Dy f ) = o f T ),

(D;Tﬁﬂj+1+1_“i’0($,y) ) < C:U1+a*ﬁj+1*/—‘i*a9y,8971’ = [_17 1]

J
Let 7 < j, then, taking into account the fact that > «as < a for ap+ag > 1, we get that there exists
s=i+1
6 € (0,1), such that

k i k J
1+a—ﬂj+1—ui—a9:Za3—Za5—Zas—aHZZas—a0>O.
s=0 s=0

s=j+1 s=i+1

By virtue of the last relations, for ¢ < j, we obtain

Y
QQ,y..., 0 1—fs 1—p5,0
DL g, () = [ BT,y 9)g(s)ds € C@ U = 0)), (52)
0
lim D0y, (x,y) = 0. (53)
20 0% LEAN

Consider now the case ¢ = j. Taking into account that 1 — fij41 +1 — pj = 1 — o we obtain
y y
Dégo""’aj}uwj(a;, y) = /@iﬁ“j“Jrl“j’o(x,y —s)pj(s)ds = /@;’_ﬁa’o(x,y — 5)pj(s)ds.
0 0
Hence, in view of the equality [3]

lim
z—0 B
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which under condition (14) is proved using equality (18), we get
-
Tim Do, g, (2, 9) = 05 (y)- (54)

Fori>jie 1<i<k—1,and 0 <j <k —2, due to (24) and equality (47) we obtain

Y
Dégo,...,ai}u% (x’y) _ Dé;‘:‘jﬂ,...,ai}/Dng(x’y . s)goj(s)ds _

= Dé;j“’ ’al}/ B AD'B G(:c, y—s)pj(s)ds = I (z,y) — I2(z,y). (55)

It follows from the relation o > o + 1+ ...+ «; that there exists § € (0,1), such that
a(l —0) > o + 1+ ... + ay. Therefore, by the estimate

1—-pi 1,0
‘(I)aﬂuﬁl (z,y—s)

< Oz Pl g e 21,1,

*

we get the relations

y .
hie) = B [ 15wy - 9)pi(s)ds € C@ U2 = 0)), (56)
0

lim I;(z,y) = 0. (57)
z—0

Let us consider the second term

2(a,y) = A / DY DE.Gla,y — 5) Dy ip5(s)ds = A / B gy 5t (s)ds.

In view of the estimate

‘q);_ﬁ%ﬂ’pj_ﬂ(w,y) < QOO0 My A0 g [0, 1),

*

. i a—abf —phi >0,
we get that the integral Is(x,y) converges under the condition 848 0] S0 i.e., when 6

satisfies the condition “1 <1l-0< pﬁj, at that

lim I (z,y) = 0. (58)
By (53), (54), (55), (57) and (58) we get (48).

The relation (49) is proved similarly.
Let us prove the relation (50). Formulas (25) and (26) give the equalities

aS
oy’

S ) = 0 T ), =01,

and

q)ifﬁﬂj+lvpj*l/i+1*8<m7 ) < Cxa—a@—ﬂj+1ypj—l/i+ﬁ9—s’ s=0,1, f e [07 1)

*
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By the last estimate, taking into account that due to p; > 1 — 3, > 1 — ;41 one can choose 0

sufficiently close to 1, so that p; —v; + 860 = pj + Vi1 — 1+ (0 — 1) > 0, we get

a,B

Y
DU (o) = [ @ = s)i(s)ds € C(R Uy = 0))
0

Y

a 7 1*7‘ 5 i—V; *

oy ({)50’ il <Pj($7y)_/q)a’guj+1 P @,y — 8)@f(s)ds € C(Q) U L(Q),
0

and
lim D Py (2,y) =0, 0<i<m-—1.

y—0
The relation (51) is proved similarly. Lemma 3.3 is proved
Lemma 3.4. The function (37) is a solution (1) satisfying the inclusions (32) and (33)
Proof. Using estimates

_“I?_llﬂo a—ab—p®71 -1 Bo—1
o M (2,y)| <Cx M ThyPml g e (0, 1),

a75

*

< Cx a—of— ﬂj+11 lyp] B+50— 1 0 c [07 1)’

a?ﬁ

*

gkl
‘q) T )| <
and inequalities o — afl — ,uf;_ll >0, pj — B+ B0 >0, by (55) with i =k — 1 we get

Yy
8 - )
Dégo,...,akq}u% (z,y) B/ u;+1 — 8)ip;(s)ds—
0

ox

Yy
k-1
—A / P A ’ 2,y — s)@l(s)ds € C(Q) N L(Q).

0

By (61) it follows that

Yy
Pl 10
Doy, (z,y) = B / F 02,y — 8)p;(s)ds—
0

y
—A/@ijﬁﬁj+1’pj_ﬁ(x, y — s)pj(s)ds € C(QU {z = 0}).
0

Due to the estimate
‘(I)ijﬁﬂﬂlvﬂjfw (x7 y)’* < Cxafaefﬂ]ﬁrlypj*’/i“rﬁe 17 0 [0, 1)7

and the inequality p; + B, > 1, one can always choose ¢ sufficiently close to 1, so that

pj —vi+ B0 > Bit1+ ...+ B+ (0—-1)8>0,

9 Bo,---Bi
7Déyo g }uCPj (1'7 y) = a,f

SO Yy
/(I)lujﬂv/)j”i (z,y — 8)¢5(s)ds € C(Q) N
oy J
0

L(Q).

(59)

(60)

(61)

(63)
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From (63) for i = m — 1 it follows that

a’ﬂ

Yy
D, g, () = / o 47 2,y — )@} (s)ds € C(Q). (64)
0

It can be seen from (62) and (64) that u, (z,y) are solutions of the homogeneous system
Dégor--,ak}u% (z,y) + ADégO"”’ﬁm}u@j (z,y) = Buy, (z,y).

The proof for uy, (z,y) is similar.

Let us show that
T Y

://@Z’%(:ct,yS)f*(t,s)dsdt
0 0

system solution (1). In view of

1 Tl q— _ _
‘(PU pi+ ,P( 7y)‘ < O xpli+1 ab+o 1yp+,89 17
*

we get
‘D{ao, o} f(x,y)‘* < Cxa-l—é—(1—ﬁj+1)—a9yﬂ+n+60—1.

The inequality o + & > 1 — ay, implies 0 + & — (1 — [ij4+1) — @f > 0 and the relations

z Y
D (2, y) // 7" ’““’” (z —t,y — s)f*(t,s)dsdt € C(QU {z = 0}), (65)
0
hn%Dégo’ Yy (a,y) =0, 0<j<k-—1. (66)
T—>

It follows from (48)—(51) and (66) that the boundary conditions (30) and (31) hold.
By the estimate

@71 ()

—pj—ab+o—1, p+BI—1
o8 < O Ham ot lyp ot

and inequalities & — p; —al + 0 = [ij41 +0 —1—ab > 0, which follow from the inequality o > 1 — oy,

we get
z Y

0 , vy
yDégoy--an}Uf(fL‘,y) = //Q)Z ;J’p(ﬂﬁ—t,y—S)f*(t,s)dsdt. (67)
x b
00
By (67), estimate
0 . _
aDégo """ aj}uf(a;y) < Cg;”+5+#j+1—1—a9yp+n+56’—1’

2 ploe=tuy(ay) € C@ ML), 0< i<k 1 (65)

Therefore y
Dégo 7ak}uf($7y) = //égﬁa’p(x —t,y —s)f*(t,s)dsdt € C(Q) (69)

00
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Similarly, we get

T Y

plosindy, / / 70 (@ — t,y — ) (1, s)dsdt € C(Q). (70)
0 0

By (69) and (70), taking into account Lemma 2.3, we obtain

(Dégo7-..,ak} + AD({)fo,---,Bm} B B) uf(:v,y) _

T Y
://<D({)z°""’a’“}+AD§5°""’B’”}B) BTE(x —t,y — 5)f*(t, s)dsdt =
0

i —5)P1 _
/ ) J(t,s)dsdt = DgZ D f(t,5) = F(t,5).

\a

0
From (52), (56), (5 ) (65), (68)—(70), it follows that (37) satisfies the inclusions (32), (33). Lemma 3.4
is proved.

3.8 Proof of the main theorem

Using the estimate (26) and the conditions of Theorem 3.1 on the functions ¥;(x), ¢;(y) and f(x,y),
we obtain the estimates

2y g, (2, y) | < Catm 0Ttz pit 070 g e (0,1), (71)

'Y 0 uy, (2, )| < Cateftertamey Mrati=e g e (0,1), (72)
x1_5y1_5|ujr(x,y)]* < Cxa—a@—i—o—&-&—syﬂe—&-p—i-n—é’ = (0; 1). (73)

Considering that o + 1 — fi;41 = p; > €, due to o > ¢, and the fact that p; +n; > €, by (71)

we get :L‘l_’fyl_‘su(pj € C(Q). Taking into account the inequalities o; + & > ¢, and the fact that
B0 —Dig1 +1=B(0—1)+v; > 6, due to By > 6, by (72) we get 21yl ~%u,, € C(Q). It follows from
(73) and the inequalities o + ¢ > & and p + 1 > & that the inclusion z1 =5y ~u; € C(Q).

The above together with Lemmas 3.2, 3.3, and 3.4 proves the existence of a regular solution to the

problem (1), (30), (31). The uniqueness of the solution to the problem follows by Lemma 3.1. Theorem
3.1 is proved.
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M.O. Mamuyes

PFA KBFO Koadanbanv, mamemamuka sicone agmomammandopy uncmumymst, Harvuux, Pecet

xpbamgaa—Hepcecsn 6emmnek auddepeHimaagay omneparopbl 6ap

aepbec TYbBIHABLIBI TEHJAEYJIep »KylieciHe apHaJFraH IIETTIK ecel

TikOYpBIMTH 06JIBICTA XKYIEHIH MATPUITAJIBIK KOI(DMOUIIMEHTTEP] KYPAeai MEHITKTI MoHAepre ne OoFaH
XKarjaiaa TypakThl Koaddunuentrepi bap xkpbdamsa-Hepcecsin Gesrnek nuddepenimaiiay onepaTopbl
Gap nepbec TYBIHIBLIBI TEHIEYIIED XKYiieciHe apHaJIFaH MIETTIK eCell 3ePTTeJI/Ii. 3ePTTeJIEeTIH IeTTIK ecenTep-
JiH 1renriMiaig 6ap 60Ty bl 2KoHE YKATFBI3IALIK, TeopeMatapsl Jastesaenai. [lemiyv MaTpuiaabk apryMeHTTiH,
Paitt dyHKIMACH TYPFBICBIHAH aHBIK TYPJE KYPACTHIPBLIFAH.

Kiam cesdep: nepbec TyBIHABLIBI TEHIEYJIED XKyiieci, 6emmek perTi TybiHabl, Jxxpbamsa-Hepcecsn onepa-
TODPBI, MIETTIK €Cell, ipreJii memntiM, MaTPUIAJIbIK ApryMeHTTiH PailT dyKHIUSICHI.

M.O. Mamayen

Hnemumym npukaadnot mamemamuru u asmomamusayuu KBHI] PAH, Haavuux, Poccus

KpaeBast 3a/1a4a JijIst cuCTeMbl YPAaBHEHUIT B YaCTHBIX ITPOM3BOIHBIX

158

c onepaTopamu JIpodoHoro audepeHImpoBaHus
xpbamgna—Hepcecsana

UccnenoBana Kpaesas 3aja4a B IPAMOYTOJIbHON 06J1aCTH /11 JIMHEHAHON CUCTEeMbl yPaBHEHU ¢ YACTHBIMU
omeparopaMu JapobHoro auddepenrupoBanns xpbamsna—HepcecsiHa ¢ mocTOIHHBIME KOI(MDPUIIIEHTA-
MH B CJIydae, KOIJa MaTpU4Hble KO3(@UIMEHTH CUCTEMBI MMEIOT KOMILIEKCHBbIE COOCTBEHHLIE 3HAYCHMSI.
JlokazaHbl T€OPEMbI CyIIECTBOBAHUSA U €IUHCTBEHHOCTU PELICHUs MCCIIeLyeMOil KpaeBoil 3aja4u. Pemenue
IOCTPOEHO B SIBHOM BHUJI€ B TepMUHaX (PYHKIUU PaiiTa MATPUYHOrO apryMeHTa.

Kmouesvie cao6a: cucreMa ypaBHEHUN C YACTHBIMU MMPOU3BOIHBIMU, TPOU3BOIHBIE IPOOHOTO MOPSIKA, OIe-
parop [Lxpbamsauna-Hepcecsna, kpaeBas 3amada, GyHIaMeHTaIbHOE pertenne, yHkmus Paiita maTpud-
HOI'O apryMeHTa.
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Steklov problem for a linear ordinary fractional delay differential
equation with the Riemann-Liouville derivative

This paper studies a nonlocal boundary value problem with Steklov’s conditions of the first type for a linear
ordinary delay differential equation of a fractional order with constant coefficients. The Green’s function of
the problem with its properties is found. The solution to the problem is obtained explicitly in terms of the
Green’s function. A condition for the unique solvability of the problem is found, as well as the conditions
under which the solvability condition is satisfied. The existence and uniqueness theorem is proved using the
representation of the Green’s function and its properties, as well as the representation of the fundamental
solution to the equation and its properties. The question of eigenvalues is investigated. The theorem on
the finiteness of the number of eigenvalues is proved using the notation of the solution in terms of the
generalized Wright function, as well as the asymptotic properties of the generalized Wright function as
A — oo and A = —o0.

Keywords: fractional differential equation, delay differential equation, Steklov’s boundary value problem,
Green function, generalized Mittag-LefHler function, generalized Wright function.

Introduction

In this paper, we consider the equation
Dgu(t) — Au(t) —pH({t —1)u(t —7) = f(t), 0<t<1, (1)

where D§; is the Riemann-Liouville fractional derivative [1], 1 < o < 2, A, p1 are the arbitrary constants,
7 is the fixed positive number, H(t) denotes the Heaviside function.

In [1-6], the theory of fractional calculus is studied (see also the references in these works).
Barrett [7] investigated a linear ordinary differential equation of fractional order. For a fractional
order differential equation the existence and uniqueness theorem is proved in [§], and the boundary
value problem with the Sturm-Liouville type conditions was considered in [9]. In paper [10], the initial
value problem for a linear ordinary differential equation of fractional order was studied.

To the theory of delay differential equations were devoted the following works [11-15].

The Cauchy problem for Eq.(1) was solved in [16], and the solutions to the Dirichlet and the
Neumann problems were obtained in [17]. The boundary value problem with Sturm-Liouville type
conditions was founded in [18].

The papers [19], [20] are devoted to the study of the Steklov problem for a fractional order
differential equation. In this paper, we construct the solution to the first-type Steklov boundary value
for Eq.(1) and prove the existence and uniqueness theorem and the finiteness theorem for the number
of real eigenvalues of the problem under study.

*Corresponding author.
E-mail: mazhgihova.madina@Qyandex.rTu
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Main results

A function u(t) is called a regular solution of equation (1) if D 2u(t) € C2(0,1), u(t) € L(0,1)
and u(t) satisfies Eq. (1) for all 0 < ¢t < 1.
The problem we solve here is to find the reqular solution to equation (1) satisfying the conditions
: a—2 : a—1 : a—2 : a—1 _
ay E}% D§ *u(t) + a2 }gr(l) Dg u(t) + as %Eﬂ D§; “u(t) + as %Eﬁ Dg u(t) =0,

(2)
. _92 . 1 . _92 . -1
by %g% D "u(t) + bo 21551(1) Dy u(t) + b3 %gr{ Dy "u(t) + ba }gri D¢ u(t) = 0.

