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Recent advances in PDE and their applications
Preface
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Parabolic time dependent source identification problem with
involution and Neumann condition

A time dependent source identification problem for parabolic equation with involution and Neumann condi-
tion is studied. The well-posedness theorem on the differential equation of the source identification parabolic
problem is established. The stable difference scheme for the approximate solution of this problem and its
stability estimates are presented. Numerical results are given.

Keywords: well-posedness, coercive stability, source identification, exact estimates, boundary value problem.

Introduction

The theory and applications of source identification problems (SIPs) for partial differential equations have
been studied and for references we refer to articles [1-9] and the references given therein. Also, numerous source
identification problems for hyperbolic-parabolic equations and their applications have been investigated too (see,
e.g., [10-13] and the references given therein). In the last decade partial differential equations with involutions
were investigated by several authors including Ashyralyev and Sarsenbi [14-17]. However, source identification
problems for parabolic equations with involution still need more investigating.

The present paper is devoted to the study of a time SIP for parabolic equation with involution and Neumann
condition. The stability theorem on the differential equation of the source identification parabolic problem
is proved. The stable difference scheme (DS) for the approximate solution of this problem is constructed.
Furthermore, stability estimates for the DS of the time source identification parabolic problem are established.
Numerical results are provided.

Stability and coercive stability of the differential problem

We consider the time SIP

u(t, z) — (a(z)ug (L, ), — Ba(—z)ug (t, —2)), + ou(t, z)

q(z) +g(t,z), —l<z<l, 0<t<T,

0,2) =p(z), -l <x<l, (1)
1

(t,—1) = uy(t,1) =0, / u(t,z)de =~(t), 0<t<T
0

for the one dimensional parabolic differential equation with involution and Neumann boundary condition.
Throughout this paper, we assume that the following conditions hold

a>a(z)=a(-z)>a>0, ze(-L¥), a—alB| >0, § >0,

’ /

l
g (1) =g (1)20,/()q(x)d:v7é0.

Under compatibility conditions, identification problem (1) has a unique solution (u(t,z), p(t)) for the smooth
functions g(t7x)a (tvm) € (OvT) X (_lv l) 7a(x), q(x)ax € (_lv l) and ’Y(t)vt € [OvT] ) (P(x)a T e [_lv l]

*Corresponding author.
E-mail: aserdogan@gmail.com
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A. Ashyralyev, A.S. Erdogan

Assume that H is a Hilbert space and A is the self-adjoint positive-definite operator defined by the formula

Az = —% (a(m)dz(f)) = 5% (a(—x) dzfi;“”)) +62() (2)

with domain ; , )
D(A)={z:2,2 € Ly[-1,1],z (-1) =z (I) =0}.

Here and in the rest of this paper, C§ ([0,7], H) (0 < o < 1) stands for Banach spaces of all abstract continuous
functions ¢(t) defined on [0,7] with values in H satisfying a Holder condition with weight ¢* for which the
following norm is finite

t+7)% ot +7) — o(t
||<P||cg([0,T],H) = H@Hc([o}T],H) + sup ( A - ) ( )”H,
0<t<t+7<T T

Here, C ([0,T], H) stands for the Banach space of all abstract continuous functions ¢(t) defined on [0, 7] with
values in H equipped with the norm

= t .
H@”c([o,T]ﬂ) orél%XT o)l 1

Moreover, let the Sobolev space WZ[—/, f] be defined as the set of all functions v(z) defined on [/, ¢] such
that both v(z) and v”(z) are locally integrable in Lo[—¥, ¢], equipped with the norm

1/2

¢ 1/2 ‘
2
lolhwzieg = | [lo@Pde) | [10@) do
— 4 4

Theorem 1. Assume that f(t,x) and ( (t) are continuously differentiable functions. Then the SIP (1) has
a unique solution u € C (Ly[-1,1]) and p € C[0,T], and for the solution of SIP (1) the following stability
estimates hold

luellerai) + HUHC(W;[_l,”) + Ipllcgo,m < M (g, 9) {H‘P”Wﬂ—l,l]
19 0, g ag + l9elloqraaay + 16 loom] -

Theorem 2. Assume that g(t,z) and ¢ (t) are continuously differentiable functions and (; (t) is satisfying a
Holder condition with the ; weight ¢t*. Then the SIP (1) has a unique solution u € C§ ([0,T], Lo [—I,1]) and
p € C§ [0, T]. For the solution of SIP (1) the following coercive stability estimates hold:

HutHCg([O,TLLz[flJ]) + [Jul cg ([0,71,W3[-1.1]) + ||p||cg[o7T] < M (q,9) [”‘P“Wg[fl,l]

+ a=a 19l 0,11 2at-ray + It oy -

Proof. Denoted as

u(t,w) =w(t,x) +n(t)q (), (3)

where

and w (t, z) is the solution of the following problem
w (t,x) — (a (z) wa (1, 7)), + ow(t, )

=g(t,z) +nt)[(a(z) ¢ (2)), — g ()],

ze(=L1),te(0,T), (5)

w(0,2) = (z),x € [-1,1],

wy (¢, —1) = wg (t,1) =0,t € [0,T].

6 Bulletin of the Karaganda University



Parabolic time dependent source identification problem ...

Applying the condition
1
Jutayas=c
0

and formula (3), we can write

1
n(t)=q <—C(t) +/0 w (t, ) dﬂ«“) ; (6)
where
R
fol q(z)dx

Applying fol q(z)dz # 0, we get the estimate

()] < K1 (q) [IG ()] + [Jwe(t, ) por-10] (8)

for each t € [0,T]. From (7) and (8) follows it
Pl o,y < K1 (q) [||Ct||c[o,:r] + ”wt”C([O,T],Lg[—l,l])} ; 9)
1Pl g 0.0 < K (@) [l g o,y + 1ol op oy car-sap] - (10)

Applying (3), we get
w(t, ) = we(t, z) + p(t)q(z)
and
lutll e o1, Lai-1ay S Nwelleo,ry,Lop—1) T 1Plegomy el yi—iy >

<
<

HutHCf;‘([O,T],Lg[—l,l]) Hwt||cg([o,T],L2[—l,z1) + ||P||cg[o,T]) ||Q|\L2[—z,l]) :

Therefore, the following theorems will complete the proof of Theorem 1 and 2.
Theorem 3. Under assumptions of Theorem 1, in C ([0,T], Ly [—1,1]) the problem (5) has a unique solution
and the following stability estimate is satisfied:

lwelloo,r,zai-ap < K2 (@8) [1€lwzi-r + 1€ O)

19 O ) py—rg + gt eo,m, a1y + 1St oo, | -

Theorem 4. Under assumptions of Theorem 2, in C§ ([0, T, L2[—!,1]) the problem (5) has a unique solution
and the following coercive stability estimate is satisfied:

lwillce o.17,Lo1-10) S K2 (4,0) [H‘PHW@[?z,z]

+ameay M9l oy, a1y + ”Ct”c'g[O,T]} :

Proof. Problem (5) can be written in the following abstract form
{ w'(t) + Aw(t) = —n(t)Ag+g(t), 0 <t < T,
w(0) = ¢

in a Hilbert space H = Lo[—/, £] with the space operator A = A* defined by the formula (2). Here g(¢) = g(t, x)
is given abstract function, w(t) = w(t, x) is unknown function, and ¢ = ¢(x) is the unknown element of Ly[—¢, £].
The proofs of Theorems 3 and 4 are based on estimates (8), (9) and (10), theorems on stability and coercive
stability of the abstract problem (11) [9], the integral inequality and the self-adjointness and positive definiteness
of the space operator A® defined by formula (2) [15].

(11)
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A. Ashyralyev, A.S. Erdogan

Stability and coercive stability of DS

Let a € (0,1) be a given number and C¢ (H) = Cg ([0,7T].,H]) ,C; (H) = C([0,T]. , H) be Banach spaces
of all H-valued mesh functions w, = {wk}ivzo defined on

0,7]. = {ty = kT, 0< k < N,N7 =T}

with the corresponding norms

el ry = e, Tl
||wr||cg(H) = sup (N = 1) (k)" |wi+n — willmr + HwTHC.,.(H) :
1<k<k+n<N
Moreover, let Loy = Lo[—l,l], and W3 = Wi[-L1], be normed spaces of all mesh functions

V' (x) = {%}Tl\l/[:,M defined on
—0,1], ={zn =nh,—M <n< M,Mh=1}

equipped with norms
1/2

L = > W@
z€[—1,1

and

1/2
2

e X P (D D (G
xe[—l,l]h

respectively. Moreover, we introduce the difference operator A7 defined by the formula
Apu(2) = {~(a(@)uz())e,r — B (a(—2)uz(—2)), . + 6u, } 0 (12)

acting in the space of mesh functions u” (z) = {un}TAL/[:7M defined on [—I,1], satisfying the conditions

Upng — upi—1 = t—pp — U—pr41 = 0. For the numerical solution {u]! (x)};vzo of SIP (1) we present DS of the first
order of approximation

3 k k k k k k k
uifuk

c—1 k
1 Up41—Up Up —Up_1 6 U_pp1 U _p U_p—U_p_1
= T (an+1 no AnT g ) — n \d-nt1 2 —a-n 2

+5uﬁ:pkqn+g§ag§:g(tk;xn)atkE [OaT]Taan [7131]}“ ke]—an ne]—aM*la (13)

u%:<pn790n:¢(xn)7n€07Ma

M
U?\/[ - uﬁ/[_l = uliM+1 - UliM = 0721’:1 ’U«fh = Ck7<k‘ = C(tk)7 ke OaN
Here it is assumed that g — qar—1 = - — q—nm+1 = 0, and Z%Zl qmh # 0. Let us give the following results

on the stability of DS (13).
Theorem 5. For the solution of DS (13), the stability estimate

1 N
Lih . h
||{T N Uk_l)}k—l

L PR LR

clo,7].
Cr(Lan)
<K (@) [[¢" s, + 9?1, + 1]
1 N 1 N
+ {T(gﬁ—gﬁl)} + {T(Ck—Ckl)} ,
F=2lley (Lan) k=tllco,1),

8 Bulletin of the Karaganda University



Parabolic time dependent source identification problem ...

and coercive stability estimate

Low oh }N H v H H N ‘
—(uy —ul_ =+ u _ + D =
H{T( K~ Ukt Y {0 s ce(w3,) {Prdims cglo,1],
<K@ [[l" ]l
e [l }N
+a(1—a) H{g’“}’le C$(L2h>+” T(Ck ) k=] gago.1]
o Y4l

hold.
Proof. We will use
wp = W+ Mkn,
where
k
qn = Q(l‘n), Nk = Z PmT.
m=1
It is easy to use {w/' (x)}f:’:o as the solution of the following DS
k k—1 k ok k__ k
N 1 e
k ok ko k
7% A_ni1 w*ﬂ#»}]l W_pn Gp, W_p ;;)—n—l) + (5'1,05{

_ .1 uJﬁ+1—wﬁ B wﬁ—wﬁfl
= R\t g In—p
k

w,in _uilin w—n_wlinf
-2 (Q—n+1 = —qon—", 1) + 5%’2%] + gk,

h
el,Nynel,M—1,
0

=pp,neld,M |

why —wh_ =wh, —wk ) =0,kekel,N.

k
w
Now we estimate |pg|. Using the condition Zf\n/lzl uk h = ¢, and (14), we obtain

M
e = b1 (Ck wanh) ;

m=1

where
b 1
I —
Zrn:l th
Then,
b M
1 k k—1
N RS- - h.
Pk pn ((k <k? 1 m:l(wm Wiy, ) )

Applying the Cauchy-Schwartz inequality, we get
k—1

G —¢ Wk —w

k — Gk—1 m ~ %Ym

il < o [ S 3 |
m=1

Lzh]

h h
Wy — Wiy
T

Ck — Ch—1

T

+

<K(b)l

for every 1 < k < N, and
N
H{pk}deC[mT]T

Mathematics series. Ne 2(102) /2021
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A. Ashyralyev, A.S. Erdogan

<K H {@ —Tck_l}

Moreover, using (16), we can write

N

k=1

N
h h
wy — wi_
4 { k Tk 1}
c[o,7)-

kE=1llc, (Lan)

{pr}oe ‘
H k=1l ce 0,17,
N h h N
— (e wy — wy_
< K(b) H{Ck Té-k 1} + { k - k 1} . (18)
k=1|| ra _
Hlcg 0,11, k=1l ca (L)
Applying (14), we obtain
Y N N
= = —= “— + Prdn-
T T

From that it follows

1 N
Lih oh
H{T (Uk Ukl)}k_l

Cr(Lan)
1 N
S {T(w;’i—wﬁ_ﬁ} +H{pk}kN:1Hc[0T] ||qhHL2h (19)
k=1l oy (Lan) n
and
1 N
o (Uk - Uk-—l)
k=1 Co(Lan)
N )V o,
SN 7 Wk = Wh PeIk=1]| garo 7y, 119 I1Ean -
k=llce(Lan) o

Therefore, the following theorem will complete the proof of Theorem 5.
Theorem 6. For the solution of DS (15), the stability estimate

< K3(0) [[l6" [z + 9, + o

Cr(La2n)
N N
1 Ce — Q-1
+ {7(92—921)} + {7_
k=2 Cr(Loy) k=tllcpo,1),
and coercive stability estimate
N
1
[ ot -0}
k=1 C2(Lan)
N
1 N G — Ch—1
h h
<550 |1 lhog, + oy N0 o, {572
T F=Hlcgo,m).

hold.
Proof. Problem (15) can be written in the following abstract form

wi—wi_, Ahwh — gh — Ahgh
— 0 + Wy = g q Mk,

tk:kr,lgng,w(’;:@h

(20)

in a Hilbert space H = Loj, with the space operator A" = A? defined by the formula (12). Here, gl = gl (z) is
given abstract mesh function, w} = w! (x) is unknown mesh function and ¢" = ¢"(x) is the unknown element
of Lap. The proof of Theorem 6 is based on estimates (17), (18) and (19), theorems on stability and coercive
stability of the abstract problem (20) (see [9]), difference analogy of integral inequalities, and the self-adjointness

and positive definiteness of the difference operator A7 defined by the formula (12) [15].

10 Bulletin of the Karaganda University
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Numerical experiment

In this section a numerical computation to approximate solution of a time dependent source identification
problem with involution and Neumann conditions is considered to support the theoretical results. We use the
first order of accuracy difference schemes. The error analysis is given.

We consider

ug (t, ) — Ugy () — %um (t,—z) + u(t,z)

=p(t) (14 cosx) + (C 5 1) e, ze(—mm),te(0,m),

w(0,z) =1+ cosz,x € [—m, 7], (21)
Uy (t, —7) = u, (¢,7) =0, t € [0,7],

foﬂ u(t,s)ds =met t €0,

for parabolic equation with involution and Neumann condition. The integral condition is given as an overdetermi-
ned condition. The exact solution of this problem is

u(t,r) = (l4cosz)e ', —r<z<m0<t<m,
pt) = et telo,n].

Here we denote the set [0, 7] x [—7, 7], of all grid points
0,7] x [-m, 7], = {(tk,xzn) : txy = k7,0 <k <N,
Nt =m,2, =nh,—-M <n< M, Mh=m}.
For obtaining the solution to problem (21) we apply the substitution
u(t,z) =w(t,x) +n(t) (1+cosz),

where \

1) = [ p(s)ds. 0 0) 0.
One can show that after the substitution, problem (21) turns to

wy (8, 2) — Wey (L, x) — %wm (t,—x) + w(t,x)

5
= ( Cgsx + 1> n(t) + (cosx — 1) et, xe(—mm), te(0,m), (22)
w(0,2) =14coszx, z € [-m, 7,
wy (t,—7) = wy (t,m) =0, t € [0,7].
Moreover, using the overdetermined condition we can write
/ u(t,s)ds :/ w(t,s)ds+77(t)/ (14 coss)ds =me™"
0 0 0
and
e~ — [Tw(t,s)ds
n(t) = . :
0
For the numerical solution of (22), we present the first order of accuracy difference scheme
71 (wﬁ — wfl_l) —h7? (wﬁﬂ — 2wk + wﬁq)
_%h_2 (wlin+1 - 2wﬁn + wﬁnfl) + wa
= (E’Cojx” +1) i ek
(23)

=— (24 2cosxzy)e ',

<k<N, -M+1<n<M-1,
wgzl—i—cosxn, —M<n<M,

wh o —wh = wh —wh =0, 0<k<N.

Mathematics series. Ne 2(102) /2021 11
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For obtaining the solution of difference scheme (23), we rewrite it in the matrix form

AW+ BWHFT=Ro* 1<k<N, W=y, (24)
where
ri1 -1 0 0 . . . . . 0 0 0 ]
a b a 0 . . d_nr+1 . . d_pr+1 d_m+1+c¢c d_yy1—a c
0 a b a . . d_A4+2 . . d_M+2+C d_M+27a d_M+2+C 0
A= 0 0 0 0 . a+c b—a+dy a+c+dy . do do do 0 R
0 c —a c . . dyr—o . . a+dy—o b+dy—o a+dy—o 0
C —a (& 0 . . dM_1 . . d]\/[_1 d]\/[_1 d1\4_1 a
L0 O 0 0 . . . . . 0 0 1 —1 ]
[0 00 00 0]
0 e 0. 0 0O
00 e 0. 0O00O0
B = .
00 0 O e 0
00 0 O 0 e O
(0000 .00 O
and
1 b 1+2+1 1
a=—— = — — C=——. 6= —
h?’ T h? ’ 2h2’ T’
h (5cosx; .
di=—|——+1),i=—-M+1,-M+2,..M-—1,
T 2
W,
We=1: for s=k,k—1,
Wiy
0
1 0 0 k
P_M+1
Ro |01 0 ]
00 .1 Phi-1
0

So, we have a first order difference equation with respect to k& with matrix coefficients. From (24) it follows
that
WF=—A"'BW* 14+ A" 1R,* k=1,---,N.
In the second step, using the formulas
uk w,’i—i—nk(l—&—cosxn), 0<k<N, —-M<n<M,

n —

m = ~ 2en= L 1<k<N, =0,

o Mk — Mk—1 1<k<N

we can find the approximate solutions for u (¢, z) and p (¢) .
We compute the error between the exact solution and numerical solution by

1Eulloe = 0<k<N Shf<n<
1 Eylloo = 1I<I}3<XN In (tk) —nxl

HEPHOO = 1I<I}ca<XN Ip (tr) — Pkl

)

u ’u (th, ) — uk

12 Bulletin of the Karaganda University
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where u (¢, z) , p(t), n(t) represent the exact solutions, u¥ represents the numerical solution at (4, ,), and
pr and 7y, represent the numerical solutions at ¢x. The numerical results are given in Table 1.

Table 1

Errors | Eull oo | £n]l o | £p |l
N=M=230 | 6.6666-10~2 | 7.3894.10~2 | 1.1917-107 !
N=M=60 | 3.3333-10~2 | 3.6655-10~2 | 6.6532-10 2
N=M=120 | 1.6667-10°% | 1.8262-10% | 3.5167-10~2
N =M =240 | 8.3333-10°° | 9.1165-10~° | 1.8081-10~2

Conclusion

In this paper we considered a time dependent source of identification problem for parabolic equation
with involution and Neumann condition. The theoretical considerations that prove well-posedness theorem on
the differential equation of the source identification parabolic problem and stability estimates for the difference
scheme of the source identification parabolic problem were given. To support the theoretical results by a numeri-
cal experiment we constructed a stable difference scheme for the approximate solution of the problem. Obtained
results given in Table 1 support the theoretical results.
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A. Ampipaneres! 3, A.C. Epgoran®

Y Taay Ivevic yrusepcumems, Hukocua, Typrus;
2 Peceti zasvxmap docmwes. yrusepcumemi, Mackey, Pecet;
3 Mamemamuxa srcone mamemamuraisvr, modesviey uncmumymot, Aivamo, Kazaxeman;
4 [Taam-Buy memaexemmir koanedorci, Daopuda, AKIII

NuBosmonusimen »k9He Jlupuxiie niapTbiMeH ColiKeCTeHIipY/diH,
mapadoJIadbIK, MIceJieCi TypaJbl eCKepTy

Nupomonus xone upuxite mapTsl 6ap mapabosaiblK TEHAEY VIIH ePEKKO3/l aHBIKTAyIbIH KEHICTiK-
TiKk ecenrepi 3eprrenai. [lapabosanbik, guddepeHnaaIblK, TeHIey YIIH JIePeKKO3/l aHbIKTAay eCceOiHiH
JYPBICTBIFBI TEOPEMACHI AHBIKTAJIIBI. ByJT ecenTiy XKybIK IMIentiMil Taby YIITiH TYPaKThl afbIPBIM/IBIK, CXEMA
6episirer. COHbIMEH KaTap, JePEeKKO3i COMKeCTEeHIIPYIiH, TapaboIalIbK, ecebiHiH, afbIPBIM/IBIK, CXeMACHIHBIH
TYPaKTBLILIFBIHBIH, Oafajiayaapbl YCbIHbLTFaH. CaHIbIK HOTUXKeIEep KeJITipireH.

Kiam ce3dep: KOPPEKTIMIIK, S/TUIICTIK TEHILYIED, KOIPIIUTUBTI TYPAKTBLIBIK, JTEPEKKO3/Il UICHTUDUKAIUSI-
J1ay, /1971 6araJiaysap, MIETTIK ecelr.

A. Amrpansies! 2, A.C. Epnoran?

L Baustenesocmowrwti ynusepcumem, Huxocua, Typuus;
2 Poccutickuti yrueepcumem opyoic6v. napodos, Mockea, Poccus;
3 Mnemumym mamemamuky u Mamemamudeckozo modesuposanus, Aamamuo, Kazaxeman;
4 Tocydapemesermod xoanedore Haam-Buw, Paopuda, CIIIA

3aMeuaHHne o nmapadboimdecKoil mpobseme naeHTUOUKAITNN
C MHBOJIIOINEN u ycjoBueM Jlupuxiie

WccnenoBaubl mpocTpaHCTBEHHBIE 33Ia9U UIEHTU(MUKAIIUN UCTOTHUKA, JJIs TapabOIMIecKOTO YPABHEHUS C
vHBOJIIONMENR 1 ycioBueM Jlupuxire. YcTaHOBIEHA TeOpeMa KOPPEKTHOCTH 33341 UACHTU(MUKAIMI UCTOIHU-
Ka JuId napabosmdeckoro nuddepeHnualbHoro ypasaenus. [Ipencrapiesa ycroituuBas pa3HOCTHAS CXeMa
JIJIsI IPUOJIMKEHHOTO PEITieHusT 3To 3aa49u. Kpome Toro, JaHbl OMEHKU YCTONIMBOCTH PA3HOCTHOM CXEMBbI
mapaboIMIecKOil 3a/1a4n UAeHTU(DUKAIINN NCTOYHUKA. [IprBeIeHbI YrcIeHHble Pe3yIbTATHI.

Karouesvie ca06a: KOPPEKTHOCTD, SJIJTUNITUYECKUE YPABHEHUS, TTOJIOXKUTEIBHOCTD, KOIPIUTUBHAS YCTONIN-
BOCTH, UJEHTUMOUKAINS UCTOYHUKA, TOYHBIE OIICHKN, KpaeBas 3ajaqa.
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On the boundedness of solution of the second order ordinary
differential equation with damping term and involution

In the present paper the initial value problem for the second order ordinary differential equation with
damping term and involution is investigated. We obtain equivalent initial value problem for the fourth order
ordinary differential equations to the initial value problem for second order linear differential equations with
damping term and involution. Theorem on stability estimates for the solution of the initial value problem for
the second order ordinary linear differential equation with damping term and involution is proved. Theorem
on existence and uniqueness of bounded solution of initial value problem for second order ordinary nonlinear
differential equation with damping term and involution is established.

Keywords: differential equation with damping term and involution, stability, boundedness, existence and
uniqueness.

Introduction

Differential equations with involution appear in mathematical models of ecology, biology, and population
dynamics (see, e.g, [1-6] and the reference given therein).

Our goal in this paper is to investigate the boundedness of the solution of the initial value problem for the
second order ordinary differential equation with damping term and involution

y//(t) = f(t7y<t)ay/(t)?y(u(t))7 tel= <_OO’OO)’ y(tO) = Yo, y/(tO) = y6 (1)

Here and in future u(t) is involution function, that is u(u(t)) = ¢, and ¢y is a fixed point of u. Problem (1)
does not seem to yield directly to any techniques that can be used for ordinary differential equations without
involution term [1, 2]. Therefore, we consider the second order linear differential equations with damping term
and involution. We obtain equivalent initial value problem for the fourth order ordinary differential equations
to the initial value problem for second order linear differential equations with damping term and involution.
Theorem on stability estimates for the solution of the initial value problem for the second order ordinary linear
differential equation with damping term and involution is proved. Finally, theorem on existence and uniqueness
of bounded solution of initial value problem for the second order nonlinear ordinary differential equation with
damping term and involution is established. Note that some of the results of this work was presented, without
proof, in [7].

Linear ordinary differential equation with damping term and involution

Let C°°[I] be the set of all differentiable functions for all degrees.
Theorem 1. Let a(t), b(t), a(t) be functions of class C* on I, such that b(t) does not vanish on the interval
I, then the problem

’

Y (8) + a(t)y' (1) = a(t)y(t) + b()y(—t) + f (1), t € T, y(0) = ¢, y (0) = ¢

*Corresponding author.
E-mail: ogulbabek93@gmail.com
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is equivalent to the following problem for the fourth order ordinary differential equation

"

y W (t) = p(t)y(t ) gty () +r(t)y () + sty () + F(t), t €1,
y(0) = ¢,y (0) =

( ) a(0)p + ( ) a(0)y + f(0),
[ (0 bO)} (0)+b(0)}
(0)

)la
[ o+&<> w> b(0)] v+ £'(0) = a(0)£(0),

where

"

a’ () + b(—t)b(t) — [2b’(t) +b(t)a(ft)} s 0

!

—~
~

=

- {b" (1) + blH)a (=) = [26'(®) + b(t)a (~0)] =<' (0)| 5 G0,
alt) = —a” (t) +20/(t) + [26'(1) + b(t)er (1) 7ol [0/ (t) = a(t)]
= [b”(t) +b(t)a(—t) = [20'(1) + b(t)a (1)) 7 Ok (t)] =alb),

(1) = =20/ (1) + alt) + |2 (1) + b(t)a ()] ~al)

+ﬁ@+wmew{%@+wm“ﬂMN“4WV

and

F(t) = — {b”(t) +b(t)a(—t) — [21)’ (t) + b(t)x (*t)} bib’ (t)} bi £(1)

~[26'0) + bty (1) % (&) + b F(—t) + £ (2).

The proof of Theorem 1 is based on approaches of proof of Theorem 1 of paper [1] on the first order linear
differential equation with involution.

Now, we consider the initial value problem
y () +ay () =by(—t) + ay(t) + f(t), t € I, y(0) = ¢, y'(0) =) (2)
for the second order involutory ordinary differential equation with damping term. We are interested in studying

the stability of problem (2) on I. In general cases of «, a and b the solution of (2) is not bounded on I. Applying
Theorem 1, we get the equivalent initial value problem

@ (1) + (a® = b)y(t) — (2a+a?) y" (t) = F(1),
()=—ﬂf@)+bfbj)—af%ﬂ%mf(O,tel, 5
y(0) = 0.y (0) = .y (0) = (b+ a) — ar + F(0),

y (0)=—-a(b+a)e+ (=b+a+a?)p+ f'(0) —af(0)
for the fourth order ordinary differential equation. We will obtain the solution of problem (3). Assume that
|b] < la|, a € (— (%2 + 2722) ,——) Then, it is easy to see that
dly ()
dt

— @ota?) DO 4 (2 g2y
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Therefore problem (3) can be written as initial value problem
a2 o? 2 at 2 _
= e+ 5 +yJaa? + G+ b y(t) = v(t),
y(0) =, y'(0) =,
(;; - (a+ o\ Jaa? + 2 +b2>) u(t) = F(t),

F(t) = ~af(t) + bf(~1) ~ af' (1) + (1), t€ 1
o) = (3= § — yfoar £ 5 18 ) - av 4 £(0),

U/(O)_—oz(b+a)gp+<—b+a;— aa2+°§f+b2>¢

+/(0) — af(0)

for the system of second order differential equations. Applying the d’Alembert’s formula, we get

y (t) = cos (mt) ¢ + sinr(nmt)¢ + / Sm(m%v(s)ds, (4)
0

v (t) = cos (nt) l(b—oj—\/aaz—l—of—i—bQ)(p—ai/)—l—f(O)
+w [—a(b+a)cp+ (—b+0;2—\/aoﬂ—l—oj+b2>1/1+f/(0)—af(0)]

t

+/ sin (n (t — 8))F(s)ds,

n

0

where

Since F(t) = —af(t) + bf(—t) — af'(t) + f (t) and

0 0

we can write

2
<b—0;— aa2+0j14+52>50—04¢1 (5)
n 2 4

18 Bulletin of the Karaganda University
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0 t
+b / Wﬂs)ds ~a / cos (n (t — 5)) f(s)ds
—t 0

+f(t) - /nsin (n(t—s)) f(s)ds.
0

Applying formulas (4) and (5), we get

sin (mt)

y (t) = cos (mt)  + ¢ (6)

m

2
4008 (nt)z— cos (mt) [(b ~ Y Jaa2 + %4 + b2> ©—ayp

m?2 — n?2 2
L sin — Lgin
4u° (”22 _— () l—a(b-ka)go—k (—b+°§—m> w]
. t
+m/[—nsin(n(t—s))—|—msin(m(t—s))]f(s)ds
0

—mjyﬁz[gbmmu+@»+;mMmu+@ﬂﬂ$w.

2 b2

Theorem 2. Assume that |b| < |a|, a € (— (O‘T + ?> ,—%2). Then problem (2) is stable and the following
stability estimate holds

stméMw@w\ﬂﬂw+/U@Ms
tel .

The proof is based on formula (6) and the triangle inequality.
Nonlinear ordinary differential equation with involution

We consider the initial value problem

"

Y (6) +ay (t) = by(=t) + ay(t) + f(ty(1), ¥'(1), t€ I, y(0) = o,4/(0) = ¢ (7)

for the second order nonlinear involutory ordinary differential equation. We are interested in studying the
existence and uniqueness of bounded solution of problem (7) on I. In general cases of «, @ and b the solution of
(7) is not bounded on I. We will apply a fixed point theorem.
Let C(I) be the metric space of all continuously differentiable functions defined on the interval I with
the metric d defined by
dz (1) @w‘

dt dt

d(x,y) = sup |z(t) — y(t)| + sup
tel tel
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Note that C(M)(I) is the complete space. This is first condition of a fixed point theorem in metric space
(see [9]).
Theorem 3. Assume that |b] < |a|, a € (— (0‘72 + bz) ,—%2) ,and f is continuous and bounded function

a?
on the region
P:{(tvxay):*oo<t<ooa |:17790|<M7 ‘y7¢|<M}'

Suppose that f satisfies a Lipschitz condition on P with respect to its second and third arguments, that is,
there is a constant [ such that for (¢,z,u), (¢,y,v) € P

Then, initial value problem (7) has a unique solution y € C(\)(I).

Proof. The procedure of proving theorem on the existence and uniqueness of a bounded solution of problem (7)
is based on reducing this problem to an integral equation

y(t) = Ty(t), (9)

where
i t
Ty (t) = cos (mt) p + sin (m?)

m
2
+cos(nt)*COS(mt) ba\/m ¢ —ayp
m2 — n? 2 4
Jrnsm(n) -~ sin (mt) —a(b+a)p— b— L fifaaz+ L 42 ()
m?2 —n? 2 !

t

T2 1_ nZ / [—nsin (n (t — s)) +msin (m (t — s))] f(s,y(s), 9 (s))ds
0
T2 O: n? / [cos (n (t — 5)) — cos (m (t — 5))] f(s,y(s), 9 (s))ds

0

—I—L / [-nsin (n(t —s)) +msin (m (¢t — 5))] f(s,y(s),y'(s))ds

m2 — n2

0
b 1 1
i / {n sin(n (t+s)) + - sin (m (t+5))| f(s,y(s),y'(s))ds.
Zt
The proof of equation (9) is based on the formula (6). Note that integral form is a Volterra type integro-
differential equation of the second kind. Therefore, the recursive formula for the solution of problem (7) is

sin (mt)

yo(t) = cos (mt) ¢ + - )

cos (nt) — cos (mt) a? | oot
+ o S— b 5 aa? + 1 +b0% | p—ay
Lsin (nt) — L sin (mt) o? / at
+ R ab+a)p b 5 +1/aa +4+b V|,

1

y;(t) =wo(t) + oo S}

(10)
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t

x / [—nsin (n (¢ — ) + msin (m (¢ — ))] £(s,9-1(5)), 5} ())ds
0

m20: ) / [cos (n (t — s)) — cos (m (t — 5))] f(s,y;-1(5)), ¥;_1(s))ds
0
ﬁ / [—nsin(n(t —s)) +msin (m (t — s))] f(s,yj-1(5)),¥;_1(s))ds

0

leinQ/O {711 sin (n (t +5)) + %Sin (m (t+s))

—t

X F(5,55-1()), )1 (5))ds, j > 1.

According to the method of recursive approximation (10), we get

)+ > [y () =yt (11)
7=0
We have that \
pria ) =050 = s [ [onsin (¢~ )+ msin (m (¢ - 5)) (12

0

< 5,3 (5)), () = £, 53-1(5))s )1 (5))] i
n2/tcos (t — ) — cos (m (t — 5))]
X (£, 5(5)),8,(5)) = F(5,55-1(8)), 31 ()] ds
+ 0, / [—nsin (n (¢ — 8)) + msin (m (¢ — )]
4

x [£(s,9(5)),95(5)) = f(s,5-1(5)),y5 1 (5))] ds
0

,%/ {1 sin (n (t + s)) + %Sin (m (t+5))

m2 —n2 n
2

< [£(s,5(5)),95(5)) = f(5,95-1(5)), yj-1(5))] ds, 5 > 1,
therefore, applying the triangle inequality, formula (12) and Lipschitz condition (8), we get
yi+1(8) =5 (O] [9541 (1) — y5(1)]

I¢]

< M(a,b,0)l / [l (8) — w5—1(8)] + [4,(5) — w1 (s)][] ds (13)
—|t|

for any t € I and j > 1. Moreover, applying the triangle inequality, we get

lyo(t)]+ lyo(t)] < Mi(a,b, a, p,9),
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ly1() — o)), [y1(t) — vo(t)| < Ma(a,b,a) [t], (14)
for any ¢ € I. Applying estimates (13) and (14), we can prove that
. |t‘j+1
15:1(0) = 350 5420 = 50| < M0, 0) 1Mo b ) (15)

for any t € I and j > 1. Therefore, applying the triangle inequality, formula (11) and estimates (13) and (15),

we get
ly(t) = yn (O], 1y (1) = ¥, (1))
!

< J;l [4M (a,b, a)lMs(a, b, )]’ G+

|y(t)‘ ’ ‘yl(t)| S Ml(aa b,Oé, SW/’) + MQ(aa ba Oé) |t‘

— 0, n — o0,

‘t|j+1

for any t € I. Theorem 3 is proved.
Conclusion

In the present paper the initial value problem for the second order differential equation with damping
term and involution is investigated. We obtained equivalent initial value problem for the fourth order ordinary
differential equations to the initial value problem for second order differential equations with damping term
and involution. Theorem on stability estimates for the solution of the initial value problem for the second order
ordinary linear differential equation with damping term and involution is proved. Theorem on existence and
uniqueness of bounded solution of initial value problem for the second order ordinary nonlinear differential
equation with damping term and involution is established. Moreover, applying this result, the two-step stable
difference schemes for the numerical solution of the initial value linear and nonlinear problems (2) and (7) for
the second order linear and nonlinear differential equations with damping term and involution can be presented
and studied.
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A. Amrpansies! =%, M. Ampipansiesa?;, O. Barerposal'®

Y Tasy Hlvievic ynueepcumems, Hukocua, Typrus;
2 Peceti zaavikmap docmuwiew, yrusepcumemi, Moacxkey, Peceti;
3 Mamemamuxa srcone mamemamuraivr modesviey uncmumymot, Aivamo, Kazaxcman;
* Maxmoumxyave amovmdazo, Typikmen memaexemmis yrusepcumemi, Awzabad, Typixmencman;
Oevizzan amvmdaev, Typikmencman uHICEHEPATK-TNETHOAORUAABK YHusepcumemi, Awzxabad, Typikxmencman

HaBomIonusicbl MeH >KOMBLIILINT Oapa »KaTKaH MyIIieci 6ap
eKiHII peTTi KapanaifbiM auddepeHnTnaIIbIK TeHIEY/ i H,
MIEKTEeJITeH IITeNIiMi TypPaJibl

Maxkasiaia 1eMIUHITIK MYIIE TIEH WHBOJIIOIUSICHL 6ap KapamnaibiM eKiHIm peTTi auddepeHualiiblK TeHIey-
HiH GacTranksl ecebi 3eprresai. Exinmt perTi ChIBBIKTHIK, HuddepeHnnaaIblK TeHIeyIep YIMH KapamaibiM,
TOPTiHII perTi auddepeHInaIIbIK TeHIeyIep YIIIiH OacTaIIKbl eCelTepre SKBUBAJIEHTT] eCenTep aJIbIHIbI.
JleMNUHTTIK MyIlle MEH WHBOJIIOIUSICHI 6ap KapamaibIM eKiHII PeTTi ChI3BIKTHIK aAuddepeHINaIIbIK TeH-
Jey YIMiH OacTamKbl €CenTi IMIENTyaiH, TYPAKThLIBIFBIH Oarajiay TeoOpeMachl AojesaeH . VIHBOTIOMusIChl MeH
JKOMBLIBIN Oapa »KATKAH MyIeci 6ap eKiHIm peTTi KapanailbIM ChI3BIKTBI eMec IuddepeHInaIbIK, TeHIEY
VIIIiH 6aCTAIKbI €CEITi MEKTE/INeH MENIMHIH 6ap 60yl MEH YKAJFbI3JBIFBI TYyPAJIbl TEOPEMA AHBIKTAJIIHI.

Kiam cesdep: KOWBLIATBIH MYIIIECI »K9HE WHBOJIIONUSICH O6ap auddepeHnuaiablK TEHIEY, TYPaKTBLIBIK,
IIEeKTE/ITeH, 6ap 60Tybl MEH YKAJFBI3IBIFHL.

A. Amrpansies! 3, M. Ampipansiesa?;, O. Barerposal'®

1 .
Bauorcnesocmounniii ynusepcumem, Huwocus, Typyusa;
2 Poccudickuti ynusepcumem dpyoicbu, napodos, Mockea, Poccua;
3 Mnemumym mMamemamuky u Mamemamuieckozo modesuposarus, Armamst, Kazaxcman;
4 . .
Typxmencrutl 2ocydapcmeernnull ynusepcumem um. Marmymxyau, Awxabad, Typxmernucmar;
5 Unorcenepro-mexnorozueckuti ynusepcumem Typxmenucmana um. Qzysrana, Awzrabad, Typrmenucman

OO0 orpaHWYeHHOCTU penieHns OOBLIKHOBEHHOTO JauddpepeHnnaabHoro
YPaBHEHUs BTOPOTO MOPA/IKA C 3aTyXalOMUM YJ€HOM U MHBOJIIOIUER

B craTbe ncciieoBana HadasibHas 3aja49a Jjisi OOBIKHOBEHHOTO JTuddepeHInalibHOr0 YPaBHEHUSI BTOPOIO
opsiJIKa € JEMIMHIOBBIM 4eHOM ¥ wHBOJionumeil. [Tosyuensr 3aa4um, SKBUBaJIEHTHbIE HAYAJILHON 3aJ/a4e
JJIs1 OOBIKHOBEHHBIX I depeHInaIbHbIX YPABHEHU I€TBEPTOrO MOPsIKa, HA9aIbHON 3aate Il JINHEH-
HbIX auddepeHnnaJIbHbIX YPABHEHUIT BTOPOIO MOPs/IKa C 3aTyXaloIUM 4/IeHOM U uHBoJnonueil. Jlokazana
TeopeMa 00 OIEHKAaX YCTOWYIMBOCTH PENIEHHsI HAYaIbHON 3a/a4M JJisi OOBIKHOBEHHOIO JinHEeHHOro nudde-
PEHIINAILHOIO YPABHEHUSI BTOPOT'O HOPSIIKA C JEMIIMHIOBBIM YJICHOM M MHBOJIIONNEH. YCTaHOBJIEHA TeOpeMa
O CYIIIECTBOBAHHUH M €IMHCTBEHHOCTH OIPDAHUYEHHOrO DEIIeHUs] HA9aIbHOM 3314491 /ISt OOBIKHOBEHHOTO He-
JiHeitHOro Mud depeHINaIbHOIO YPABHEHUSI BTOPOIO HOPSIAKA € 3aTyXaIONUM YJIEHOM W WHBOJIIOIMEH.

Karouesvie caosa: muddepeHninaabHOe ypaBHEHNE C 3aTYXAIOMIMM UJIEHOM U WHBOJIIOIMEH, YCTOWYNBOCTD,
OrPaHUYEHHOCTD, CYIIECTBOBAHUE U €IMHCTBEHHOCTD.
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On stability of the third order partial delay differential equation
with involution and Dirichlet condition

In this paper the stability of the initial value problem for the third order partial delay differential equation
with involution is investigated. The first order of accuracy absolute stable difference scheme for the solution
of the differential problem is presented. Stability estimates for the solution of this difference scheme are
proved. Numerical results are provided.

Keywords: time delay, third order partial differential equations, stability, difference scheme.

Introduction

Local and nonlocal boundary value problems for third order partial differential equations have been studied
widely in the literature (see, for instance, [1-8]).

The time delay is one of the most common phenomena occurring in many engineering applications. In control
theory the process of sampled-data control is a typical example where time delay happens in the transmission
from measurement to controller.

Theory and applications of delay linear and nonlinear third order ordinary differential and difference equati-
ons with the delay term were widely investigated (see, for instance, [9-14] and the references given therein).

Our goal in this paper is to investigate the initial value problem for third order partial delay differential
and difference equations with convolution. The paper is organized as follows. Section 1 is the introduction.
In section 2 the theorem on stability of the initial value problem for the third order partial delay differential
equation with convolution is established. In section 3 the first order of accuracy difference scheme for the solution
of this problem is studied. Stability estimates for the solution of this difference scheme are proved. In section 4
numerical results are provided. Finally, section 5 is a conclusion.

Stability of differential problem

In [0,00) x (—I,1) the initial boundary value problem for the third order partial differential equation with
time delay and involution

T — (a(r)ust, z))x
=—b(—a(x)us(t —w,x)),
+f(t,x), 0 <t < oo,( L,
u(t,z) = g(t,z),—w <t <0,z € [-1,1],

u(t, =) =u(t,l) =0, 0<t<o0

is considered. Throughout this paper we will assume that w > 0, @ > a(z) = a(—z) > a > 0, x € (=[,1) and
a—alf| > 0.

*Corresponding author.
E-mail: suleiman368Q@Qgmail.com
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We consider the Hilbert space Ly [—1,1] of the all square integrable functions defined on [—I,[], equipped

with the norm )
1 2
| f o= (/z |f(50)2d33> :

Under compatibility conditions problem (1) has a unique solution wu(t,z) for the smooth functions a(z),
€ (=), gt,z),~w<t<0, z€[-LI],f(t,z), 0<t<oo, € (-I1),and b€ RL

Let us give theorem on stability of problem (1).

Theorem 1. For the solutions of problem (1) we have following stability estimates

0 [ve (¢, )||W1[ L o e, [[oe (2, )||w2[ L O§t1§xw||”( HWSHJ]

n . Jw
<My [ B o+ Yo C+ b [ s, s
= ] 1w 2 ’

co = max{_mae gt Mg mae It g}

where M, does not depend on g(t,x) and f(t,z). Here, W3 [—1,1], W3 [—1,1] and W3 [, 1] are Sobolev spaces
of all square integrable functions v (x) defined on [—I,!] equipped with the norm
1
2 2

||¢HWk -1, = /Z 1/1;1; dx

Proof. This allows us to reduce the problem (1) to the initial value problem
Colt) L A% pAp(t — w) + f(E), 0 <t < oo,
v(t) =g(t),—w <t <0
in a Hilbert space H = Lo [—,1] with a self-adjoint positive definite operator A defined by formula

Au(z) = —(a(@)ug(2)z + Bla(=2)u—o(—2)) o 3)

with domain
D(A) = {u(z) : u(x), ug(z), (a(x)ug)s € Lo [—1,1],u(£l) =0 }.

The proof of Theorem 1 is based on the self-adjointness and positive definiteness of the space operator
A defined by formula (3), paper [15] and the following theorem on stability of the solution of the abstract
problem (2).

Theorem 2. [16] For the solution of problem (2) the following estimate holds:

d*v(t)

du(t
, max |[|A v(®)
dt? H 0<t<nw

1
dt HH’Q 0<t<nw‘

A3

Aot

max
0<t<nw H

< (2+|b|w)"a0+/ |atr)| dsn=12...
0

Adilsft)HH’w<t<oHA2 HH}

Stability of the difference scheme

where
1 d?g(t)
ap = max<{ max 2——=| , max
—w<t<0 dt g —w<t<o

Now, we study the stable difference scheme for the approximate solution of the problem (1). The discreti-
zation of the problem (1) is carried out in two steps.
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In the first step, the spatial discretization is carried out. We define the grid space
-1, = {x:;l:n | T, =nh, —M <n<M, Mh:ﬁ}.

We introduce the Hilbert space Loy = La([—1,1];,) of the grid functions ¢"(x) = {¢"}™,, defined on [, 1],

equipped with the norm
1/2

h _ YNE:
", = X2 @I R
z€[—1,1]h
To the differential operator A defined by the formula (3), we assign the difference operator A7 by the formula

M-1

A" (@) = { = (al@)ed), - Bla(-2)ez"), } ()

—M+1
acting in the space of grid functions " (z) = {cp"}AfM and satisfying the conditions =™ = M = 0. Here

n_ . n—1 n+l _ . n
;:%’ “M+41<n<M, wg:%, ~M<n<M-1.

It is well-known that A7, defined by (4), is a self-adjoint positive definite operator in Laj,. With the help of A7
the first discretization step results in the following problem

O3l (t,x - $
% + AFul(t, 2) = —bATU" (t — w, 2)

+f1(t,x), x e [~1,1n, 0<t< oo, (5)
ul(t,x) = g"(t,2), —w <t <0, z € [-1,]]n, —w <t <O0.

In the second step we replace the problem (5) with the following first order of accuracy difference scheme

UZ+2(95)*3“Z+1(?;F3“Z(z)*uz_1(1) +Ai“2+2(m);“2+1(1’)

= bA}wLuZ—N(x) + fl?(x)ﬂ ]f:l(x) = fh(tkam)7 k Z 17 T e [_l7l]h7

u(z) = g"(te, ), —N <k <0,
h h
(Ih—i_TzAz)M :gét(o’x)7

Py —2uP () 4wl (2
(In + 72 Ag) 220 ) — gh (0, 2), @ € [, 1],

h _ ., h L’L _ ., h ;
(Ih +T2A’IL)“mN+1(Qf) Uy, v (T) _ Uy, v (T) “mN—l(”)7 e [7l,”h,

T T

h — 'U/h xT uh xT
(Ih +T2Ai)u7"1\7+2($) 2 77‘1,[-];]+1( )+ (%)

I I h
_ Uy, N (2) =20, 1 (T) F Uy v o (@)

= =
where 7 = 1/N and ¢, = k1, —N < k < 0.

Theorem 3. Let 7 and h be sufficiently small numbers. For the solution of difference scheme (6) the following
estimates

, € [-Llp,m=1,2,..,

up o, —2ul |+ ul ub — b
(m1 5 max L 7

0<k<(m+1)N—-2 72 RIS e - 2

an WQh,

h .
m iN
+> @+l —2)m ST [ f ), [ sm=0,1, .
=t s=(j—1)N+1
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h h
bo:maX{}VngX lht) . max ol @)llwz, »_max g <tk>||wgh}

hold, where C7 does not depend on 7, h, gh(tk), and f,?(x) Here, Wzlh,WQQh and W23h are spaces of all mesh
functions ¢" (z) defined on [—1,1], equipped with the norm

[ g, = | 22 Z Vi g ] 0

z€[=1,1] 7=0 e
Proof. Difference scheme (6) can be written in abstract form

wl, . —3ul +3u —ul wl, o —ul
kt2 ket k k—1 +Ah k+2T k41 :bAhuz_N'i‘f]?a kZ 17

h h_ouh 4yl
(I + 72A,) =18 ~U0 = gl0), (In + T2 Ap) 224 = gh(0), (7)

T2

h h h h h h
I + 2A umN+2_2u7nN+l+u7nN _ unlN_2u7nN71+u7nN72
h T T Ap P> = = )

h

h h h
4 Uy, — Uy Uy N U N —
(Ih 7—2 h) N+i- = X P - la m 1a27"'

in a Hilbert space Loy, with self-adjoint positive definite operator A, = A7 , which is defined by formula (4).
Here, gi = gl(z), f}' = f}(z) and ul' = u}(z) are known and unknown abstract mesh functions defined on
[—1,{]p with the values in H = L. Therefore, the proof of Theorem 2 is based on the self-adjointness and
positive definiteness of the space operator Ay (4) [17] and the following theorem on stability of the solution of
the difference scheme (7).

Theorem 4. [18] For the solution of difference scheme (7) the following estimate holds:

h h
2uk+1 + uy,
2

—_

h h
Up — Up_q

uh
[
Aﬁ Ap

max
"1<k<(m+1)N
H

- max
2 0<k<(m+1)N—2

T T

H

max [|AZupllg < Cy [(2+ 7]b|(N —2))™b]

0<k<(m~+1)N
m ' JN N
Z?H\bl —2)" e Y ARk | om=0,1, ..,
j=1 s=(j—1)N+1

where

b= 148 (), e DAnal @)l s 149" 0) i |

Numerical results

The numerical methods for obtaining the approximate solutions of partial differential equations play an
important role in applied mathematics when the analytical methods do not work properly. In this section we
will use the first order of accuracy difference scheme to approximate the solution of a simple test problem

Pu(t,x) Pu(t,x) +16 6u(t z) 1 FPu(t,—xz) + 28u(t —x)

a3 8t8w2 T 8 Otda?

—0.1(— M + 16u(t —1,7)) — 43e % sin 296 + 2e~2(t= 1 gin 2z,
0<t< oo, —77<:c<7r, (8)
u(t,z) =e ?sin2x, -1<t<0, -1 <z <,
u(t,—m) =u(t,m) =0, 0<t<o0.
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The exact solution of problem (8) is u(t,z) = e~ %

sin2z,—7 < z < mw,—1 <t < oco. For the approximate

solutions of the problem (8), using the set of grid points

[—1,00); X [-7,7|p = {(tk, Tn) : tx = kT,

—-N<k, Nt =1, x, =nh,

-M<n<M, Mh=m},

we get the first order of accuracy in t difference scheme

We can write (9) in the matrix form

where B,C,D,E,F,H and P are (2M + 1) x
are (2M + 1) x 1 column vectors defined by

Mathematics series. Ne 2(102)/2021

BU*+2 4 UM 4 DU + EUF! =
0
sin (2(—=M + 1)h)
U% = :
sin (2(M — 1)h)
0
Ul =(1-27)0°,
U? =2U0"' — (1 —4r3)U°,
UmN+1 _ p-1gpmN _
UmN+2 — opymN+1 4 p—1prymN _
m=12,...,

W2 gyt gk gk B uifj uk+1 2(ukF2 g B 1) k2 gkl
T3 Th?
k k k k k k
S i S e e 8 e
Th?
Wkt g k1 k—N k—N
_p U u, —2u +u
2 n n_ _(01) <_ n+1 ;:2 n— 1 4 16uk N)
—436_2tk’ sin 2z, + 2e~2(tk-N) gin 2z, t), = kT,
mN+1<k<(m+1)N—-2 m=0,1,..—-M+1<n<M-1,
Nr=1, 2, =nh, - M +1<n<M-—1, Mh=m, ud =sin(2nh),
L _u® ul | —2ul ful
unTun + 7_(_ n41 hEn n—1 + 16”;)
u? —21 0+1 0 .
+T( il Tl 16ul) = —2sin(2nh),
u —2ul +u n+172ui+ui,1 2
7- n 4 ( 7 + 16un) (9)
2u +u
+2( 1 h2 nol 16u}l)
O 1 —2ud+ .
+(—% + 16u0) = 4sin(2nh), —M < n < M,
mN+1__ mN umN+1 2u mN+1+un7,N+1
Uy = n +T( n+1 " n—1 + 16u$N+1)
+T(u;n+1\li_2u7n1\f+uzzi\71 B 16umN) xN U:Ln,N—l
h2 5
u7nN+2_2u7nN+1+umN ?N+2 2u mN+2+u?iV+2 N2
n Tn2 _I_ (_ +1 3 1 + 167]1:' + )
N+1 N N+1
YR i T A T W R
h2 n
wmN —oymN gy mN MmN _g,mN=1 mN-2
+( Upt1 T Up—1 + 16u::LnN) — U, U, — +u, ,
—-M<n<M m=12,..., u’iMzu’fwzo,
0<k<oo, mN<E<(m+4+1)N, m=1,2,....

(UMY, k=1,2,3,...

—1U'mN—17

QF_lUmN_l 4 F_lUmN_Q,

(2M + 1) matrices, p(U*=N), U° Ul and U",r =k, k£ 1,k +2
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b*
a4+ a*

a+a*

b+ b*
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r=k,k+1, k+ 2, where

k—N k—N k—N
U —2uy™ " o, _
ok = —(0.1) <— w3 L 16uf N)

— 43¢~ 2t gin 2z, + 22N gin 2z,

tyk=kr, mN+1<k<(m+1)N-2 m=0,1,..

—-M+1<n<M-—1.

)

S SRS 1, 2 4,16

. Hege,weQdeI:otea: Ihz’a** Sz b T3+37—h22+7—’16 s )

V=gmt ="t = 2=-a c=—F gz -7 d=g, e=—x3,
2 2 2

=2+ +167% p= -3 —167%, ¢ =1+ 75 +167%, s = 3.

The numerical solutions are recorded for different values of N and M, and u* represents the numerical
solution of this difference scheme at u(ty, x,). Table 1 is constructed for N = M = 40,80, 160 in ¢ € [0, 1],
t €[1,2], t € [2,3] respectively and the errors are computed by

mEY, = max u(ty, T —uk|.
M N1<k<(m+1)N, 7M§n§1bf| (b ) —
Table 1
Errors of Difference Scheme (9)
(N,M) [N=M=40 | N=M =80 | N=M= 160
te[0,1] | 0.0784 0.0397 0.0198
tell,?2 0.0852 0.0423 0.0210
te2,3 | 0.0679 0.0312 0.0139

If N and M are doubled, the values of the errors are decreased by a factor of approximately 1/2 for the first
order difference scheme (9). The errors presented in this table indicates the accuracy of difference scheme.

Conclusion

In this paper the stability of the initial boundary value problem for the third order partial delay differential
equation with involution is investigated. The first order of accuracy difference scheme for the solution of this
problem is presented. Stability estimates for the solution of this difference scheme are proved. Numerical results
are provided. Some statements of the present paper were published, without proof, in [16, 19].
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A. Amerpaneies! —3, C. U6paxum', B. Xumxamr!

1 .
Tasy Ilvevic ynusepcumems, Hukxocus, Typrusa;
2 Peceti zaavixmap docmwien yrusepcumemi, Mockey, Pecei;
3 Mamemamura srcone mamemamuraivr modesvdey uncmumymot, Aimamo, Kazaxcman

NuBoarorus xkonHe lupuxie mapTbl 6ap yHOIiHINL peTTi
Jaepodec TYBIHABLIBI Kelriryi 6ap auddepeHnnaaablkK, TeHaeyTiH
TYPAKTbUIbITBI TypPaJibl
Maxkamana ymriamm perTti gepbec TyBIHABLIBI Kermiryi 6ap anddepeHnnaaablk TeHAeYIiH bacTankbl ecebi-
HiH TYpPaKTBUIBIFBI 3epTTesret. JInddepeHnuaiabk ecenti merry yimH 6ipinm peTTi a9k Ti abcoTIoTTi

TYPAKThI afBIPBIMJIBIK, CXeMaChl YChIHbLTFaH. OChl afbIPBIM/IBIK, CXeMa YIMH IIENNMHIH TYPaKTHLIBIFBIHBIH
barastaynaps! mastesaeni. CaHIbIK, HOTHXKEIEP KeJITipiareH.

Kiam coesdep: kemiry, yumsmi perTi gepbec TYbIHIBLIBI TEHIEYIepP, TYPAKTBIIBIK, albIPhIMIBIK CXeMa.
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A. Amprpaneies! =3, C. Ubpaxum!, E. Xumxamr!

! Bausienesocmounniti ynusepcumem, Huxocus, Typuyus;
2 Poceutickuti yrusepcumem 0pyoicbu napodos, Mockea, Poccusa;
3 Incmumym Mamemamusy U Mamemamuieckozo modeauposanus, Aamamo, Kasaxcman

06 ycroitunBocTHn 3amna3abiBalomiero JauddepeHnnajIibHOro
YyPaBHEHUsI B YACTHBIX MPOU3BOJHBIX TPETHEro MOPsIKa
C WHBOJIIONME 1 yciaoBueM Jlupuxiie

B cratbe ucciemoBana ycTodnBOCTh HAYAIBHOMN 38 /1a9H J1JIs 3aI1a3/IbIBAIONIET0 MM dEPEHITHAIBHOIO YPaB-
HEHUs B YaCTHBIX MPOU3BOJHBIX TPETHErO mopsiaka. lIpeacraBieHa abCOTIOTHO yCTONYMBAasi Pa3HOCTHAST
CXeMa MEePBOro MOPsIKa TOYHOCTHU JJist perteHus auddepeHnnaabaoi 3agaqn. JJoka3anbl OIEHKHA yCTORYIM-
BOCTH PeIIeHNs 3TOi pa3HOCTHOM cxeMbl. [IpuBe/IeHbI YnCIEeHHbIE PE3YIBTATHI.

Kmouesvie caosa: 3ama3apiBanne, ypaBHEHUS B YaCTHBIX IPOM3BOJIHBIX TPETHErO MOPSIKA, YCTONINBOCTD,
Pa3HOCTHAas CXeMa.
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On the Crank-Nicolson difference scheme for
the time-dependent source identification problem

In this study the source identification problem for the one-dimensional Schrédinger equation with non-local
boundary conditions is considered. A second order of accuracy Crank-Nicolson difference scheme for the
numerical solution of the differential problem is presented. Stability estimates are proved for the solution
of this difference scheme. Numerical results are given.

Keywords: identification problem, Schrodinger equation, difference scheme, Crank-Nicolson, stability.