In the case agby — agbs # 0 the conditions (2) can be write out in the form

Dg‘t_lu(t)‘tzl = chg‘t_zu(t)]tzo + CQDS‘t_zu(t)‘t:17
D(O)Ltilu(t)‘t:o = C3D81t72“(t)’t=0 + C4D8£t72u(t)‘t=1’
where
o = aiby — a2b1, oy = —agbs + a352, o = —abs + a4b17 o= —azby + a4b3. (3)
aobs — asby asbs — asbs asbs — asby aobs — asby

Previously, in work [21], it was defined the function

W, () =W, (tm; A, p)=>_ pu™(t —mr) 7" BT (Mt —m7)), v €R, (4)
m=0
where -
Z;) r ak‘ + ﬁ
is the generalized Mittag-Leffler function [22|, I'(z) is the Gamma function, (p)r = Fgf(—;)k) is the

Pochhammer symbol,

(t —m7)y = t—mr, t—mt >0,
T+ = 0, t—mr<0.

Function (4) satisfies the following properties [21]:
1) for some m the expression t —mt < 0, therefore the series in (4) contains a finite number of the
terms N < [ |+ 1;
2) it follows from (4) that

i 0,k #i+1,
W’g)(o):{ Lk=i+1;

3) it holds true the integrodifferentional formula
DGW,(t) =W,_a(t), a€R, v>0 (5)
and the autotransformation formula
-1
I'(v)’

The solution to the Cauchy problem to the equation (1) was found in the paper [16] and has the
form

Wy (t) = \WWopa(t) + pWogolt — 1) + a>0, velk (6)

/ FEWalt — )dé + D& u(t)],_ Walt) + D& 2u(t)],_ W1 (). (7)
0
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Using formula (7) we can define Dg u(t) , and Dy u(t)

‘t: }t=1:

Dy u(t)],_, —/ FOWL(1= €)de+ D u(t)] Wi (1) + D§u(t) ],y Wa(1) + uWa(l = 7)], (8)
0

Dg *u(t)],_y = /f(f)WQ(l — &)dé + Dg; u(t)],_Wa(1) + Dg; u(t)|,_ Wi (1). (9)
0
Inserting (8) and (9) into the first formula of the system (2), we have

D& 2u(t)],_, [al FasWi(1) + as ()\Wa(l) + uWa(1 - T))] + D5 u(t)],_, [ag +azWa(1) + ag Wi (1) |+

1
+/f asW 1—£)+a4W1(1—§)]d§:0,
0

or

A1 DS 2u(t) + A DS u(t) + F, =0,

‘t—>0 |t—>0

where

Al =a1 + (13W1(1) + aq ()\Wa(l) + MWa(l — 7‘)), As = a9 + a3W2(1) + a4W1(1),

1
/f a3Ws 1—£)+a4W1(1—§)]d§.
0

In the same way, substituting (8) and (9) into the second formula of the system (2), we have

B1D§ 2 u(t)|,_, + Be Dy tu(t)],_ 4+ Fy =0,

M=o M=o

where

By = b+ bsWi(1) + ba ()\Wa(l) + uWa(l — T)), By = by + bsWa(1) + baWi(1),

1
B = [ £©)[paWa1 = ©) + b1 - ©)]ae.
0

Thus, we get the system:

Angt_Qu(t)‘t:O + A2D3t_1 t) ‘t o= —11, (10)
BiD§;?u(t)|,_y + B2Dg M u(t)],_, = —F,
and the solution to that system (10) equals:
_ — 1By + FyAs _ —-A1F + B Fy
Da 2 t - - - @@= = Da 1 t = 11
or - u( )}Ho A, By — AyBy or ul )|H0 A1By — Ay By (1D
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Using (11) and the Cauchy problem solution (7), we get the equality:

¢
—F1By + FrA, —A1F + B Fy
€)de + A2 22y, gy OV O gy gy
/f )ds + A1By — Ay By () + A1By — Ay By ®)
0

BiWu(t) — BoWa—1(
A1By — Ay By

t 1
- / FOWalt — €)de + / F©lasWa(l — €) + aiWi(1 — €))dé—
0 0

_AIWoz(t) - AQWa l

1
/f ) [bsWa(1 — &) + byWi (1 — €)]dE,
0

A1By — Ay By
or
1
[ 1@ |- gwate -9+ wato (“E 2w - g+ BEB My g) -
0
- Wara(0) (SR 1 - g+ DR E R0 - )
where

A = A132 — AgBl. (12)

Green function
Assume G(t,§) is given by

Gl1.6) = (- 9Walt - 9 + Wa(t) (“E 1 - g+ BB w1 ) -

W (1) (“432; R0+ WP By g)) (13)

with A and p satisfying the condition (12). Here the function W, (t) is defined via (4).
Function G(t,£) (13) satisfies the following properties.
1. The function G(t, &) is continuous for all values of ¢ and £ from the closed interval [0, 1].
2. The function G(t,§) satisfies the conditions

m [Df, G (£, €)le=1+=—Df; *Ge(t, €)le=1-<] = L. (14)
3. The function G(t,§) is the solution to the equation
01eG(t, &) = A\G(t,§) —pH(1 =7 = &§G(t,{+7) =0. (15)

Here 0§, is the Caputo derivative [1; 11| defines as

Ofio(t) = iy *v"(t) = r(21—a)/ <tv,—(gf§1
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4. The function G(t, &) satisfies the boundary conditions
D G(t,€)| g = —aDGTG(1,6)| oy + esDGT Gt 6)| 16)
D5 G, €)| oy = 2D 2Gt§|5 | — DG 6|

Here the coefficients ¢y, co, c3, c3 were defined via formula (3).
These properties obviously are implied from formula (13), condition (12) and the relations (5), (6).
The function G(¢,€) that possesses properties 1-4 is called Green function for problem (1), (2).

Ezistence and uniqueness theorem

Theorem 1. Assume the function f(¢) € L(0,1) N C(0,1) and the condition (12) is satisfied. Then
there exists a regular solution to problem (1), (2) in the form of

1
1= / FOG(,€)de (17)
0

and the solution to problem (1), (2) is unique if and only if condition (12) is satisfied.

Proof. We show that it holds true the representation of the solution to problem (1), (2) in the form
(17). For this, we multiply both sides of Eq. (1) (given in terms of variable ¢) by Dg *G(t,¢) and
integrate it with respect to variable £ ranging from € to 1 — ¢ (¢ — 0):

l1—¢ 1—¢
[ piaongu@as -3 [ u@ng G gde-

l—¢ l—e

— / H(t = T)u(€ — 7)Dg; *G(t,€)dE = / FODGG(t,&)d¢, 0<t<1. (18)

£

Integrate by parts the first term of equality (18):

t—e

—€ d
/ DE2G(16) Digu(€)de = DG (1) D u(e)|. / e DA GO )

d t—

l—<
/ D32 Ge(t,€) Dgglu(g)dg:D@t—QG(t,g)Dgglu(g)L —@Dgﬁc;(t,g)z)gg?u(g)a —
t+e

1—¢

~ DR GODS )|+ [ Dy Geelt D Pul€)ds =

a0t S ) oe e ot &) Poe
€

d d

= D *u(t) {d:ED&?G(t,é))HE - dethG(t@L_g] + / Dy 2 Gee(t, ) D u(€)dé+

d
dg

+ D5 2u(g) - {clpgﬂa(t,é)(& — ¢3DG G, 5)‘ < pg2at, 5)‘ ] +

Mathematics series. Ne 2(106)/2022 165



M.G. Mazhgikhova

d
_ C4D8§:2G(t,€)‘£:£ - digDa "G, 5)‘5:1—5] '

Using properties of the Green function (14) and (16), we get the identity

‘+l)&§2“(5ﬂ521 L?1?8t2(1055)5

l1—e l1—e

| D6 Dgute)ds = Dgut) + [ iy Geelt. D Pu(e)ie (19)

3 &€

In the third integral of the equality (18) we replace £ into £ — 7:

1 1
/ H(E — )u(€ — r)G(t, €)de = / H(L— 7 — Eu(€)G(1,€ + 7)de. (20)
0 0

Substituting (19) and (20) into Eq. (18) and using the formula for fractional integration by parts
[20; 15]

b b
/ o(s)DE h(s)ds = / h(s)Dgsg(s)ds,

we have the identity

1
D *u(8) + Dy / ul(€) [ D52 Geelt,€) = AG(L,€) = pH (1~ t = G(L,€ +7)| de =
0

—Df}t?/f Gt €)d,

and,using the Green function property (15) and finding the derivative of order Dg; “ we get solution
(17).
Next, we show that the function (17) is the solution to equation (1). Formula (17) can be written
out in the form of bellow:
u(t)=v1 + v + vs,

where

—AlFQ + BlFl

¢
—F1 By + Fr A
TP M ), g =
/f 1{8), - vs A1By — Ay By
0

d =
Jde, ve A1By — Ay By

Denote Dg,v1, Dgvo and Dg,v3. We have

t
Do = 08 [ HeWalt —0d = 5 [ r@Wate — ¢ =
0

=/f AWy (t— )+ pWapa (t— € —7))dé+ £ (1) =/f (AW (t— )+ uWalt—€—7))dé+ F(2):
0 0

—F1 By + FyA, d?
A1By — AyBy dt?

— By + FyA, d?

Da2a — el
o Wa-(t) ABy — AyBy dt2

Dgt Vo = 441 (t) =
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*FlBQ + FyAs d?

—F1By + F5 A
T A1By — AyBy dt?

(AWac1(t) + pWaoi(t — 7)) ;5

—A1Fy+ B1F d

—A1Fy+BiF d _
— DY W,(t) =
() = A1By — A9 By dt

A1By — AsBy dt %

A+ B
 A1By— AyBy

Next, using formulas (5), (6) we obtain by the previous relation that

Dg,v3 = — (AWeaq1(t) + uWeopa(t — 7)) =

()‘Wa(t) + MWa(t - T))

1
Dgu(t) = £(6)+ A [ 1(6) t£d§+u/f Gt — 7)de.
0

that is that (17) satisfies (1).

Remark. For A =0, > 0 and

ap > by, az <bs, az=bs, a4=1"0y
condition (12) is always satisfied.
On the finiteness of the number of real eigenvalues

Definition. The eigenvalues of problem (1), (2) are the values A, such that problem (1), (2) has a
regular solution that is not the identically zero.
The set of real eigenvalues for problem (1), (2) coincides with the set of real zeros for the function

D(N) = [ar + asWi (1) + aa (AWa (1) + pWa(1 = 7)) | [Bs = by + bsWa (1) + a1 (1) -

- [@ +azWa(1) + a4W1(1)} [bl b3 Wi (1) + by ()\Wa(l) FuWa(1— T))] . (21)

Theorem 2. Problem (1), (2) has only a finite number of real eigenvalues.
The function W, (\) can be written out as [3; 45]

. — - ﬁ _ am+vrv—1 (m+171) _ a
Wy(1,T,A,M)_;O !(1 mr)% 10 [(am+m) A1 —mn)% ]|, (22)
where
0, [(az,al ] ZHl Dla + agk) 28
(b, By L'(b + Bik) k

is the generalized Wright function [23].
As A — +oo the following asymptotic formula holds true for the generalized Wright function [23],
[24]:

(m+1,1)
1% [(am +v,a)

(1= mr) | =AM o (o (L)

o

and the asymptotic formula for the generalized Wright function as A — —oo has form (23], [24]

(m+1,1)
1 [ (am + v, )

" (1)L o)l (1 — mr) [ . 1
AN HHIT (v — o — al)(m + 1+ 1)! |A|™

AL — mf)i} =
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Let N be the maximum value of m that satisfies the inequality (1 —m7) > 0. From these formulas we
get the asymptotic formulas for function (22) as A — +oo

Mma’m m(l—a)—v+1

1 1
o (1- 7717)Te>‘a(1_””)Jr [1 +0 ( T ﬂ , (23)

@

N
W ( 17‘)\,uzz
m=0

and A — —oo in the form

n l)mH“(m—Fl)l(l—mT)Ia(HlHV_l+ (1)

N
W (1,732 m —
A ) Z“ NPT (0 — a — al)(m + 1 + 1) I\

=0 =0

(24)

From the representation (21) and asymptotic formula (23) we see that letting A\ — oo the function (21)
increases without limit.

As A — —o0, since ®(\) is an entire function of the variable A, it follows from asymptotic formula
(24) that the function (21) may have only a finite number of real zeros.
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M.T'. Maxkruxosa

PFA KBFO Koadanbasv, mMamemamura sHcone asmomammandopy uHcmumymaot, Haavuuk, Pecet

Aprymenri kentirerin Puman-JInyBuiabp 6eamniek
TYBIH/IbICHI 0ap CBI3BIKTBHIK KapallaiibIM
anddepeHnaJIbIK TeHaey yiriH CrekJjoB ecebi

MakaJtasia TypakThl KO3 duipeHTTepi 6ap apryMeHTi KelireTin 6eJieK peTTi ChI3bIKThI KapanaibiM ud-
depeHmaNIbIK, TeHaey yimia Gipiam Tunti CTeK/IOB mapTTapbIMeH KEePriliKTi eMec IEeTTIK ecenTep 3epT-
Tenred. ['pun dyHKIMICH TaOBLIBIN, OHBIH KACHeTTepi JosesmeH/ai. 3eprreserin ecentin mremtimi ['pun
(DYHKIUSICHI TYPFBICBIHAH aflKbIH TYpJe aJblHAbL. EcenTiH Oipereil Imenrisy mapTbl, COHJAN-aK eIy
IAPTHI CO3CI3 OPBIHAAIATHIH MIApTTap TabbLIAL. Bap GOy KoHE YKAJIFBI3ABIK TEOPEMACHI I9JIEIICHI.
Teopema ['pun QyHKIMSICHIH »KOHE OHBIH, KACUETTEPIH, COHIAN-aK TEHIEY/iH ipresi merriMin KoHe OHBIH
KACHETTEPIH KOPCETY apKbLIbI JI9JIe/IIeHTeH. MeHIIKTI MoHIep CypaFbl 3€PTTE/Ii. 3EPTTEETIH €Cell HAKThI
MEHIINKTI MOHIEPIiH IIEeKTeY I CaHbIHA FaHa ne 60ybl MYMKIH €KEHIIr TeopeMaMeH Jasenaeri. Teopema
mrerTiMHiH, Kaanbiaaraln PailT GyHKIMSCH TYPFBICHIHAH OeIrieHy/ i KOJIIaHbII, COHIai-aK A — 00 YKOHe
A — —00 VIIiH KaJjbuianrad PaiiT dyHKIUSICHIHBIH, aCUMITOTUKAJIBIK, KACHETTEP] apPKbLIbI JIDJIEJICH T .

Kiam cesdep: GeJek perTi ChI3BIKTHI AudpepeHnnaaabK, TeHIey, apryMeHTi KemnireTin guddepernual-
abiK Teyzey, Crekiios merTik ecebi, 'pun dyukumsicer, Murrar-Jleddnepanbiy kaanbuianral OyHKIUICHI,
Paitrroiy xannbuianran QyHKIUACDHL
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M.I'. Maxkruxosa

Hnemumym npukaadnot mamemamuru u asmomamusayuu KBHI] PAH, Haavuux, Poccus

Sagaga CrekJjoBa AJId JINHEHMHOro OObIKHOBEHHOI'O
anddepeHImaIbHOr0 yPpaBHEHUsI C JIPOOHOI MPOMU3BO/THOM
Pumana—J/InyBusijis ¢ 3ara3abIBalominM apryMeHTOM

B crarbe ucciiesjoBana HeslokaabHas KpaeBas 3ajada ¢ ycsuaoBusaMu CTEKJIOBA EPBOrO THIIA JIJIsl JIMHEHHO-
ro OOGBIKHOBEHHOTO JIudpepeHnnaabHOr0 ypaBHEHUsT JPOOHOTO MOPSIAKA C 3ala3/IBIBAIONINM apryMEHTOM
¢ mocTossHHBIMU KOdddurimentamu. Halinena dynkmusa ['puna n mokasansl ee cBoiicTBa. Pemrenne mccite-
JIyeMOi 3aJladu IOJIy9YeHO B sIBHOM Buie B TepmuHax dyukmyuu ['puna. Haiizneno ycioBue ojHo3HA4YHOIM
Pa3peImMOCT 33/1a49M, a TaK¥Ke YCJIOBUsl, IPU KOTOPBIX YCJIOBHE Pa3PEITUMOCTH 3aBEJOMO BBIMOJTHSIETCSI.
Jlokazana TeopemMa CyIIeCTBOBAHUs M €IUHCTBEHHOCTH, C UCIIOJIL30BAHUEM IIpeJicTaBjennst pyrkmyun ['pu-
Ha, ee CBOWCTB, a TakxKe (DYHJIaMEHTAJbLHOIO DEIleHWsl ypaBHEeHUsl U ee cBoiicTB. VcciemoBan Bompoc o
cobCcTBeHHBIX 3HaYeHUsX. Jloka3aHa TeopeMa 0 TOM, 4TO HCC/IeayeMast 3a/1a9a MOYKET UMETb TOJIBKO KOHEU-
HOE YUCJIO JIeICTBUTE/ILHBIX COOCTBEHHBIX 3HAYEHMIE. TeopeMa JIoKa3aHa ¢ IPUMEHEHUEM 3AIMCU PEIleHus B
TepMuHaX 00001eHHoM dyHKImu Paiita, a Tak»Ke aCUMIITOTUYECKUX CBOMCTB 00001eHHON (hyHKInn Paiita
mpu A — 00 U A — —0Q.

Kmouesvie crosa: muddepeHimaibHoe ypaBHEHHE TPOOHOI0 MOpsiIKa, JuddepeHuaabHoe ypaBHEHNE C 3a-
Ma3AbIBAIONIM apryMeHTOM, KpaeBas 3aja4a Crekiiosa, pyukmnus ['puna, obobiennast pyHKIus Murrar-
Jledbdaepa, obobmennast dyukmus Paitra.
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Existentially positive Mustafin theories of S-acts over a group

The paper is connected with the study of Jonsson spectrum notion of the fixed class of models of S-
acts signature, assuming a group as a monoid of S-acts. The Jonsson spectrum notion is effective when
describing theoretical-model properties of algebras classes whose theories admit joint embedding and
amalgam properties. It is usually sufficient to consider universal-existential sentences true on models of this
class. Up to the present paper, the Jonsson spectrum has tended to deal only with Jonsson theories. The
authors of this study define the positive Jonsson spectrum notion, the elements of which can be, non-Jonsson
theories. This happens because in the definition of the existentially positive Mustafin theories considered in
a given paper involve not only isomorphic embeddings, but also immersions. In this connection, immersions
are considered in the definition of amalgam and joint embedding properties. The resulting theories do
not necessarily have to be Jonsson. We can observe that the above approach to the Jonsson spectrum
study proves to be justified because even in the case of a non-Jonsson theory there exists regular method
for finding such Jonsson theory that satisfies previously known notions and results, but that will also be
directly related to the existentially positive Mustafin theory in question.

Keywords: Jonsson theory, perfect Jonsson theory, positive model theory, Jonsson spectrum, positive
Jonsson theory, immersion, S-acts, Jonsson S-acts theory, 3P M-theory, cosemanticity.

Introduction

This study is a continuation of previous works by the first two authors of the given paper, related to
the study of the theoretical-model properties of positive Jonsson theories [1-5] and Jonsson spectrum
of models classes of fixed signature [6-8|. Note that the Jonsson theories form a subclass of inductive
theories and, by virtue of their definition, are not, complete. However, they distinguish a rather wide
class of classical algebras, such as groups, abelian groups, fixed characteristic fields, Boolean algebras,
S-acts, etc. More information about Jonsson theories can be found in [9-17]. The famous American
mathematician J. Keisler in his article [18] has conventionally allocated two directions of Model Theory,
«western» and «easterns, the names of which are connected with the geographical place of residence
of two different directions founders of the model theory A. Robinson and A. Tarsky. It can be noted
that the «Western» model theory predominantly studies complete theories and the «Easterns Jonsson
theories and each direction has its own special concepts and methods. In Jonsson writings [19, 20],
classes of models of an arbitrary signature satisfying certain well-known theoretical-model and algebraic
properties, in the study of which the notion of Jonsson theory has emerged originally, have been defined
[18; 80]. It is clear that Jonsson theories define a class of incomplete theories and the interest in studying
such theories is also fuelled by the difference between the definitions of the «Western» and «Eastern»
model theories concerning the notions of model’s universality and homogeneity. In consequence of this
difference, which was first noticed by E.A. Palyutin [21], T.G. Mustafin has identified perfect Jonsson
theories that eliminate this difference. Subsequently, T.G. Mustafin defined and studied the generalised
Jonsson theories |22]| and using the technique defined in this direction. In paper [22|, he described
generalised Jonsson theories of Boolean algebras. In a further study of Jonsson theories, several new
classes of positive Jonsson theories were defined [23-25]. Interest in positivity theory arose after the
appearance of the works [26-28]. In these works, it was shown that the whole classical first-order model
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theory is a special case of the positive model theory defined under these works. Subsequently, in this
framework of positivity [28|, there were identified positive Jonsson theories [3].

In the present paper, we do not go into positivity in the sense of work [3], we remain in the first-
order model theory framework, but generalise the concepts of those classes of theories that have been
considered in [22-25|. Let us focus on a brief description of some key concepts from the works [26,27],
which we need in this paper. Namely, the notions of minimal fragment and those morphisms that
coincide with and are used in the positive Jonsson theories study in the works [23-25].

The main result of the paper is related to the study of properties of the positive Jonsson spectrum
of a S-acts theory models’ class over a group. Interest in the study of the theoretical-model aspects of S-
acts theory has arisen relatively recently and is related to the works of W. Gould [29] and T.G. Mustafin
[30,31]. In work [31], T.G. Mustafin proved the fact that any complete theory is similar in some sense
to some S-acts theory. Jonsson theories are also closely related to S-acts theory. Thus, in paper [32],
there has been derived a connection between an existentially complete perfect Jonsson theory and
some Jonsson S-acts theory. In paper [33], a description of Jonsson S-acts theories over a group was
obtained. This paper obtains results generalizing the results from [33] as part of a positive spectrum
study of 3P M-theories of S-acts over a group.

1 Necessary concepts and results of positive model theory

Let us recall the basic definitions of the positive logic concepts and the results obtained in [26,27].

A positive fragment (in L) is a subset A C L containing all atomic formulas and closed with respect
to variable substitution, positive Boolean combinations and subformulas. For a given A the following
sets of formulas are defined:

N =3%(4) = {Fyp(z,y) - v € A},

I =TI(A) = {Vyple,y) : p € A} = {b: ¢ € B(A)}.

Definition 1. (|27]) Let M and N be a structures of the language, A C M and f: A — N be a
map (that is, f : M — N is a partial map with dom(f) = A). Then f is a partial A-homomorphism
if for every a € A and every formula ¢(x) € A from M = p(a) follows that N = ¢(f(a)).

If dom(f) = M, then f : M — N is a A-homomorphism; if M = N, then f is a (partial)
endomorphism.

Definition 2. (|26]) A Il-theory is a set of II-sentences, closed with respect to deducibility.

Definition 3. ([27]) Let k be a relatively large cardinal (at least x > |Al), and U the structure of
the language. Then U is k-universal domain if it satisfies the following properties:

1) k-homogeneity: Let f : U — U be partial endomorphism U, and suppose that |dom(f)| < k.
Then f extends to automorphism U.

2) k-compactness: Let I' C A such that |I'| < x and suppose that every finite subset of the set I is
realizable in U. Then I' is realizable in U.

Definition 4. (|26]) A model M |= T is existentially closed if every A-homomorphism f: M — N
such that N =T, is a ¥-embedding.

Definition 5. (|27]) Let U be a universal domain and 7' = Thy;(U). Then we say that U is a universal
domain for T

Definition 6. (|27]) II-theory T is complete if it is equal to Thi(M) for some structure M of the
language of the theory T'.

If T is not complete, then the completion of the theory 7" is a minimal (with respect to inclusion)
complete II-theory containing 7T'. In this case, a universal domain of the theory T is any universal
domain of its extensions, i.e., a universal domain whose II-theory is a complement of the theory 7.
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Lemma 1. (|27]) Let T be II-theory. Then for every model M |= T there exists an existentially
closed model N and morphism M — N.

Theorem 1. (|27])

1) The completion of the II-theory are exactly the II-theories of its various existentially closed
models.

2) A TlI-theory is positive Robinson if and only if all its completions are positive Robinson.

3) A complete II-theory is positive Robinson if and only if it has a universal domain.

Theorem 2. (|27|) For II-theory T the following conditions are equivalent:

1. T is positive Robinson theory.

2. The class of existentially closed models of theory T is axiomatic.

2 Ezistentially positive Mustafin theories and their properties

Let us define the notion of existentially positive Mustafin theory (3P M-theory). The main difference
of this concept from the classical notion of the theory is that only positive sentences are involved in the
axioms defining the theory. Thus, this class of theories is persistent with respect to homomorphisms.
If at some fixed A, the considered 3P M-theory is Jonsson in the classical sense, then we apply to it
all notations and results known earlier, e.g., as in [9].

Let L be a first-order language, At be the set of atomic formulas of L, B*(At) be the closed set of
relatively positive Boolean combinations (conjunctions and disjunctions) of all atomic formulas, their
subformulas and substitution of variables. Q(BT(At)) is the set of formulas in prenex normal form
obtained by applying quantifiers (V and 3) to BT (At). We call a formula positive if it belongs to the
set Q(B1(At)) = L*. A theory is called positively axiomatizable if its axioms are positive. B(L™) is
an arbitrary Boolean combination of formulas from LT. It is easy to see that II(A) C B(L™) when
A = Bt (At), where TI(A) is such as described earlier.

Following [26,27] define A-morphisms between structures.

Let M and N be structures of the language, A C B(L*). A map h : M — N is called A-
homomorphism (symbolically h : M —a N) if for any ¢(Z) € A, Va € M from the fact that
M = ¢(a), it follows that N |= ¢(h(a@)). The model M is called the beginning in N and we say that
M continues in N, with h(M) called the continuation of M. If the map h is injective, then we say that
the map h immerses M into N (symbolically h : M <>a N).

Hereafter we will use the term A-extension and A-immersion. Within this definition (A-homomor-
phism), it is easy to see that isomorphic embedding and elementary embedding are A-imbeddings when
A = B(At) and A = L, correspondingly.

Definition 7. If C is a class of L-structures, then we note that an element M of C' is A-positively
existentially closed in C if every A-homomorphism from M to any element of C is A-immersion. We
denote the class of all A-positively existentially closed models by (E§)+; if C = ModT for some
theory T, then by Er, (E%)Jr we mean respectively the class of existentially closed and A-positively
existentially closed models of that theory. If A = L we obtain a class of positively existentially closed
models of this theory and denote it by E;f .

Hereinafter throughout the paper A = BT (At) and in the case where the considered theory is not
Jonsson due to the considered positivity (since, n-immersion is not the same as n-embedding), we will
use the universal domain from [26] instead of the semantic model considered theory. A = B*(At),
consistent with the above definitions, satisfies the minimal fragment from [26] and is consistent with
the definition of 3P M-theory.

Let 0 < n < w. I -formula be a formula of language Lt whose prenex normal form has n variable
quantifiers and begins with V-quantifier. Similarly, ;' -formula is a formula of Lt whose prenex normal
form has n variable quantifiers and begins with quantifier 3.
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Definition 8. Model A of theory T will be called positively existentially closed with respect to
Y, -formulas if Vp(x) € X, Va € A, for any model B D A, from the fact that B = ¢(a) follows that
A= ¢(a).

The set of all positive existentially closed with respect to ¥,,-formulas of models of the theory T'
we will denote as RE; )

Definition 9. We consider that theory T admits 3, JEP, if for any two A, B € nE{F there exists
Ce nE;C and A-homomorphisms h1 : A —a C, hy : B —a C.

Definition 10. We say that theory T admits 3, AP, if for any A, B,C € HE; such that hy : A —a
C, g1 : A =-A B, where hi, g1 are A-homomorphisms, there exists D € nE{F and hy : C —a D,
g2 : B —aA D, where ho, g2 are A-homomorphisms, such that he o hy = g2 0 ¢7.

If we consider only A-immersions as A-homomorphisms, then we get the definition of the so-called
dP M-theory.

Definition 11. Let 0 < n < w. The theory T is called an existentially positive Mustafin (3P M-
theory) if

1) the theory T has infinite models,

2) theory T is H: p-axiomatizable,

3) theory T admits 3, JEP,

4) theory T admits 3, AP.

Definition 12. The 3P M-theory at n = 0 will be called the 3P .J-theory.

Hereafter, all definitions of concepts relating to Jonsson theories (in the ordinary sense) are considered
to be known and can be extracted, for example, from [9].

In the study of Jonsson theories the main tool of their investigation is the semantic method, which
consists in the following: The elementary properties of the centre of Jonsson theory are «translated»
onto the theory itself. In this case, the elementary theory of the semantic model of Jonsson theory is
similar to the positive Robinson theory, and is invariant to this Jonsson theory because all semantic
models of the same Jonsson theory are elementary equivalent to each other. In this connection, if 3PJ-
theory is not Jonsson in the classical sense, then by its semantic model we will mean any of its universal
domain U (as in [26]) and by the centre T* we will mean the following set of sentences T° = Thys(U).

Note the following fact from the work [34].

Fact 1. ([34]) Inductive theory T" is Jonsson if and only if there is a semantic model of theory T'.

Definition 13. If AP J-theory T is Jonsson, then its semantic model is T-3PJ-universal T-3PJ-
homogeneous model of theory T of cardinality x, where x is a fixed unreachable cardinal.

Definition 14. 3PJ-Jonsson theory T is called perfect if its semantic model C' is a saturated model
of the theory Th(C).

Let us recall the following fact, which describes the perfect Jonsson theories:

Theorem 3. (|9]) Let T be a perfect Jonsson theory. Then the following conditions are equivalent:

1) T* is model companion T

2) Mod(T*) = Ex = Er+;

3)T* =T =19,
where T* = Th(C) is the center of theory T (C is semantic model of theory T'), T" is Kaiser hull
(maximal VY3-theory mutually model-consistent with T'), T/ = Th(Fr), where Fr is class of generic
models of the theory T' (in terms of Robinson finite forcing).