Introduction

Source identification problems (SIPs) have the significant role in natural science, applied sciences, engi-
neering, quantum mechanics, diffusion equations, heat equations (see [1-4] and references therein). The theory
and applications of SIPs for partial differential equations (PDEs) were studied in many works (see [5-32] and
references therein). The time-dependent SIP

jula) _ 2 (a z) %g;@) + dult, z)
=p(t)q(z)+ f(t,z),t€(0,T),z € (0,),
w(0,z) = ¢ (x),z€0,]], (1)

(x),
( ) (t l) (t>0) = Ug (t’l>7
f(f (tvx)dx:C()vte[oaT]

for the one-dimensional Schrédinger equation (SE) was investigated [33]. Here 0 < a < a( ), f (t x), C(1),

¢ (), q(x) and a (x) are given sufficiently smooth functions and ¢ (0) = ¢ (1), ¢ (0) = ¢ (1) and fo x)dx # 0.
Stability estimates were established for the solution of source identification problem (1). A ﬁrst order of accuracy
difference scheme was investigated for the numerical solution of this problem.

In this paper a second order of accuracy Crank-Nicolson difference scheme for the numerical solution of
problem (1) is presented. Stability estimates are proved for the solution of the difference scheme. Numerical
results are provided.

Stability of difference problem

To formulate results on difference problem we introduce the normed space. Let C; (H) = C ([0,T],, H) of
all mesh functions ¢™ = {¢;€}]kvzo defined on

0,7 ={tr =k1,0<k<N,NT=T}
with values in H equipped with the norm

.
197,y = e, 10l -

*Corresponding author.
E-mail: murun@gsu. edu.tr
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Moreover, Loy, = L [0,1], are normed spaces of all mesh functions y" () = {Wn}flw:o defined on
0,1, ={zn =nh,0<n < M, Mh =1}
equipped with the norm
M 3
h 2
P = {3}
i=0

and W3, = W$(0,1],, is the Sobolev space with norm

Yit1 — 2% + i1
h2

1
M M-1 2 2
7"z, = 2ol h+ >0 h
2h
i=0 i=1

To the differential operator A defined by (2) we introduce the difference operator A" defined by the formula

M-1

Ah,,(/}h, (.’L‘) — {_;L (an+1 ¢n+1h_ '(/)n —ay, wn _hwn—l) + 5%} an =a (mn) (2)
n=1

acting in the space of grid functions ¥" (z) = {¢n},]\;[:0 defined on [0, 1], satisfying the conditions ¥, = §,
Pk — k= ok — k. For the numerical solution {u;}fio of problem (1) we consider the second order of
accuracy Crank-Nicolson difference scheme

_ k k k_ .,k
Lk gkt 1 a Upt1—Un a Up —Up_1
T 2n \ Yn+l h n h

k—1 k—1 k—1 k—1 —
1 a Uy g~ Uy, —a TN T +6uﬁ+ui 1
2h n+1 h n R 2

= %qn‘f'fk (xn)vfk (mn) :f(tk_ %"/En)’ (3)
a :a($n)7QnZQ(ﬂfn)71SkSNalgngM_l’
= ¥nsPn = (2n),0<n < M,

Let us give the following result on the stability of DS (3).
Theorem 1. For the solution of DS (3) the stability estimates are satisfied:

N N N
[P} | e Jfrespe)
T k=1 C-(Lan) 2 k=1 CT(th) 2 k=1

clo, 1],
< Q@) [lle"lwg, + 1741,, + 1<l
1 N 1 N
+ {T(flil_flgl)} + {T(Ck_Ckl)}
k=2llc, (Lan) k=1llcio,7].
Proof. Denote that
where
Pk+pk71:771@—771@7171§k§N’770:0 (5)

2 T

and w¥ is the solution of the following Crank-Nicolson difference scheme
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k k k k
iwifwn’ L 1 a Wy, 1~ Wy, _a Wy, —W, 4
T 2n \Yn+1 h n h
k—1 k—1 k—1 k—1
_L Wy~ Wy, _ Wy, W, 4 _|_5 n+wk B
2n | @n+1 R Gn D 2

1<k<N1<n<M-1,
=¢n,0<n <M,

A
why = wh,ufy —ufy_y =uf —uf,0 <k <N.

_ Nk +Mk—1 An+1—4qn dn—Qqn—1
= fi(zn) —i 2 {_ﬁ( n+l= —anT 3 >+6Qn};

Now, we estimate |224=1| Using the conditions > _ uk h = ¢, and (4), we obtain

i M
_ k
e = dil (Z wmh_ck> 7d1
m=1

PeFpro1 o (wh, — whEr R — (G — Gea)

M
= amh,1<k<N,

m=1

= ,1<kE<N
2 iTd -
Using the Cauchy-Schwartz inequality and triangle inequality, we get
Dk + Pk—1
2
M
(H mi m } + Ck 7Ck—1 >
m=1 Lon T

forall1 <k < N and

—wZ—l)}N

Now, applying formulas (4) and (5), we obtain

clo,1],

{ck — Gt }N
T k=1

k=1 CT(Lzhr) C[O1T]T
uﬁfufrl:wszzl Ph+ Pt
T T 2 "
and

Loy h o I n h o

- (Uk - Uk—l) < - (wk - wk—l)

T k=1 T k=1

Cr(Lan) Cr(L2n)

+

N
{pk + Pr—1 }
2 k=1

clo,1],

it

Then, the proof of Theorem 1 is based on the following theorem.
Theorem 2. For the solution of DS (6) the stability estimate is satisfied:

Cr(La2n)

Lot
= k k—1 fo

(Lt v}

T k=1

+IA . +

Cr(Lop,
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M

Sk = Ck-1

T

@) 1"z, + 14

N
}k_l

clo,1],
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Proof. We can write problem (6) as the abstract problem

h_. h .
P A () f AR b,
tk:kT,lSkSN,NT:T7w8‘:gph

in Lojp. Then,

k
wz = chph _iZRk—jCT (fgh _’_,L‘Ahqhnj +277J1> 7

Jj=1

Ah ANt

Taking the difference derivative and applying the Abel’s formula, we get

where

h h
wy — w
L~ ipioal —ic (v iatg L)
-
k k i —n
) —; —j j — Nj—1
_ZCZRk ](fjh_ jhfl)—"CZRk jAhqh ! 2] . (8)
Jj=1 j=1
Applying formula (8) and estimates
1By g <LICIg—py <1,
we get
— <[4k L + 172, + DN = Fiall,,
Loy, Jj=2
k h h
G =G| [t~y
iy || i
Jj=2 Lap,

for any k. Then, applying the discrete analogy of the integral inequality, we get

wh —wl_,
T
Lop
k k
< |4z h h h_ h S ks
< AR + 12 Ly, + D= fally,, +Qa (@)D 1¢ = Gal| e™e
Jj=2 j=2

for any k. From that it follows (7).
Numerical results

We study the numerical solution of the identification problem
Z'L‘(tt’m) - 7“92;;(2’””) +u(t,z) = p(t) (1 + sin2z)
+ (3sin(2z) — 1) e,z € (0,7),t € (0,1),
w(0,z) = 1+sin2z,z € [0, 7], 9)
u(t,0) =u(t,7),uy (£,0) = ug (¢, ),
Jo u(t,z)de =me' t € [0,1]

for a one dimensional Schrodinger differential equation. The exact solution of this problem is (u (¢,2),p(t)) =
= ((1 +sin2z)e™, e'") . Applying difference scheme (3) for problem (9), we get
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i“i*“i_l _up —2uptun up i —2up fup ) + ulk 4okt
T 2h? 2h% . 2
= PPt (] 4 gin2a,,) + (3sin 2@, — 1) (% F),
ty =k, xp =nh,1<k<N,1<n<M-1, (10)
u) =1+sin2r,,0<n< M, Mh=n,Nt=1,

k kE o,k k _ .k k
Upg = Ug, Upy — Upp 1 = U — Ug,

2%21 uk h = el 0 < k< N.

M
The algorithm for obtaining the solution {{uﬁ }(])V} and {pk}f[ of DS (10) contains three steps. We introduce
0

7 by the formula

k—1
_ Po+ Pk —
—TT+;p7nT,k€1,N,UO—O. (11)
Then,
Pkt Ph—1 _ Mk = Mk—1 kelN, (12)
2 T
uf = wh —in(1 + sin2z,),k € 0,N,n € 0, M (13)
Here wF is the solution of the DS
iwfl_;uﬁfl . w7;+1 2wn+wn 1 wﬁ1}727;)£;1i‘rwﬁ:ll n wk +;Uk 1
—2nh 22/[:1 wk, Z,Lh Ek Jwkl =z, m(eft 4 eitr-1)
+(3sin2a, — 1) e 5) ke TLN,ne L, M1 (14)

w? =1+4sin2z,,n € 1,M—1,

n
k k k k k k

Wy = Wy, Wy — Wiy = W1 — Wo,

where

ST

1 1—cos2h 1 1 S
= [sin?xn (;208—2> —] nel,M—1.

Using the discrete analogy of integral condition in (14), we get

M
ZM_lwkh mett , -
= &m=1l_m :E 2&y,, k € 1,N. 15
Mk i+ dh) 2 1sm x (15)

N M
Step 1: According to DS (10), we obtain {{wﬁ}o } .
0

We can write (14) as difference equation with matrix coefficients

Awk—|—Bwk71=<pk,1§k‘§N

for any k. Here A and B are (M + 1)x(M + 1) square matrices and ¢ is (M + 1)x1 colomn matrix

S

0 0 . 0 -1
b— th —th . —th —th
a—hzy a—hz - —hzs —hzo
—hZM_l —hZM_1 . b—hZM_l CL—hZ]V[_l
-1 0 ' -1 1 (M+1)x (M+1)
0 0 0 - 0 0
a a—hzn c—hz - —hzy 0
0 a—hz c—hz - —hzo 0
0 —hzy-1 —hzy1 - c—hzy1 a
0 0 0 ' 0 0 (M+1)x (M+1)
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o= —ghb=frdthem—fa ke
0 w§
. ot . wf
Pn = k. yWw- = . ’
PM-1 ka—l
0 (M+1)x1 W 1 (1%
14 sin2xg
1+ sin2xq
w’ = . ,
1+ stn2xp-1
14 sin2xy (M+1)x1
oF = z,m(et + et 1) + (3sin2z, — 1)~/ 1 <k < N.
Therefore

wh = inv(A) (¥ — Bw* ).
; N [ petpeei |
Step 2: We will find {n}, , {#}1 by formulas (12) and (15).

M
Step 3: We will find {{uﬁ}év}o by formulas (11) and (13). The errors are computed by

M 3
E, = max ( |u(tk,xn) - ufbf h) ,
0

k€0,N o
Ep — max p(tk:) _ Dk + Pk—1
kETL,N 2

Numerical solutions of problem (9) w(t,z) at (tx,z,) is uf and of p(t) at t; is ZFE= The result of
numerical experience for problem (9) is provided in Table 1.

Table 1

Error Analysis

Error | M=N=20 | M=N=40 | M =N =80

b, 0.0002 0.00005 0.00001

FE, 0.017 0.0043 0.0011
Conclusion

In this article the SIP for the one-dimensional SE with non-local boundary conditions is studied.
A second order of accuracy Crank-Nicolson difference scheme for the numerical solution of the differential
problem is presented. Theorem on stability of this difference scheme is established. The numerical results are
given. Finally, this operator approach permits us to investigate one-dimensional SE with classical boundary
conditions.
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A. Ammepaneies! 3, M. Ypyuh4

Y Tany Hlvewic yrusepcumemi, Hukocus, Typrus;
2 Peceti zarvikmap docmuwiev, yrusepcumemi, Macxkey, Pecei;
3 Mamemamura sicone mamemamuraivr, modesvoey uncmumymot, Aivamo, Kazaxcman;
4 Tuaamacapat yrusepcumemi, Cmambya, Typrus

Jlepekkesi naenTudukalmsaiay oeiictarimoHapsbl ecedi yoriH
Kpank-HukoJjiICOHHBIH, alibIPBIM/IBIK, CXeMAaChl TYPaJibl

MakaJtazia 6eitytokaIabl meKapaJsblk mapTrapbl 6ap Ilpegunrepain 6ip esmem i TeHaeyi YITiH TepEKKO3/1i
uneHTHUKANUsIay ecebi KapacThIpblAbl. uddepeHnuaiipiK ecenTi caHIbIK IIeITyre apHaFaH eKiHII
monmik perti Kpank-HukoacoHHBIH albIPBIMIBIK, CXeMAacChl YCHIHBLIFaH. OChI aflbIDBIM/IBIK CXEMAHbBIH, II1e-
MIiMiHIH TYPaKTBLIBIFBIH Oarajayiapbl JoJIeJIICH/ Il KoHe CAaHJIbIK HOTUXKeJIep KeJITipijareH.

Kiam coesdep: nnentudukanusiiay maceseci, [llpeaunrep TeHaeyi, ailbIpbIMIBIK, cxeMachl, Kpanka-Hukosicon,
TYPAKTBLIBIK,.

Bulletin of the Karaganda University



On the Crank-Nicolson difference...

10

11

12

13

14

15

16

A. Ammprpaneies! =3, M. Ypynul4

L Baustenesocmowrni ynusepcumem, Huxocua, Typuus;
2 Poccutickuti yrueepcumem opyoictv. napodos, Mockea, Poccus;
3 Mnemumym mamemamuky U Mamemamudeckozo modeauposanus, Aamamu, Kaszazeman;
4 Fanamacapatickut yrusepcumem, Cmambya, Typuus

O passocTHOIT cxeme Kpanka-HwukoJjicoHa 11 HecTalimOHAPHOI
3aJ1a49i UAeHTH(PUKAIINN UCTOYHNKA

B crarpe paccmorpena 3amada maeHTH(UKAIINNT UCTOYHUKA JJIsi ogHOMepHOro ypasHenus lllpenunrepa c
HEJIOKAJIbHBIMU T'DAHUYHBbIMU ycjaoBusMu. llpencrasiena pasunoctaas cxema Kpanka-Hukoscona Broporo
MOPSIKA TOYHOCTH JIJIsE YUCIEHHOTO pertenns auddepeHnnaabaoi 3amaan. Jloka3aHbl OMEHKN YCTONIUBO-
CTHU PeIlleHus 3TOI Pa3HOCTHOI CXeMbl, U IIPUBE/IEHbl YUCJIEHHbIE Pe3yIbTaThI.

Kmouesvie crosa: npodbiema nnenrudukarun, ypasaenue IIpeaunrepa, pasnocrras cxema Kpanka-Huxkosicona,
YCTOMYIUBOCTbD.
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On fourth order accuracy stable difference scheme
for a multi-point overdetermined elliptic problem

In this paper fourth order of accuracy difference scheme for approximate solution of a multi-point elliptic
overdetermined problem in a Hilbert space is proposed. The existence and uniqueness of the solution of the
difference scheme are obtained by using the functional operator approach. Stability, almost coercive stability,
and coercive stability estimates for the solution of difference scheme are established. These theoretical results
can be applied to construct a stable highly accurate difference scheme for approximate solution of multi-
point overdetermined boundary value problem for multidimensional elliptic partial differential equations.

Keywords: overdetermined elliptic problem, multi-point condition, high order difference scheme, difference
scheme, inverse, source identification problem, well-posedness, stability, coercive stability, almost coercive
stability.

Introduction

Methods of solutions of nonlocal and source identification boundary value problems for partial differential
equations have been widely investigated by several researchers (see [1-21] and references therein). Construction
of highly accurate difference schemes (DSs) for problems of this type is important, especially for their specific
theoretical and practical aspects and also usefulness in wide applications [5, 8] and bibliography herein).

Let H be a Hilbert space, A be a self-adjoint positive definite operator (SAPDO) and I be identity operator.

In paper [10] to find an element p € H and function v € C%([0,T],H) N C ([0,T],D(A)) the following
multi-point elliptic overdetermined problem

—vu(t) + Av(t) = g(t) +p,0 <t < T,

q (1)
v(0) = ¢,v(T) = ;51‘11()\1') +n,v(N) = ¢

was investigated. Here ¢ € N, Ao, \; € (0,T), 5; € R,3; > 0,i = 1,...,q are known numbers, (,¢,n € D(A),
g€ C%([0,T),H)NC ([0,T],D(A)) are given elements and function, respectively. Moreover,

q
M << < )\q’BZZBZS 1.
i=1

In paper [10] the first and second order of accuracy stable DSs were proposed. The objective of this work
is to study the fourth order of ADS for multi-point elliptic overdetermined problem (1) in an arbitrary Hilbert
space H with a SAPDO A.

Let [-] be the greatest integer function and

li= [/\7] ’Mi:%_liv
pis =1 — pif, pia = %,U/i + %uf - é,u?,

His = _:ui,l?i = 07 17273a455'

*Corresponding author.
E-mail: charyar@gmail.com
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Introduce the following notations
C=A+3A4,D=1(rC+(1C+77C?)),
P=(I+7D)2I+7D) 'D' R=(I+7D)"".

Stability estimates

Lemma 1. The following estimates hold [5]:

Hexp (kTA%> R’“HH Y <M ()7, RkHHﬁH <M(1+6r) " k> 1,
—
-1
=), <20, kDR < 2106 o
1D (R¥ + B9y, < MO) isbem

1<k<k+r<N,0<apB<13>0.

Lemma 2. For 1 <]; <N —1,1<1Iy < N — 1, the operator ([10; 861]

A= (]_RZN) (I—Rlo) (I— zq:kiRNli> (I— zq:kiRNl"“i) 3)

has a bounded inverse A~! such that

A s < M)

Let us take 1 <[; < N — 1,0 < ¢ < ¢q. Denote by
J1 — (I _ RQN) {MO,l (Rlo—2 _ R2N—l0+2) — o2 (Rlo—l _ R2N—l0+1)

+/J’% (Rlo _ R2N—lo) — [40.4 (Rlo+1 _ R2N—l0—1)
—Ho5 (RIOF2 — RPN72) Xq: ki [—pin (RN-1F2 - RN+=2) (4)
=1

— g2 (RN*lz‘Jrl _ RN+li71) + IuZZ (RNfli _ RN+li)

—lli2 (RNflrl _ RN+li+1) — lis (RNfli72 _ RN+li+2)]}
Jo=—(I—R*N) {ij ki {po,1 pi,5 (RN ~lotlitd — pN+lo—li=4)
i=1

+ (po,1 1,4 + po,2pti5) (RN lotlits — pN+lo=li=3)

(5)
+ (po,1 14,3 + Ho,21,4 + po,3pi,5) (RN lolit2 — pN+lo=li=2)
+ (,U/O,l,u/i,2 + o243 + [40,344i.4 + :U/0,4,U/i,5) (RN—lo-HH-l _ RN-Ho—li—l)}
q
Jy =~ (1= R*N) 32 ki { (o ptin + poapriz + pipf — g — 1
= (6)

+pt0,4t4i,4 + po,shis) ) (RN loth — RNHlo=li)
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i {(o,2005,1 + Ho314,2 + Hoafbiz + [o,50i,4)
1

(3

q
J4:—(I—R2N){
x (RN—lothi=t — RNFlo=bit ) 4 (g gpai 1 + po,apta2 + [10,504.3) (1)
x (RN—lotli=2 — RNFlo=bid2) 4 (g 4p151 + pio,504,2)

% (RN—l0+lL—3 _ RN+l0_lz+3) + /J/O,E)/Ji,l (RN_l0+li_4 _ RN+l0—lL+4)} .

Lemma 3. Let the operators A, Jy, Jo, J3, Jy be defined by (3), (4), (5), (6), (7), correspondingly. Then, the
operator

G=A+L+ o+ 3+, (8)
has a bounded inverse G~! such that
G gy = M), )
Proof. We have
G'-A'=G"'AK, (10)

where
K=Ji1+Jo+ J3+ J4.

Applying (2), it can be showed that the estimates
”JZHH—)H < MT7i = 17 27 354

hold for constant M which does not depend on 7.

Consequently,
K| gy g < M. (11)

By using (10), (11) and triangle inequality, we can get
NG e < AT e + 1A i NG i 1K

<M (8)+ ||G~ M (6) Mt

1HH%H
for any small positive number 7. Therefore, estimate (9) is valid.

Let [0,T] = {tx = k7,0 <k < N,N7 =T} be space of grid points and v = v(tx),0 <k < N.

Denote by C (H) and Cg;" (H) the corresponding Banach spaces of H-valued grid functions {wk}év with
norms

H{wk}]f—lH = maxo<k<N—1 [|Wkl 5 ,
C(H) T

N-1 —
[ty ™| o $UPgcpren—1 (KT +07)" n7 = (T = k1) fwisn — wil

respectively.
Applying the fourth order of approximation for function v at point \;, i =0,1,...,q

N—-1
= twn ™|
Co& (H) H{ h C(H)

V(A;) = WiV —2 + 2V —1 F (3 V1, F Hi 4V 41 F B 50142
and fourth order of accuracy approximation of differential equation, one can get the next DS

—772 (k41 — 2v + vg—1) + Cvg, = O + p,

e = g(ts) + 71% (9(tk+1)*29£§k)+9(tk_1) —l—Ag(tk)),
ty =k, 1 <kE<N-—-1,N7=T,v9 = ¢, (12)

H0,1V1g—2 + [0,2V19—1 + H0,3V1, + [0,4V10+1 T 10,5Vig+2 = C,

q
oN = Y ki {piavn—2 + pi2v, -1+ i 301, + i avi e+ sV 2t 0
=1

K3
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for approximately solution of problem (1).
We will find solution of DS (1) by formula

v = up + A7, (13)
where grid function {uk}év is a solution of the following difference problem:
2
772 (upy1 — 2up + up—1) + Auy + %AQ’U,]C = g,

tr=kr,1<E<N-1,NT=T,

(14)
Ug — H0o,1UIG—2 — H0,2Ug—1 — H0,3Ul, — H0,4Ulg+1 — H0,5Ul 42 = ¢ —C,
q
un — Y ki {piw—2 + i1+ pi 3w+ i at e+ R 42E = )
i=1
After soving DS (14), unknown element p is defined by
p = A¢p — Auy. (15)

Theorem 1. Let ¢,(,n € D(A) and {@Dk}iv_l € C(H) be given. Then, the difference problem (12) has a
solution ({Uk}11\7—1 ,p) which satisfies the stability estimates in below:

|, <M @) [||¢||H ¢l + il + {3 IHC(HJ 7 (16)
|47l < M 3) [||¢||H + 11¢ll + Il + Hwk}f*HC(m] ,
where M (¢) is independent from ¢, (,n and {wk}iv_l.
Proof. For given uy and uy the solution of difference problem
—7% (Upy1 — 2up +up_1) + Aup =Y, 1 <E< N -1 (17)
is defined by [5]
up = (I - RQN)—l [(R* — REN=F) ug + (RN-F — RN+F) yy — (RN—K — RN+K)
x (I +7D)(2I +7D) " D! NZ: (RN=9 — RN*TI) ;7| + (I 4+ 7D) (18)
=

x (21 +7D)"' DY N (RIFIL - REVT) 7
Applying formula (18) to nonlocal conditions of the difference problem (14), we get a system equation for

ug and un:
S11Up + S12uN = ST, 821U + S22uN = Sa. (19)

Here operators si1, s12, S21, S22, 51 and Sy are defined by
Sy = (I _ RZN) — Joa (Rl072 _ R2N710+2) — o2 (Rloq _ R2N7l0+1)

7/1073 (Rl() _ RQN*I[)) _ M0,4 (Rl(r‘rl . RQN*lofl) _ ,U/075 (Rlo+2 . R2N71072) ,

S19 = — {,LL() 1 (RN*loJrQ _ RN+1072) + o 2 (RNflole _ RN+I071)

Y03 (RNflg _ RN+lo) + fio.4 (RNflofl o RN+10+1) + s (RNflof2 _ RN+10+2)} ’
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So1 = zq: kz {_,Ui,l (Rli—2 _ RQN—Z¢+2) — i 2 (Rli_l _ RQN—lr‘rl)
=1
—li3 (Rli _ RZN—li,) — i (Rl,-+1 _ RQN—l,i—l) — Uis (Rl,i+2 _ }zZN—li—2)}7

(20)
S99 = Xq: ki {(I _ R2N) — M (RNle»Q _ RN+li*2) — 2 (Rlifl _ RQN*lH*l)
=1

iz (RN — REN=I) — gy g (RN=lml = RNHLA1) (RN =1=2 _ pNH42) )
S1=(T—=R*™M)(¢— )+ [Fuo — Hud) {— (RN lot2 — RNFlo=2)

N-—-1 N—-1
xP > (RN=9 = RN*I) 0,7+ (I — R*N) P Y (Rllo=2-3l — Rlo=2+7) 0‘7}
Jj=1 j=1

[ dopo + 3+ ] (- (RY041 - i)
N-1 ) ) N-1 ) .

xP S (RN~ — RN4I) 0,7+ (I — R?N) P 3" (Rlo—1-il — Rlo=1+7) 9-7}
j=1 j=1

N-1
) {— (RN~ RYH) P (RN = RY) 07+ (1= R2V)
Jj=1
N-1 ) )
xP Y (Rl —Rloﬂ)eﬂ}
j=1
+[fymo-+ g = ] {= (RY=07 = R
N-1 . . N—-1 . .
xP Y (RN=9 — RN%I) 0,7+ (I — R*N) P 5 (Rll*1-il — Rlot1+i) 947}
j=1 j=1
+ [*%HO 4 %N%] {, (RNfl(rZ _ RN+lo+2)

N-1 N-1
xP Y (RN7I — RN*9)g;r + (I — R?N) P Y, (Rlo*2-3l — Rlo+2+7) ejT} ,
Jj=1 j=1

=1

N-1 ] ] N-1
xP > (RN~ — RNt ¢y + (I-R*™M)P Y
Jj=1

(R‘li_z_j‘ — RE=2H7) o7
j=1

_|_

N—-1
+,ui’2 _ (RN—li—&-l _RN+li_1) P Z (RN—j _RN+j) 1/1]_7_ +
j=1

N-1
+ (I -R¥N)P Y (Rl—1=il - RLi—143) g7 | 4
Jj=1
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N-1
+hi,3 | — (RN‘“‘ — RN“t) Py (RN_j — RN+j) W™+ (I— RQN) X
j=1
xP Y (Rui—gl — Rli"l‘]) V7| + g [_ (RN—li—l _ RN—HH—l)
j=1

N-1 N-1
xP > (RN=7 — RNTI) pyr+ (I — RPN) P 3 (RIEHI3 — REHIHI) ir | +
Jj=1 j=1

N—-1
s |— (RN7H72 = RNHA2) p S (RN=T - RNHI) g7 4 (22)
j=1

N—-1
+ (I —R¥™)P S (RI+2-31 — Rli+247) z/)jr] } :
j=1

Determinant operator G = s11522 — S12521 of the system equations (19) can be rewritten as (8). Consequently,
according to Lemma 3, the operator GG has bounded inverse G~1. So, the system of equations (19) has a unique
solution:

Uug = G_l (51822 — 52821) SUN = G_181152 — 81251. (23)
Thus, difference problem (14) has a unique solution {uk}é\’ which is defined by formula (18) with corresponding

511, 812, S21, 522, 51, S2, uo, un by (20)—(23).
For the solution of problem (17) the following inequality [5]

o033y < o™

R R 24
o S Rl + [ e

C(H)

is valid. By virtue triangle, Cauchy-Schwarz inequalities and (2) one can obtain

max {151y 192 oy} < M) (|¢||H 1l + || 1 ‘1HC(H)) -

Applying Cauchy-Schwarz and triangle inequalities to (19) and by using (2), (9), we have

)

|Ruoll < M(9) [naan 1l + il + [} ‘1HC(HJ

|Ruxll; < M() [||¢||H 11Cl Wl + [ kY ‘1HC(HJ -

So, by using (24) we get
[0y = MO (16l + el + il + [0

C(H) — C(H)] '

Finally, by virtue (15) and (23) we can establish

475l < 3 0) [l + 1T+ il + e -

Now, from (25), (13) and triangle inequality one can get inequality (16).

Then, DS (12) has a solution ({vk}f[—l ,p), which satisfies stability estimates given in the below theorems.

Theorem 2. Let ¢,(,n € D(A) N D(C) and {4 §v71 € C(H) be given. Then, for solution ({Uk}]lvfl ,p) of
DS (12) almost coercive stability estimate hold:

N-1
H { (V41 —2vp+vE—1) }
T2 1

) + 1l g

C(H) " H{Cvk}]lv_lHC(

< M(3) {min [0 (2) 1+ Dl gy e[| Cn Y|+ 1€+ 1CCH + |on||H} ,

C(H)
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where M (6) does not depend on ¢, ,n and {wk}f{_l.
Theorem 3. Let ¢,¢,n € D(A) N D(C) and {¢}Y " € CS*(H)(0 < a < 1) be given. Then, for solution
({vk}]lvfl ,p) of difference problem (12) coercive stability estimate

N-1
H{T*z (’Uk+1 —27_}]6""[]]@71)}1 ‘

ShE

+H Cv Nﬁl‘ +
U (e -+ Il

I+ 0l + |Cn||H}

Cor™ (H

< M(5) {

1
l—a)a a,a
(1-a) Co (H

is true. Here M (§) is independent from «, ¢, ¢, n and {¢y, ivfl.
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Y. Ammipansiesh?, I Akitys!