The positive Robinson theory in the sense of [26,27] is a generalization of the Kaiser hull concept
T for the Jonsson theory T. It follows from the Theorem 3 that when A = B(At) and 3P.J-theory is
perfect, the notion of semantic model and universal domain coincide.

Definition 15. Let A be some infinite model of signature o. A is called 3P J-model if the set of
sentences Thy5+(A) is 3P J-theory.

In all the following, we will denote the Thyg+(A) theory by V3T (A4).
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The following result generalizes Proposition 1 of [35].

Lemma 2. Let T' be dPJ-theory complete for existential sentences. Then any infinite model of
theory T is a AP .J-model.

Definition 16. Models A and B will be called 3P J-equivalent and denoted by A =3p; B if for any
dPJ-theory T AET < BET.

The following result generalises Theorem 1 of [35].

Lemma 3. Let A and B be models of signature o. Then the following conditions are equivalent:

1) A=3p; B,

2) V3t (A) = v3T(B).

Definition 17. Two 3P J-theories T} and Ty are called 3P .J-cosemantic (T} igpy T5) if they have
the same semantic model, in case if 77 and T5 are Jonsson theories; and they have the same universal
domain, in case they are not Jonsson.

Definition 18. ([9]) Models A and B of the signature o are called 3P J-cosemantic (A <izpy B),
if for any 3P J-theory T7 such that A = T1, there is a IPJ-theory T, IP.J-cosemantic with 77, such
that B = T». And vice versa.

Lemma 4. For any models A and B, the following implication is true:

A=B= A=3p; B= Argpy B.

Similarly, the notion of 3P M-cosemanticity between 3P M-theories and respectively their models
is defined.

The following convention is paramount. We will talk about the semantic aspect of 3P J-theory.
If 3PJ-theory T is Jonsson, then we work with Fp as a class of models of some Jonsson theory. If
JPJ-theory T is not Jonsson, then we consider as FEp the class of its positively existentially closed
models E;f . Such an approach for the class E7, a class of existentially closed models of an arbitrary
universal theory T', has been considered in [36].

Since two cases are possible with respect to Jonsson theories: perfect and imperfect, we will stick to
the following. According to [9], if a Jonsson theory T is perfect, then the class of its existentially closed
models Er is elementary and coincides with Ep«, where T™ is its center. If the theory T is imperfect,
we do as in [36], i.e., instead of Er work with the class EJ.

When an arbitrary 3PJ-theory T is considered, the class Ejf is considered an extension of Ep
(both classes always exist), and depending on the perfection or imperfection of the theory T, the
theoretical-model properties of the class E; are of special interest.

For any theory T" we will denote by Ty+ the theory which axioms are positive universal corollaries
of the theory T.

Lemma 5. Let T and To be dPJ-theories, with C being the semantic model of 77 and C5 the
semantic model of Ty. If (T1)y+ = (T2)y+, then T} x3py Th.

Theorem 4. Let T and T be 3PJ-theories, with C] being the semantic model of T7 and C being
the semantic model of T5. Then the following conditions are equivalent:

1) Cy >xaapy Co,

2) C1 =3py Oy,

3) C1 = Cs.

3 Positive Jonsson spectrum of AP M -theories of a fixed class
of S-acts theory models over a group. Main results

The main result of the paper will be the characterization of Jonsson spectra 3P M-theories of S-acts

over a group with respect to cosemanticity by means of some invariants which have been defined in
paper [33].
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Let us give the basic definitions and statements from [33] necessary to formulate and prove the
results of the paper.

Let us recall the definition of a S-act.

Definition 19. (|33|) Let A be non-empty set, (S;-, e) is monoid. Algebraic system (A4; (f, : a € S))
with unary operations f,, a € S, is called a S-act over .S, if the following conditions hold:

fe(a) = a for all a € A;

fap(a) = fa(fs(a)) for alla € A and all o, B € S.

Let a € A, then S, = {fa(a) : @ € S}; if a is tuple of elements from A, then Sz = |J Sa,. The set

a; €a

Co={beA:be S, or a €Sy} is called a component.

Proposition 1. ([33]) If T is a S-act theory and for any f : Sz > Sy there exists a g O f such that
g : Cg = Cf, then T admits the elimination of the quantifiers.

Hereafter, we consider S-acts over the group G and correspondingly the theory of S-acts over the
group.

If A is a S-act over the group G, a € A, then

id(a) = {g € G: f,(a) =a}; p(G)={H:H=G}.

If H=<G,then§(H)=|{9gH:9€ G, {peG:9pgH =gH} = H}|.

Definition 20. ([33]) 1) If I is a family or type of sentence, then Tr = {¢p : {p € I': T+ ¢} F ¥},

2) V =1I; U3y, i.e., V is the family of all universal or existential formulas.

Definition 21. (|33|) If T' = Ty, then the theory 7" will be called a primitive.

Let us write a known fact about primitives.

Fact 2. (|33]) For a complete theory T the following conditions are equivalent:

1) T is a primitive;

2)ifABET and ACCC B, then € =T

Definition 22. (|33]) An expression of the form g € X will be called an atomic figure, where g € G,
X is a fixed symbol. A figure is any formal Boolean combination of atomic figures. Denote by ® the
set of all figures. For each figure ¢(X) we define by induction U(y) C p(G) and formula 6(p,a) S-act
language for any element a of any S-act

1)if p(X)=g€ X, then U(p) ={H <G :g€ H}, §(p,a) = (fy(a) = a);

2) if p(X) = ~4(X), then U(p) = p(G) — U (&), 6(p,a) = -0(t, a);

3) if p(X) = 1 (X)&y2(X), then U(p) = U(¢1) NU(¢2), 8(p, a) = 0(th1,a)&b(i2, a).

Let us use the following notations from [33].

Let [ ] be a closure operator induced by a topology over p(G) which base of open neighborhood is
{U(p) 1 p € @}. 1If h C p(G), then

<h>={gHg ':9g€ G, HEch}.

Let () denote the Poizat operator, i.e., the smallest closure operator on p(G) with property (h) 2
[h]U<bh>.

Q= {H <G :3p € B(U(y) = [H]) and F(H) < o}.

Definition 23. ([33]) A pair < h,e > is called a characteristic if h C p(G),b = (h),e: Q — [oo] Uw
and e(H) =0< H ¢ 1.

Definition 24. (|33]) If n < w, T is a S-act theory, then

TO(G) ={< Hy,... H, >EG" : A =T, < ay,...,a, > A*(&"_ Hy, = id(am))}.
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Definition 25. ([33]) If T is S-act theory, then er : Q — [00] Uw such that

k, it k =max{|{Gg:a €U id(a) =H}|: AE=T} <w;
er(H) =

00, if no such maximum exists.

Let ch(T) =< TYHG),er >.

Proposition 2. ([33]) ch(T) is a characteristic.

Theorem 5. (|33]) Let S-acts theory T" have an infinite model. Then

(1) T is inductive;

(2) if T has the property of joint embedding, then it also has the property of amalgamation;

(3) if T' is complete, then it admits the elimination of quantifiers and is primitive.

Theorem 6. ([33]) 1) Every a-Jonsson theory of S-acts is perfect and is Jonsson, 0 < a < w.

2) The S-acts theory T is a Jonsson < V1 < n < w (T"(G) = (TM(G))").

Similarly to Theorem 6, let us formulate and prove the following result.

Theorem 7. For every AP M-theory T of S-acts over a group two cases are possible:

1. a) T is a Jonsson theory, then T is perfect;

b) 3PJ-theory T of S-acts is a Jonsson < V1 < n < w (T™(G) = (TW(G))").

2. T is not a Jonsson theory. Then there exists some IPM-theory T’ such that T’ is a Jonsson
theory and is a Kaiser hull for theory T

Let us first prove the lemma.

Lemma 6. Let T be dPM-theory of S-acts over a group and all completions of T admit the
elimination of quantifiers. Then

(1) T is perfect;

(2) T is 3P J-theory.

Proof. (1) Let C be the semantic model of theory T', T* = Th(C) and C* is saturated model of
theory T*. C* Cy C, C* € E; and D(C*) = D(C). From homogeneity and equality of diagrams
follows that C' = éL*, i.e., T is perfect.

(2) Let C be the semantic model for T" (saturated for 7). Obviously C' is 3P.J-universal, we have
to show that C' is dPJ-homogeneous. Let A, B € E;, with A =2 B by f. Suppose the contrary, that
is, the model C' is not IPJ-homogeneous and there exist such existentially closed submodels A" and
B’ of the semantic model C such that A C A’ and B C B’. This means that there exists an existential
formula ¢(x) such that A’ = p(z) but B’ £ ¢(z). It follows that A | ¢(z) and B £ ¢(z) due to
existential closure of A and B, which contradicts isomorphism f. By virtue of the fact that T admits
the quantifier elimination then (C,a)sca = (C, f(a))qca, which means that f is an automorphism.

Proof of Theorem 7.

1. a) It follows from Lemma 6.

1. b) It is easy to show that from the condition Vn < w, T (G) = (TMW(G))™ follows the joint
embedding property and vice versa.

2. Let T be 3P M-theory not Jonsson, then since A = BT (At), we can use the universal domain U
for the minimal fragment A = BT (At) from [26]. Consider all V3-sequences true in U, that is, consider
the theory Thys(U) = A. There are 2 possible cases: U € EX and U ¢ EJ.

IfU e EJAF, let us consider the theory Thy3(U) = A. Let us show that this theory is Jonsson.
To do this, we will use Fact 1. The semantic model of A will be the family of maximal components
of the theory of all S-acts over the group. It is easy to see that by virtue of Theorem 6, this model is
saturated in its cardinality, hence A is a perfect Jonsson 9P M-theory and is a Kaiser hull for theory T'.

IfU ¢ EK, then, since A is an inductive theory, there exists a model D € EJAr such that U is
isomorphically embedded in D. Consider the theory A’ = Thy3(D). Similarly, it is easy to prove that
A’ is a perfect Jonsson IPM-theory and that A’ is a Kaiser hull for theory T

178 Bulletin of the Karaganda University



Existentially positive Mustafin...

We will need the following definition and theorem from paper [33].

Definition 26. ([33]) If < bh,e > is a characteristic, then

Ti(b,e) = {Vy—0(p,y) : (p € ©,U(p)Nb = SFULVy1, oo vz +i (&b (0, i) = Vg (yi = 7)) -
HeQnb, pe®, e(H) <oo, Ulp) = [H]},

To(h,e) = Ti(h, ) U{3y1, o Yoz (o) (&ib (0, i) &&igj (yi # y5)) : H € QNb, e(H) < 00, U(p) =
[H]} U {3y, (&8(,51)) : U(9) 0 (= Q) # 2V 3H € Ulp) N Q(=(H) = o), < w}.

Theorem 8. ([33]) 1) ch(T1(h,e)) = ch(Tz(bh,e)) =< b,e > for any characteristic < b, e >;

2) Jonsson S-acts theories 77 and Th are cosemantic < ch(11) = ch(1»);

3) T is Jonsson S-acts theory and ch(T') =< bh,e > if and only if T1(h,e) C T C Ta(h,¢).

Similar to Theorem 8, we have a result for the case of AP M-theory.

Theorem 9. Let T1 and T» be 3P M-theory of S-acts over group for fixed 0 < n < w. Then:

(1) ch(T1(h,e)) = ch(T2(h,e)) =< bh,e > for any characteristic < h,w >;

(2) T X3pm T < Ch(Tl) = Ch(Tg);

(3) There is 3P M-theory T of S-acts over group such that ch(T1) =< h,e > iff T1(h,e) C T C
TQ([], 8)

The proof is the same as for Theorem 8.

The result of Theorem 9 has a natural continuation in the context of the theoretical-model properties
study of the positive spectrum of a fixed class of S-acts over the group.

Let K be a class of structures of fixed signature o. Consider positive spectrum of 3P M-theories of
class K:

PSp(K) =A{T | Tis 3PM-theory in language K C Mod(T') for a fixed 0 < n < w}.

Note that the cosemanticity relation on a set of theories is an equivalence relation. Therefore, we
can consider the factor set PSp(K)/wasp,, of the positive spectrum class K with respect to the relation
X3ppM-

The result is as follows:

Theorem 10. Let Ky be a class of all S-acts over group, [T1], [T2] € PSp(K11)/sasp,, - Then

1) if [T1] and [T»] are classes of Jonsson JPM-theories then Cip) <3py Cipy & ch([Th]") =
ch([To]");

2) if [T1] and [T3] are classes of not Jonsson 3P M-theories, then there are such classes of Jonsson
P M-theories [A1], [A2] € PSp(K1)/sgpy,» that A; is the Kaiser hull for 7}, where i = 1,2 Ca ) ™M3pm
Clag) & ch([A1]") = ch([a]");

3) if [T1] is a class of Jonsson IPM-theories, and [T5] is a class of not Jonsson 3P M-theories, then
there is such Jonsson 3PM-theory A, that Cir) >apn Cia) < ch([Th]*) = ch([A]Y).

Proof.

1) =: Let [T1], [T2] € PSp(Kn)/ssp,, be classes of Jonsson 3P M-theories and Ciry) ><3par Ciry)-
Since [T1] and [T3] are classes of Jonsson S-acts theories over a group, then [T1] and [T3] are classes of
perfect Jonsson theories, hence, by Theorem 2.12 from [9], [11]* and [T5]* are Jonsson S-acts theories
over a group. Then according to 2) of Theorem 8 ch([T1]*) = ch([T2]*) since [T1]* and [T>]* are complete
theories.

<: Let [T7] and [T3] be classes of Jonsson 3P M-theories of S-acts over a group and ch([T1]*) =
ch([T2]*). Then [T1] and [T5] are classes of perfect Jonsson theories, then [T1]* and [T5]* are complete
Jonsson IPM-theories of S-acts over a group. Since ch([Th]*) = ch([T:]*), it follows from 2) of
Theorem 9 that [T1]* b<3pps [T2]*. From the definition of cosemanticity, it follows that Cipyj« = Cipy».
However, since [T1]* and [T»]* are complete Jonsson 3P M-theories, then [T1]* € [T1] and [T]* € [T3],
Le., O] = Clgy), from which it follows that Ciy) ><gppy Clgyy)-

2) Let [T1], [T2] € PSp(K11)/masp,, be classes of not Jonsson 3P M-theories, Cir,) = Uy, Cip,) = Uz
and [T1]* = Thy3(Uy), [To]* = Thy3(Usz). Since [T1]* and [T3]* are inductive theories, there are positive
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existentially closed models D; and Dy of these theories such that U; is isomorphically embedded in D,
and Us is isomorphically embedded in Ds. Consider the theories Ay = Thy3(D1) and Ag = Thyz(D3).
They are Jonsson perfect 3P M-theories. The existence of theories Ay and Ao follows from Theorem 7
and they are Kaiser hulls for 77 and T, respectively. Then it follows from 1) of this theorem that
Clay) >apm Cla,)  ch([Ad]7) = ch([Ag]").

3) Let [T1] be the class of Jonsson 3P M-theories and [T3] be the class of not Jonsson 3P M-theories.
Then, similarly to 2), using Theorem 7, we can find such a Jonsson IPM-theory A, which is a Kaiser
hull for theory T3 and according to 1) hold Cipyy <3pyr Ciay < ch([T1]*) = ch([A]*).
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Axademur E.A. Bexemos amuwvindazv. Kapazandv yrusepcumemi, Kapazanow, Kaszaxcman

I'pynnanap mMaHalbIHAAFBI MOJUTOHIAPABIH, SKIINCTEHITNAJI b
MMO3UTUBTI MyCTapUHAIK TEOPUsIChI

Maxkasia moIMroHIap CUTHATYPACHIHBIH, OEKITIITEH MOJETbIED KIIACHIHBIH, HOHCOHIBIK, CIIEKTPIHIH, VFBIMbBIH
seprreymen GaitaubicTel. COHbIMEH Gipre MOJIMTOHHBIE, MOHOM/BI PETiHJIE TPYIINa KAPACTHIPhLIFAH. VOH-
COHJIBIK, CIIEKTP YFBIMBI aJiredpajiap KJIAChIH MOJIE/IbIi-TEOPETUKAJIBIK, KACUETTEPIH CUMTATTAY YIIH 3ddeK-
TuBTi GosTbIN TabBLIABI. Teopusitap yitaecimai eHrisisyre koHe amasibraMa KacueTine me. Byir xkarnaiina,
9JIeTTE, OCHI MOJIEJIbED KJIaChl OOMBIHIIA aKUKAT OOJIATBIH 9MOEe0A-9K3UCTEHIINAJIIbI YChIHBICTAPbI Kapac-
THIPY KeTKLTIKTI. OChl yaKbITKA HeifiH WOHCOHBIK CIIEKTD, 9/IeTTe, TEK HOHCOHJBIK TEOPUSIaAPBIMEH XKY-
MBIC icTemi. ABTOpsIap MakKasala MO3UTUBTI HOHCOHIBIK, CIIEKTPI TYCIHIrIH aHBIKTANIbI, OHBIH, 3JIEMEHTTEPI,
JKaJIIbl aJIFaH/a, HOHCOHJBIK eMeC Teopusaap 60aybl MyMKiH. Bysn mMakasiaza KapacThIPBIIATBIH TEOPUs-
Jap/pl aHBIKTAY1a U30MOP(MTHIK €Hrisyjep FaHa eMec, COHBIMEH Karap Oaryiap (SFHHU, SK3UCTEHIHMAJIIBI
MO3UTHUBTI MyCTapUH/IK TEOPUs) KATBICTBLIBIFBIMEH TyCiHmipineni. Ocbran GaliyIaHBICTBI amMaIbraMma Ka-
cHeTTepiH KoHe OipjeckeH yiteciMjii KacMeTTepiH aHbIKTay/la OaTysap KapacTbhipbLiajibl. HoTmkecinme,
TEOPUSIHBIH, OCBIHJIAll ©3repicTepiHe OAMIAHBICTBI AJIBIHFAH TEOPUsiIap WOHCOHJIBIK, OOJIyBI MIHJIETTI eMec.
Ocbl MaKaJIAaHBIH HETI3T1 HOTHMXKEJIEPIH TaJIail OTBIPBIM, HOHCOH/IBIK €MeC CIIEKTDPJl 3ePTTEYiH KOFapblia
aTaJraH TOCLI, eH OOoJIMaraHa, WOHCOHJIBIK, €MeC TEeOPHUs YKarIailblHIa Jia, OYpbIH OeJIriji yrbIMJIap MeH
HOTHUXKEJIEP/l KaHAFATTAHIBIPATHIH, Oipak COHBIMEH Gipre KapacTbIPBLIATHIH SK3UCTEHIIMAJIbI TO3UTUBTI
MycTaUHIIK TEOPUICHIMEH TiKeseit 0alIaHbICTBI OOIATHIH HOHCOHIBIK, TEOPUSHBI TaOy/IbIH TYPAKTHI DIiCi
bap ekeHi bailkaJsiaIbl.

Kiam cesdep: HOHCOHIBIK TeOpHsi, KeMeJ HOHCOHJIBIK, TEOPHsl, TO3UTUBTI MOJIEIbJEDP TEOPUSIChI, HOHCOH-
JIBIK, CIIEKTP, TTO3UTUBTI HOHCOHJIBIK, TEOPHsl, ATy, MOJUTOH, TIOJUTOHIAP/IBIH HOHCOHIBIK, Teopusichl, 3P M-
Teopusi, KOCEMAaHTTHIIBIK,

A.P. Emkees, O.U. Yusbpuxt, A.P. dpyniuna

Kapazandunckut ynusepcumem umenu axademura E.A. Byxemosa, Kapaeanda, Kazaxcman

DK3UCTEHIINAJBHO MO3UTUBHBIE MYCTA(DUHCKHE
TeOPUU MOJIUTOHOB HAJI I'PYIIION

Crarbsi cBsI3aHa C U3yYEeHUEM HOHSITHAsI HOHCOHOBCKOT'O CIIEKTPa (DUKCUPOBAHHOTO KJIACCA MOJIEJIEH CUTHATY-
PBI IIOJINTOHOB, IIPUYEM B KadeCcTBe MOHOU/ 1A IIOJIUI'OHA paccMarpuBaeTcs rpynna. IloHsaTre #OHCOHOBCKOTO
CITeKTpa sIBIsieTcst 3MPEKTUBHO pabOTAIOMMUM TIPU OMUCAHUNA TEOPETUKO-MOJIEIBHBIX CBOMCTB KJIACCOB aJi-
rebp, TEOPUH KOTOPBIX JIOMYCKAIOT CBOMCTBA COBMECTHOI'O BJIOXKEHUsI U aMaJibraMbl. I1pu 3ToM, Kax mpaBuiio,
J0CTAaTOYHO pacCMaTPpUBaTh YHUBEPCAJIBbHO-IK3UCTEHIIMAJIbHBIE ITPEIJIOKEeHN I, NCTUHHBIE Ha MOJIEJIAX 3TOI'O
kiacca. /o HacTosImeit paboThl HOHCOHOBCKUN CIEKTP, KAK MPABUJIO, OMIEPUPOBAJT TOJBKO HOHCOHOBCKUMU
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TeopusaAMU. ABTOpaMM CTATHY OIIPEJIEJIEHO ITOHATHE O3UTUBHOIO HOHCOHOBCKOIO CIIEKTPA, SJIEMEHTaAMU KO-
TOPOT'O MOTYT OBITH, BOODIIE TOBOPsI, HE HOHCOHOBCKUE TEOPHUHU. DTO MPOUCXOIUT U3-3a TOTO, UTO B ONPEIeIe-
HUM PacCMaTPUBAEMBbIX TEOPUH B JaHHOU CTATbe (a VIMEHHO, 9K3WCTEHITNAIHHO TO3UTHBHBIX MYCTAMDUHCKUAX
TeOpHii) y4acTBYIOT HE TOJIHKO N30MOPQHBIE BIOXKEHUs, HO U IIOTPY?KEHUs. B CBS3M C 9TUM B OIpeIeIeHIN
CBOWCTBa aMaJjibTaMbl 1 CBOWCTBA COBMECTHOT'O BJIOYKEHUS PacCMOTPEHDI ITOTPY2KEeHUA. Kaxk cjeacrsue, 110-
JIy9Y€HHbIC B CUJIYy TaKHUX U3MEHEeHU TEeOpUuu He O6S{3&T€J’IBHO JOJIZKHBI OBITH HOHCOHOBCKUMMU. AH&J’II/I3I/IpyH
OCHOBHBIE IOJTy4YeHHbIE Pe3yJIbTaThl JaHHON CTATbU, Mbl MOXKEM 3aMETHUTh, YTO YKAa3aHHBII BBIIIE IOAX0 K
U3YICHUTIO HOHCOHOBCKOT'O CIIEKTPa OKa3bIBa€TC OIIpaBJaHHBIM, XOTA 6]31 B CWJIYy TOTO, 9TO [azKe B CJIy4dae He
MOHCOHOBCKOM TEOPHUU CYIIECTBYET PEryIAPHBIA METO/ HaXOXKICHUA TAKOH MOHCOHOBCKOII T€OPHUH, KOTOpasd
V/IOBJIETBOPSIET PaHee M3BECTHBIM IIOHATHSM KM Pe3yJibTaTaM, HO KOTOpasl TakzKe OyJ/leT HEIlOCPeICTBEHHO
CBsI3aHA C PACCMaTPUBAEMON SK3UCTEHIINAIBHO TIO3UTUBHON MyCTapUHCKON Teopueii.

Kmouesvie crosa: HOHCOHOBCKAsT TEOPHsi, COBEPIIIEHHAsT HOHCOHOBCKAs T€PUsI, TO3UTUBHAS TE€OPUS MOJeIell,
MOHCOHOBCKHUII CIIEKTD, ITIO3UTHUBHAA HOHCOHOBCKAsl TEOPUs, IOTPYKEHNeE, IIOJIUTOH, HOHCOHOBCKAs TEOPHUs
mosiuronos, JP M-teopusi, KOCEMaHTUIHOCTb.
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On a mixed problem for Hilfer type differential
equation of higher order

The study considers the solvability of a mixed problem for a Hilfer type partial differential equation of
the even order with initial value conditions and small positive parameters in mixed derivatives in three-
dimensional domain. It studies the solution to this fractional differential equation of higher order in the
class of regular functions. The case, when the order of fractional operator is 1 < a < 2, is examined. During
this study the authors use the Fourier series method and obtain a countable system of ordinary differential
equations. The initial value problem is integrated as an ordinary differential equation and the integrated
constants find by the aid of given initial value conditions. Using the Cauchy—Schwarz inequality and the
Bessel inequality, it is proved the absolute and uniform convergence of the obtained Fourier series. The
stability of the solution to the mixed problem on the given functions is studied.

Keywords: fractional order, Hilfer operator, mixed problem, Fourier series, initial value conditions, unique
solvability.

Introduction

The theory of the mixed problems is one of the most important directions of the modern theory
of differential equations. A large number of works are devoted to the study of the mixed problems for
differential and integro-differential equations (see, for example, [1-12]). Many problems of gas dynamics,
theory of elasticity, plates, and shells are described by higher-order partial differential equations.

Fractional calculus plays an important role for the mathematical modeling in many applied prob-
lems. In [13], it is considered problems of continuum and statistical mechanics. The work [14] studies the
mathematical problems of the Ebola epidemic model. The studies [15] and [16] investigate the fractional
model for the dynamics of tuberculosis infection and novel coronavirus (nCoV-2019), respectively. The
construction of various models of theoretical physics by the aid of fractional calculus is described in
[17, Vol. 4, 5], [18], [19]. Some applications of fractional calculus in solving applied problems are given
in [17, Vol. 6-8|, [20]. In [21], the solvability of an initial value problem for Hilfer type fractional
differential equation with nonlinear maxima is studied. In [22], by analytical method, the unique
solvability of boundary value problem for weak nonlinear partial differential equations of mixed type
with fractional Hilfer operator is studied. In [23], the solvability of nonlocal problem for a mixed type
fourth-order differential equation with Hilfer fractional operator is examined. In [24], it is considered an
inverse problem for a mixed type integro-differential equation with fractional order Gerasimov-Caputo
operators. The research works [25-34] obtained the results on the direction of applications of fractional
derivatives to solve partial differential equations.

Let (to; T) C RT = [0; o) be an interval on the set of positive real numbers, where 0 < to < T <
0o. The Riemann-Liouville 0 < a-order fractional integral of a function n(t) is defined as follows:

I n(t) = 1“(104) /(t —5) n(s)ds, a>0, te (to; T),

to

*Corresponding author.
E-mail: tursun.k.yuldashev@gmail.com
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where I'() is the Gamma function.
Let n —1 < o« <n, n € N. The Riemann-Liouville a-order fractional derivative of a function 7(t)

is defined as follows: .

d n—«
Dt0+77( ) %Ito-i- n(t)7 te (t07 T)

The Hilfer fractional derivatives of a-order (n —1 < a < n, n € N) and S-type (0 < g < 1), are
defined by the following composition of three operators:

Dt = 120 L1 0P0 ) s (ag: 7).
Let v = a+ Bn — apf. It is easy to see that a < v < n. Then it is convenient to use another
designation for the operator D ®7n(t) = D,/ 77( ). Hilfer operator is generalization of the Riemann—
Liouville operator and was introduced by R. Hilfer based on fractional time evolutions that arise during
the transition from the microscopic scale to the macroscopic time scale (see [17]).

In this paper, for the case 1 < a < 2 we study the regular solvability of mixed value problem
for a Hilfer type partial differential equation of higher even order with positive small parameters. The
stability of the solution from the given functions is proved.

In three-dimensional domain Q@ = {(¢, z, y)|[to < t < T, 0 < z,y < [} a higher order partial
differential equation of the following form is considered

D, [Ul=a(t)b(z, y) (1)
with initial value conditions
d
tEgOJt JU, x,y) =iz, y), tgr_&o%‘]to—&- Ut, z, y) = p2(z, y), (2)

where T and [ are given positive real numbers, 0 < tg < T,

N N N 821: a2k a4k a4k
Pei= )= [D o (81 (390% + 6y2k> oo <3x4’f + 8y4k>> -

82k 82k 84k 84k
Y <<39«“2’“ i 33/2’“) - <39«“4’“ " 31/4’“))] vt @),
w is positive parameter, £; and € are positive small parameters, 1 < a < v < 2, k is given positive
integer, a (t) € C(QT), Qr = [to; T], Q =100;1], b(z,y) € C (le) is known function, ¢1(z, y)

and @9(z, y) are given continuous functions, Ql2 = () x ;. We assume that for given functions the
following boundary conditions hold

()02(07 y) = SO’L(L y) = @i(«r7 O) = ¥i ($7 l) =0, i=12,
b(0,y)=0b(l,y)=b(x,0)=0b(x,1)=0.

Problem Statement. We find the function U (¢, z, y), which satisfies differential equation (1), initial
value conditions (2), zero boundary value conditions for tg <t < T

U, 0,y)=U({,1l,y)=U(t,z0=U({, =) =

92 2 2 2
= 5.2 SU(t, 0, y) = 52 U@ L y) = 5.2 ~—U(t, 2, 0)= 82U(t,x,l):
82 82 2 2
= 55Ut 0,y) = 8y2U(t ly) = 8y2U(t, z, 0):(9—y2U(t, z,l)=...=
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84]6—2 84147—2 4k—2 84k—2
84k—2 84147—2 4k—2 a4k—2
class of functions B
(t=t0)* U (t, w, y) € C(9), @
DU (t, z, y) € Caly™ () N OO (Q) N OOk (Q),

where C35r0(Q) is the class of continuous functions %i,fy) on , while CO74#(Q) is the class

4k—2 4k—2
% on €, da4k >U (t, x, l) we understand as %U(t, x, ) ot

of continuous functions

Q={(t,z,y)[to <t <T,0<az,y <}
1 Transform of fractional differential equation

Lemma. The solution to the ordinary fractional differential equation

D* M (t) +wuv(t) = f(t v(t)) (5)
with initial value condition
_ : d 2—y _
i o) =l G0 = o ®

is represented as follows

v (t) =g (t —t0)" "2 Ea oyt (w (= t0)*) + 01 (t —0) " Ea (W (t—10)*) +

" / (t = 82 Fa o (—w (t— 5)7) [ (5, 0(5)) ds, (7)

to

where E, ~(z) is the Mittag-LefHler function and has the form [17, vol. 1, 269-295]

o

k=0
f(t,v) € C(21), 0 < w is real parameter, vg, v7 = const, O = [to; T| x X, 0 < tp, X C R =
(—o0; 00), X is closed set,

d?

) — oo
D% = Jt0+ dt2

Jt0+,1<0z<7<2,7—a+2ﬁ—a5
Proof. We rewrite the differential equation (5) in the form

JOD v (t) = —wu(t) + f(t, v).