! Dy mywaxane yrusepcumemi, Typrua;
2TAY, Awzabad, Typixmencman

Kennykresi KafiTaaHBIKTAJAFaH JIJINNCTIK ecel YHOIiH TOPTIHIIII
PeTTi JRJJIIKTI TYPaAKTBLJIBIK, alibIPDBIMIBIK, CXeMaChl TYyPaJibl

MakaJstazia ruib0epTTIK KeHICTIKTe KOIMHYKTEJ SJIIUIICTIK KaiiTaaHbIKTAJIFaH €CEeNTiH *KYbBIK, IIeNiMiH Taby
VIIiH TOPTIHIN PeTTi M9JAIKTI afbIPBIMIBIK CXeMa YCBIHBUIIBI. AMBIPBIMIBIK CXEMaHBIH MIENNMIiHIE Oap
KOHE KAJIFBI3 00JIybl (DYHKIMOHAJILI-OIIEPATOPJIBIK, TOCUIII KOJAaHY APKBLIbI AJIBIHAJBI. AWBIPBIMIBIK,
CXeMaHbIH MIENIMiHIH TYpPaKTBUIBIK, AEPJIK TYPaKTBLIBIK »KOHE KOIPIIUTUBTI TYPAKTBLIBIK OaraJiayiapbl
AHBIKTAJIbI. BYJT TEOPUSIIBIK, HOTUKEIEP/] J1epOec TYBIHIBLILI KO OJIIIeM Il 3JUTHICTIK TeHJIeyaep VIIiH
KOIHYKTE KafTaaHBIKTAJIFAH IMIETTIK €CEeNTiH KYBIK IIemniMiH Taly YIIH TYpPaKThl YKOFApPbl JIRJIIIKTEr]
afBIPBIM/IBIK, CXeMaHbl KYpPY VIIiH KOJIIaHyFa 60J1a/Ibl.

Kiam cesdep: KallTaaHBIKTAJFaH SJIMIICTIK €CEl, KOMHYKTEJ IIapT, *KOFapbl PETTI albIPBIMIBIK, CXEMa,
afBIPBIMIIBIK CXeMa, Kepi, TePEeKKO3/Il naeHTuGUKAIUIay ecebl, KOPPEKTUTK, TYPAKTBIIBIK, KOIPIIMTUBTI
TYPAKTBLIBIK, JIEPJIiK KOIPIUTUBTI TYPAKTHIIBIK.

Y. Amsipassies’ 2, I Axitys!

! Viueepcumem Domowzane, Typuus;
2TAY, Awxabad, Typrmernucman

O06 ycroitunBoOii pa3HOCTHOII cXeMe YeTBEePTOro IOPsIKa TOYHOCTH
JJis MHOTOTOYEYHOI MePeoIpe/IeJIEHHON JIJINIITUIECKON 3a/1a9u

B crarpe mpejiorkeHa pa3sHOCTHAs CXeMa YETBEPTOIO IOPSIKA TOYHOCTHU JJIsi IPUOJIMKEHHOI'O pPelIeHUs
MHOTOTOYETHON SJIIUINITUIECKON TEePEeOpeIeIeHHON 3a/ladn B TmibbepToBOM mpocTpancTBe. CyirecTBo-
BaHWE U €JUHCTBEHHOCTb PEIIEeHNs] PA3HOCTHON CXEMBI IOJIYUEeHBI C HCIOJIB30BAHUEM OYHKIMOHAIHHO-
OIIEPATOPHOrO IOIXOA. YCTAHOBJIEHBI OIEHKU YCTOWYUBOCTH, MOYTH KOIPIUTHUBHOU YCTOMIUBOCTU U KO-
SPIUTUBHON YCTOWYMBOCTU PEIIEHUs PA3HOCTHONW CXEMBI. DTH TEOPETUIECKHUE PEe3y/IbTaThl MOTYT OBITH
MIPUMEHEHBI JJI ITOCTPOEHUsT YCTONYIMBON BBICOKOTOYHON PA3HOCTHON CXEMBI JJIsi MPUOJIMKEHHOIO pelle-
HUSI MHOI'OTOYEYHOU IIepeolpelie/IeHHON KpaeBOU 3a/1auu JIsi MHOTOMEDPHBIX JJIJIUIITUIECKUX YPDaBHEHUIl B
YaCTHBIX IPOU3BOLHBIX.

Kmouesvie caosa: mepeonpeiesieHHas SJUIANTAYECKAsT 33/1a9a, MHOTOTOYEYHOE YCJIOBHUE, PA3HOCTHAS CXe-
Ma BBICOKOI'O IIODPs/IKA, PA3HOCTHAs CxeMa, oOpaTHas, 3aja4a HIAeHTU(MUKAINA UCTOYHUKA, KOPPEKTHOCTD,
YCTOWYHBOCTD, KOIPIUTHUBHAS YCTONYUBOCTD, IOUYTHA KOIPIUTUBHAS YCTONINBOCTb.
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A new finite difference method for computing
approximate solutions of boundary value problems
including transition conditions

This article is aimed at computing numerical solutions of new type of boundary value problems (BVPs) for
two-linked ordinary differential equations. The problem studied here differs from the classical BVPs such
that it contains additional conditions at the point of interaction, so-called transition conditions. Naturally,
such type of problems is much more complicated to solve than classical problems. It is not clear how
to apply the classical numerical methods to such type of boundary value transition problems (BVTPs).
Based on the finite difference method (FDM) we have developed a new numerical algorithm for computing
numerical solution of BVTPs for two-linked ordinary differential equations. To demonstrate the reliability
and efficiency of the presented algorithm we obtained numerical solution of one BVTP and the results are
compared with the corresponding exact solution. The maximum absolute errors (MAESs) are presented in
a table.

Keywords: finite difference method, transition condition, boundary value problems, second order differential
equation.

Introduction

Sturm-Liouville BVPs arise as mathematical models of many problems in physics and engineering, such as
Newton’s law of cooling, the population growth of decay, Kirchoff’s law in electrical circuits, the steady-state
temperature in heated rod, thermodynamics, resistor, and inductor circuits, etc (see, for example, [1-7] and
references cited therein). It is obvious that not all BVPs can be solved analytically. Even if a BVP can be solved
analytically, the closed-form of the analytical solution may take some complicated form that is unhelpful to
use. Therefore we have to apply various numerical methods for determining the approximate solution. There
have been developed different numerical methods to solve various type of BVPs. One of them, the so-called
FDM, can be applied to a wide class of BVPs, provided that the problem considered has a complete set of
continuty and boundary conditions. In this study we will consider a BVP of a new type. The main feature of
this problem is the nature of the imposed boundary conditions, which include not only the ends of the interval
under consideration but also one inner point of the singularity. Naturally, such type of singular problems is
much more difficult to solve than regular problems. We will develop a new modification of classical FDM to
solve BVPs involving additional transition conditions at the point of singularity. Such type of singular problems
arises in heat and mass transfer problems, in vibrating string problems, and in a varied assortment of physical
transfer problems (see, for example, [8-12] and references cited therein).

A new modification of finite difference method

Let us consider a linear BVP for the second order differential equation given by

"

(@) + pla)u' (z) + q(@)u(e) = f(z), € [a,0)U(c,b], (1)

*Corresponding author.
E-mail: semihcavusoglu@gmail.com
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subject to the boundary conditions (BCs) at end-points z = a and x = b given by
u(@)=a, u(b)=p (2)
together with additional transition conditions at the interior point of singularity x = ¢ given by
u(c—0) =&u(c+0), u'(c—0)=yu'(c+0), (3)

where p(x), g(z) and f(x) are continuous on [a,c) and (c,b] with the finite limits p(c F 0), ¢(c F0),
fleF0), a, B, & 4 are real constants. For convenience, we will use the notations [a1,b1] = Ia,(],
[az,b2] = [c,b] . To discretize BVTP (1)-(3) the interval [ax,bi],k = 1,2 are divided into finite number f
intervals [zk 0, Zk1], [T,1, Tk,2] 5 .o, [Tk, N—1, Tk, ] With

A = Tro < Tkl < ... < T, N = bk,

where

b _
ROk p—1,92 i=1,2,..,N.

Tk, = Ak + ihkv hk = N ) )

Below we will use the central finite difference discretization. Namely, we will express the first and second
derivatives of the unknown function

ui(x), for € lay,by),
ur) = us(x), for x € (ag,bs]

as
’ uk(a:—i—hk)—uk(a?—hk)
wkle) 2

" Up\T Uk (T Up\T
’LLk:(.’L')'[-U k k ;2 k k
k

respectively. Let us denote the value of the unknown function u(z) at the nodal point j ; by u ; and substitute
in equation (1). We have the following linear system of equations for each k = 1,2

)

1 1
(1 — Qhkpk,z) Upi—1 + (—2+ thQk,i) Ug,; + (1 + zhkuk,i+1> wit1 = b2 f (214), (4)

i=1,2,3,..,N —1,
where
ula) =u0=a, u(b)=usn=07,.

Let us introduce to two new parameters 1 := uj,ny and o := ug that will be calculated later. For
convenience, we will use the notations oy := a and 35 := £5.

Note that each of finite difference equation (4) involves solutions uy ;—1, uk,;, and uy ;41 at the nodal points
Thi-1 > Tk , and xy ;41, respectively.

This system of linear equations can be written in matrix form

AUy =By, k=12, (5)
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where Ay, is the (N — 1) x (N — 1) matrix given by

-2+ thQk,l 1+ %hkpk,l 0 e 0 0
— Shepke =2+ P%rar2 14 $hapro N 0 0
0 1= 2hipes  —24 h%eqes . 0 0
Ay, =
0 0 e =2+ WPqen-3 1+ theprn—s 0
0 0 E L= Shaprn—2  —2+hgen—2 1+ Shipren—2
0 0 e 0 1= Shipen—1  —2+ h2kqu,N—1

and Uy and By, are column vectors given by

br 1
Uk,1 ’
br2
Uk, 2 ’
br,3
Uk,3 ’
Ui = : and By = ,
Uk, N—3 b
k,N—3
Uk, N—2 b
K N—2
Uk, N—1 b
k,N—1
where
2 1 )
R frq — (1= $hpe) =1,
2 )
b = 2k fris i=2,3,...N -2,

thfk:,Nfl - (1 + %hpk,]\pﬁ Bk, i=N-1

Since the linear system of algebraic equations (5) is tridiagonal, it can be solved by the Crout or Cholesky
algorithm (see [2]). To satisfy transition conditions (3) we have the following equations

up, N = &u20,

U, N — UL, N-1 wUQ,l —Uu2,0
h1 N ho ’
From which we can easily find the numerical solutions u; x and ug . Thus we find all the numerical solutions
Uk,05 Wk, 1y oy Uk, N, K = 1,2,

Numerical illustration

Let us consider the following BVP on the disjoint intervals [—1,0) and (0, 1] consisting of linear differential
equation

v’ = (14 2tan(z)*)u, z€[~1,0)U(0,1] (6)

56 Bulletin of the Karaganda University



A new finite difference method...

together with boundary conditions at the end-points x = —1,1 given by
u(-1)=2, u(l)=-1 (7)
and with additional transition conditions at the interior point of singularity z = 0 given by
u(—0) = 5u(+0), 3u/(—0) =u/(40). (8)

At first we will investigate this problem without transition conditions.We can show that the exact solution of
the BVP (6) and BVP (7) is

3cos(1)
2 + 2sin(x)

(sin(x) + xzsec(x)) . (9)

Consider the uniform cartesian grid z; = —1+1th, i =1, ...,49 for N =50, i.e,
h = #5520 = 175()071) = 0,04 where in particular xg = —1, x99 = 1, ug = 2, u59 = —1. By using the central FDM

at a typical grid point x;, we obtain

Uj—1 + (—2 — ]’L2(1 + 2tan2(aji)))ui +uip1 =0 (10)

for i =1,2,...,49. Consequently, the finite difference solution u; = u(x;) is defined as the solution of the linear
algebraic system of equations (10). In a tridiagonal matrix-vector form, this linear algebraic system of equations
can be written as

Au = B, (11)
where
—2 — h2(1 + 2tan?(z1)) ! 0 - 0
1 —2 — h2(1 4 2tan?(z3)) 1 --- 0
A= 7
0 0 0o --- 1
0 0 0 - —2—h2(1+2tan?(z49))
U1 —2
('5) O
u = us3 ) B - 0
U48 0
U49 1
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Figure 1. Comparison of FDM-solution and exact solution for the equation (6) and equation (7) for N=>50.

Now we shall investigate of BVP (6) and BVP (7) under additional transition conditions (8). We can find
the exact solution of this problem in the following form:

72561065(1)566(‘1) - 78(275_‘22()1)) (sin(x) + xsec(z)) , = € [-1,0),
u =
750(1%(1)560(33) - 78(221f§;52)) (sin(z) + zsec(x)) , x €][0,1).

Letting N = 49 and applying the transition conditions (8) we have two additional algebraic equations

U24 — 57.L25 = O, 3UQ3 — 3U24 — U25 + Ugg = 0. (12)

The solution of the algebraic system of equations (11) and (12) is obtained by MATLAB/Octave.

25

24

-05

&
-1 -05 0 05 1

Figure 2. Comparison of FDM-solution and exact solution of BVTP (8)-(10) for N=49.
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Conclusion

We have considered BVTP (6)—(8) to test the computational efficiency of the proposed modification of the
classical FDM. When solving BVTP (6)—(8) numerically for different values of N = 20, 50, 100, 1000 presented
in Table 1, we observed that if N increases, h decreases, then maximum absolute error in computed solution
decreases.

Table 1
Maximum absolute error
h=2/N N MAE
1/10 20 0.0039503
1/25 50 0.00064601
1/50 100 0.00016199
1/500 1000 0.0000016217
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3 Dsipbatiorcar ¥ammows eviavim axademuacoiony Mamemamuka orcone mexanuka unemumymuo, Baxky, D3ipbatiocan

60

C. Yasymormny!, O.II1. MyxTapos®?

! Tokam Tasuocmannawa yrusepcumemi;
Kapamwiavicmany otcone Koadarbanv, eviavimdap orcoeapo. mexmebi, Toxam, Typrus;
2 Toxam Tasuocmannawa yrusepcumemi, Toxam, Typrus;

AybIicy miapTTapblH KAMTUTBIH MIETTIK €CelTePIiH, >KYbIK,
IIeNIiMJIepiH ecelnTey YHIiH aKbIPJibl allbIPbIMIAP/AbIH »KaHa dJIiCi

Maxkasia koc GaitIaHBICBIMIBI KapanaibiM audepeHInaIIblK TeHIEYIep YIMH MEeTTIK eCeNTePIiH KaHa
TYPiHiH CAHIBIK IIEIIM/IepiH ecenreyre barbITTaral. MyHIa 3epTTe/IeTiH ecell KJIaCCUKAJIBIK, IIIETTIK ecerl-
TEPJIEH epeKIlle, OH/IA 63apa dPEKETTeCy HYKTECIHJE aybICy IIapTTapbl JEll aTaJaTbIH KOCBIMIIA IIapTTap
6ap. MyHmait ecenTepi KIaCCUKAJIBIK €CENITEPre KaparaHa eIy dJaeKaiia Kubia. KiaccukaabiK, CaHIbIK,
9IicTep/i IIETTIK aybICy eCEeNTepiH OChbl TypPiHe KaJjall KOMJaHy KEPeKTiri TYCiHiKCi3. AKBIPJIBI aiflbIpbIM-
JIbI 9JIiCiHE CYlieHe OTBIPHIN, KOC GalIaHBICHIMIBI KapanaibiM auddepeHInaIIblK TeHIeyep VIIiH MeTTIK
aybICy ecenTep/i IIENTy/IiH, XKaHa CAHIBIK, aJTOPUTMI KYPBLIIbL. ¥ CBIHBLIFAH AJTOPUTMHIH, CEHIMIITITT MeH
THUIMIINH KepceTy VIMH 6ip MIEeTTIK aybICy eCenTiH CAHIbIK IIenriMi TaObLIAbI KOHE HOTHUXKeJep THUIiCTi
JTOJI IIETIMMeH CaJIbICTBIPBLIIBI. MaKkcuMasabl abCoMIOTTI KaTeep KeCTe/le KeJITiplIreH.

Kiam coesdep: aKbIpJibl aflbIPBIMIBIK, OJIiCi, aybICy IIAPThI, KJIACCUKAJBIK CAHJIBIK 9JIICTEP, IIETTIK aybICY
€CeIITepiH MIENIy/IiH aJIrOPUTMI.

C. Yasymormny!, O.II1. MyxTapos®?

! Viuusepcumem Toxam Tasuocmarnauwa; Beicuwas wrois ecmecmeenmsis u npuxiadnss wayk, Toxam, Typuus;

2
Vrnusepcumem Toxam I'aszuocmarnawa, Toxam, Typyusa;

3 Unemumym mamemamusu v mezarnury, Hayuornarvnotl axademuu nayk Asepbatioscana, Baxy, Asepbatidocan

HoBbrit MeTO; KOHEYHBIX PA3HOCTEN A BHIYUCJICHUS
MPUOIN>KEHHBIX penieHnii KpaeBbIX 33a/1ad,
BKJIIOYAIOIINX YCJIOBUS Mepexoaa

CraTbsi HAIIpaBJIeHA HA BBIYUCJIEHUE YMUCIEHHBIX PEITEeHUN HOBOT'O TUIIA KPAEBBIX 33/ Il JBYCBI3HBIX
OOBIKHOBEHHBIX 1M epeHImaIbHbIX ypaBHeHuii. 3ydaemast 371ech 3a/ga49a OTIMIAETCS OT KJIACCHIECKUX
KPaeBbIX 33Ja4 TeM, 4TO OHA COJEPXKUT JOMOJTHUTE/BHBIE YCJIOBUSI B TOUKE B3AMMOJIEHCTBUsI, TAK Ha3bIBAE-
MBI€ TIEPEXOHBbIE YCIOBUSA. KCTECTBEHHO, UYTO TaKWe 331a9M rOpas3o CIOXKHEE PEIaTh, YeM KIACCUIECKUE.
HemnonsaTHo, KAk IPUMEHUTH KJIACCUYECKHUE YUCJICHHBIE METO/bl K TAKOMY THUILY KPaeBBbIX MEPEXOJHBIX 3a-
nad. Ha ocHOBe MeTO/1a KOHEYHBIX PA3HOCTEN paspaboTaH HOBBIN YMC/IEHHBIN aJTOPUTM PEIIeHUs] KPAEBhIX
MEPEXOIHBIX 33129 JIJIsT JIBYCBSI3HBIX OOBIKHOBEHHBIX JAnudDepeHInaabHbIX ypaBHeHuii. s memoncTpa-
MU HAJEXKHOCTH U 3PDEKTUBHOCTH IIPEJICTABJICHHOTO AJI'OPUTMA IIPOBEJIEHO YUCIEHHOE PEeIlleHUue OHON
KpaeBOil MepexoHo 3a/lauu, U pe3y/IbTaThl CPABHUBAJIUCH C  COOTBETCTBYIOIIMM TOYHBIM pPEIIEHUEM.
MaxkcumanbHbIE aOCOTIOTHBIE TTOTPEINTHOCTH TIPE/ICTABIEHBI B TabJHIIe.

Kmovesvie crosa: MeTon KOHEUHBIX Pa3HOCTeEH, YCIOBUE IEPeXoia, KIACCUYeCKHe YUCIeHHbIe METOIBI, ajl-
TOPUTM PeIleHNsl KPAeBbIX IEePEXOAHBIX 3aad.
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Paracompact-type mappings

Recently a new direction of uniform topology called the uniform topology of uniformly continuous mappings
has begun to develop intensively. This direction is devoted, first of all, to the extension to uniformly conti-
nuous mappings of the basic concepts and statements concerning uniform spaces. In this case a uniform space
is understood as the simplest uniformly continuous mapping of this uniform space into a one-point space.
The investigations carried out have revealed large uniform analogs of continuous mappings and made it
possible to transfer to uniformly continuous mappings many of the main statements of the uniform topology
of spaces. The method of transferring results from spaces to mappings makes it possible to generalize many
results. Therefore, the problem of extending some concepts and statements concerning uniform spaces to
uniformly continuous mappings is urgent. In this article, we introduce and study uniformly R-paracompact,
strongly uniformly R-paracompact, and uniformly R-superparacompact mappings. In particular, we solve
the problem of preserving R-paracompact (respectively, strongly uniformly R-paracompact, uniformly
R-superparacompact) spaces towards the preimage under uniformly R-paracompact (respectively, strongly
uniformly R-paracompact, uniformly R-superparacompact) mappings.

Keywords: uniformly continuous mapping, uniformly locally finite open cover, uniformly star finite open
cover, uniformly finite-component open cover.

Introduction

The most important properties of the paracompact-types are paracompact, strongly paracompact, and
superparacompact spaces in General Topology. One of the interesting problems of Uniform Topology is extending
the basic properties of uniform spaces to mappings.

For coverings o and [ of the set X, the symbol a > 8 means that the covering « is a refinement of the
covering 3, i.e., for any A € « there exists B € f such that A C B. For coverings «, § of a set X and
x € X, M C X wehave: aNf ={ANB:A¢€aBepj} alx)=USta,z), St(e,z) = {A € a: Az},
a(M) = St(a, M), St(a, M) ={Aca: ANM # o}.

A topological space X is called paracompact if every open cover « has a locally finite open refinement [1]. A
topological space X is called strongly paracompact if every open cover « has a star finite open refinement [1]. A
topological space X is called superparacompact if every open cover « has a finite-component open refinement
[2]. A uniform space (X, U) called uniformly R-paracompact if every open covering has a uniformly locally finite
open refinement [3]. A uniform space (X,U) called strongly uniformly R-paracompact if every open covering
has a uniformly star finite open refinement [2]. A uniform space (X, U) called uniformly R-superparacompact
if every open covering has a uniformly finite-component open refinement [2].

Let f: (X,7) — (Y,n) be a continuous mapping of topological space (X, 7) to a topological space (Y,7).
A mapping f : (X,7) = (Y,n) is called a paracompact (strongly paracompact, superparacompact) mappings
if for each open covering « of (X, 7) there exist a open covering 8 of (Y,n) and locally finite (star finite, finite
component) open covering 7 of (Y, n) such that f=18 A~ = « [4].

Throughout this article by a uniformity we understand a uniformity defined with help of covers, for the
uniformity U by 7y we understand the topology generated by this uniformity, for the Tychonoff space X by
Ux we understand a universal uniformity, all uniform spaces are assumed to be Hausdorff and mappings are
uniformly continuous.

“Corresponding author.
E-mail: kanetov@mail.ru
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Uniformly R-paracompact, strongly uniformly R-paracompact and
uniformly R-superparacompact mappings

Let f: (X,U) — (Y,V) be a uniformly continuous mapping of a uniform space (X,U) to a uniform space
v, V).

Definition 1. A uniformly continuous mapping f : (X,U) — (Y, V) of a uniform space (X, U) to a uniform
space (Y, V) is called

(Py) uniformly R-paracompact,

(P2) strongly uniformly R-paracompact,

(Ps3) uniformly R-superparacompact
mapping if for any open covering « of the uniform space (X, U) there exist such open covering 3 of the uniform
space (Y, V) and

(p1) uniformly locally finite

(p2) uniformly star finite

(ps3) uniformly finite-component
an open covering v of a space (X, U) such that f~!8 A~y = a.

Proposition 1. Let f : (X,U) — (Y, V) be a uniformly continuous mapping. If (X, U) is a uniformly R-para-
compact (strongly uniformly R-paracompact, uniformly R-superparacompact) space, then the mapping f is a
uniformly R-paracompact (strongly uniformly R-paracompact, uniformly R-superparacompact) mapping.

Proof. Let f: (X,U) — (Y, V) be a uniformly continuous mapping of a uniformly R-paracompact (strongly
uniformly R-paracompact, uniformly R-superparacompact) uniform space (X, U) to a uniform space (Y, V) and
a be an arbitrary open covering of the space (X,U). Then there exists a uniformly locally finite (uniformly
star finite, uniformly finite-component) open covering A of the space (X,U) such that A > «. Let 8 be an
arbitrary open covering of the space (Y, V). Then, f~!f is an open covering of the space (X, U). It is clear that
f7YB A X = a. Therefore, the mapping f is a uniformly R-paracompact (strongly uniformly R-paracompact,
uniformly R -superparacompact) mapping.

Proposition 2.1f f : (X,U) — (Y, V) is a uniformly R-paracompact (strongly uniformly R-paracompact, uni-
formly R-superparacompact) mapping and Y = {y}, then the uniform space (X, U) is a uniformly R-paracom-
pact (strongly uniformly R-paracompact, uniformly R-superparacompact) space.

Proof. Let a be an arbitrary open covering of the space (X,U). Then there exist an open covering 3 of a
space (Y, V) and a uniformly locally finite open covering 7 of a space (X, U) such that f='8 A~ = a. It is clear
that f~!8 A~y = 7. So, (X,U) is a uniformly R-paracompact (strongly uniformly R-paracompact, uniformly
R-superparacompact) space.

Lemma 1. If « and B are the uniformly locally finite (uniformly star finite, uniformly finite-component)
coverings of the space (X,U), then a A § is also a uniformly locally finite (uniformly star finite, uniformly
finite-component) covering of the space (X, U).

Proof. We carry out the proof for a uniformly locally finite case, and the rest of the cases proceed similarly.
Let «, 8 be the uniformly locally finite coverings of a space (X, U) Then there exist such uniform coverings

A,n € U that for any L € A\, E € . We have L C UA and E C UB],WhereA €ao,Bjef,i=1,2,.

Jj=1

j=1,2,...,k. Hence, LN E C (U A)N( U By) C U U (A; N Bj). It is clear that A A7 is a uniform covering
= i=1j=1
and L E € AAn. Note that each L M € )\ A n meets with a finite number of elements of the covering a A 3.
Hence, o A 8 is a uniformly locally finite covering of the space (X, U).

Lemma 2. Let f : (X,U) — (Y, V) be a uniformly continuous mapping. If 5 is a uniformly locally finite
(uniformly star finite, uniformly finite-component) covering of a uniform space (Y, V), then f~!3 is a uniformly
locally finite (uniformly star finite, uniformly finite-component) covering of a uniform space (X, U).

Proof. We also carry out the proof for a uniformly locally finite case, and the rest of the cases can be
proceeded similarly. Let 5 be a uniformly locally finite covering of the space (Y, V). Let us show that the
covering f~!f3 is a uniformly locally finite covering of the space (X,U). Since 3 is a uniformly locally finite,
there exists a uniform covering A € V such that each element of which meets only with a finite number of
elements of the covering 8. For each L € X there exist By, Bs, ..., B, from 8 such that L C |J B;. Therefore,

i=1

AL C YU Bi) = U fH(By), where f71(B;) € B, i =1,2,...,n. It’s clear that f~*A\ € U. Then f~')is
i=1 i=1

the required uniform covering. So, the covering f =13 is a uniformly locally finite covering of the space (X, U).
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Proposition 3. A composition of two uniformly R-paracompact (strongly uniformly R-paracompact, uni-
formly R-superparacompact) mappings is again a uniformly R-paracompact (strongly uniformly paracompact,
uniformly R-superparacompact) mapping.

Proof. Let f : (X,U) — (Y,V) and g : (Y,V) — (Z,W) be the uniformly R-paracompact (strongly

uniformly R-paracompact, uniformly R-superparacompact) mappings. Let « be an arbitrary open covering
of the space (X,U). Then, there exist an open covering 8 of a space (Y,V) and a uniformly locally finite
(uniformly star finite, uniformly finite-component) open covering «y of a space (X, U) such that f~*8Ay = a. Due
to the uniformly R-paracompactness (strongly uniformly R-paracompactness, uniformly R-superparacompact-
ness) of the mapping g, for an open covering § there exist such an open covering A of the space (Z, W) and a
uniformly locally finite (uniformly star finite, uniformly finite-component) open covering n of the space (Y, V)
that g~ A An = B.
Then, (go f)"IAA(f"InAy) = f1BAy = a. Put f~'np A~y = p. According to Lemmas 1 and 2, a covering p
is a uniformly locally finite (uniformly star finite, uniformly finite-component) open covering of a space (X, U).
Therefore, go f : (X,U) — (Z,W) is a uniformly R-paracompact (strongly uniformly R-paracompact, uniformly
R-superparacompact) mapping.

Proposition 4. Let f : (X,U) — (Y,V) be a uniformly continuous mapping of a uniform space (X,U)
to a uniform space (Y,V) and (M,Uys) be a closed subspace of a space (X,U). If f is a uniformly R-pa-
racompact (strongly uniformly R-paracompact, uniformly R-superparacompact) mapping, then its restriction
flar = (M,Up) — (Y,V) is also a uniformly R-paracompact (strongly uniformly R-paracompact, uniformly
R-superparacompact) mapping.

Proof. Let f : (X,U) — (Y, V) be a uniformly R-paracompact (strongly uniformly R-paracompact, uniformly
R-superparacompact) mapping and let (M, Ujys) be a closed subspace. Let as be an arbitrary open covering
of the space (M,Ups). Then there is an open covering « of a space (X,U) such that ap = a A {M}. Let
B be an open covering of a space (Y, V) and v is a uniformly locally finite (uniformly star finite, uniformly
finite-component) open space (X,U) such that f~18 A+ = a. Then, f|X/115 A Ypm > apr. Hence, the mapping
flar = (M,Up) — (Y, V) is a uniformly R-paracompact (strongly uniformly R-paracompact, uniformly R-su-
perparacompact) mapping.

Theorem 1. If the mapping f and the space (Y, V) are uniformly R-paracompact (strongly uniformly R-pa-
racompact, uniformly R-superparacompact), then (X, U) is R-paracompact (strongly uniformly R-paracompact,
uniformly R-superparacompact).

Proof. Let f and (Y, V) be a uniformly R-paracompact (strongly uniformly R-paracompact, uniformly R-su-
perparacompact) and « be an arbitrary open covering of the space (X, U). Then, there are an open covering
of a space (Y, V) and a uniformly locally finite (uniformly star finite, uniformly finite-component) open covering
~ of a space (X, U) such that f~*3 A~ = «a. In the covering 3 a refinement a uniformly locally finite (uniformly
star finite, uniformly finite-component) open covering 7 of a space (Y,V). Then f~!'n A~y = «a and, according
to Lemmas 1 and 2, the covering f~'n A~ is a uniformly locally finite (uniformly star finite, uniformly finite-
component) covering. So, (X,U) is a uniformly R-paracompact (strongly uniformly R-paracompact, uniformly
R-superparacompact) space.
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B.D. Kaneros!, A.M. Baiizxypanosa?

LKy cin Baaacazyn amuimdaen, Kopeoia yammows yrueepcumemi, Biuker, Kopevizcmar;
2 Koipews Pecnybaukaces ¥ammous evwavim axademuacouor, Mamemamura unemumymos, Biwkes, Kopewacman

ITapakomMmnaxTiji OeitHeeyIiH TYpJiepi

Keitiari ke3mepi GipKaJIbIITHI Y3/IIKCi3 OeiiHeseyep/iid, 6ipKAJBIITBI TOMOJOTUSICH JEIN ATAJATBIH YKaHA
OarplT KAPKBIHJLI JaMu 6acTalbl. Byl OarbIT, €H ajabiMeH, OIpKAJIBIITE KeHICTIKTepre KAThICThI HEerisri
YFBIMJIAD MEH MoJIiMzeMesiepi 6ipKaJIbIITh y3iiicei3 Geiinesnieynepi Taparyra apaaiarad. COHBIMEH KaTap,
OIpKAJIBIIITHI KEHICTIK OChbI OipKAJIBINITHI KeHICTIKTI Oip HYKTe i KEeHICTIKKe KapalaibiM OipKAJIBIITHI Y3iTic-
ciz Geitnesey periuge Tycininemi. 2Kyprizinren 3eprreysep ysimiccis GeitHeneynepis, yiIKeH, 6ipKATBITITHI
aHAJIOTTAPBIH AHBIKTA/IbI XKOHE O61PKAJIBIITHI KEHICTIK TOMOJIOTHSICHIHBIH, KOIITEreH HEri3ri TY>KbIPhIMIaPbIH
OipKAJIBIIITHI Y3isicci3 OeitHeseyiepre oTKi3yre MyMKiHaik 6epzai. HoTtmxkenepsi kenicrikren GeitHesieyre ay-
BICTBIPY KOITETeH HOTHXKEJIEP/Il KOPBITHIHAbLIAYFa MYMKIHIIK Gepeni. CoHAbIKTaH OGipKAJIBINTH KEHICTIK-
Tepre KaTbICThI KeHOIp yFbIMIAp MEeH MaJiiMjiemesepi 6ipKaJIbIIThl y3iaiccis beitHeseyiepre rapary ecebi
e3eKTi 60sbI TabbLIaabl. OChl )KYMbICTa R-TIapakKOMITaKT, KATTHI OipKAJIBINTHI R-TIapakKOMIIaKT KoHe 6ip-
KanpnThl R-cynepnapaknakT Geitresnepi enrizimin, seprrenmi. lepbec xarmaiina, R-mapakommakT (Tuicia-
11e, ore GIpKAIBIITEL R-IIapakoOMITaKT, 6ipKaIbIIThl R-CynepnapakinakT) KeHicTikrepin Geiinere xapait 6ip-
KaJbIIThl R-napakoMuakT (TuiciHimie, ere GipKaJdbIITHl R-IapakoMIIaKT, GipKAJIBIITEL R-CyleprapakiakT)
OeitHeIEyIEpMEH caKkTay ecebi Terniiesmi.

Kiam cesdep: GIpKaJIBINITHI y3imiccis OeliHesey, 6ipKabIIThI JOKAIILI AKBIPJIbI AIIBIK KaObIH, 61pKAJIBIITHI
JKYJIIBI3IBI AKBIPJIBI AIIBIK, >KAObIH, 6IPKAJIBIITHI AKBIPJIbI KOMIIOHEHTT] alllbiK, XKaObIH.

B.9. Kaneros!, A.M. Baitzxypanosa?

! Kuipeviscruti nayuonaavhod yrusepcumem um. Xycyna Banacazvina, Buwrker, Kopewacman;
2 . .
Hrnemumym mamemamuru Hayuonaroroti axademuu naykx Kvipewsckol Pecnybauku, Buwxek, Kupevidcman

ITapakomMnakTHbIE TUTIBI OTOOPaXKEHMIA

B mocnennee Bpemss MHTEHCHBHO pPa3BHBAETCsI HOBOE HAIPABJIECHUWE PABHOMEPHOW TOIMOJOTHUA — DPABHO-
MepHAasl TOIOJIOIMsl PABHOMEDHO HENPEPBIBHBIX OTOOpayKeHui. DTO HaIpaBJIEHUE IOCBSIIEHO, B IIEPBYIO
oYepesb, PacCIpPOCTPAHEHUIO Ha PABHOMEPHO HEIPEPBIBHBIE OTOOPAXKEHUs OCHOBHBIX TOHSATUI W yTBEp-
XKJICHUH, KACAIOIIUXCS PABHOMEPHBIX IPOCTPAHCTB. IIpu 3TOM paBHOMEDHOE IPOCTPAHCTBO MMOHUMAETCSH
Kak IpocTeiiliiee pAaBHOMEPHO HEIPEPBIBHOE OTOOPayKEHWE ITOr0 PABHOMEPHOI'O IIPOCTPAHCTBA B OJHOTO-
YedHOe MPOCTPaHCTBO. [IpoBesieHHbIe NCCTeIOBAHNSI BBISIBUIM OOJIBININE PABHOMEPHBIE aHAJIOTH HEIPEPHIB-
HBIX OTOOparKeHUH 1 MO3BOJIMIA TIEPEHECTH HA PABHOMEDPHO HEIIPEPBIBHBIE OTOOPAXKEHNSI MHOTHE OCHOBHBIE
YTBEPKJIEHUS PABHOMEPHON TOIOJIOTMH IIPOCTPAHCTB. MeToj 1epeHeceHusi pe3yjbTaToB C HPOCTPAHCTB
Ha OTOOparkeHWsI I03BOJIsIeT 0000IUTH MHOrme pesdyibrarbl. [losToMy 3azada pacnpocTpaHeHHsI HEKO-
TOPBIX MOHATUN U YTBEPKICHWUH, KACAIONIMXCS PABHOMEDPHBIX IPOCTPAHCTB, HA PABHOMEPHO HEIPEPbIB-
Hble 0TOOparkeHHsI SBJIAETCH aKTyaJbHOM. B HacTosimeil paboTe BBeIEHBI U UCCIEI0BAHbBI pABHOMEDHO R-
MapakOMIIAKTHBIE, CUJILHO PABHOMEPHO R-TlapakoMIIaKTHBIE U PABHOMEPHO R-cymneprapakoMIIaKTHBIE OTO-
Gpakenmsi. B gacTHOCTH, pemena 3ajada COXpaHeHns R-MapakOMIAKTHBIX (COOTBETCTBEHHO, CHJIBHO DaB-
HOMEpHO R-I1apakOMIIAKTHBIX, PABHOMEDPHO R-CyleprnapakOMIaKTHBIX) IPOCTPAHCTB B CTOPOHY IPoo6Gpas3a
IIpM PABHOMEPHO R-MapaKOMITAKTHBIX (COOTBETCTBEHHO, CUJIBHO PABHOMEPHO R-TapakOMIIAKTHBIX, PABHO-
MepHO R-CylepnapakOMIIAKTHBIX) OTOOPAKEHUIX.

Karouesvie cro6a: paBHOMEPHO HEIIPEPBIBHOE OTOOPaKEHNE, PABHOMEPHO JIOKAJIbHO-KOHEYHOE OTKPBITOE I10-
KPBITHE, PABHOMEPHO 3BE€3JHOE KOHETHOE OTKPBITOE MOKPBITHE, PABHOMEPHO KOHEYHO-KOMIIOHEHTHOE OTKPBITOE
MIOKPBITHE.
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On the solvability of the tracking problem in the optimization
of the thermal process by moving point controls

In the present article we investigate problems of tracking in the moving point control of thermal processes
described by Fredholm integro-differential equations in partial derivatives with the Fredholm integral
operator, in the case when the functions of point sources are nonlinear with respect to the control function.
It is found that optimal controls are defined as solutions to a system of linear integral equations, and
an algorithm for constructing its solution is developed. Sufficient conditions for the unique solvability of
the tracking problem are found and an algorithm for constructing a complete solution to the nonlinear
optimization problem was indicated.

Keywords: generalized solution, Dirac function, functional, tracking problem, optimal control, integral
equation, complete solution.

Introduction

Problems of tracking are an interesting branch of optimal control theory. Control problems, where the process
should be controlled so that the deviation of the state of the controlled process differs little from the specified
trajectory during the entire control time, are called tracking problems. Such problems are encountered in various
branches of science and are of great practical importance. Few works are devoted to the research of tracking
problems for optimal control of processes described by integro-differential equations in partial derivatives, in
particular with the Fredholm integral operator [1: 55-60; 2|. In the article solvability of the tracking problem is
investigated for moving point controls of thermal processes described by integro-differential equations in partial
derivatives with the Fredholm integral operator in the case when the functions of point sources are nonlinear in
control.

In this article we will use the concept of a generalized solution of a boundary value problem for controlled
process, as such approach allows us to adequately describe the actually occurring process. The quality criteria
of control is the minimization of the generalized quadratic functional. It is established that optimal controls are
defined since solutions of a system of nonlinear integral equations containing unknown functions, both under
the integral and outside the integral. An algorithm for constructing a solution to this system was developed
and sufficient conditions for its unique solvability were found. A complete solution of the tracking problem is
constructed.

Statement of the tracking problem and optimality conditions

We consider a case when mathematical formalization of the tracking problem for optimal control of the
thermal process is reduced to the problem of minimizing the integral generalized quadratic functional

T ,1 T m
TurO)esin(®] = [ [ Wito) — geo)Pdode+5 [ S slaolir, 5>0 1)
0 Jo (V—
on the set of solutions of the boundary value problem

T m
Vi :Vm—f—)\/o K(t,T)V(T,x)dT—i-ng(x)é(x—xk(t))fk[uk(t)], 0<x<l 0<t<T, (2)
k=1
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V(0,z) =p(z), =€(0,1), 3)

Vo(t,0)=0, Vi(t,1)+aV(t1) =0, 0<t<T, a>0, (4)

where £(t,2) € H(Qr) function describing a given trajectory, @7 = (0,1) - (0,7), gx(z) € H(0,1), (x) €

H,(0,1), K(t,7) € H(D) are given functions, D = {0 < ¢,7 < T'}; §(x) is Dirac Delta function, xj(t) are given

functions that describe the laws of motion of the points of application of external forces and take values from

[0, 1]; functions fx[uk(t)] € H(0,T), prluk(t)] € H(0,T) for any controls ug(¢) € H(0,T) and have the property
of monotony, i.e.

Srw [ur(®)] # 0, pru, [ue(t)] # 0, Vt € [0,T]; ()

A is a parameter, T is fixed point in time; H(Y") is Hilbert space of quadratically summable functions defined
on the set Y; H1(Y) is Sobolev space of the first order.

Note that according to condition (5) one-to-one correspondences are established between the elements
{ur(t),...;um(t)} € H™(0,T) = H(0,T) x ... x H(0,T) of the control space and the elements V (¢, x) of the state
controlling process {V (¢, z)} space.

Given this commitment, we calculate the increments of the functional (1). By direct calculation we have the
equality

ATup(t), ooy tum ()] = Tug (t) + Aug (t), ooy um (t) + Aty (8)] — Tur (8), .o, um (t)] =
=— ! x),w(t,x 2(t, x)dadt, (6)
—— [ Ane Vo)., w o). dt+/ /Av

where

AT, V(¢ ), w(t, z),ur (t), ..., um (t)] =
= H[t’ V(t’ x),w(t, x)v U1 (t) + Auy (t)a B3] um(t) + Aum(t)] - H[tv V(ta x)’w(ta CC), ul(t)v sy um(t)]7 (7)

H[t7 V(t,x),w(t, x) ul(t Z{gk xk t xk( )]fk[uk(t)] - Bpi[uk(t)]L

function w(t, z) is a generalized solution to a boundary value problem

T
Wi + Wag = —)\/ K(r,t)w(r,z)dr + 2[V(t,z) —&(t,x)], O0<az<1l, 0<t<T,
0

w(Tx)=0, 0<z<l,
we(t,0) =0, wy(t,1)+aw(t,1)=0, 0<t<T, (8)

V(t, x) is a generalized solution to the main boundary value problem (2-5). The problem (8) is called a conjugate
boundary value problem.

From (6) and (7) it follows that Al uy (%), ..., um(t)] > 0 on the controls satisfying the condition AII[t, V (¢, x),
w(t, x), u1(t), ..., um(t)] < 0. These relations are at the basis of maximum principle for the considered problem
of optimal control, i.e., on controls, where the function II() reaches its maximum, and I[uy(t), ..., um (t)] reaches
its minimum.

We investigate the function II[t, V (¢, ), w(t, x), u1 (), ..., um(t)] for the maximum. For each fixed ¢ € [0, T
and z € (0,1) it turns into a function of m variables {uy, ..., u;,} € R™ - m dimensional Euclidean space.

Consider the case when the set of admissible values of variables ug, ..., u,, are open sets. Then, by applying
the classical method of research for the extremum, we obtain the following relations

o [ wn (8)s oo um (0] = grlwn (O))lt, 2x (8)] frui [ur ()] = 28k [wn (O)]pru [ur (8)] = 0,

k=1,2,...,m, a necessary condition of the extremum of the first order [3: 379-380].
From this we obtain the necessary first-order optimality condition

Pre[1r ()] Preusy, [ (1)]
Frug [ur(t)]

that is valid for almost all ¢ € [0, T].

23 = gr[zr(O)]w(t, 2 ()], k=1,2,...,m, (9)
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The Hess matrix for the function II(-, u1, ..., 4, ) has the form

DI, ws e um)] = diag{gr[zx(D)]w[t, 2 (0] Frugus [un (0] — 26 (Pr[ur (8) ] prus [t ()] }-

Then the necessary second-order optimality condition for the maximum, according to Sylvester’s criterion,
has the form of the inequality [3: 379-380]

U1 . Dol ()i [ (£)] N .
(1) kl;[lfkuk[ k(t)]< Frue [ (t)] )Uk >0, j=1,2,.., (10)

which was obtained taking into account of the condition (9) and it is for almost all ¢ € [0, T7.
Relations (9) and (12), which are realized almost at all ¢ € [0, T] are called optimality conditions.

Since the remainder fOT fol AV?2(t,z)dzdt in relation (6) takes on a sufficiently small value, the condition

ATI[-,u] < 0 is both necessary and sufficient for the optimality controls uy, ..., ty,.

To determine the optimal controls u§(t), ...,u% (t) it is necessary to use the first order optimality condition

coey Upy

of equality (9). For this purpose we use generalized solutions of both the main and adjoint boundary value
problems.

Generalized solutions of the main and conjugated boundary value problems of a controlled process

The generalized solution to the boundary value problem (2)—(5) has the form [4]

o0

V(t,2) =Y Va(t)zn(z)

n=1

- g ()\ /OT Ry (t, 5, N)an(s)ds + an(t)> Zn(2), (11)

where R, (t,s,A) is the resolvent [5: 98-101] of the kernel K, (t,s) = fot e ="K (7, s)dr,

m

an(t) = e o, + / e YN gl (7)o (7)) fulun (7)) dr.

k=1
The solution of the conjugate boundary value problem has the form

oo

T
witr) =3 (A / Byt N ()7 + qn<t>)zn<x>, (12)

n=1

where B,,(7,t,A) is the resolvent [5; 98-101] of the kernel G, (7,t) = ftT e*Ai(S*t)K(T, s)ds,

T
i(®) =2 [ O - gas)ds, (13)
t
where V,,(t) and &, (¢t) are the Fourier coeflicients of the functions V' (¢, x) and £(¢, x), respectively.
System of nonlinear integral equations of optimal controls

The desired controls {uf(t),...,u2 (t)} we find are according to the optimality conditions (9) and (10).
Note that the optimality condition (10) restrict the functions class {fi[ux(t)], prur(t)]}. We assume that the
functions {fy[ux(t)], px[ur(t)]} satisfy the condition (10). Then the controls {u§(t),...,u2 (¢)} defined by the
condition (11) will be the desired optimal controls. In the formula (9) we replace the function w(t, z) according

to the formulas (12), (13) and obtain a system of equalities

iU (t) Prw, [ur(t)] .- !
26 Frowg [ (1)) = glon(0)] nZ::l (A/o Buls - Man(s)ds + qn(t)) anlon(] )

k=1,2,....m.
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Now we transform this system of integral equations (14) to the form

Pie [ ()] Preusy [ (1))

B
fkuk[uk(t)]
= gl (t Zznfck n(t,A) = ge[ze(t Zzn:vk / Wi (t, n, A Z n)]dn, (15)
n=1 j=1

k=1,2,...,m, where

T
Wo(t,n,A) = / en £, N Yo (4,7, Ny,
0

Ay By(s,t, Ne “N=9)ds, 0<y<t,
€n(t77—a >\) =
=) 4\ [V B (s,t, e W) ds, t <y < T

A=) 4 /\fn Ry, 7, Ne ™ (7=0dr, 0<n<y,

Yo (y,m,A) =
AT Ru(y, 7, Ne M 00dr, y <n<T.

Next, we investigate the unique solvability of the nonlinear integral equations system (15). This system
nonlinearly contains unknown functions wuq (t), ..., 4., () under the integral and outside the integral.
Suppose

Then, according to the condition (10) there is a function [-] such that
ug(t) = Yilt,on(t), 8], k=1,2,...,m. (17)

Taking into account (16) and (17), we rewrite the system (15) in the form

t) = Z O[5 (1)] <hn(t, A)

T
- [ Wt Zemxj L6 (sl B)dn) . k=T (18)

where
le[a:k(t)] = gk[a:k(t)]zn[xk(t)], k=1,2,....m
Now, we compose the vector-functions

o(t) = {o1(t), . om(®)}, Onlt] = {B1nfz1 ()], s Omnwm (1)},
Plt, o(t), F {ihalt, o1 (), B, s Ymlt, om (1), B},
F(lt,o(t), B]) = {f1(Walt, o1(t), Bl), - fon (Ymlt, o (t), B]) }

and rewrite the system of equalities (18) in the vector form
o T .
=Y ) (hnw) - [ Wattn 0, <n>f(w[n,a(n>,m)dn), (19)
n=1 0

where o (t), 0,(t), f (¢[n,a(n), B]) are the column vectors, symbol * is a transposition sign.
Further, the following lemmas are proved by direct calculations.
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Lemma 1. Vector function
h(t, A) = {8, 0), o AU (N} =D 0n()hn(t, N) (20)
n=1

is an element of space H™(0,T), i.e., h*)(¢t,\) € H(0,T) for each k = 1,2, ...,m.
Lemma 2. Vector function
Wlo )] = {Wile(t)], ..., Wm[o(t)]}, (21)

where

Wilo(8)] = Z9nk(t)/0 W (t,m, M) () f (1, (), B]) dn

m

00 T
= ng[xk(t)}zn[%(t)]/o W (t,m,0) D gl (D) za 2 (0] £ (510, 05 (), B]) dny (22)

n=1 Jj=1

is an element of space H™(0,T), i.e., Wi[o(t)] € H(0,T), k=1,2,...,m.
According to Lemmas 1 and 2, equation (19) is considered in space H™(0,T'). Taking into account formulas
(20) and (21) system of integral equations (19) is rewritten in operator form as

o =Wo] + h. (23)

Lemma 3. Let the functions fi[ug(t)] and [t, ok (t), 8] satisty the Lipschitz condition with respect to the
functional variable, i.e.

I filur (£)] = Frlin O]l g0 < fillun() —dn®llgor, fi >0, k=1,2,..,m, (24)
[Wklt, on(t), B] — Yklt, % (t), Bl o,y < VR(B)ok(t) — k)l YR(B) >0, k=1,2,...m.

Then, under the condition

A2koT
=T Gy + ) (Van - §|m)2)ﬁfo‘”ow) <t

fO = max{f{)v ey fT(T)I}’ ¢O = maiﬁ{wg, ) ¢9n}7

where the operator W(o]: H™(0,T) — H™(0,T) is contracting.

Theorem 1. Let conditions (22), (23), and (24) be satisfied. Then the operator equation (19) in space
H™(0,T) has a unique solution.

Proof. Since the Hilbert space H™(0,T) is complete [6: 44-45], the operator W] transforms the space
H™(0,T) into itself and becomes contracting, then according to the principle of contracting operators, the
operator W] has a unique fixed point ¢ (¢).

This solution is defined as the limit of a sequence o™ (t), i.e., is determined by the successive approximation
method

c™t) =Wie V] +nt,\), n=1,2,3,..,

where the initial guess o(9) (¢) is chosen arbitrarily, in particular o(%) (t) = h(t, \). Then, as is known, the estimate

2fo%°(8)"

1= 20403 W o O zrm 0,1

l6(t) = ™ Ol rrmor) <

is valid.
Thus, substituting the obtained solution &(t) = {71(t),..., 00 (t)} into (16), we find the desired optimal
controls

ud(t) = Yplt, o (1), 8], k=1,2,...,m.

The solution of boundary value problem (2)—(5) corresponding to these controls, according to (11) is determi-
ned by the formula

Pty = 3 ()\ /0 " Rt 5 0)a0 (8)ds + ag(t>>zn(x),

n=1
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where
m

ad(t) = e vty + / e Y ST gl (7)) 2 (7)) i lud (7))

k=1

Using the found ul(t), k=1,..,m and VO(t,z) we calculate the minimum value of the functional (1)

T 1 T m
TR(E), . (8)] = / / VO(t, ) — E(t, o) 2dodt + 5 [ S pRul(e)dt.

0 k=1

Thus the triple found
{(u?(t),...,u?n(t)), VOt x), Jui(t),...,ud ()]}

is a complete solution to the tracking problem with nonlinear optimal control of the heat propagation process
under the action of moving point sources.

Conclusion

In conclusion, we note some features of the investigated tracking problem for optimal point control of thermal
processes described by integro-differential equations in partial derivatives.

The presence of the integral operator has led to the need in study of the Neumann series that appear when
determining the Fourier coeflicients of the boundary value problem. It was found that the convergence radius of
the Neumann series with respect to the parameter A expands with increasing number of the Fourier coefficient.
The optimization problem can be solved only with a radius of convergence corresponding to the first Fourier
coefficient.

A method for solving a system of nonlinear integral equations of a non-standard form has been developed.
Such the system of equations appears in the case when the functions of external influences are nonlinear with
respect to the control.

Using the property of the Dirac ¢ function, an algorithm has been developed for constructing a complete
solution to the tracking problem using the example of controlling thermal processes, which can be used in solving
and qualitative research of the problems of programmed control of various technological processes, described by
functional equations of a more complex nature.
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A. Kepimbekos!, A.T. Epmek6aesa?, E. Ceitnakmar Kbi3br!

1B.H. Eavyun amwmdaen, Kvpews-Pecet Caasan yrusepcumemi, Biwker, Kovipewscman;
2 0w memaexemmix yrnueepcumemi, Koipeviacman

2KbpL1y mpoliecTepiH KO3FaJMaJibl HYKTeJIIK Oackapy Ke3iHeri
OakbLIay ecebOiHIH MIenTiIiMALTIIr >KeHIH/1e

Maxkamnaga HykTemik kKe3zep (yHKIusapbl 06acKapy QYHKIUSIAPBIHA KATBICTHI CBI3BIKTBIEMEC 0OJI-
raH Karjaiina PperosibM HHTEIPAJJBIK OIEPATOPJbI Jiepbec TYBIHABLIBI (PPEArobMIIK UHTErPAJIIBIK-
udePEHITUANIBIK, TEHIEYIEPMEH CUIIATTAJIATHIH *KbLIY MPOIECTEPIH KO3FAJIMAJBI HYKTEIIK backapy Ke-
3inmeri Kamarasnay ecebiHiH memimimaiairi 3eprrerern. OnruMasiabl 6aCKapy CHI3BIKTHI HHTETPAJIIBIK, TE€H-
neyJiep KyHeciHig mmenriMi peTiHae aHbIKTAJIbI XKoHE IIEeIIIMII TYPFhI3Y aJropuTMi Kypbuiasl. Kajaramsay
ecebiniy GipMOHI] MIENITYiHIH »KEeTKIIIKT] MapThl TaObUIIbI KOHE CHI3BIKTBIEMEC OHTANIAHIBIPY ecenTepi-
HiH HIENIMiH TYPFBI3YAbIH TOJIBIK, aJITOPUTMI KOPCETiJIIi.

Kiam cesdep: xanubutanras memntiM, upak dysknuscel, dyHKInoOHAI, Kajgarauay ecebi, onTumMasiibl 6ac-
Kapy, UHTErPaJJIbIK TEH/JIEY, TOJBIK, [IEIIiM.

A Kepumbexos!, A.T. Dpmexbaena?, . CeitrakmMar KbI3nr!

! Kvipewiacro- Poccutickuti Caasancrkuts yrusepcumem um. B.H. Eaxvuyuna, Buwker, Kupewscman;
2 Quickutl 2ocydapemeenmoti yrusepcumem, Koipevzcman

O Pa3peminMoOCT 3ada9M CJIe2K€HU4d IIPpA IIOABU2KHOM TOY€YHOM
YipaBJ/JI€HAN TEIIJIOBbBIMMU ITpOoIleCcCaMmn

B crarbe nccnemoBana paspenmMoCcTb 3aJa9d CJIEXKEHUSI TIPU TOJBUYKHBIX TOYEYHBIX YIIPABJICHUSX TEII-
JIOBBIMH IIPOIIECCAMHU, OMHICHIBAEMBIMHU (DPEATOJIBMOBBIMUA UHTETPO-AnpDEPeHITNATBHBIMA YPABHEHUSIMU B
YaCTHBIX IIPOU3BOJHBIX C MHTErPAJIbHBIM orepaTropoMm Ppenrospma, B ciydae Korja (yHKIUH TOYEYHBIX
WCTOYHUKOB HEJIMHEWHBI OTHOCUTENHHO (DYHKIINN YIPABJIEHUs. YCTAHOBJIEHO, UYTO ONTHUMAJbHBIE YIIpaBJie-
HUS OTIpPeJeIeHbl KaK PENIeHNs] CUCTEMbI JIMHEWHBIX WHTErPAJbHBIX yPABHEHHUI, U pa3paboTaH aJropuTM
IIOCTPOeHUS ee pentenns. HalineHs! JoCTaTOYHbIE YCIOBHS OTHO3HAYHOMN Pa3PENIMMOCTH 33149 CJIEZKEHNUS,
¥ yKa3aH aJI'OPATM IIOCTPOEHUsI IIOJTHOTO PEIIeHUs 3a/1a4N HEJIMHEIHON ONTUMU3AINH.

Kmouesvie crosa: 060bienHoe perenne, dyHkius Iupaka, GyHKIIMOHAT, 3a/1a9a CJI€YKEHHUsI, ONTUMAIBHOE
yIpaBJIeHNEe, MHTErPAJIbHOE YPABHEHHE, TIOJHOE PEIIeHHe.
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Existence and uniqueness results for
the first-order non-linear impulsive integro-differential
equations with two-point boundary conditions

The article discusses the existence and uniqueness of solutions for a system of nonlinear integro-differential
equations of the first order with two-point boundary conditions. The Green function is constructed, and
the problem under consideration is reduced to equivalent integral equation. Existence and uniqueness of a
solution to this problem is analyzed using the Banach contraction mapping principle. Schaefer’s fixed point
theorem is used to prove the existence of solutions.

Keywords: two-point boundary conditions, impulsive systems, existence and uniqueness solutions, fixed
point theorems, first order differential equation.

Introduction

A lot of problems of physics, engineering, biology and economy are described by differential and integro-
differential equations. Such differential equations were studied rather well in [1-8]. In the above mentioned
papers mainly the differential equations with local conditions are studied. However, in the last years there is
a great interest to differential and integro-differential equations with nonlocal boundary conditions, by which
a number of practical processes are described. Today, there exist a great number of works devoted to ordinary
differential and integro-differential equations with nonlocal boundary conditions in which the theorem on the
existence of solutions are proved for different types of nonlocal conditions [9-20].

Note that numerical methods for multipoint and integral boundary problems for first-order ordinary di-
fferential equations were developed in [21, 22].

It should be noted that the authors know about the study of boundary value problem as the form of

i(t)=f(tx(t), tel0,T], (1)
Az (0) + B (T) = C

from [23, 24|, where A, B € R"*™ are given matrices, f € R™ is a given function and it is assumed that the
condition detB # 0 is satisfied. An approximate solution of the problem (1) was constructed using a numerical-
analytical method developed by Samoilenko with the given initial conditions. In [11] the boundary value problem
was investigated as follows:

@)= [f(tx@), t€[0,T], t#ti, i=1,2,..,p,
Az (0) + Ba ( >= , (2)

Here A, B € R™*™ are given matrices, f, I; € R", i =1,2,...,p are given functions and
det(A + B) # 0. Theorems on the existence and uniqueness of the solution of the boundary value problem (2)
under suitable conditions have been proved. In this article the generalization of the boundary value problem
(2) for the Volterra-Fredholm type system of integro-differential equations with two-point and impulse effect is
studied.