Applying the operator J}, to both sides of this equation (5), taking into account the linearity of this
operator and the formula [35]

n—1 t ¢t )6+k—n

d*
Tirt Dig 0 (1) Z F0+k+1—n) L Tty (1), 6 € (n =1 )

k=0
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we obtain

@-my4+f%6@—mﬁ4+J%j@v@» 8)

Using the lemma from [26], we represent the solution to equation (8) in the form

v(t) = —wlg v (t)m

v(t) = % (t—to) % + % (t—to)" !+ T f(t v (8)—
_W/(t - S)Q_lEa,a (—w (t—8)Y) x
to
(s 10) R (s — 1) T IR S (s, v (s s.
: {F(v— 1)( )7 F(’y>( to)" 4 Jiga f (s, v ( ))] d (9)

We rewrite the presentation (9) as the sum of two expressions:

L(t) = ﬁ {(t — 1) P —w /(t —8) VB, o (—w (s — t0)Y) (5 — to) "2 ds] +
U1 y—1 / a—1 «a 7—1
s =0 —w/u—s) Faa (—w (t— 5)%) (s — to) L ds | | (10)
Io(t)=Jg f(tv(t) - w/(t —8)* ' Eqa(—w-(t—5)*) J2 f(s,v(s))ds. (11)

We apply the following presentations [17, vol. 1, 269-295|

1
Ea,#(z) = m + z- Eoz,quOé(t)v o > 0, )2 > 0’ (12)
1 z
W /(Z — t)l/flEa’g ()\to‘)tﬁfldt = ZﬁJerl . Ea,ﬁ+z/ ()\ Za) L U> 0, ,6 < 0. (13)
0

Then for the integral (10) we obtain the presentation
Il (t) =19 (t - to)’y_Q Eaﬂ_l (—w (t - t())a) + 1 (t - to)’y_l Ea,’y (—w (t - to)a) . (14)

The integral in (11) is easily transformed to the form
t
[0 Baawr(t= %) Jiy £ (6 0(€)) dé =
to

3

_Lt _ gyl —w (t— &) — ) (s, v(s))ds =
=ty =0T Baa (e =9 g [(6= 97 (s, v () a

to to
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t

_L t s. vl(s s _ a—1 _Sa_l W B o
F(a)t/f( ) ())d S/(t 5) (6 ) Ea,a( (t 5) )dé (15)

Taking into account the (13) the second integral in the last equality of (15) can be written as

t

/(t—ﬁ)o‘_l(ﬁ —5)* ' Baa(-w- (t =6 dE=T(a) (t €)' Eaza(-w- (t-6)%).

S
Then, taking into account (12), we represent (11) in the following form

t

I5(t) = /(t —8) " B a(—w-(t—35)Y) f(s,v(s))ds. (16)

to

Substituting (14) and (16) into the sum v (t) = I1(t) + I2(t), we obtain (7). The Lemma is proved.
2 Ezpansion of the solution into Fourier series

Nontrivial solutions to the problem are sought as a Fourier series

o0

U(t’ &€, y) = Z uﬂ,m(t)ﬁn,m(:m y)v (17)

n,m=1

where

L1
un,m //U t z, y nm(x y)d(lﬁ‘dy, (18)
0 0

2 n m
I m(z, y)zjsin 7TT:I: sin WTy, n,m=1,2 ...

We also suppose that the following function is expanded to Fourier series
o0
> bnmOnmlz, y), (19)
n,m=1
where
11
//b T, Y) Un,m(z, y)dzdy. (20)
0 0
Substituting Fourier series (17) and (19) into partial differential equation (1), we obtain the

countable system of ordinary fractional differential equations of order: 1 < a, v < 2

a(t)bnm
1+ H%{Cm (81 + 52:“’%],6711) ’

D Mt () + A (1, €2) W, m(t) = (21)

where

2k 2k
H 1+ p 7\ k
A (e, ey = e U m)n (MY

1+ M%]fm (51 + EQN%I,Cm) ’
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According to the Lemma, the general solution to countable system of differential equations (21)
has the form

() = Crny (E = 1) Bo g1 (-3, (21, 22) w (2= 1)) +

+C2n,m (t - tO)W_l Ea,'y <_)‘721],€m (517 52) w (t - tO)a> + bn,mhn,m(t)v (22)
where
t
Bom(t) = : [t 9 B (N e wit - 97) als)ds
’ 1+ p2k, (o1 +eap2h,,) ’ ’

to

C1n,m and Ca,,, n are arbitrary constants.
By Fourier coefficients (18), the initial conditions (2) we rewrite in the forms

l
lim Jt +unm // lim JtoJr (t, z,y) Vpm(z, y)dedy =

t—+to t——+to
0

(,/31(55, y)"gn,m(l'a y)divdy:@ln,ma (23)

Il
o _
o — _

11

.ood o . d

tl}ﬂo%Ji:un,m(t) = //thm —Jt0+ Ut,z,y) Vnm(x, y)drdy =
00

w22, Y) Vnym(z, y)dedy = ©onm- (24)

I
o _
o _

To find the unknown coefficients C'y, , and Caq, p in (22), we use conditions (23) and (24). Then
from (22) we have

un,m(t) =@1in,m (t - t0)772 an,'y—l (_)\%Ifm (517 52) w (t - tO)a> +

+802n,m (t - tO)’Yil Ea,’y (_)‘%’fm (517 52) w (t - tO)a) +
t

On,m / -1 2k
n : t—s)olp (—)\nm : ' a) ds. 25
il (o reandiy ) 797 e Pam e @) wlt =) alds (29

0

Substituting the presentation of the Fourier coefficients (25) of main unknown function into Fourier
series (6), we obtain

U(t, z, ) Z D@, 9) [@1m,m (6= 10)7 7 Bayor (A2, (61, 2) w (¢~ 1)) +
n,m=1
FPanm(t—t0) " Ea (—)\i’fm (1, €2) w (t — to)a) +
t

bn m —1 2k
+ ’ t—5)* 1B, 0 (—)2 L ea) w(t—s)° ds|. (26
1 N%{cm (51 52#721]?171) /( S) ’ ( ’ (61 62) ( S) ) CL(S) 5 ( )

to

This Fourier series (26) is a formal solution to the initial value problem (1)—(4).
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3 Convergence of the Fourier series (26)

We prove absolute and uniform convergence of the Fourier series (26). We need to use the concepts
of the following Banach spaces. Hilbert coordinate space f2 of number sequences {¢, m}.° with
norm

n,m=1

o0

2
lolle, =] D lenml®<oo

n,m=1

The space LQ(QIQ) of square-summable functions on the domain Q% = Q; x Q; with norm

1
192, 9) 1 15 (02) = //Iﬁx o) Pdzdy < oo.
0 0

Conditions of smoothness. Let for functions
Soi(xa Z/) (Z =1, 2)7 b(.%’, y) € O4k(912)

there exist piecewise continuous 4k + 1 order derivatives. Then by integrating in parts the functions
(20), (23) and (24) 4k + 1 times over every variable z, y, we obtain the following relations

A ‘som j AN ‘b v ‘
| 0inm|= <7r> Wa\bnm|_ <7r> n Ak+1 yy dk+17 (27)
o2 | 2| 9% 2pi(x, y). (28)
in,m ) 8x4k+1 8y4k+1 LQ(QZQ) )
H p (85+2) ‘ 2 || 9%+ (z, y) (20)
n,m 0o~ l 6$4k+lay4k+1 L2(le) )

where

11
8k+2
(8k+2) _ 0% pi(x, y) o
Pin,m —O/O/Wﬁn,m(x, y)dxdy, i=1,2,

L1
88k+2b )
(8k+2)
. o 0/0/ O xk+1 8y4k‘+1 Un,m (7, y)dzdy.

To obtain estimates for solution, we use the properties of the Mittag—Leffler function [36]. Let
a € (0; 2) and v € R. If arg z = 7, then there takes place the following estimate

My

Eq <
| a’Y(Z)‘ -1 4 |Z’

where 0 < M1 = const does not depend from z.
Therefore, it is easy to see that there exists constant My such that

2% N
- — <
tonglta%(T ’ Eoz,'y—l ( /\n,m (€1a 62) w (t to) ) ‘ < M5 < o0, (30)
2%k N
- — <
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t

max /(t—s)a—l (t—t0)> " Eaa (—Aikm (1, £2) w(t—s)a) a(s)ds| < My <oo. (32
to<t<T ;
to
Theorem 1. Suppose that the conditions of smoothness and estimates (27)-(29) are fulfilled. Then
Fourier series (26) convergence is absolute and uniform.
Proof. We apply the formulas (27)—(29) and estimates (30)—(32) to estimate the series (26). Using
the Cauchy—Schwartz inequality for series (26), we get the estimate

(t_to)Qi’yU(ta x, y)‘ < M, Z ‘ﬁn,m(xa y)"[‘(pln,m’+|902n,m |+|bn7m|] <

n, m=1
2 o [o¢] o0
SIMQ Z ‘(Pln,m’+ Z ’@2n,m|+ Z |bn,m| S
n’m:]' n7m:1 n,m:l
8k+2) 8k+2 8k+2
2 l 8k+2 ‘(p(lnm s ’90(2n m) > b7(’bm )‘
Sf T My Z n4k+1m4k+1+ Z n4k+1m4k+1+ Z n k41, 4k+1 <
n,m=1 n,m=1 n,m=1
2 ()%t (8k+2) (8k+2)
Sz@ M2M3U PR [2 e @]S
2
2
Z 88k+2 x y) N H 88k+2b (:E, y) e (33)
P m4k+18y4k+1 La(07) O 2Ak+1H yAk+ La(97)
where
9\ 2 /] 8k +2 o) 1
= (3) (7)) Ma= | D S <o
n,m=1

From the estimate (33) the absolute and uniform convergence of Fourier series (26) implies. The
Theorem 1 is proved.

4 Uniqueness of the solution

To establish the uniqueness of the function U (¢, x, y) we suppose that there are two functions Uy
and Us that satisfy the given conditions (1)—(4). Then their difference U = U; — Uy is a solution to
differential equation (1), satisfying conditions (2)—(4) with zero functions ¢1(z, y) = @a(z, y) = 0.
By virtue of relations (23) and (24) we have that ¢ 1, m = @2n,m = 0. Hence, we that obtain from
formulas (18) and (26) in the domain  follows the zero identity

1
// t—10)> U (t, , y) O m(z, y)dazdy = 0.
0 0

Hence, by virtue of the completeness of the systems of eigenfunctions { \/? sin ”l—":c}, { 2 sin %y}

l
in Lo (QIQ) we deduce that U (¢, z, y) =0 for all x € Q7 =10, ]? and t € Qp = [0; T].

Since (t —t0) > U (t, z, y) € C (Q), then (¢t — t0)> YU (t, &, y) = 0 in the domain €. Therefore,
the solution to the initial value problem (1)-(4) is unique in the domain €.
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5 Term-by-term differentiation possibility

Theorem 2. Let the conditions of the Theorem 1 be fulfilled. Then term-by-term differentiation of

the series (26) is possible.
Proof. The function (26) we differentiate the required number of times

4k e n
88x4k (t=10)* Ut y) = > () D o, ) (= 10) 7t (D), (34)
n,m=1
4k > Tm
08y4k (t=t0)* Utz y) = Y (T)%n,m(x, y) (t=10)"" tn,m (1), (35)
n,m=1

where wy, m, (t) is defined from the presentation (25).
The expansion of the following functions into Fourier series are defined in a similar way

4k . 4k
ox o (t—t0) T DVU(L, @, y), oy

We show the convergence of series (34) and (35). Analogously to the case of estimate (33), applying
the Cauchy—Schwarz inequality, we obtain

(t—t9)> T DU (t, x, y), (t—1o)> " DU (t, x, y).

84k 2 > m™n 4k 2
\8 7 (= 10)* Ut w, y>\ > () | t= 0> wam® | [P0 mla y) | <
n,m=1
2 4k — 4k — 4 — 4k
n,m=1 n,m=1 n, m=1
(8k+2 (8k+2 (8k+2
2 l 442 ‘Soln m) ’SOZTL m) ’b )‘
Sf p My Z nom 4k+1 + Z nm Ak+1 + Z nm Ak+1
n,m:l n,m:l n,m:l
2 (12 (8k+2) (8k+2
%U (R M o M L
s Lo
2
88k+2 88k+2b
2 |2 9219 x4kz)1 H 9 4k+13(x:1k?i)1 < 00, (36)
Pl Y L2(97) v y (@7?)

oN2 /1 \4k+2 X 1
where y2 = (§)” (%) MoMy, My = ZIW<OO3
n, m=

(T = 10)* )] [, ) | <

84k o e
- U] < 3 (7

n,m=1
2 s 4k > Ak = 4k S 4k
<21 M| 3 lerals 3 lnunl + 3 |
n,m=1 n,m=1 n,m=1
8k+2 8k+2 (8k+2
9 1\ 2 > ‘So(ln,m) "Pgnm) ‘b |
<25 | > Bl s Borly s L2 o
n,m:l n, m= 1 n,m= 1
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2 A (8k+2) (8k+2) )

() 2] ot ] +oten], ]

l (7’(‘) 205 |: lo + 2n m + Lo
2
Z 8k+2 x y) H 88k+2b (x, y) . (37)
i x4k+1ay4k+1 La(22) O xMhF19 ytkt1 La(02) )

2\2 /1 \4k+2 s 1
where y3 = (7)" (7) " MaMs, Ms =, | 3 jepmy, < oo
n,m=1

The convergence of Fourier series for functions

4k 4k

2— 2- 2—
(t—to)" " DU (¢, x, y), pyen (t—to)" "DYU(t, z, v), 5,7 (t—to) " " DU (t, z, y)
is easy to prove, and the necessary estimates are obtained similarly to the cases of estimates (33), (36),

and (37). Therefore, the function U (¢, z, y) belongs to the class of functions (4). Theorem 2 is proved.
6 Stability of the solution U (t,x,y) with respect to given functions

Theorem 3. Suppose that all the conditions of Theorem 2 are fulfilled. Then, the function U (t, z, y)
as a solution to the problem (1)—(4) is stable with respect to given functions ¢1(z, y), ¢a(z, y).

Proof. We show that the solution to the differential equation (1) U (¢, z, y) is stable with respect
to a given functions ¢1(z, y), ¢a(z, y). Let Ui(t, x, y) and Usa(t, x, y) be two different solutions to
the initial value problem (1)—(4), corresponding to two different values of the functions ¢11(z, y),
p12(x, y) and @o1(, y), @22(z, y), respectively.

We put that [ @i1n,m —@12n,m| + [ ©21n,m — ®2n,m| < 6nm, where 0 < 6, , is sufficiently

oo

small positive quantity and the series Y [0y, m | is convergent. Then, considering this, by virtue of

n,m=1
the conditions of the theorem, from the Fourier series (26) it is easy to obtain that

‘t2_7 [Ul(tv €z, y) - U2(t7 x, y)] ‘ <

<

~| Do

S S
2
g3 E H‘Plln,m_@12n,m|+‘(P21n,m_9022n,m’]<703 § ‘6n,m’<oo-

n,m=1 n7m:1

o0
Ifwepute =203 > |6n,m| < oo, then from last estimate we finally obtain assertions about the
n,m=1

stability of the solution to the differential equation (1) with respect to a given functions ¢ (x, y), @2(z, y)
n (2). The theorem 3 is proved.

Similarly, it is proved that there holds the following theorem.