*Corresponding author.
E-mail: sharifov22@rambler.ru
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Problem statement

In this paper we study the existence and uniqueness of solutions of nonlinear integro-differential equations
of the type

= f(t,z, 9z (t),0x(t), te€[0,T],t#t, i=1,2,..p (3)
with two-point boundary conditions
Az (0)+ Bz (T) = « (4)
and impulsive conditions
Az (tz) =1I; (SC (ti)) , 1=1,2...,p, 0=t <t; <..< tp < Tp+1 =T, (5)

where A and B are constant square matrices of order n such that det N 20, N = A+ B; f:[0,T] x R® x R"™ x
XR" - R" and I; : R* — R", i =1,2,...,p are a given function and
T

ox (t) = ftp(t, s)x (s)ds, gz (t) = [~(t,s)x(s)ds, where u,vy: R x R — R"*"
0 0

with ¢9 = max ||é (¢, 8)] < oo, 70 = max |7 (¢ )] < oo,
t,s€[0T] t,s€[0,T]

Az (t) =z (t])—a(t;), i=12,..,p,
where
z () = hlir(r)1+ z(t;+h), z(t;) = hlirg z(t; 4+ h)
— 00—

are the right-hand and left-hand limits of z (t)) at ¢ = t;, respectively.

In this work for the Green function is constructed for the two-point boundary value problem and the
considered problem is reduced to the equivalent integral equations. Then the existence and uniqueness of the
solutions is studied using the Banach contraction mapping principle. The existence of the solution is also proved
by applying Schaefer’s fixed point theorem.

This paper is organized as follows. In Section 2, we introduce definition and lemmas, which are the key tools
for our main result. Section 3 focuses the theorems on the existence and uniqueness of the solution of problem
(3)—(5) established under some sufficient conditions on the nonlinear terms. An example is included.

Preliminaries

In this section we present some basic definitions and preliminary facts which are used throughout the paper.
We denote by C ([0, T]; R™) the Banach space of all continuous functions from [0, 7] into R™ with the norm

[l = max {| (£)] - t € [0, ]},

where || is the norm in the space R™.
We define the linear space

PC([0,T);R") ={x:[0,T] = R"; x(t) € C((t;,tix1];R™),i=1,2,...,p,
x (tl_) and x (tj') exist, i =0,1,...,p and x (tz_) =z (t;)}.

Obviously, PC ([0,T]; R"™) is a Banach space with norm

ol pe = max {2l 1,y = 01,

For the sake of simplicity, we can consider the following problem:

p(t) =y(t), te€l0,T], (6)
Az (0) + Bz (T) = «, (7)
Az (t;) =a;, i=1,2,...,p. (8)

Lemma 1. Let y € C ([0, T]; R™) and a; € R™. The unique solution z (t) € PC ([0, T]; R™) of the boundary
value problem for differential equation (6) with boundary conditions (7) and impulsive conditions (8) is given
by
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x(t) :N_1a+/G(t,T)y(7')dT+ Z G (ti, tg) ag (9)
0

0<tp<T

for t € (t;,ti41],7=0,1,...,p, where

N7'A, 0<7<t,
G(t’T):{ _N-IB, t<7<T.

Proof. If function « = z(-) is a solution of the differential equation (6), then for ¢ € (0,7T)

/y(s)ds - /Jb(s)ds = [a(tr) — 2(0)] + [a(ts) — 2(t)] + oo + [0(t) — 2(t:)]
0 0

=—2(0) — [z(tiT) —z(t1)] — [z(t2®) —2(t2)] — ... — [2(t;T) — 2(t:)] + x(¢),
where x( is an arbitrary constant vector. Using this formula and condition (8), we can write
¢
x(t) = z(0) +/ y(s)ds + Z a;. (10)
0 0<t;i<t

Now we define x¢ so that the function in equality (10) satisfies condition (7). Then we have

T
(A+B)o:(0):a—B/y(t)dt—B >
0

0<ty <T
This obviously implies
T
xO:Nfla—Nle/y(T)dT—Nle Z ag. (11)
0 0<tr<T
Now in (8) we take into account the value zy determined from the equality (11) and yield

T t

x(t):N_la—N_lB/y(T)dT—N_lB > ak+/y(s)ds+ > a (12)
0

0 0<tp<T o<t; <t

Since equality
(E-N"'B)=N"'4
is true, then we can introduce the following function:

N71A, 0<7<t,
G(t’T):{ _N-IB, t<7<T.

Using this function, equality (12) can be written as an impulsive integral equation (9).
Lemma 2. Assume that f € C([0,7] x R™; R™). Then the function z (¢) is a solution of boundary-value
problem (3)—(5) if and only if x (¢) is a solution of the impulsive integral equation

T
(t) :N71a+/G(taT)f(Tny(T),be(T)NPﬂf (P)dr+ > G (titw) I ( (1)) - (13)
0 0<t; <T

Proof. Let x (t) be a solution of the boundary value problem (3)—(5). This lemma can be derived by a similar
argument to Lemma 1. By checking directly, we make sure that the solution of integral equation (13) satisfies
the boundary value problem (3)—(5). Lemma 2 is proved.
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Main results

We introduce the following conditions:
(H1) The functions f: [0,7] x R" x R® x R — R™ and I; : R — R" i =1,2,...,p are continuous;
(H2) There exist a constants M >0 and I; > 0, ¢ = 1,2, ...,p such that

|f (t,x1, 22, 23) — f (6 y1,y2,y3)| < M (|1 — yi| + w2 — y2| + |23 — w3]),

|Li (v1) — L (1) < liler — ], i=1,2,..,p

for each ¢ € [0,T] and all z1, 2, z3,y1,Y2,ys € R™;
(H3) There exists a constants K, k such that |f (¢t,2)| < K, |J; (z)] <k, i=1,2,...,p for each t € [0,T] and all
r € R™

Theorem 1. Assume conditions (H1) and (H2) hold, and

p
LS(TM(1+T(M0+70))+ZZ,;> <1, (14)
i=1
where S = max ||G (t,7)|.
[0,T]x[0,T]

Then boundary-value problem (3)—(5) has a unique solution on [0, 7.

Proof. Transform the boundary value problem (3)—(5) into a fixed point problem. Consider the operator
F:PC([0,T];R") — PC([0,T]; R") defined by

(Fz)(t)=N— a+/GtT flryz (1), ¢z (1), 0z (1))dr + Z G (ti, tr) I (x (tr)) - (15)

0<t; <T

Clearly, the fixed points of the operator F' are solutions of the boundary problem (3)—(5).

—1
Setting I[nax |f(¢,0,0,0)] = Mf, |7 (0)] = m and let us select r > Il a”j_NifTSerp. We show that

{ :2,...,p}
FB, C B,, where

B, ={x € PC([0,T)R") : ||lz|| < r}.
For z € B,, using (H1) and (H2), we get

IFz(t)] < [N~ ol + /lG(th)\ (f (7, 2(7), (1) , vz (7)) = £(7,0,0,0)| + | f(7,0,0.0)[) d7

+ 3 1G (tiyti)| (i (w (8)) = i (0)] + |1, (0)])
k=1

p
< ||[N“1d|| + S fy (M (2] + |g2| + hyal) + M) dt+S Y b |o (t)] +mp
k=1
p
<IN + SMT (Jo] + T (¢o |2]) + 70 [2]) + MfTS + S 3 Iy || + mp
k=1
p
<|IN“la||+ S <MT(1 +T (60 +7)) + > zk) ||| + M;TS +mp <r.
k=1

In order to show that the operator F' is a contraction, let for any x,y € B, we have

T
[Pz — Fy| < / |Gt 7) (f(7,2(7), ¢ (£) ;v (1) = f(79(7), ¢y (8) , v (£))] dT
0

Z (tir tr) (I (z (tr)) — Ir (y (tk)))’
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SMS/(|96‘(?f)—y(1t)|+|¢3j (6) = Gy (1) + Iya () =y (W) dt + 5 Yl o (t) =y (t)]]

k=1

p
< _
<S8 (MT(l + T (¢ +0)) + I;lk> max |l2(t) — y(t)|
or
[Fa— Fy|| < Lz -yl

It is seen that F' is contraction by condition (14). So the boundary-value problem (3)—(5) has a unique solution.

Theorem 2. Assume conditions (H1)—(H3) hold. Then boundary-value problem (3)—(5) has at least one
solution on [0, 7.

Proof. Let F be the operator defined in (15). We shall use Schaefer’s fixed point theorem to prove that F'
has a fixed point. The proof will be given in several steps.

Step 1: F is continuous. Let {x,} be a sequence such that =, — z in PC([0,T]; R"™). Then, for each
te (tiati—i-l] ,1=0,1,...p

T
|(Fz) (t) — (Fan) ( / (t,7) (f(r,2(7), ¢z (t) , v (1)) = f(T, 2 (7), pn () , yoon (1)) dr
0
+ DG (i tr) (I (@ (1) = I (@n (tk)))‘
k=1

<S (TM(1+T<¢0+%>> +sz> 2 () = 20 ()] < L& — 2]

k=1

From here we get ||(Fz) (t) — (Fx,) (t)|| — 0 as n — oo, which implies that the operator F' is continuous.

Step 2: F maps bounded sets into bounded sets in PC ([0,77]; R™). Indeed, it is enough to show that for
any 1 > 0 there exists a positive constant w such that for each « € B, = {x € PC ([0,T]; R") : ||z|| < n} we
have || F' (z)|| < w. We have for each ¢ € [0,T]

|(Fz) (t)] < |[N"'a|| + S (TK + pk).

This implies that
|F (z)]| < [|[N"'a| + S(TK + pk) = w.

Step 3: F maps bounded sets into equicontinuous sets of PC ([0,7]; R™). Let &1,& € [0,T], & < &,B;, be
a bounded set of PC ([0,T]; R") as in Step 2, and let z € B,,.
Then, we have

F(z(&2) - F(z (&)
= (A+B) VA f(r,a(7), ¢ (r) , ye (7))dr — (A+ B)~ Bff (7, (1), g (1) , v (7))dr

*(A+B)_1A/f(ﬂx(f),¢x(7) £ (r))dr — (A + B)~ /fms e (7) vz (r))dr

0

&2 &a

—(A+B)'A / f(r2(r), da (7) .7z (r))dr + (A + B) "' B / f(ryx(r), () e (7))
&1 I3
&2
:/f(T,:U(T))dT.
&1
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As ty — t1, the right-hand side of the above equalities tends to zero. As a consequence of Steps 1 to
3 together with the Ascoli-Arzela theorem, we can conclude that F : PC ([0,T];R™) — PC ([0,T];R"™) is
completely continuous.

Step 4: A priori bounds. Now it remains to show that the set A = {z € PC([0,T];R") : x = AF ()
for some 0 < A < 1} is bounded. Let x € A. Then, x = AF (x) for some 0 < A < 1. Thus, for each
t € (ti,tiy1] i =0,1,...,p, we have

z P
z(t) = AN "ta + )\/G(t,r)f(T, x(71), px (1), v (7))dT + /\Z G (ti tg) I (z (tr)) -
0

k=1

From here
=] < ||N"'af| + S(TK + pk).
Therefore, the set A is bounded. The conclusion of Schaefer’s fixed point theorem applies and the operator
F has at least one fixed point. So, there exists at least one solution for the problems (3)—(5) on [0, T].
Ezxample

Consider the following system of integro-differential equations:

21 = 0.529 + sin <0.2 fot tsxq (s) ds) ,
9 = 0.5x1 + cos (0.2 fol tsza (8) ds)

with two-point boundary conditions
z1(0) = 0,22 (1) =1
and impulsive condition
|z2 (0.5)]
(1+ |22 (0.5)])°

10 0 0 0.2ts 0 0 0
Wheret€[0,1]7A<O O),B<O 1)andu(t,8)< 0 0)77(t’5)<0 0.2ts>’and

S = 1, M = 05, Ho = Yo = 02, ll =0.1.
Then L =TSM (1+ T (1o +70)) = 0.5(1 +0.24+0.2) +0.1 = 0.8 < 1.
Thus, by Theorem 1, the boundary value problem has a unique solution on [0, 1].

Conclusion

The boundary conditions considered in this paper are general enough and can be used extensively in a
wide class of problems. In this article the existence and uniqueness of the solutions for the first-order nonlinear
impulsive differential equations with two-point conditions are established under sufficient conditions. Note that
the methods given here can be used in similar multi-point problems for the ordinary differential equations as
follows:

()= f(t,zt),px(t),yz @), te0,T]

with multi-point and integral boundary conditions

m T
Zlix(ti)Jr/n(t)x(t) dt = a.
0

i=0
Here 0 =tp < t1 < ... < tpm—1 <ty = T; n(t) € R™*™ is a given function; I; € R**™, i =1,2,...,m are given
matrices; a € R"is a given vector and

T

det N #0, N:Zli—&—/n(t)dt.

=0 0
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22 Aida-zade K.R. An approach for solving nonlinearly loaded problems for linear ordinary differential equati-
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23 Cawmoitrenko A.M. HuciieHHO-aHATUTUYECKHE METO/IbI HCCJIEI0BAHNS PellleHnst Kpaesbix 3a1ad / A.M. Ca-
moistenko, H.M. Pouto. — Kues: Hayk. mymka, 1985. — 224 c.

24 Cawmoittenko A.M. HucjieHHO-aHAJINTUYIECKAE METO/IbI B TEOPUHU KPAEBBIX 33181 OOBIKHOBEHHBIX jiudde-
pennmanbubix ypasaenuit / A.M. Camoiinenko, H.W. Porro. — Kues: Hayk. mymka, 1992. — 279 c.

M./ Izx. Mapganos! 2, P.C. Mamenos®, C.IO. Kacymos?, S1.A. [Ilapudos’?

1 - o . .
Ozipbatiolcar ¥ ammuok eviavim axademuacoiory Mamemamuka ocone mexanuka uncmumymaos, Baxy, O3ipbatiocar;
2Baky memaexemmir yrusepcumemi, O3ipbatiocam;

) )
3 Dsipbatiocan memaexemmin myratl srcone enepkacin ynusepcumemi, Baxy, D3ipbatiocan

Exi HykTei mekapaJbIK MiapTTapbl 0ap OipiHII PETTi CHI3BIKTHI €MeC
UMITYJIbCTI MHTErpo-audpepeHnnaJIbIK, TeHAeyJIep YIITiH HIenTiMHiH
Oap KoHe >KaJFbI3 O0JTybI

Maxkanama uMIyabCTiH ocepiHeH eKi HYKTesl IMeKapaJblK, mapTrapbl 6ap OipiHin peTTi ChI3BIKTBIEMEC
UHTErpo-1udepeHuaIIblK TeHIeyIep XKy HeciHiy, meniMaepiniy 6ap »KoHe KaJFbI3 O0IYbl TAJTKBIIAHIBI.
I'pur OYHKIUSICH KYPBUIILI YKOHE KapACTHIPBLILII OTHIPFAH €CEllKe YKBUBAJEHTTI WHTErPaJIILIK TEHJIEY
kesrripinai. Bys ecentin memnmiminin 6ap KoHe KaJIFbI3 60Tybl OaHAXTHIH, CHIFBIMIAFAH OefiHe ey iHIH TpuH-
IUIIH KOJIJIAHA OTBIPBIN TaJanabl. Ko3raaMaiTein HyKTe TypaJsibl Illedep Teopemach mrenrimiep/is 6ap
E€KEHJIITIH JpJIesIiey YIIH KOJIIAHbLI/IbI.

Kiam ce3dep: exi HyKTeJi meKapaJsblK MAapTTap, UMIIYJIbCTIK XKyileaep, menriMHaig 6ap yKoHe KAJIFbI3 00-
JIybl, KO3FaJIMAWTBIH HYKTE TeopeMaJapsbl, Oipiami perti auddepeHuaibk, TeHey.

M./ Izx. Mapganos! 2, P.C. Mamenos®, C.IO. Kacymos?, S1.A. [Ilapudos’?

1 o . .
Huemumym mamemamuru v mexanury Hayuonarornol axademuu nayx Asepbaiioocana, Baky, Asepbatidocan;
2 Bakunckut zocydapemeennud yrusepcumem, Asepbaioocan;

3 Asepbatioorcancruti zocydapemeennuitl yrusepcumem redmu u npomwviuaernocmu, Baxy, Asepbatioocan

CyniecTBoBaHI€Ee U €UHCTBEHHOCTh PE3YyJIbTATOB /IJisi HEJIMHEHbBIX
UMILYJIbCHBIX UHTerpo-anddepeHIimaaibHbIX YpaBHEHN IIEPBOTO
NopdagKa C ABYXTOYE€YHBIMU I'PAHUYHBIMU YCJIOBUSIMU

B crarpe 06cykIeHBI CyIeCTBOBAHNE U €AMHCTBEHHOCTD PEIIeHNI CHCTEMBI HEJIMHENHBIX HHTErPO-audde-
PEHIMAJIbHBIX YPABHEHMIi [IEPBOrO MOPSIIKA C JBYXTOUYEYHBIMU 'PAHUYHBIMU YCJIOBUSIMH [IPU MMILYJIbCHBIX
pozzeticTBusix. [locrpoena dyuknusa I'puna, u paccMaTpuBaeMasi 3aJa4da CBEIEHA K SKBUBAJEHTHOMY WH-
TerpajbHOMY ypaBHeHuio. CyIecTBOBaHME M €INHCTBEHHOCTb PEIEHUS STON 3aJa4uM IPOAHAJIM3NPOBAHDI
¢ HoMoIIbI0 GaHAXOBa NMPUHIUIA CXKUMaloliero orobparkenus. Teopema Illedepa o HenoaBUKHOI TOYKE
HCIIOJIB30BAJIACH [Tl JOKA3aTEIbCTBA CYIECTBOBAHUS PEIICHMUIA.

Kmouesvie cr06a: IByXTOUEIHBbIE TPAHUIHBIE YCIOBHUS, UMIIYJIbCHBIE CUCTEMBI, CYIIIECTBOBAHUE U €ITNHCTBEH-
HOCTb DEIIeHNs, TeOPeEMa O HEIIOJABUXKHOI TouKe, nuddepeHnnaIbHOe YPaBHEHNE [IEPBOIO MIOPSIKA.
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Ternary semigroups of topological transformations

A ternary semigroup is a nonempty set with a ternary operation which is associative. The purpose of the
present paper is to give a characterization of open sets of finite-dimensional Euclidean spaces by ternary
semigroups of pairs of homeomorphic transformations and extend to ternary semigroups certain results of
L.M. Gluskin concerned with semigroups of homeomorphic transformations of finite-dimensional Euclidean
spaces.

Keywords: Euclidean n-space, ternary semigroup, homeomorphic transformations.

Introduction

Lehmer [1] investigated certain triple systems called triplexes, Santiago and Sri Bala [2] developed regular
and completely regular ternary semigroups. Dutta, Kar and Maity studied intra-regular ternary semigroups [3].
Wagner studied generalized heaps and generalized groups [4]. Gluskin showed that semigroups of topological
transformations of bounded closed sets on Euclidean n-spaces define those sets exactly up to homeomorphism [5].
Mustafaev studied semiheaps of homeomorphic maps of open and closed sets of Euclidean n-spaces [6]. In this
paper we study some properties of ternary semigroups of topological maps between open sets of Euclidean
n-spaces.

A ternary semigroup is a nonempty set T’ together with a ternary operation [abc] satisfying the associative
law [[abc]de] = [a]bed]e] = [ab|cde]] for every a,b,c,d,e € T. Any semigroup can be made into a ternary
semigroup by defining the ternary product to be [abc] = abc. A nonempty subset L of a ternary semigroup
T is called a left (right, lateral) ideal of T, if [TTL] C L ([LTT]C L,[TLT] C L). A nonempty subset A
of a ternary semigroup 7T is called a two sided ideal of T if it is a left and right ideal of T. A nonempty
subset A of a ternary semigroup 7T is called an ideal of T if it is a left, right and lateral ideal of T'. If the
intersection K of all the ideals of a ternary semigroup 7' is not empty, we shall call K the kernel of T. A
ternary semigroup is called (left, right) simple if it does not contain any proper (left, right) ideals [7]. A ternary
semigroup is simple if it does not have nontrivial homomorphisms, that is, if each of its homomorphisms is
either an isomorphism or a mapping onto a ternary semigroup consisting of one element. A zero "0"of a ternary
semigroup T is an element such that for all a,b € T, [0ab] = [a0b] = [ab0] = 0. An equivalence relation p on
a ternary semigroup 7' is said to be a left congruence if (a,b) € p = ([sta], [st]) € p for all a,b,s,t € T.
Similarly, p is a right congruence if (a,b) € p = ([ast], [bst]) € p for all a,b,s,t € T and a lateral congruence
if (a,b) € p = ([sat],[sbt]) € p for all a,b,s,t € T. An equivalence relation p on a ternary semigroup 7T is
said to be a congruence if (a,a’) € p, (b,V') € p, (¢, ) € p = ([abc], [a'b'c]) € p for all a,a’, b,V , ¢,/ € T. An
equivalence relation p on a ternary semigroup 7 is a congruence if and only if it is a left, a right and a lateral
congruence on T [8].

Let X and Y be two nonempty sets and let F(X,Y) be the set of all pairs of functions (v,7n), where
v: X —>Yandn:Y — X. The set F(X,Y) is a ternary semigroup with respect to the ternary operation

[(y1,m1) (72, m2) (735 m3)] = (V1m2y3, MY2m3) 5

where (y17m273) 2 = 71 (02 (73 (2))) and (m172m3) y = m (72 (03 (9)))-

Let S be a ternary semigroup and a be any element of S. The set SSa U a is a left ideal of S and is called
the principal left ideal of S generated by a. Consider the following symmetric and reflexive relation on the set
S defined by

o xoy <> x, y € SSala, (z,y €8).

*Corresponding author.
E-mail: firudin.muradov@neu. edu.tr
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o denotes the transitive closure of o;. Each class L, of &7 is the union of some principal left ideals of S and
therefore is a left ideal of S. The partition
S =UL, (1)

of the ternary semigroup .S into classes of o7 is the representation of S as the union of the pairwise disjoint left
ideals. We say that (1) is the most fractional partition of S into pairwise disjoint left ideals.

Characterization of open sets of Fuclidean n-spaces by ternary semigroups

Let €1 and Q2 be two open sets of a finite-dimensional Euclidean space. H; (£;,);) denotes the set of all
homeomorphic maps from ©; to ;, where i, j = 1,2, (i # j). Let K; (Q;, ;) denote the set of all a € H; (Q;, ;)
for which there is an n-sized element E, C ; (a set homeomorphic to some closed n-ball) and a closed set F,, C
Qj such that aQ); C F, C IntE,, where 1, = 1,2 (’L 7é ]) Let OH = OH (Ql,QQ) = H; (Ql,Qg) X Hy (Qg,Ql)
be the set of all pairs of homeomorphic maps (a,b), where a € Hy (21,Q2), b € Hs (Q22,€Q1). The set OH is a
ternary semigroup with respect to the ternary operation

[(al, bl) (QQ, bg) (a3, bg)] = (albgag, blagbg) .

Clearly, the set K = K (Q4,Qs) = K7 (21,Q2) X K3 (Q2,1) is a ternary subsemigroup and even an ideal of the
ternary semigroup OH.

Theorem 1. Let R and R’ be finite-dimensional Euclidean spaces. Let €; and 5 be open sets of a
finite-dimensional Euclidean space R and Q) and ) be open sets of a finite-dimensional Euclidean space
R’. The ternary semigroups K (21,9) and K (], Q%) are isomorphic if and only if the spaces ©; and €} are
homeomorphic (i = 1, 2).

Proof. Let Q1 and €25 be open subsets of a finite-dimensional Euclidean space R and let Q] and ) be open
subsets of a finite-dimensional Euclidean space R’. Suppose that £ : Q; — Q) is a homeomorphism of Q; onto
Q) and & : Q9 — Q5 is a homeomorphism of Q5 onto €. Then, the mapping ¢, ¢, : K (1,Q2) = K (Q7,95)
defined by

Pé1 62 (avb) = <§2a§;1>§1b€51)
is an isomorphism from K (Q1,s) onto K (27, Q5). The proof of the necessary condition follows from Lemmas
1-5.

Throughout this paper the symbol ¢ denotes an isomorphism ¢ : K (1, Q) — K (Q}, Q%) unless otherwise
stated.

Lemma 1. Let (a1,b1), (az,b2) € K (Q1,2) such that

(az,b2) (21,92) C (a1,b1) (21,9Q2) .

Then,

14 (G'Qv bQ) (Qllv QIQ) Co (alv bl) (Qlla QI2)
Proof. Let (a1, a2), (b1,b2) be any two elements in K (21, 22) such that
(az,b2) (21,92) C (a1,b1) (,€22).

If
[ (a1,b1) (27, 41) @ (a1, b1)] = [p (a1, b1) (23, 9) @ (a1, b1)] (2)

is valid for some (x],y1), (x5, y5) € K (2],9Q5%), then there exist elements (z1,y1), (22,y2) € K (1,2) such
that ¢ (z1,11) = (2], y1) and @ (z2,y2) = (4, y5). Therefore

[p (a1,b1) ¢ (z1,91) ¢ (a1,b1)] = [p (a1,b1) ¢ (T2, y2) ¢ (a1, b1)] .

From this it follows
¢ [(a1,b1) (z1,91) (a1,b1)] = ¢ [(a1,b1) (x2,y2) (a1,b1)]

and since ¢ is an isomorphism of K (21,5) onto K (£, %) we have

[(a1,b1) (z1,91) (a1, b1)] = [(a1,b1) (z2,92) (a1, b1)] .
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Then,
[(az2,b2) (z1,91) (a2, b2)] = [(a2, b2) (x2,y2) (a2, b2)]
[p (a2, b2) ¢ (21,91) ¢ (a2, b2)] = [¢ (a2, b2) ¢ (72, y2) ¢ (az, b2)]

[ (a2, b2) (27, 41) @ (a2, b2)] = [p (az, b2) (x3,Ys) ¢ (a2, b2)] -

Since the last equality is valid for every (z},v}), (25, y5) € K (], %) satisfying (2), we have
¥ (a27 b2) (Q/lv Q/Z) Ce (al’ bl) (Q/lv 9/2)

The following two lemmas are immediate consequences of Lemma 1.

Lemma 2. Let (a1,b1), (az,b2) € K (Q1,Q). If

(al,bl) (91792) n (a27b2) (Qth) 75 ,

then

@ (a1,b1) (21, Q) N @ (az,b2) (§21,05) # 2.
Lemma 8. Let (a1,b1), (az,b2), (as,b3) € K (21,03). The equation
[(a2,b2) (a1,b1) (z2, y2)] = (as, bs)
has a solution for (x2,y2) € K (21,£2) if and only if there exist n-sized elements 77 and T» such that
Ty C boa1Qq, Ty C ash1Qs, a3, C IntTs, b3y C IntTy.

Let (o, 8) € Q1 x Qy. We say that an infinite sequence {(a;, b;)};—, of elements (a;,b;) € K (£1,€2) has a
limit (e, 3), if the following conditions are satisfied:

a) (N2y0ifd2,NZ5a:(h) = (o, B)

b) for every i there exists an element (x;11,y;+1) such that

[(@ig1,bi1) (@i, bs) (i1, Yir1)] = (@iy2, biga) .
A sequence {(a;,b;)};o, of elements (a;,b;) € K (1,Q2) converging to the point (a, 3) € Q1 x Q3 can be built,
for example, as follows. Suppose that F; C 2; is a closed n-ball centered at o and 17 C €25 is a closed n-ball
centered at . There exists (a1,b1) € K (£21,82) such that
a € b1y C ImﬁEl, 6 € a1 C IntT;.

Suppose now that Es is a closed n-ball in 125 and centered at a and T is a closed n-ball in a1£2; and centered
at . Then, there exists an element (ag,bs) € K (21, Q2) such that

a € byl C IntEs, ﬁ € asf)y C IntTs.

Let a; = (bgal)*1 () and 1 = (agbl)fl (8). Let A; C Q5 be a closed n-ball centered at oy and By C Qs be a
closed n-ball centered at ;. Clearly,

o€ b2a1A1 n EQ,/B € asb1 By NTs.

Let E3 C Int (baa; A1 N E3) be a closed n-ball centered at «, and let T5 C Int (agb; By NT») be a closed n-ball
centered at . Then, there exists an element (as, bs) € K (€21, s) such that

a € b3Q2, ﬁ S ang

and
b3y C IntFEs, a3 C IntTs.

By Lemma 3, the point zo = (agbl)_1 as,Ys = (bgal)_l b3 is the solution of the equation

[(a2,b2) (a1,b1) (x2,y2)] = (a3, b3).

86 Bulletin of the Karaganda University



Ternary semigroups of topological ...

Assume now that the first n terms of the sequence are already found. Denote ay—1 = (bnan_1) " (@) and
Bn_1 = (anbn_l)_l (8). Suppose that A,,_1 C £ is a closed n-ball centered at a,,—1 and B,—; C €9 is a closed
n-ball centered at 3,,_1. Clearly,

a e bnanflAnfl N EnHB € anbnlenfl N Tn

Let E, 41 C Int (bpan—1A4,—1 N Ey,) be a closed n-ball centered at «, and let T}, 1 C Int (apby—1Bn—1 NT,) be
a closed n-ball centered at 3. Then, there exists an element (a,41,bn+1) € K (Q21,$2) such that

a € bpy18da, B € any1fl

and
b1 C IntE, 11, a,4180 C IntTh 1.

By Lemma 3, the point z,, = (anbn,l)f1 Gpa1sYn = (bnan,l)f1 bny1 is the solution of the equation

[(a’rla bn) (an—h bn—l) (xna yn)] = (a7l+17 b7l+1) .

This sequence satisfies condition (b) and condition (a), if the sequences of radii of F,, and T;, converge to zero.

Lemma 4. If the ternary semigroups K (Q1,Q2) and K (Q}, Q%) are isomorphic, then there exist a bijective
map f from Oy X Qs onto ) x QY and bijective maps &; from €2, onto €2 (i = 1,2) such that f («a, 8) = ({1, &20)
for every (o, B) € Q1 x Qo.

Proof. Let (v, B) be any point in Q1 x Qs and let {(a;,b;)};—, be a sequence of elements (a;, b;) € B (4, 2)
converging to the point («,8). Denote ¢ (a;,b;) by (aj,b;). The sequence {(aj,b;)};=, converges to the point
(o, 8"). Define a map f: (21,9Q2) = (Q7,95) by f (o, 8) = (¢, ). The point (¢, 5") does not depend on the
choice of the sequence {(a;,b;)};=, of elements (a;,b;) € B (Q4,€s) converging to the point («, 3). The map f is
one-to-one and there are one-to-one maps &; from §; onto Q; for (i = 1,2) such that V (a, 8) € Q1 xQa, f (o, B) =
= (flav f?ﬁ)

Lemma 5. 1) The following implication holds

(a, B) € (a,0) (1,92) = [ (e, B) = (10, 628) € ¢ (a,b) (27, )

for any (a, 8) € Q1 x Q4 and (a,b) € K (21,02).
2) The map f is a homeomorphism from ; x 5 onto Q) x Q) and therefore the map &; is a homeomorphism

from €; onto €2} for i = 1,2.

Theorem 2. The ternary semigroup K (21,{2) is a minimal ideal (the kernel) of the ternary semigroup
OH (Q1,95).

Theorem 3. Let €1 and 3 be open subsets of a finite-dimensional Euclidean space R and Q) and € be
open subsets of a finite-dimensional Euclidean space R’. The ternary semigroups OH (1, 2) and OH (9}, Q%)
are isomorphic if and only if the spaces €; and €} are homeomorphic (i = 1, 2).

Properties of the ternary semigroup of topological maps

Let G be a group and let A = G U {0} be a zero adjoint semigroup. Let I, A be non-empty sets and let P
be a A x I matrix over A such that every row and every column of P contain at least one non-zero entry. The
set § = A x I x A with ternary multiplication

[(a;3,A) (b; 4, 1) (c; b, v)] = (apajbpukcs i, v)

is a ternary semigroup with zero 0 = (0,4, A). Let (4,7, \) denote a subset of S consisting of all triples (a, %, \),
where a € A and i, \ are fixed elements, then

S= U (AiN).
i€l NEA

From the definition of the ternary operation it follows that S is the union of its nonzero minimal right ideals
R; and S is the union of its nonzero minimal left ideals Ly, where

Ri = AgA (A, 7, )\) y L)\ = ig[ (A7 Z, A) .
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The ternary semigroup S does not contain any proper two sided ideals, in particular, S does not contain any
proper ideals. We denote S by M°(G, I, A, P).

Let R and R’ be finite-dimensional Euclidean spaces, 1 and 5 be open subsets of a finite-dimensional
Euclidean space R and let Q] and QY be open subsets of a finite-dimensional Euclidean space R’. Suppose that
&1 : Q1 — Qf is a homeomorphism of 1 onto ) and &3 : Q5 — Q is a homeomorphism of Qs onto 5. Then,
the mapping ¢¢, ¢, : K (Q1,Q2) = K (97, 5) defined by

e, e (a,b) = (baal ', 6106, )

is a homeomorphism from K (21, 2) onto K (], Q5).

Introduce the following symmetric and reflexive relation o, in the ternary semigroup OH (1,2) : (a1,b1),
(az,b2) € o, if and only if (a1,b1) = (az,b2) or (a1,b1), (a2,b2) € R,y for some (a,b) € OH (21,Qs), where
Rqp) is a right ideal of OH (£21,€2) generated by (a,b). Since the relation o, is stable, its transitive closure @,
is a congruence on OH (Q1, ). Each equivalence class R, of &, either consists of one element of OH (21, Q5)
not contained in K (q,€s) or is a right ideal of OH (€21, 22). Then,

K (Q1,89) = o}éJIRa

is the most fractional partition of K (4, €2) into pairwise disjoint union of the distinct right ideals of OH (4, 2a).
Let A; be some component of the set €21, B, be some component of the set {25 and R;, be a subset of the
ternary semigroup K (€1, 2s) consisting of (a,b) such that a2y C B,,,0Qs C A;. If (a,b) is any element of R;,
and (z1,y1) , (z2,y2) are the elements of the ternary semigroup OH (€1, 2), then from afdy C B, 00 C A; it
follows that
ayll‘ng C BN’ bl‘lngQ C A;.

Thus, (ay1z2,bx1y2) € Ry, and R, is a right ideal of OH (€4, Q2). Consequently, the partition

K (8, 0) = ieI,L:eMRi“
is the presentation of K (€21, 22) as the pairwise disjoint union of the distinct right ideals of OH (€21, Q3).
Lemma 6. If E; is any closed ball contained in €2;, and «;,3; are any points in IntF;, then there is
(b1,b2) € K (21,Q2) such that
g, B € ijj, ijj C IntE;,

where 4,5 = 1,2 (¢ # 7).
Proof. Let (a1,a2) be an arbitrary element in K (£21,s), C; be a closed ball in a;€Q; and A;, B;, D; be any
closed balls such that
Q, C IntE;, B; C IntD;, D, C IntE;, Oéi,ﬁi € IntB;.

Futher, let f; be the homeomorphisms of 4; onto D; such that f; (C;) = B;. Then (b1, b2) = (faa1, f1az) is the
requiered element of K (21, Q2).

Lemma 7. The partition
K (Q21,9) =

U R;
iclpeM
is the most fractional partition of K (£21,22) into pairwise disjoint right ideals of OH (21, s).
Proof. Tt is sufficient to show that for any ¢ € I, u € M the condition
(ao, bo) s (a, b) S Riu
implies
(ao, bo) s (a7 b) € o,.

Let’s prove this for the maps by and b from €5 into A;, where A; is a component of Q1. Let £ € byQs, &' € bQs.
Since &, £’ € A;, they can be connected by a simple arc [ contained in A;. We have d (F,. (4;),1) = m > 0, where
F, (4;) is a boundary of A;. Then, it can be found finite covering of I with open balls of radius r < m centered
on [. Denote these balls by Fai (k= 1,2, ..., s), numerated in order of their centers positions on [. Choose points

gk € Fop N E2k+2, (k =1,2,....,8 — 1)
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and denote & = &, &, = €. Since Ey, C A;, there are closed balls Dyy, in Eyy, such that
Ek—1,&k € IntDgg. According to Lemma 1 there exists a homeomorphism bop from s to €y such that
bor€do C IntDoyj and

fkfl,fk € b2k927 (k =1,2,...,5 — ].) .

Denote b = bagsyo. There are closed sets Eo; 1 and Ej; ; centered at & such that Ey;1 C Ejy;; C byl N
N baita, (k=1,2,...,s). By Lemma 1, there exists a homeomorphism boj41 from s to €25 such that bg; 1109 C
IntFEs;11. Let E be a closed n-ball containing the set {27 and let E be a closed n-ball contained in ;. If fo; 41

is a homeomorphism from E onto Ej; | for which fai1 (E) = FE5;4+1, then

—1 —1
baiv1 = baioby; fair10 fyiq1b2it1,
—1 1
baiv1 = bait20by of2it1 0 fo1b2i41,

where k = 0, 1,2, ..., s. Analogously, it can be shown that the following equations hold for some homeomorphism
92i+1

-1 -1
a2i+1 = Q2i 0 0g; §2i+1 © gg;1102i+1,
-1 -1
A2i+1 = A2442 O A9;1902i+1 © gg;41A2i+1,

where j =0,1,2,...,s" and ass 42 = a. Suppose that s < s'. Thus, (a;—1,b;—1), (a;,b;) € 7, fori =1,2,...,25+2
and
(aj_l, b25+2) , (aj, b25+2) S Trfori = 1, 2, ceey 25 —+ 2

This means that (ag,bo), (a,b) € ;.

Analogously, it can be shown that

K () = ieI,LuJeMRw
is the most fractional partition of K (Q1,€)s) into pairwise disjoint right ideals.
Theorem 4. The quotient OH (21, Q) /77 is a ternary semigroup with the minimal ideal K (£21,3) /o7

Proof. Since K (1, 22) is an ideal of OH (€21, Q) the quotient K (Q4,2) /7, is an ideal of OH (4, Q2) /7.
It follows from Lemma 2 that the elements of K (21, 2) /7, are the classes R;y. Let G = {e} be the unit group,
and let P be a A x I matrix over G. Denote by T the completely simple ternary semigroup over G = {e}.
To each element R;y of K (Q1,Q2) /7, assign an element (e;i, A) of T. The map f is the isomorphism from
K (21,82) /7, onto T. Indeed,

f([RiaRjuRe]) = f (Riv) = (e54,v)

= [(e;3,A) (€34, 1) (&5 b, v)] = [f(Rix) f (Rjp) f (R )]

Theorem 5. The ternary semigroup K (£21,85) /&, is a topological invariant of the pair (Q1,s).

Proof. Let € and Q3 be open subsets of a finite-dimensional Euclidean space R™ and let Q] and ) be
open subsets of a finite-dimensional Euclidean space R™. If & : Q; — €} (i = 1,2) is a homeomorphism, then
the mapping f : K (Q1,Q2) — K (Q],Q5) defined by

Fa,b) = (b2ae7 610065 Y)

is an isomorphism from K (1, Q) onto K (€}, €%). In the case of & the component A4; C € is mapped onto
the component A}, C Qf, in the case of £, the component By C € is mapped onto the component Bj, C €.
Therefore K (£21,€2) /7, is isomorphic to K (2;,Q5) /7.
The following three theorems are immediate consequences of Lemma 7.

Theorem 6. The spaces 1 and Qs are connected if and only if the ternary semigroup K (1, 3) cannot
be represented as the pairwise disjoint union of its distinct right ideals.

Theorem 7. If the quotient K (1, 2) /7, is finite and its order is a prime number, then one of the spaces
)1 and €2, is connected.

Theorem 8. Let €y and (25 be open subsets of a finite-dimensional Euclidean space. The space (25 is
connected if and only if the quotient K (21, 3) /7 is a ternary semigroup of left zeros, the space 1 is connected
if and only if the quotient K (1, 22) /7, is a ternary semigroup of right zeros.

Theorem 9. If at least one of the ternary semigroups R;,, in the partition K (Q1,82) = IU MRW is simple,
el,pue

then the spaces €21 and {25 are connected.
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Proof. Introduce the following relation p;,, in the ternary semigroup R;, : V (¢1,¢1),

(p2,02) € Ripy ((p1,01), (p2,¢2)) € piy if and only if V& € Aim € By,01(§) = ¢2(8),01(n) = é2(n).
The relation p;, is a congruence on R;,. Indeed, if (¢1,¢1), (p2, ¢2) are any two elements of R;, such that

((p1,91), (p2,92)) € pip and (21,y1), (z2,92) € Riy, then

(Qolad)l) p,ij‘ (‘P25¢2) — {vg S Awn € B;u (wzvyi) S Ri,u
01221 (§) = @ayor1 (§) , 112201 () = Y1222 ()} —
Y (@i, yi) € Rig,
([(z1,91) (x2,92) (@1, 01)], [(®1,y1) (@2, ¥2) (P2, P2)]) € pPip-

Analogously, it can be shown that

([(z1,91) (01, 01) (22, 92)], [(21, 91) (P2, P2) (T2, 92)]) € pip,
([(p1,81) (1, 91) (w2, 92)] , (92, P2) (21, 91) (T2, Y2)]) € pip-

Consider the mapping f (¢, ¢) = (¢, ¢') from R;, to K (A;, B,,) such that

P

A =¢.9|s, =9¢"

Clearly, the mapping f is a homomorphism of R;, to K (A;, B,). Now, let the ternary semigroup R;, be simple
and let at least one of the spaces 1 or €25 be connected. Suppose that €7 is disconnected but €25 is connected.
The elements (1, ¢1), (p2,¢2) can be found in R;, such that ((p1,¢1), (p2,¢2)) € pin (p1,p2 can map
to two disjoint balls E1, Es C Q5 and because of this ¢ (£) # @2 (£),£ € Q1). Besides, there are more than
one element in each class of p;,. Indeed, if ¢ is a homeomorphism of €; to the closed ball E; C 3 and g is a
homeomorphism of Q; to the closed ball E5 C 5 such that E1 N Ey =0, By, E5 C E3, where E3 is a closed ball
in 9, then the mapping
p(a),if a e A;,
x(e) = { g((oz))7 ifa ¢ A,

where A; is a component of €2, is a homomorphism of €y to Qs. Clearly, x # ¢ and x |4, = ¢ |a,. Therefore
((x,9), (¢, ®)) € pi1. Here ¢ denotes some homeomorphism of 5 into the interior of some n-element containd
in Q; and p;; is some congruence on R;; (By = Q3). Then it follows that f is a homomorphism from R;; onto
f(Ri1) C K (4;,9Q5), which contains more than one element. But f is not an isomorphism, which contradicts
the simplicity of R;;.
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TonosorusablK TYPJAEHAIPY/AiH, TePHAPJIbI >KaPThLJIANTOIITAPbI

TepHapibl >KapThLIAfTONI — OYJI ACCOIMATUBTI TEpHAPJIbI Olepaluschl bap 6ocemec »KUbIH. MakKalaHbIH
MAaKCATbl — aKBIPJIbI OJIIIEM €BKJINJ, KEeHICTIKTEPIHIH AIlNbIK YKUBIHTBIFBIH TOMEOMOP(THI KailTa Kypy
2KYITAPBIHBIH, TEPHAPJIBL KaPThIIAiTONTapbiMeH cunartay *koue JI.M. Imymkunniy akbIp/ibl emmeMai eB-
KJIUJT KeHICTiKTepiHiH roMeoMopdThl TYPJIEHIIPY/IiH, KapThLIaUTONTapblHA KATHICTHI Keibip HoTHXKeepin
TepiC KapThLIANTONTAPFA TapaTy.

Kiam cesdep: EBKMA n-KeHICTIK, TepHAPJIBI KAPTHLIARTOI, TOMEOMOPMTHI TYPJIEHIIPY.

. X. MypamaoB

Bauotcrnesocmounniti ynusepcumem, Huxocus, Typuus

TepHapHbIle MOJYTPYIITHI TOMOJOTUYECKNX ITpeodpa3oBaHMii

TeprapHas mosyrpymnma — 3TO HEIyCTOe MHOXKECTBO C ACCOIMATHBHOII TepHapHOU omnepanuein. [lens Ha-
CTOAIEN CTATPU — OXapaKTEepPU30BaTh OTKPHITHIE MHOYKECTBA KOHEYHOMEPHBIX €BKJIMIOBBIX IIPOCTPAHCTB
TePHAPHBIMH MOJIYTPYIIIAMA AP TOMEeOMOPMHBIX TPeodpa30BaAHMi U PACHPOCTPAHUTH HA TEPHAPHBIE II0-
JIyTPYIIIbI HEKOTOphIe pedynbraThl JI.M. [iymkuHa, Kacaromuecs: MOJIyTrpyIl roMeoMOP(MHBIX Tpeodpa3o-
BaHMIII KOHETHOMEDPHBIX €BKJINJOBBIX IIPOCTPAHCTB.

Kmouesvie ca06a: eBKINIOBO N-IMPOCTPAHCTBO, TEPHAPHAS MOIYTPYIINa, TOMEOMOPMHbIE TPEOOPAZOBAHUSI.
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Transmission dynamics and control strategies of COVID-19:
a modelling study

In this paper a mathematical model is proposed, which incorporates quarantine and hospitalization to
assess the community impact of social distancing and face mask among the susceptible population. The
model parameters are estimated and fitted to the model with the use of laboratory confirmed COVID-19
cases in Turkey from March 11 to October 10, 2020. The partial rank correlation coefficient is employed
to perform sensitivity analysis of the model, with basic reproduction number and infection attack rate
as response functions. Results from the sensitivity analysis reveal that the most essential parameters for
effective control of COVID-19 infection are recovery rate from quarantine individuals (d1), recovery rate
from hospitalized individuals (d4), and transmission rate (/). Some simulation results are obtained with
the aid of mesh plots with respect to the basic reproductive number as a function of two different biological
parameters randomly chosen from the model. Finally, numerical simulations on the dynamics of the model
highlighted that infections from the compartments of each state variables decreases with time which causes
an increase in susceptible individuals. This implies that avoiding contact with infected individuals by means
of adequate awareness of social distancing and wearing face mask are vital to prevent or reduce the spread
of COVID-19 infection.

Keywords: COVID-19, mathematical modelling, basic reproduction number, transmission dynamics, sensi-
tivity analysis.

Introduction

The coronavirus disease 2019 (COVID-19), previously recognized as "2019-nCoV", from the family of Coro-
naviridae, which includes the Middle East respiratory syndrome coronavirus (MERS-CoV) and the severe acute
respiratory syndrome coronavirus (SARS-CoV), is a lethal virus that mostly transmits via human-to-human
route [1-7]. The disease emerged from Wuhan, China, in late December 2019 and the outbreaks are still ongoing
worldwide [8-15]. The disease can be transmitted from person-to-person through droplets when breathing,
coughing or through contact with infected person [16]. During the early phase of the outbreak COVID-19
displayed comparable signs and symptoms with pneumonia, and spread throughout China and later to other
part of the world [11, 12]. As of October 17, 2020, there were more than 39 million cases including over 1 million
deaths of COVID-19 worldwide [1, 9, 11, 12]. Although COVID-19 displayed similar symptoms to MERS-CoV
and SARS-CoV, the severity appears not as high as these two coronaviruses [2—4, 9, 17].

The natural reservoir of COVID-19 and intermediate host that at first spread the virus to humans (zoonotic
transmission) have nevertheless now not been established [1, 5, 18]. Recent studies show that some animals such
as bats, hedgehogs, pangolins and snakes are suspected to spread the virus to humans [2, 5, 9, 12], after which
human-to-human transmissions continues through air droplets or contact with infected individual [2-4, 9, 18,
19]. The most common symptoms of COVID-19 include respiratory disorder, fever, common cold, cough and
pneumonia in severe cases [3, 4, 20].

*Corresponding author.
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92 Bulletin of the Karaganda University



Transmission dynamics and control strategies...

As stated in [21], the latency period of the COVID-19 is found to be between 2-11 days that ought to be
used in suggesting the time for quarantine of the exposed individual. Lately quite a few epidemiological modeling
researches [13, 18, 22, 23] estimated the basic reproduction ratio and analysed the patterns of the virus in the
early phase of the epidemic. Some of these latest researches [13, 18] found the estimated reproduction number to
be extensively larger than unity which is a bit higher than that of MERS and SARS [24, 25]. It by implication
shows that greater infections may additionally occur, which suggests that serious measures need to be taken
to downsize the unfold of the virus. Zhao et al. [25] revealed that there is a sturdy affiliation between journey
through train and the extend in the range of COVID-19 instances than journey via flight or road. Additionally,
it is highlighted that ailment prevention and management measures are to be preferred for travelers by means
of trains to curtail the COVID-19 spread. Also, Wu et al. [22] studied a meta-population compartmental model,
which estimates and forecasts the COVID-19 outbreak, and recommended that the novel coronavirus infection
can enlarge exponentially in more than one Chinese city with a lag time behind the Wuhan outbreak of about
1 to 14 days.

Motivated by some of these recent studies [13, 18, 22], in this paper a mathematical model is employed, which
incorporates quarantine and hospitalization to explore the dynamical behavior of the COVID-19 transmission,
and also to show the trends of its epidemics in order to notify policymakers and to suggest ways to curtail the
spread of the virus.

The rest of the paper is organized in the following way: firstly, the model formulation is provided and
the model analysis has been presented subsequently. Then, parameter estimation is presented. Afterwards,
sensitivity analysis and numerical simulations are performed. Lastly, concluding remarks are given.

Model formulation

A new mathematical model is proposed to monitor the transmission dynamics of the novel corona virus
(COVID-19). The total human population at time ¢, given by N(t), is divided into sub-populations contai-
ning susceptible individuals S(t), exposed individuals E(¢), individuals with mild infection I;(t), individuals
with severe infection I5(t), asymptomatic individuals under quarantine Q(¢), hospitalized individuals H(¢), and
recovered individuals R(t), such that N(t) = S(t) + E(t) + I (¢t) + Ix(t) +Q(t) + H(t) + R(t). The diagram of
the model is given in Figure 1 to present the transmission between compartments.
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Figure 1. Flow diagram of COVID-19 model.
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The system is constructed as follows:

B(rili+7ela+713Q+74H)

ds
-
dt 5,
dE
— =S —(0 05)F
dt S ( 1+ 2) )
d
X055 +090
t
dl;
e O2F 4 05Q — (62 +w + 04 + o) 11,
dl
d7t2 =041 — (P + s + 03) 15,
dH
E = wI1 + @IQ — (54 +043)H,
dR
P 01 Q + dodh + 9315 + 04 H,

where \ =

N
model (1) are explained in Table 1 and Table 2, respectively.

Interpretation of the State Variables Used in the Model (1)

Variables Descriptions

Total population of individuals

Susceptible individuals at the risk of having COVID-19 infection

Exposed individuals

Infected individuals with mild infection

Infected individuals with severe infection

Individuals under quarantine/isolated

Hospitalized individuals

0| | O 5| | | w| =

Recovered individuals

Interpretation of the State Parameters Used in the Model (1)

Parameters Descriptions

11 Recruitment rate
B8 Transmission rate

7i (1 =1,2,3,4) | Parameters for increase/decrease on infectiousness in individuals

0; (1 =1,2,3,4) Progression rates
w Hospitalization rate from I class
%) Hospitalization rate from s class

a; (1=1,2,3) Disease induced death rates
0; (1=1,2,3,4) Recovery rates

Model analysis

is the force of infection. The variables and parameters that are used in the

Table 1

Table 2

The model is non-negative with respect to the human population, each of its parameters and state variables
for each ¢ > 0. Thus, one can easily prove that for each non-negative initial prerequisite the state variables of
the model are non-negative.

Theorem 1. Let (S, E,Q, I, Is, H, R) be the solution to the system (1) with initial conditions S > 0, E > 0,
Q>0,1,>0,I,>0,H >0,R > 0. Then, the set

T={(SEQL,IL,HR) €R, /S+E+Q+1I+I,+H+R<II}

is invariant, positive, and all the solutions in Rl stay in T with respect to (1).
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Proof. Addition of all of the system (1) gives

dN
E =1I— 041[1 — 04212 — Oé3H,

so that, % < II, and integrating both sides gives Net < Ilet + c. By the use of theorem of Rota and Birkhoff
regarding differential inequalities [26], we can easily obtain 0 < N < II as ¢t — oo. Thus N approaches II as
t —» 00, and so the set of the solutions of the model (1) enters the region {Y = (S, E,Q, I, I>, H,R) € RT. /S >
>0,F>0,Q>01; >0,I, >0,H >0,R>0,N < II}, this guarantees the biological feasibility of the
model (1).

Hence, it is enough to consider the model’s dynamic in Y [27].
Stability of disease-free equilibrium

The model exhibit a unique disease-free equilibrium point "DFE", which is obtained by equating the right-
hand sides of (1) to zero, then

CO = (Sv EaQajleZaHa R) = (Ha070a07070a0)
and it can clearly be seen that C° attracts the region, so that
C*={(SE,Q LI, HR) €C*: E=Q=1 =T =H=R=0}.

The basic reproduction number Ry is computed using the next generation matrix (NGM) method, which
represents the number of secondary cases produced by an infected individual with COVID-19 infection throughout
his/her entire period of infection in an absolutely susceptible population [27-31], which is given as follows:

_ 5(7211+7312]\?FT4Q+75H) s, ] - (01 + 02)E -
0 —01E+ (61 +603)Q
f= 0 s v=| —02E—-03Q+ (2 +w+bs+a1)y |,
0 —0411 + (p + a2 + 03) I
L 0 | i —wlh —pla+ (6a+a3)H

0 B Bre PBrs Bra ] k1 0 0 0 0
0 0 0 0 0 —01 ko 0 0 0
F=]0 0 0 0 0 |,V=| -0y —b05 b 0o 0 |,
0 0 0 0 0 0 0 -6, by O
1 0 0 0 0 0 | 0 0 —w —p ks |

where k1 = (91 + 92), ko = (61 + 93), ks = ((54 + a3) by = ((52 +w+ 04+ 041), by = ((p+ Qo + 53) Then V1 is
obtained as

I Byt 0 0 0 0
6, -1
e ks 0 0 0
—1 92]62-‘1—9391 93 —1
V - b1 k}zkl bl k2 bl O O
04(02k2+0361) 0403 04 by~ L 0
boby koky bab ko bab1 2
(02k240301)(wWbat+p0s)  O3(wbatpbs) wbatpby © fa L

L kl k2b1 bgkg b2b1 k2k3 b2b1 ks b2k3 3 =

Thus, the basic reproduction number Ry = p(FV ~1) equals to
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(((blﬂn —+ ﬂTQQg) 91 —+ 67’2]{3292) kg + w 67’4 (02]132 —+ 9301)) b2 —+ 94 (ﬂ’l’4§0 =+ ﬂTgkg) (02]472 —+ 9391)
k1koksbi by

with Sy = N and p symbolizing the next generation matrix’s spectral radius. Following [27], relying on the local
stability of the disease-free equilibrium of the model (1), the theorem below is arrived.

Theorem 2. For the model (1) the disease-free equilibrium is locally asymptotically stable whenever Ry < 1
and unstable if Ry > 1.

Proof. The Jacobian matrix evaluated at C°, denoted by Jy is

Ry =

)

—-A 0 0 0 0 0 0

A =01 — 6 0 0 0 0 0

0 01 —01 — 03 0 0 0 0

J(CO) = 0 92 93 —(52 — W — 04 — 0 0 0
0 0 0 94 —®p — Qg — 53 0 0

0 0 0 w "2} 764 — Q3 0

0 0 01 02 03 04 0

Then, the eigenvalues of this matrix are 0, —0; — 0, —01 — 03, —04 — a3, —p — ap — 03, —92 —w — 04 — a1, and
—A, which are obtained by deleting the first row and the first column of Jy as well as its last row and the last
column. Thus, the DFE, CY is locally asymptotically stable if Ry < 1 and unstable if Ry > 1. Hence, the proof
is complete.

Parameter estimation

This section explains the fitting of parameters involved in the proposed COVID-19 model based upon the
real cases of the pandemic throughout Turkey. Daily cases of the pandemic are taken between March 11-October
10, 2020, while preparing this research paper. For initial conditions the total population of Turkey is noted to
be N(0) = 83.3 x 10°, the initial exposed and quarantined population is taken as E(0) = Q(0) = 3 x 10°
and this helped us to determine rest of the initial values for the state variables using the relation
N(0) = 5(0) + E(0) + Q(0) + I, (0) + I3(0) + H(0) + R(0). In this connection, S(0) = 78338132, I;(0) = 300,
I5(0) = 470, H(0) = 150, and R(0) = 15 are obtained. There are 19 biological parameters which have been
estimated with the aid of least-square fitting method leading to produce a best fit of the COVID-19 model’s
solution to the real pandemic cases as depicted in the Figure 2. By reducing the average absolute relative error
between the real COVID-19 cases and the solution of the model, the best values of the biological parameters
are obtained. The objective function yields to relatively small error having the value 9.8748 x 10~2. The Figure
2 shows the real COVID-19 cases by red solid squares whereas the best fitted curve of the model is shown by
the black solid line. The biological parameters included in the model are listed in Table 3 along with their best
estimated values obtained via least-squares technique. These parameters have finally produced the value of the
basic reproduction number equivalent to Ry = 2.82 for the real COVID-19 cases in Turkey from March 11 to
October 10, 2020.
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Figure 2. Data fitting for the real COVID-19 cases in Turkey from March 11 to October 10, 2020
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Sensitivity analysis

Baseline Values of the Parameters Used in (1)

Table 3

Parameter Value Units/Remarks Sources
N(0) Turkey Constant [32]
S(0) 0.95 x N(0) Constant Assumed

II 9.9991 Day ' Fitted
8 0.641 Day* Assumed
1 0.647 Dauyf1 Assumed
To 0.456 Day ' Assumed
T3 0.567 Dayf1 Assumed
T4 0.334 Dauyf1 Assumed
a1 0.0378 Day ' Fitted
s 0.0.0324 Day* Fitted
a3 0.0289 Day ' Fitted
) 0.00213 Day ' Estimated
by [32]
w 0.00004 Day ' Estimated
by [32]
5 0.24 Day ! Fitted
5o 0.133 Day~* Fitted
33 0.00389 Day ! Fitted
04 0.00527 Day ! Fitted
6, 0.632 Day * Fitted
02 0.0034 Day ! Fitted
05 0.0023 Day ! Fitted
0, 0.00512 Day * Fitted

Since parameters of an epidemiological system are either evaluated or fitted along these lines are convey-
ing some vulnerability with respect to their qualities utilized for reaching conclusions about the fundamental
pestilence. Consequently, it is essential to survey the singular effects of every parameter on the dynamics
of the pestilence, subsequently finding the parameters with the most significant impact towards decrease or
diminishing the scourge. In the current study we employed a partial rank correlation coefficients (PRCCs) of
the basic reproduction number and attack rate to investigate the most significant parameters for curbing the
dissemination of COVID-19 in a community. Here, the most effective parameters are recovery rate from isolated
people &1, recovery rate from hospitalized people 4, and transmission rate (5) [33-37].