Theorem 4. Suppose that all the conditions of Theorem 2 are fulfilled. Then, the function U (t, z, y)
as a solution to the problem (1)—(4) is stable with respect to given function b (z, y) in the right-hand
side of the differential equation (1).

Conclusions

In three-dimensional domain, the solvability of a mixed problem for a Hilfer type partial differential
equation (1) of the higher even order with initial value conditions (2) and small positive parameters
in mixed derivatives is considered. Suppose that the conditions of smoothness are fulfilled. Then the
solution to this fractional differential equation of higher order for 1 < a@ < v < 2 is studied in the class
of regular functions. The Fourier series method is used and a countable system of ordinary differential
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equations is obtained (21). The initial value problem is integrated as an ordinary differential equation.
We obtained the presentation for unknown function U (¢, x, y). Using the Cauchy—Schwarz inequality
and the Bessel inequality, we proved the absolute and uniform convergence of the obtained Fourier
series (26) for function U (t, x, y) and its derivatives. It is proved that solution to the problem (1)—(4)
U (t, x, y) is stable with respect to given functions b (z, y) and ¢;(z, y), i =1, 2.

Acknowledgments

The research of first author was funded by the Ministry of Innovative Development of the Republic
of Uzbekistan (Grant F-FA-2021-424).

10

11

196

References

AcanoBa A.T. O6 0oIHO3HAYHOW PA3PEIIMMOCTH HAYAIBLHO-KPAEBON 3aJaun JJjIsi CUCTEMBI -
depeHnuaTbHBIX ypaBHEHUI B YaCTHBIX MPOU3BOIHBIX TpeThero nopsiika / A.T. Acanosa //

Huddepenn. ypapaenns. — 2021. — 57. — Ne 1. — C. 125-129.

AcanoBa A.T. O perieHnn HAYAJIBHO-KPAEGBON 3aJ1a9M JIJIsT CUCTEMbI UM PEPEHITUATBHBIX YPaB-
HEHUil B 9aCTHBIX IPOU3BOIHBIX TpeThero mopsaaka / A.T. Acanosa // U3B. By3oB. Maremaruka.
— 2019. — Ne 4. — C. 15-26.

Assanova A.T. An initial-boundary value problem for a higher-order partial differential equation /
A.T. Assanova, A.D. Abildayeva, A.P. Sabalakhova // News of the National Academy of Sciences
of the Republic of Kazakhstan. Series Physico-Mathematical. — 2020. — 302. — No. 2. — P. 133—
141.

Assanova A.T. Initial-boundary-value problem for an integro-differential equation of the third
order / A.T. Assanova, G.K. Vasilina, A.E. Imanchiev // Journal of Mathematical Sciences. —
2021. — 253. — No. 2. — P. 181-203.

Assanova A.T. A nonlocal problem for loaded partial differential equations of fourth order /
A.T. Assanova, A.E. Imanchiyev, Zh.M. Kadirbayeva // Bulletin of the Karaganda University.
Mathematics series. — 2020. — 97. — No. 1. — P. 6-16.

Bapanosckast C.H. 3amgaua Ko u Bropast cMmenianHast 3a1a49a Jjis 1apaboJIMIecKux ypaBHEHMI
¢ norenrmagoM Jlupaka, cocpesoToueHHbBIM B KOHEIHOM uncie 3ananubix Touek /| C.H. Bapa-
Hosckast, H.U. FOpuyk // Jduddepenn. ypasuenus. — 2019. — 55. — Ne 3. — C. 356-360.
Wnbun B.A. EquHcTBeHHOCTD 0OOOIIEHHBIX PEIIEHNH CMEITaHHBIX 38/1a4 JIjIs BOJTHOBOT'O yYpaBHE-
HUs C HEJIOKAJIbHBIME Ipanndabivu yeiaosusamu // B.A. Uneun // duddepentr. ypasuenus. —
2008. — 44. — Ne 5. — C. 672-680.

Nnbna B.A. O6 skBUBaJIeHTHOCTH JBYX OINpeJieieHuil 00600ImenHoro n3 Kiaacca Ly, perenns cme-
HmIaHHOM 3ajaun Jyis BojHOBOro ypasHenusi / B.A. Vibun, A.A. Kynemos // Tp. MUAH. —
2014. — 284. — C. 163-168.

Nnbuna B.A. CMmemannablie 381491, ONUCHIBAIOIIME IPUJIOIbHBIE KOJIeOaHUsT CTEPXKHSI, COCTOSIIErO
U3 JIBYX yYaCTKOB, UMEIOITUX PA3HbIe IJIOTHOCTU U Pa3Hble YIPYTOCTU, HO OJUHAKOBBIE MMIIEIAH-
col / B.A. Unbun, I1.B. Jlydepenko // Hoka. PAH. — 2009. — 428. — Ne 1. — C. 12-15.

xkenammes M.T. K 0600i1eHHO paspemmMocT  HAIPY?KEHHOIO BOJIHOBOTO —ypaBHEHUs |
M.T. Hxenamues // duddepenn. ypasaenmus. — 1994. — 30. — Ne 4. — C. 723, 724.
FOnnames T.K. Henokasibaast cMmenranHast 3a/1a4a Jijist HHTErpo-1ndepeHInabHOrO ypaBHeHMST

tuna Byccunecka ¢ BeipoxaennbiM siapom /| T.K. FOmnames // Ykp. mar. xKypu. — 2016. — 68.
— Ne 8. — C. 1115-1131.

Bulletin of the Karaganda University



On a mixed problem for...

12 HOnpames T.K. CMmemnrannast 3amada IjIsT IICEBIOMAPabOINTIECKOr0 HHTErPO-anddepeHITnaAILHOTO
ypasrenust ¢ Bbipoxkaenubim siapom / T.K. FOmnames // Huddepenn. ypasuenns. — 2017. —
53. — Ne 1. — C. 101-110.

13 Mainardi F. Fractional calculus: some basic problems in continuum and statistical mechanics
/ F. Mainardi // In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in
Continuum Mechanics. Springer, Wien, 1997.

14 Area I. On a fractional order Ebola epidemic model / I. Area, H. Batarfi, J. Losada, J.J. Nieto,
W. Shammakh, A. Torres // Advances in Difference Equations. — 2015. — 2015. — Ne 1. — ID
278. — P. 1-12.

15 Hussain A. Existence of solution and stability for the fractional order novel coronavirus (nCoV-
2019) model / A. Hussain, D. Baleanu, M. Adeel // Advances in Difference Equations. — 2020.
— 384.

16 Ullah S. A fractional model for the dynamics of tuberculosis infection using Caputo—Fabrizio
derivative / S. Ullah, M.A. Khan, M. Farooq, Z. Hammouch, D. Baleanu // Discrete and
Continuous Dynamical Systems. Ser. S. — 2020. — 13. — Ne 3. — P. 975-993.

17 Handbook of Fractional Calculus with Applications. Vols. 1-8. Tenreiro Machado J.A. (ed.).
Berlin, Boston: Walter de Gruyter GmbH, 2019.

18 Kumar D. Editorial: fractional calculus and its applications in physics / D. Kumar, D. Baleanu
// Frontiers Physics. — 2019. — 7. — Ne 6.

19 Sun H. A review on variable-order fractional differential equations: mathematical foundations,
physical models, numerical methods and applications / H. Sun, A. Chang, Y. Zhang, W. Chen
// Fractional Calculus and Applied Analysis. — 2019. — 22. — Ne 1. — P. 27-59.

20 Patnaik S. Applications of variable-order fractional operators: a review / S. Patnaik, J.P. Hollkamp,
F. Semperlotti // Proceedings of the Royal Society, A. — 2020. — 476. — No. 2234. — P. 1-32.

21 Yuldashev T.K. On solvability of an initial value problem for Hilfer type fractional differential
equation with nonlinear Maxima / T.K. Yuldashev, B.J. Kadirkulov // Daghestan Electronic
Mathematical Reports. — 2020. — 14. — P. 48-65.

22 Yuldashev T.K. Boundary value problem for weak nonlinear partial differential equations of
mixed type with fractional Hilfer operator / T.K. Yuldashev, B.J. Kadirkulov // Axioms. —
2020. — 9. — No. 2. — ID 68. — P. 1-19.

23 Yuldashev T.K. Nonlocal problem for a mixed type fourth-order differential equation with Hilfer
fractional operator / T.K. Yuldashev, B.J. Kadirkulov // Ural Mathematical Journal. — 2020.
— 6. — No. 1. — P. 153-167.

24 Yuldashev T.K. Inverse problem for a mixed type integro-differential equation with fractional
order Caputo operators and spectral parameters / T.K. Yuldashev, E.T. Karimov // Axioms. —
2020. — 9. — 4. — ID 121. — P. 1-19.

25 Abdullaev O.Kh. Non-local problems with integral gluing condition for loaded mixed type
equations involving the Caputo fractional derivative / O.Kh. Abdullaev, K.B. Sadarangani //
Electronic Journal of Differential Equations. — 2016. — 2016. — No. 164. — 1-10 p.

26 Bepapimes A.C. O6 oxHO#l HEJTOKAJBHON 3aJatde [JIst MapaboJInIecKOro ypaBHEHUs IeTBEPTOTO
nopsijika ¢ ApobubiM ornieparopoM Jxpbarsina-Hepcecsina / A.C. Bepapimes, B.2K. Kajupky/ios
/) Quddepenn. ypasaenns. — 2016. — 52. — No. 1. — C. 123-128.

27 Islomov B.I. On a boundary value problem for a parabolic-hyperbolic equation with fractional
order Caputo operator in rectangular domain / B.I. Islomov, U.Sh. Ubaydullayev // Lobachevskii
Journal of Mathematics. — 2020. — 41. — No. 9. — P. 1801-1810.

Mathematics series. Ne 2(106)/2022 197



T.K. Yuldashev, B.J. Kadirkulov, Kh.R. Mamedov

28

29

30

31

32

33

34

35

36

198

Karimov E.T. Frankl-type problem for a mixed type equation with the Caputo fractional
derivative / E.T. Karimov // Lobachevskii Journal of Mathematics. — 2020. — 41. — No. 9. —
P. 1829-1836.

Karimov E. Nonlocal initial problem for second order time-fractional and space-singular equation
/ E. Karimov, M. Mamchuev, M. Ruzhansky // Hokkaido Mathematical Journal. 2020. — 49. —
No. 2. — P. 349-361.

Malik S.A. An inverse source problem for a two parameter anomalous diffusion equation with
nonlocal boundary conditions / S.A. Malik, S. Aziz // Computers and Mathematics with
Applications. — 2017. — 73. — No. 12. — P. 2548-2560.

Serikbaev D. A source inverse problem for the pseudo-parabolic equation with the fractional
Sturm-Liouville operator / D. Serikbaev, N. Tokmagambetov // Bulletin of the Karaganda
university. Mathematics series. — 2020. — No. 4 (99). — P. 143-151.

Sadarangani K.B. A non-local problem with discontinuous matching condition for loaded mixed
type equation involving the Caputo fractional derivative / K.B. Sadarangani, O.Kh. Abdullaev
// Advances in Difference Equations. — 2016. — No. 241. — P. 1-10.

Sadarangani K.B. About a Problem for Loaded Parabolic-Hyperbolic Type Equation with
Fractional Derivatives / K.B. Sadarangani, O.Kh. Abdullaev // International Journal of Differe-
rential Equations. — 2016. — ID 9815796. — P. 1-6.

Yuldashev T.K. Inverse boundary value problem for a fractional differential equations of mixed
type with integral redefinition conditions / T.K. Yuldashev, B.J. Kadirkulov // Lobachevskii
Journal of Mathematics. — 2021. — 42. — No. 3. — P. 649-662.

Kim M.Ha. Operational method for solving multi-term fractional differential equations with the
generalized fractional derivatives / M.Ha. Kim, Ri.G. Chol, O.H. Chol // Fractional Calculus
and Applied Analyses. — 2014. — 17. — No. 1. — P. 79-95.

Jxpbarsin M.M. UuTerpaibHble Tpeobpa30BaHusi U MPEJICTABICHUS (PYHKIUNA B KOMILJIEKCHOMN
obnactu. — M.: Hayxka, 1966. — 671 c.

T.K. IOngames!, B. 7K. Kagupkymnos?, X. P. Mamenos?

L Bsbexeman yammuows ynusepcumemi, Tawxenm, Ozbexcman;
2 Tawkenm memaexemmir woteviemany yrusepcumemi, Tawkenm, Osbexcman
blzdvip yrusepcumemi, bledvp, Typrus

2Korapsl perti I'mabdep tunri auddepeHnmnaabik,
TeH/ey YIIiH apaJjiac ecell TypPaJibl

Yesem i 06/IbICTa apajiac TYBIHABLIAPAA 6ACTANKBI MIAPTTAPHI K9HE IIaFbIH OH apaMeTpJjepi 6ap XKy
perti ['mnbdep Tunti mepbec TyBIHABLIBL TEHIEY VIIMTIH apajiac eCerTiH, ey MyMKIHIITT KapacThIPbIIFaH.
Byt xxorapsl perri Gestirek puddepeHnaibiK, TeHJIEY/IiH MenimMi TypakThl OyHKIMSIAP KIACBIHIA 3€PT-
TesreH. Besmek omepaTopbiHbIH peri 1 < a < 2 TeH 60aThIH Karaail 3eprrengi. Pypbe KaTap/iapbIHBIH
9JIici KOJIJAHBLIBIIN, KapamaibiM auddepeHnnaablK TeHAeYAePAil ecenTeseTin Kyieci ampHapl. Bacrta-
KBl ecell KapamnaibiM auddepeHnnalIblK, TeHIEY PeTiHie WHTErpaJsiaHa/Ibl, aJ WHTErPAJIJIbIK, TYPAKThI-
Jiap Gepiiren GacTalKbl MIAPTTAPALI Taiiganana oTeIphin TabbLIaabl. Kommu-IIIsapiy Tencizairi men Beccenn
TeHCi3Airin maitnanansin, ajabiHFaHl Pypbe KATapbIHBIH aOCOJIOTTI KOHE OIPKEJK] *KMHAKTBIIBIFBL J19JI€JI-
nenjii. Bepinren dyHkusaIapra KATbICTBI €CENTiH, MIENIMiHIH TYPaKTBLIBIFBI /13 3€PTTEJI/I.

Kiam cesdep: 6bemmex peri, ['mabdep oneparopsl, apasac ecern, Oypbe Karapbl, 6acTanksl maprrap, biperei
IIETTiM.
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T.K. IOngames!, B. 7K. Kagupkymnos?, X. P. Mamenos?

1 o
Havyuonaavhoul yrnusepcumem Yabexucmana, Tawxenm, Y3sbexucman;
2 Tawmenmenuti 2ocydapemeenmoni yHusepcumem socmorosedenus, Tawxenm, Yabexucman;
3 Hz0uperuti yrusepcumem, Hezdup, Typuyua

O cmemanHoOiT 3agade A JuddepeHImaibHOro YpaBHEHUs TUTIA
Xuabdepa BBICIIETO TTOPSIIKA

B Tpexmepnoii o6iacTr paccMoTpeHa pa3penmMoCTh CMEIIaHHOM 3a1a49n st auddepeHnnaIbLHoro ypas-
HEHUsSI B YACTHBIX MPOM3BOJHBIX THIA XUIb(epa YETHOTO MOPSIKA C HAYAJbHBIMU YCJIOBUSIMHU U MAJIBIMU
IMOJIOXKUTEJILHBIMY [TapaMeTpaMy B CMEIIIAHHBIX TPOU3BOIHLIX. Perenue atoro apobuoro auddepeHimaib-
HOI'O ypaBHEHUSs BBICIIETO HOPSIIKA M3y9YEHO B KJlacce peryssipHbix dyHknwmii. VccienoBan ciydaii, Korja
MOpsIOK JpobHOTrO omeparopa paBeH 1 < a < 2. [Ipumenen meron psimoB Pypbe, U MOTyIeHA CUECTHAS
crucremMa OOBIKHOBEHHBIX auddepeHnnaabHbIX ypapHeHuil. HadaapHasa 3a7ada MHTErpuUpyeTcs: KaK OOBIK-
HOBeHHOE juddepeHnmaibHoe ypaBHEHNE, ¥ HHTErpaJIibHble KOHCTAHTBI HAXOJSTCS C IOMOIIBIO 33/ IaHHBIX
HadaJbHBIX ycaoBuit. C momorsio HepaBencrBa Komu—IllBapria n mepaBencTBa Beccenst mokasana abco-
JIIOTHAsI U PABHOMEPHAsl CXOJUMOCTH moJsiyueHHOro psnga @ypbe. V3ydueHa takKe yCTORYUBOCTD pEIICHUST
3a/1a91 10 33JJaHHBIM (DYHKIHSAM.

Karoweswie caosa: 1pobHBIL OPsAOK, oneparop Xuiibdepa, cMeniaHHas 3aja4a, psajasl Oypbe, HadaIbHbIE
YCJIOBHSI, OJTHO3HAYHAS PA3PEIIIMOCTb.
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A problem with shift for a mixed-type model equation
of the second kind in an unbounded domain

This article studies a problem with shift in the characteristics of different families in an unbounded domain
for a mixed-type model equation of the second kind. The elliptic part of this problem is the vertical half-
strip; the hyperbolic part is the characteristic triangle bounded by the characteristics of the equation. Using

the extremum principle we prove the uniqueness of the solution. With the integral equations method we
prove the existence of the solution.

Keywords: mixed-type equation of the second kind, problem with a shift, uniqueness and existence of a
solution, extremum principle, method of integral equations.

1 Statement of the problem
Consider the following equation
Uge +signyly|™uy, =0, 0<m<1 (1)

in unbounded mixed domain = QU JU,Qy, where @ = {(z,y):0<2 <1, 0<y< +o0}
J={(z,y) : 0 <z <1, y=0}and y is the domain of half-plane y < 0, bounded by the characteristics
of equation (1)

AC: 2 —[2/2-m)] (-y)* ™ =0, BC: z+[2/2-m)](-y)* ™2 =1,

2

going out of points A(0,0) and B(1,0) and intersecting at point C(3, —(%72)2="), and by the AB
segment of the abscissa axis, we assume the following notation:

B:m/(2m_4)’ le{(l’,y)0<y<+00, .I:O}, JQZ{(JL‘,y)ZO<y<+OO, le}a

(oo ). 5

Problem S*°. Find function u (z,y) that satisfies the following conditions:
u(z,y) € C(QUJL U, UAC UBC)NCHOQ U J)NCHQ U J) N C%(Qq U Qy), it satisfies equation
(1) in domains ; and Q9, and has the following property u,(z, +0) = v (z) € C*(J) and at the ends
of the interval it can turn to infinity of order —25 for x = 0 and of order % — B for x = 1 with the
following boundary conditions:

w©0,9) = 1 (), u(l,y) =2 (y), 0 <y < oo, (2)
lim wu(z,y) =0, uniformly in z € [0,1], (3)
Yy—r—+00

*Corresponding author.
E-mail: zunnunov@mail.ru
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a(z) D, Pulfo (x)] 4 b(z) DL Pul6y (2)] = e(x), Yz € J, (4)
Ou(x,—0) _ OJu(x,+0) 5)
oy oy
Here a2 (z) + b2(x) £ 0, Vo € J; a(z)z~? + b(x)(1 — 2) ™7 £ 0, Vo € J; the functions ¢; (y) € C(J;)
are such that 1 (0) = 0, @2 (0) = 0, and the integrals
2
| (2—m \2-
©i [( 9 5) ]

o _2 o0

m — 2—m m
/52(2m) i [(2 2ms> ] ds, /5(2m>
0 0

converge; —1 < —MIU=D L < 0 () = ar(@)a?, p < B, o (2),b(x) e (2) € C(T) N C3I);

here DS, [f(z)] is the operator of fractional integro-differentiation in the sense of Riemann-Liouville [1].

u(z,—0) = u(z,+0),

ds (i=1,2)

2 Uniqueness of the solution

The solution to the Cauchy problem has the following form [2]:

1
u(z,y) = /T{[:ﬂ— (1 —%)(—y)ﬁ] t} [a:+ (1—28)(—y)T% — at + (1 — 28)(~y) 7t 7y
0

X [x (- 25)(—y)ﬁ} "t P+

1 1-28
2cos7r6[2(1—2/8)] X

1
L - - I'(2-28)
XO/T [2— (1= 28)(~) ™7 (20— 1)] () (1 - 1) it - g

1
< [ o= 1= 2807 2t = D] ()P0 - )P, (6)

0

where

v (z) = uy(z, —0), u(z,0)=7(z) =T(1—28)D>'T(x). (7)

Considering the definitions and properties of operators of fractional integro-differentiation in the sense
of Riemann-Liouville from (6), we have (8)

) I'(2—2p) A1

U lb0(@)] = 5ostrgy Do T@™ - T a2 1@ —o)(®)
U0 @)] = (1= 8)DG @)1~ )+ LoD D a1 - )

- (2 - 28) 51
r(1- g1 —28) %™

Now, substituting (8) and (9) into the boundary condition (4) considering (7), we obtain

r(2—29)
D(1— B)[2(1 - 28)

n (x)wiﬂ. 9)

7 @2+ b(@) (1= 2) 7| (@) =
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ra-zs

= c(a) + 5o a(z)z? + b(z)(1 — x)*ﬁ] T(x)+ (10)

+b(2)T (1 = B) Dy * D T () (1 — )~
Next, consider the superposition of two operators
1— -1 _

where function T'(z) is continuous in the interval (0,1) and integrable on the segment [0,1]. The
following equality holds

. ! 1-28
DD )1 ) = 1)1 )P cosmp+ T [ L0 (11)
/ (1—z) "(t—2)

(the integral here is understood in the sense of the Cauchy’s principal value). From (10), considering
the properties mentioned above, we conclude that v;(x) belongs to the class of functions integrable on
the segment [0, 1] and continuous in the interval (0,1).

Theorem. Problem S cannot have more than one solution.

Proof. Let u(x,y) be the solution to homogeneous problem S*°. At that ¢(z) = 0. We can prove
that u (z,y) =0in QU J; U Jo U AC U BC.

First, we prove that u (z,y) = 0 in Q; U J; U Jo U AB. Let us assume the opposite. Then there

is domain 1, = {(z,y): 0<x <1, 0 <y < p}, in which u (x,y) # 0. Therefore, sup |u (z,y)| > 0
Q1,

and this value is reached at some point (£,7) € Q.
We introduce the notation 021, = ABU BD U DP U PA, where

AB={(z,y): 0<z<1l,y=0}, BD={(z,y): =1, 0<y<p},

DP={(z,y): 0<z<1, y=p}, PA={(z,y): 2=0, 0<y<p}.

According to the extremum principle for elliptic equations [3], it follows that (£,7) ¢ Qi,. Due
to homogeneous conditions (2) (£,n) ¢ BD U PA. Then (£,17) € ABU DP. Let (¢,n7) € AB, ie.,
sup |u(z,y)| = sup |u(z,y)| = |u(§,0)] > 0, 0 < & < 1. Then if u(£,0) > 0 (< 0), ie., (£0) is a
Qi1p AB
point of positive maximum (negative minimum) of function u(z,y), then according to the sign lemma
proved in [4], and due to the Zaremba-Giraud principle [3], it follows that (£,n) ¢ AB. Therefore,
(¢,m) € DP, ie. sup |u(z,y)] = sup |u(z,p)] > 0. Taking arbitrary number p; > p, we obtain

a 0<z<1

0,

by the same method sup |u(z,y)| = sup |u(z,p1)] > 0. Since Qi, C Qi,,, then sup |u(z,y)| >
ﬁlpl 0<x<1 ﬁlpl

> sup |u(z,y)| > 0, i.e. sup |u(z,p1)| > sup |u(x,p)] > 0. This implies that lim wu(x,y) # 0,
Q1 0<z<1 0<z<1 y—r-+oo

which contradicts condition (3). Therefore, u (z,y) = 0, (x,y) € Q1 Ul; Uls U AB. Hence, from (6) and
(10), it follows that u (x,y) = 0 in Q. Therefore, u (z,y) =0, (z,y) € QUI; Ul U AC U BC, whence
follows the assertion of the theorem.

3 Existence of the solution

Solving the problem N in the area of ellipticity of equation (1) according to the S.V. Falkovich
method [5], we obtain the solution in the following form:
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1 o0
t
u(z,y) = k\/g/ v Z Sin L sin i —_ K, <2n7rayi) dt+
0

n=1
7 20 5\ 2 T sh(l—x)\ 1
+\/gj/ [8] ©1 [(20) } SdS/Ash)\Ja (2)\ay2a> J_a (As) dA+
0 0
T 2a : 5\ 2« T shxA 1
- o5 -« 2 2a —x ) 12
-1-\/37/[8] @2[(20) ]Sds/)\shAJ ()\ay2)J (As) dA (12)
0 0
where o = 51— k = —m%w, I'(z) is the gamma function [1], K, (z) and J, (z) are the

Macdonald and Bessel functions, respectively [6]. Passing to the limit as y — 0 in formula (12), we
obtain the main functional relation between 7 (z) and v (z) brought from the area of ellipticity of
equation (1):

1

2a0 oo . .
() = _25((11_—!-5)) <7T1a> /V ) Z sin nw;;m nrt LR (). (13)
0

n=1

From the hyperbolic area we have relation (10) between v (x) and T (x) which, considering (11), has
the following form:

T (2 - 28) (&) = —

o (@) Lra-p)
L= 5)(1-28)

a(x)z=P+b(x) (1 - x)_ﬁ 2cos T3

T (x)+ (14)

sm7rﬁ T (t)dt
T(x)(1—2z) COS?T5+ a1 / 25 1(25

I'(1-p)b(x)
)

a(@)zP+b)(1—2z)" x)

Taking into account the gluing conditions (5), we eliminate 7" (x) from (13) and (14). After some
transformations, we obtain a singular integral equation:

1

1- 2t
Ae)p plt (t—a: t—i—:c—23t1§>dt+
0
1
+cosmlu (z /p ) K1 (z,t)dt = F (z), (15)
0
where A (z) =1 —sinnf, B (z) = —icosmB[1 +2u (2)], p(z) = v () 2725,

b(z)(1—a)””

B = e b @) (1=a)

CTA-8)[2010—28)]"r2 [T (1+28) 1 o5 - L(1+28)c(x)
Fa) = (2 25) ra-29" O e -7
£\ 1 1 E /om+t\"¥ 1
Kl(w’t)_<x> [t+x—2xt_t+ar+nz:l ( t ) m-ati
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n on —t\ 1 1 on —t\ 172 1 2n +t 1
t 2n—t+zx t 2n—x —1t t 2n+ax+1t
is the weakly-singular kernel. Since A2 (x) — B? (z) # 0, therefore, the singular integral equation (15)
is of the normal type. Now, changing the variables

t2 2

x
and w =

Zzl—2t+t2 1—2x+ 22"

equation (15) is reduced to a singular integral equation with the Cauchy kernel. Then, applying the
Carleman-Vekua regularization method |7, 8], we obtain an equivalent Fredholm equation of the second
kind, the unconditional solvability of which follows from the uniqueness of the problem solution.
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P.T. Byunynos!, A.A. Dprames?

1
O3b6excman Pecnybauraco, Fownvim axademuacoinoy, Mamemamura unemumymao, Tawxenm, O36excman;
2 Kokan memaexemmir nedazozurarvik, yrusepcumemi, Koxan, Osbexcman

IMTekci3 obabicTa eKiHImi TeKTi apaJjac TUIITi
MOJEJbJIK TeHJey YIIiH bIFbICy ecebi

MakaJrazia ekifIi TekTi apajiac TUIITI MOJIE/IbIIIK TEHIEY YIIiH IeKTeJIMereH o0JIBICTarbl 9PTYPJI CUTIATTA~
MaJIapbIHBIH BIFBICY ecebi 3eprresred. OBJIBICTHIK /UIMIICTIK 6eJtiri — TiK »KapThl KOJIAK, ajl TUIePOOJIAIBIK,
OeJIiri — TeH/Iey CUMATTAMAIAPBIMEH MEKTE/ITeH CUIATTaMAJIBIK, Yoy pseimt. [[lemimuiy Gipereitiri sxkcTpe-
MyM HPHUHIIAI apKBIIbI, aJj IMIEeNIMHIH 6ap eKeH/Iiri HHTerpaJiIblK TeHJEYJIep 9/IiCIMeH J1oJIe I IeHIeH.

Kiam cesdep: exiHI TEKTI apajiac THUIITI TEHJEY, BIFBICYbI Oap ecel, IIENIIMHIH »KAJFbI3/IBIFbl YKoHE Oap
GOJIYyBI, S9KCTPEMYM TPUHIINII, THTETPAJIIIBIK, TEHIEYIEP 9IicCi.
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P.T. 3ynnynos!, A.A. Dprames?

1
Hremumym mamemamury um. B.H. Pomarosckozo
Axademuu nayx Pecnybauxu Ysbexucman, Tawxenm, Y3sbexucman;
2 Kokandcxuti zocydapecmeennviii nedazozuseckut yrusepcumem, Koxand, Yabexucman

3asada co cMelleHneM JJisi MOAeJIbHOTO YPaBHEHNSI CMENIaHHOTO
THUMa BTOPOTO Po/a B HEOTPAHMYEHHOI 00JIacTHh

B crarhe B HeorpanmueHHO# 06/1aCTH TSI MOIEIBHOTO YPaBHEHUSI CMEIITAHHOTO THIIa BTOPOTO POJIa MCCJIe-
JIOBaHa 3aJ/ia9a CO CMEIIEHUEeM Ha XapaKTePUCTUKAX PA3IUIHBIX CEMENCTB. DJUINITHIECKAs YaCTh O0JaCTH
IIPEJICTABJIIET COOOY BEPTUKAJIBHYIO IIOJIYIIOJIOCY, & TUIIEPOOIMYecKas YaCTh — XapPaKTEPUCTHIECKHUI Tpe-
YTOJIbHUK, OTPAHUYEHHBIN XapaKTePUCTUKAMU yYPaBHEHUSI. EIMHCTBEHHOCTD PENIeHusI IOKAa3aHa C IIOMOIIBIO
IIPUHIMIA SKCTPEMYMA, a CyIIECTBOBAHUE PEIIEHUs] — METOJIOM MHTErPaJIbHbIX yPABHEHUI.

Karouesvie crosa: YpaBHEHHNE CMEIIaHHOI'O THUIla BTOPOI'0 poO/ia, 3a/avda CO CMEIIEHueM, € IMHCTBEHHOCTb U
CynaieCTBOBaHUE pelieHusd, IIPUHIIUII SKCTPpEeMYyMa, METO/L NHTEr'PaJIbHbIX ypaBHeHHﬁ.
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