Furthermore, since the basic reproductive number Ry is the most important quantity to comprehend the
extent for the spread of an epidemic, Ry has been investigated by varying different kinds of biological parameters
of the proposed COVID-19 model. Using mesh plot and the parameter values in Table 3, some numerical
results are obtained. The results as depicted in Figure 4 showed a significant increase with the variation in
the progression rates of asymptomatic individuals under quarantine to the mild infection 63 and that of mild
infection individuals to the severe infection 64, while Ry decreases/increases with the decreasing/increasing
value of transmission rate 8 and the rate of increase of infectiousness in human 74 and increases with decrease
of recovery rates from isolated people §1, mild infection individuals do, severe infection individuals d3, and
hospitalized individuals d4.
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Figure 3. The partial rank correlation coefficient of the basic reproduction number Ry with respect to model
parameters. The dots are the estimated correlation and the bars represent the 95% confidence interval.
The parameter values used for sensitivity analysis are summarised in Table 3

Numerical stmulations
This is the position in which we got a deep insight into the complex behavior of the model. The present section
provided the model’s numerical simulations while using the biological parameters as previously mentioned. The

Euler technique is used to get the solution of the proposed model and to obtain the graphical results based on
parameters that are taken in Table 3.

98 Bulletin of the Karaganda University



Transmission dynamics and control strategies...

R, value interms of §, and 3, R, value in'erms of 6, and 4,
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Figure 4. Mesh grid plots of the basic reproduction number in terms of the controllable
parameters with basic reproduction number Ry as a response function

In the absence of an exact solution for the proposed model we need to establish an approximate solutions
to show the behaviour of the model. With this purpose we employ one of the effective numerical scheme called
Euler method. The method is as follows: assume that a well-posed initial-value condition is given by

d—i = f(t,y), a <t <band y(a) = x.
A sequence of approximation point (¢, w) = (t,y(t)) is established by Euler method to the exact solutions of
ODE by t;+1 =t; + h and wiy1 = w; + hf(t;,w;),i=0,1,...,N — 1, and ¢, = a,wo = a, h = Ta

The following figures are obtained by using the MAT LAB version R2020a and the parameter values from
Table 3. From the Figure 5 it is observed that there is a significant decrease in both the compartments of
exposed individuals, isolated /quarantined individuals, infected individuals with mild infection, individuals with
severe infections and hospitalized individuals while the susceptible and recovery compartments increases. These
signified that the estimated parameter values taking from Table 3 gives the required results in controlling the
spread of COVID-19 infection. The results depicted in Figures 6, 7, 8, and 9 with the decreasing/increasing
values of A\ (force of infection) showed that adequate awareness of social distancing and wearing of face masks
in most vulnerable communities play significant role in the spread of the COVID-19 infection.
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Figure 5. Dynamical behavior of each state variables of the proposed
model (1) while taking parameters’ values from the Table 3
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Figure 7. (a) Profile of S (susceptible individuals) and (b) profile of E (exposed individuals), with
decreasing values of A (force of infection).
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Figure 8. (a) Profile of @ (quarantined individuals) and (b) profile of H
(hospitalized individuals), with increasing values of A\ (force of infection)
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Figure 9. Profile of R (recovered individuals) with increasing values of A (force of infection).
Conclusion

In this paper a mathematical model is proposed, which incorporates quarantine and hospitalization to study
the dynamical behavior of the COVID-19 transmission. The parameters of the model are estimated and fitted to
the model with the use of laboratory confirmed COVID-19 data cases of Turkey from March 11 to October 10,
2020, using least-square fitting method. The threshold quantity known as basic reproduction number is obtained
by using the next generation matrix techniques. Some simulation results are obtained with the aid of mesh plots
for the reproductive number as a function of two different biological parameters. Using partial rank correlation
coefficients of the basic reproduction number and infection attack rate as a response functions, we revealed the
most essential parameters for effectively controlling the COVID-19 infection. It is found that the epidemiological
parameters that should be given emphasis in controlling the spread of COVID-19 are the recovery rate from
quarantine individuals 7, recovery rate from hospitalized individuals d, and transmission rate (§). Finally,
numerical simulations on the dynamics of the model showed that the infections in the compartments of each
state variables decreases with time which causes an increase in susceptible individuals. This implies that avoiding
contact with infected individuals by means of adequate awareness of social distancing and wearing of face mask
are vital to prevent or reduce the spread of COVID-19 infection.

Furthermore, it should also be emphasized that the present research study will be strengthened in future
research by analyzing and investigating the modern fractional operators and optimal control strategies. To the
unknown characters and characteristics of this pandemic of COVID-19 this is a significant and decisive step
remaining to be accomplished.
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V.T. Mycradal2, 9. Xunxan', A. IOcyd??, C. Kypemm?,
T. Cammpaar!, C.M. Myxamman!, B. Kaiimakamsaze!, H. Tok6yayT!

Y Taay Ivevic yrusepcumems, Hukocua, Typrus;
2 ITyue pedepanrdv. yrusepcumemi, Huzepua;
3 Bupynu ynusepcumemi, Cmambya, Typrua;
4 Mexpan unorcenepair-mexnonozussvr ynueepcumemi, Jocamwopo, Iawicman;

COVID-19-ap1H 6epity nuHaMuUKachbl MEH 0aKbLJIay CTPATEruscChl:

104

MOJIEJIbIl 3epTTEey

Byt 3epTTeyiie XaJbIKTBIH 0Cal TONTAPBIHBIH MAaCKAHBI TaFybl XKOHE DJIEYMETTIK apa KaIllbIKTBIKThI CAKTa~
VIBIH ocepin Garajay, MallMeHTTEP/l KapaHTHH MEH aypyXaHara »KaTKbI3Y/bl KAMTUTHIH MaTEMATHKAJIBIK,
Mozenb yeeabutraH. Mogens napamerpiepi Typrusma 2020 xputasiH 11 Hayperssinan 10 kazaHbHA JeiiH
3eprxaHaJblk pacraaran COVID-2019 xarmaiiyiapbiH KOJIJaHa OTBIPBIN OaFaJlaHIbl XKoHe MOJebre GeitiM-
nenmi. [lopexkeslik KOppesIsiiusiHBIH, inliHapa KO3(MMUIIMEHTI MOEb/IiH Ce3iMTaJIIBIFbIH Heri3ri keber ca-
HBIMEH JKOHE 2Kayall 6epy (YHKIUICHI peTiHge WHEMEKIUS KbUIIaM/IBIFBIMEH TAJIAY YIMH KOJIIAHBLIIbL.
CesimTanabikTe! Taanay Hortmkegrepi COVID-19 urdeknusachiH THiMIi GaKbLIAYIbIH MAHBI3IbI TapaMeTp-
Jiepl KapaHTHHEr aJaMIap/AblH KAJIbIHA KeJly XKbUIIaMIBIEFDL (01), aypyXaHara YKaTKbI3bLIFAH aJaMiap-
JIBIH, KAJIIIBIHA KEJIYy KBUIIAMIBIFBL (04) 2KOHE YKYKINAHBIH 6epiny KbuiaaMaersl (§) exenin kepcerti. Mo-
JeNbAEYIiH Keibip HOTHKeJIepi MOJIeJIb/IeH Ke3/IeMCOK TaHAJFaH €Ki TYPJI OHOJIOTHSIJIBIK, TapaMeTPJIep/IiH,
(DYHKIUSICHI PETIHJIE HETI3T1 PempoyKTUBTI CaHFa KATBICTHI TOPJIbI IPpaUKTEep apKbLIbI aablHA bl. COHBIH-
3, MOJIEJIb IMHAMUKACHIH CAHIBIK, MOJE/BIEY 9P affHbIMAJbI OesiMaepingeri nHMEKIuIIap CaHbl yaKbIT
oTe KeJie a3aiblll, aypyFa MaJIbIKKaH aJaMIapablH KeOeliHe dKeleTiHiH KopceTTi. Byt ingeT KyKThipran
aJaMIap/IaH ayJIak, 0oLy, 9JIEyMETTIK apaKAIIBIKTBIKTHI CAKTAaY, MACKa KHUIO YKOHE T.0. TaJanTapabl OPbIHIAY
COVID-19 unbeKIUACHIHBIH, TapayblH O0JIIbIPMay HeMece a3aiiTy YIIiH eTe MaHbI3bl eKeHiH 6laipesi.

Kiam cosdep: COVID-19, maTeMaTUKAIBIK, MOJIE/TBIEY, 0A3aIbIK, PEPOLYKTUBTI CaH, 6epily IMHAMUKACHI,
Ce3IMTAJIBIKTHI TaJIzay.
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V.T. Mycradal 2, 3. Xumxan', A. IOcyd?3, C. Kypemmn?,
T. Cammmmar!, C.M. Myxammazn!, B. Kaiimakamsaze!, H. Tok6ymyT!

L Bausienesocmowrnt ynusepcumem, Huxocus, Typuus;
2 Pedeparvroi yrusepcumem dyue, Huzepus;
3 Vnusepcumem Bupywu, Cmambyas, Typyua;
4 Mexpancrutl yrusepcumem unoscerepuy, u mexnoroeud, Jocamuwopo, Hakucmar

Jnaamuka mniepejauu u crparerun kourposis COVID-19:
MO/IeJTbHO€e MCCJieJIOBaHIe

B crarbe npemioxkena mMareMarmdeckasi MOJIEIb, KOTOPasl BKJIIOYAET KAPDAHTUH U TOCHUTAJIU3AINIO [TAIlV-
€HTOB, ITOODI OIEHUTDH BJIMSIHUE COIHAIBLHOTO JUCTAHIIMPOBAHUS U HOIIIEHNE MACKH CPE YA3BAMBIX I'DYIII
nacesenus. [lapamerpsr Mo/Ie/IM OIEHNBAINCD U MTOATOHSIJINCH K MOJEIH C HUCIIOJIb30BaHUEM JIaOOPATOPHO
noaTBepkaeHHbIX ciyuaeB COVID-19 B Typuuu ¢ 11 mapra mo 10 okTsiopst 2020 r. HacTuuubit Koadduim-
€HT PAHrOBOW KOPPEJISIIUY KUCIOIH30BAH /IS IPOBEICHUS AHAIN3a TyBCTBUTEIBHOCTH MOZEIN C 6A30BLIM
9HCJIOM PENPOIYKIIMA U CKOPOCTH 3aparKeHusl Kak (MYHKIUN OTBeTa. Pe3ysbTaThl aHAan3a IyBCTBUTEIIb-
HOCTH IIOKa3bIBAIOT, YTO HauboJiee BarXKHBIMH IapaMerpamu s 3O(EeKTUBHOIO KOHTPOJIS 3a MHMEKIHen
COVID-19 gBigroTCs CKOPOCTH BBI3ZOPOBJICHHS! JINT, HAXOAANMXCA HA KapaHTuae (J1), CKOPOCTH BBI3IO-
POBJIEHUSI TOCIUTAIM3UPOBAHHBIX Jinll (04) 1 cKopocThb nepenaun uadeknun (3). Hekoropbie pesyabraTs
MO/IEJINPOBAHUS ITOJIYY€HBI C ITOMOIBIO CETOYHBIX I'PA(UKOB OTHOCHTEIBHO OCHOBHOI'O PENPO/LYKTUBHOIO
qnciaa Kak QYyHKIUY ABYX Pa3/IMIHbIX OMOJIOrMYeCKUX IapaMeTPOB, CJIydIaiiHO BRIOPAHHDLIX U3 Mojesn. Ha-
KOHeIl, YHUCJIEHHOe MOJIEJIMPOBAHUE NUMHAMUKH MOJEIN IIOKA3asI0, YTO KOJUIEeCTBO MHMEKINNl U3 OTIEIOB
Ka’k/J10# [I€PEeMEHHOM COCTOSIHNSI YMEHBIIAETCS CO BPEMEHEM, YTO BLI3BIBAET YBEJIMYEHUE UHCJIA BOCIIPUMM-
9UBBIX JIIOJIEH. DTO 03HAYAET, UTO n3beraHne KOHTAKTOB C MH(MPUIIMPOBAHHBIMHA JIFOIbBMU ITOCPEICTBOM aJIe-
KBATHOT'O TTOHMMAHUSI COIMAIBHOIO AVCTAHIIMPOBAHUS W HOIIEHUs JINIIEBBIX MACOK >KU3HEHHO BaXKHO IIJIst
[IPEJIOTBPAIIEHNs] UM yMEeHbIeHus: pacupocrpanenns: nadexnuun COVID-19.

Karoueswie caosa: COVID-19, maTemarndeckoe MOJIeTMPOBaHIEe, 6230BOE PEIPOLYKTUBHOE UCIIO, [TAHAMU-
Ka Iepeatn, aHAJIN3 1yBCTBUTEIbHOCTH.
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Modelling the effect of horizontal and vertical transmissions
of HIV infection with efficient control strategies

In this paper a mathematical model is developed to study the transmission dynamics of HIV infection
and the effect of horizontal and vertical transmission in Turkey is analyzed. Model is fitted with the use
of confirmed HIV cases of both vertical and horizontal transmission from 2011 to 2018. Using the next
generation operator the basic reproduction number of the model is obtained, which shows whether the
disease persists or dies out in time. Further analysis shows that the model is locally asymptotically stable
when the basic reproduction number Ro < 1 and is unstable when R > 1. The most sensitive parameters
efficient for the control of the infection are obtained using forward normalized sensitivity index. Lastly,
the results are obtained with the aid of mesh and contour plots, which show that decreasing the values of
transmission rate diseases induced mortality rates and progression rates play a significant role in controlling
the spread of HIV transmission.

Keywords: HIV, mathematical modelling, control strategies, sensitivity analysis.

Introduction

Human Immune-deficiency Virus (HIV) reduces or destroys the human defense mechanisms, also known as
the immune system, preventing fighting with infections or any other diseases and the progression of this virus
occurres as a result of infecting the CD4+ T-cells of the organism [1, 2|. The number of these cells mainly
shows how active and functioning the immune system is [3, 4]. The number of CD4+ T-cells must be in the
range of 800 to 1200 cells/mm? for a healthy person. If this number of CD4+ T-cells goes down below 200
cells/mm? for any HIV patient, this patient is then considered to be an AIDS patient [5]. In other words, HIV
is the virus that causes AIDS (Acquired Immune Deficiency Syndrome) which is the most advanced phase of
the HIV infection [6].

HIV can be transmitted through direct contact with contaminated blood products, such as syringes or
needles, contaminated transfusion, unprotected sexual intercourse, and breastfeeding or as a vertical transmi-
ssion during birth [7]. However, not all HIV cases necessarily result in AIDS infection. It is clinically confirmed
that an HIV patient may live a healthy life without progressing to severe stage (AIDS) [8].

HIV/AIDS was first discovered in the United States of America in the early 1980s in two homosexual men
and it continues to progress with time [9]. 2003 was the year with the greatest number increase in an epidemic,
where approximately 5 million additional infected individuals were discovered, which raised the global prevalence
of the virus to 38 million people living with HIV/AIDS, and in the same year approximately 3 million patients
passed away [10]. This virus happened to be the death cause of almost 25 million people as of 2005 and became
one of the most devastative epidemics in history [11]. According to the statistics taken from the World Health
Organization (WHO), in 2013 2.1 million people were infected and approximately 1.5 million people died because
of AIDS [12]. Furthermore, in 2014 it was reported that the number of people that were living with HIV was
35 million [6].

According to the data taken from WHO, 2.3 million children were living with HIV and about 380,000 children
passed away because of HIV in 2005 and approximately 2.1 million children were living with HIV/AIDS in 2007.
In 2015, with 150000 newly infected children, 1.8 million children were living with HIV according to the UNAIDS
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and 110000 children died because of AIDS-related diseases [13]. This data shows that AIDS has become one of
the major death causes. Each day about 1500 children get newly infected [14].

Several mathematical models have been developed and used to gain insight into the transmission dynamics
of HIV in human population (see, for instance, |2, 6, 11, 13, 15| and some of the references therein). However,
none of these studied the dynamics of HIV transmission with effect of both vertical and horizontal transmission.
The purpose of the current study is to design and analyse a new realistic model (which extends some of the
aforementioned studies in the literature) for HIV transmission dynamics.

This paper is organized as follows. The epidemic model is developed and analyzed in sections 2 and 3,
respectively. Model fitting is presented in section 4. Section 5 contains sensitivity analysis and numerical si-
mulation while section 6 presents the conclusions.

Model formulation

In this section a mathematical model is proposed to monitor the dynamics of both vertical and horizontal
transmissions of HIV infections at time ¢. The total population N(¢) is divided into four different classes;
susceptible adults, S(t), infected adults, I(t), newborn children with no HIV infection, C(¢), and newborn
children with HIV infection, I.(t). That is, N(t) = S(t) + I(t) + C(t) + I.(t). Flow diagram of the model is

presented in Fig. 1.
L
n —=is§
k

ﬁij
C

|

Figure 1. Flow diagram of the model.

By using the constructed model, system of ODE’s is obtained as

ds

& M-S —

dl

E =)\S — (,LL+O£]_ +62+63)I,
_— = I —

7 015 + 92 kC,

dl.

ar = 03] — (k‘ + Ozg)[c,

where \ = % is the force of infection.

Table 1

Interpretation of the State Variables Used in the Model (1).

Variables Descriptions
N Total human population
S Susceptible adults (both male and female)
I Infected adults with HIV (both male and female)
C Newborn children
I. Newborn children with HIV infection
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Table 2

Interpretation of the State Parameters Used in the Model (1).

Parameters Descriptions

¢ Recruitment rate of both adults and new born children
B Transmission or successful contact rate
e %} HIV induced mortality rate of adults
(e % HIV induced mortality rate of newborn children
I Natural death for adults
k Natural death for newborn children

0; (1=1,2,3) Progression rates

Fundamental properties of the model

This section will highlight the quantitative analysis of HIV model (1) and briefly explain the relationship
between the horizontal and vertical transmission dynamics. The persistence or elimination of HIV, which is
determined by the threshold parameters, are studied. Thus, at first, the positivity and boundedness of the
solutions of the model are verified for ¢ > 0, and then the invariant region is studied.

Positivity of the solutions and boundedness

In this study to say that the model (1) is epidemiologically meaningful we need to verify the positivity of
all the state variables of the model at ¢ > 0. This means that every solution of the system (1) together with the
positive initial conditions shall remain positive at any time ¢ > 0.

Theorem 1. Suppose that we have initial data S(0) > 0, I(0) > 0, C(0) > 0, I.(0) > 0. Then, the solutions
of the model (S, 1, C,I.) are positive for all time ¢ > 0.

Proof. It can easily be seen from the first equation of system (1) that

B 1A + 61 + 1S

dt
> —[A(t) + 61 + p]S(1).
Applying integrating factor method to the obtained inequality it is found that
S(t) > Soef fot(/\(u)Jr51+u)du > 0.

By using the equations given in (1) and applying the same method to the equations it can be easily seen that
I(t) > 0, C(t) > 0 and 1.(t) > 0 whenever ¢ > 0.

The invariant region

To obtain the region the following theorem is considered.
Theorem 2. The solutions of the system (1) are said to be feasible for all ¢ > 0 whenever they enter the
invariant region 2. That is,

I
Q{(S,I,C,Ic)eRi:S+I+C+IC§M}, where N =S + I+ C + L.

Proof. Let Q = {(S,I, C, 1) € Ri S4+I1+C+ 1. < %} be the solutions of the system and assume that
initial conditions are all non-negative. Then, the sum of equations of the system (1) gives
dN
e =I—uS — (p+a1)l — kC — (k+ a9)1..
From the above equation it is clear that % < II and integrating both sides it is obtained that Ne! < Ile! + ¢,
for some arbitrary constant ¢. With the use of Rota and Birkhoff [16] it can be seen that 0 < N < Iast — oo,
This reveals that all the solutions together with the initial conditions in 2 stay inside the region for all
cases when t > 0 (i.e., the set happen to be positively invariant). It is consequently adequate enough to study
the dynamics of the generated flow by system (1) within the region 2, which guarantees the mathematical and
epidemiological well-posedness of the model [2,15,17].
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Disease-free equilibrium (DFE) and local stability

Let x° = (S0, o, Co,I.0) be the disease-free equilibrium (DFE) of the model (1). DFE exists when the
disease dies out. So, at this point there is no infection and hence, no infected individuals, i.e., Iy(t) = I.o(t) = 0.
Here, it is enough to show x° attraction on the region

XO = {(50110700710,0) c XO : I[) =lco= 0} .

Sp and Cj are obtained by equating the right hand side of the first and third equations in the system (1), and pluggi-
ng 0 instead of Iy and I, . Therefore,

I1
S =
5 +u
and
Ch — 5150 o H51
Tk k(O )

The DFE point of the constructed system is

II 1164
0
= ) I ) ) IC *
X (51+N k(o1 + ) ’O>
Using the next generation matrix method [18], the basic reproduction number of the HIV model (1) (denoted
by Ro = p(FV 1), p is the spectral radius of the next generation matrix, F'V~1) is obtained, where F' stands

for the matrix of new infection terms and V' stands for the matrix containing the remaining transition terms
of the model. Thus,

%So (ar + 02 + 63+ p)l
f= 0 , U= —0oI + kC ,
0 —031 + (ag + k‘)[c
8 0 0 a;+do+d3+p 0 0
F=|0 00|, v= 5y ko0
0 0 O —53 0 k + oo
Then, V! is obtained as
V= Wsm k! 0 and FV~! = 0 0 0
5 -1
(041+52+533-H)(042+k’) 0 (a2 + k) 0 0 0
Thus, Ro = p(FV 1) the basic reproduction number is given by
p

ap+ 02 +03+p

Endemic equilibrium

The endemic equilibrium (EE) of the model exists only when I # 0, C # 0, and I, # 0. This means
that there is a persistence of the HIV infection in the populace, and it is denoted by x* = (S*,I*,C*, I})
2 (S*,I*,C*,IF) > 0. Thus, the endemic equilibrium point is derived by solving the system (1) in terms of
() = B+, where ()) is the force of infection. Then,

0

T XN+ pAtor

*

*

AT
(p+034+ 0+ a) A+ p+6)’
7 (Ada + o1 + a1 + 6102 + 0103)
kE(p+03+d0+a)A+p+01)
7 OsA T
© (utds+dtar)(k+ar) A+ p+d1)

Ccr =
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Model fitting

This section explains the fitting of parameters involved in the proposed HIV model based upon the real
cases of HIV (CD4+) in Turkey for both vertical and horizontal cases. Yearly cases are taken from 2011 to 2018
while preparing this research paper. The objective function yields to relatively small error value 9 * 1076. The
Fig. 2 shows the real HIV (CD+4) cases by black cycles whereas the best fitted curve of the model is shown by
the black solid line. The biological parameters included in the model are listed in Table 3 along with their best
estimated values obtained via least-squares technique. These parameters have finally produced the value of the
basic reproduction number equivalent to Ry = 1.23.

Table 3

Values of the Parameters of the Proposed HIV Model

Parameter Values Source
11 35 Estimated
8 0.0071 Estimated
a1 0.000129 Fitted
Qa2 0.000234 Fitted
m 0.0052 2]
k 0.0092 [13]
o1 0.00011 Fitted
d2 0.00000011 Fitted
03 0.00044 Fitted

1500.00]

1000.00+

CD4Count

500.00

oo T T T T T
0o S50.00 100.00 150.00 200.00 250.00

Days

Figure 2. Data fitting for the real cases of TB (CD4+)
in Turkey for both vertical and horizontal cases from 2011 to 2018

Sensitivity analysis

In this section the local sensitivity analysis method is used to outline the sensitivity of the basic reproduction
number R, to certain key associated parameters of the proposed HIV model. The basic reproduction number
was obtained and described as a parameter-dependent output of the model and the severity indicator of the
HIV infection, the main way of curtailing and spreading the HIV infection in the population is to lower this
reproduction number below unity.

Therefore it became crucially important to investigate the relationship between the parameters of the model
and the basic reproduction number. Our main concern here is to explain the sensitivity of the basic reproduction
number with respect to the significant parameters used in the model. The set of input parameters relative to
Ro is

o ={B,1t,01,02,03,01}.

Typically, if a model has different parameters, variations in parameters might not always influence the
outcome due to variance in the sensitivity of the parameters, those with positive sign are considered as highly
and proportionally sensitive for increasing the value of Ry while those with negative sign are sensitive for the
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decrease of R value and the other category are neutrally sensitive (with zero relative sensitivity) [19,20]. We
denote by foo the normalized local sensitivity index of the output Ry with respect to a parameter (7), where
v € o, and it is defined as [21-23]
\Ij"/ == QRO = liaRO = 7aln(RO) .
T Ry 0y Oln(y)
Using the above definition, the following indices shown in Table 4 are computed for the output R with respect
to every parameter presented in Table 4.

Table 4

Forward Normalized Sensitivity Indices

Parameter | Elasticity Indices | Values of the Elasticity Indices
B Qe 1.000
u Qfo -0.002
5 Q0 -0.285
53 Qg -0.585
ai Qfo -0.109

Numerical stmulation

Some numerical simulation results were obtained with the use of mesh and contour plots for the reproductive
number as a function of two different parameters chosen from the Table 3. The results given in Fig. 3, 4, and 5
show that the value of R increases when the values of transmission rates increases.

Ro value in terms of 3 and 61 RO value in terms of 3 and 61
1 22
0.9 1 2
0.8 1 1.8
RS &S L 05 & o> I o S 16
0.6 1 1.4
" 05 1 12
0.4 1
0.3 1 0.8
0.2 | 1 0.6
oifme & ~ k& > & o I 0.4
. R 1 ; ;
61 o] 0 /f o} 0.2 0.4 /j 0.6 0.8 1

Figure 3. Profile of reproductive number in terms of transmission rate 8 and progression rate ;.

RO value in terms of g and n Ro value in terms of g and u
1 T T T T 18
0.9 16
0.8 f
14
0782 & & o~ s IS & %
06 1 12
o
a4 =05 1
0.4 08
0.3 A
0.6
0.2
bo o o I I I I 04
01 o - 9 = > % -
. LT L
0 0 o] 0.2 0.4 0.6 0.8 1
’13

o

8
Figure 4. Profile of reproductive number in terms of transmission rate S and natural death rate for adults p.
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R0 value in terms of k and 3

Figure 5. Profile of reproductive number in terms of transmission rate /3
and natural death rate for newborn children k.

900

800

Population
N w Iy a [«2] ~
o o o o o o
o o o o o o

=
o
o

o

Figure 6. Profile of the total population dynamics with the respect to the parameter values in Table 2.

Human Immune-deficiency Virus (HIV) reduces or destroys the human defense mechanisms known as the
immune system to prevent it fighting infections and any other diseases. In this study a mathematical model
is developed to study the transmission dynamics of HIV infection and the effect of horizontal and vertical
transmission in Turkey is analyzed. The model is fitted with the use of confirmed HIV cases of both vertical and
horizontal transmission from 2011 to 2018. Using the next generation matrix method, the basic reproduction
number of the model is obtained, which shows whether disease persists or dies out in time.

Further analysis showed that the model is locally asymptotically stable when the basic reproduction number
Ro < 1 and is unstable when Rg > 1. The most sensitive parameters efficient for the control of the infection
are obtained using forward normalized sensitivity index. The results obtained with the aid of mesh and contour
plots showed that decreasing the values of transmission rate, disease induced mortality rates and progression
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rates play a significant role in controlling the spread of HIV transmission.

1 Ogunlaran, O.M., & Noutschie, S.C.O. (2016). Mathematical model for an effective management of HIV
infection. BioMed Research International, 2016(4). DOI: 10.1155/2016/4217548.
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L Tasy Hlviewvic yrusepcumems, Hukocua, Typrus;
2 ITyue edepandv yrusepcumemi, Huzepua

Tuimai 6akpliay cTpaTerusjapbIHbIH KOMeriMeH
ANTB-undeknnsgacbIHbIH, KOJIJIEHEH, YKOHEe
TiK Oepiily ocepiH MoeabJey

Makanana AVTB-undeknuscbHbIE Tapaay IMHAMUKACHIH 3epTTEY YIIIH MATEMATHKAJIBIK, MOJIEIb d31pJIeH-
i xxone Typxusijia nHMEKIMSIHBIH KOJIJIEHEH »KoHe TikK 6epinyinin ocepi Tasmanasl. Mojgens 2011 kbuigan
6acran 2018 xbutra geitin AUTB-ubiH, TiK koHe KeJijieHeH, Gepliyiniy pacTajral KarJaiJapbiH Haiia-
JlaHa OTBIPBIN, 3eprTesreH. Keseci OybIH 0mepaTOpPLIHBIH KOMETIMEH aypy/blH CAKTAJATHIHIABIFBIH HEMeCce
YaKbIT ©Te KeJjle YKOFaJATBbIHBIH KOPCETeTiH MOJIEJIb/IiH Heri3ri pernpo/lyKTUBTI HOMIpi aJibiHabl. KochbiM-
ma Tajjay KepceTKeHel, 6a3a/blK, PEMPOAYKTUBTI caHbIHAa Ro < 1 Momesni JIOKaIIbl aCUMITOTHKAJIBIK,
TYPaKTHI 2koHe R > 1 Ke3inme Typakcod. Undeknusamen Kypecy VImiH THIMIL eH ce3iMTas mapaMmeTpiep
TiKeJiell KAJIbIIKA KeJITIPpUIreH Cce3iMTaJIIbIK, WHAEKCIH KOJIJaHy apKbLIbl aJblHAabl. TOPJIbl Y)KOHE KOHTYP-
JIBIK, TpadUKTEDP apKBLIbI AJBIHFAH HOTUXKeJIep Oeplly *KbLITAMIBIFBIHBIH, aypPyIblH, O/TIM-2KITIMHIH KoHE
nporpeccust Kopcerkimrepinig Tomenaeyi AV TB-abig Tapanybin 6akbliayaa MAHBI3ABI POJI ATKAPATHIHBIH
KepceTesi.

Kiam cosdep: AU'TB, maTeMaTuKabIK MOJEIbIEY, OACKapy CTPATErUsIaphbl, CE3IMTAIBIKTHI TAJIAY.

V.T. Mycracdal 2, T. Cammgar!, 9. Xumxan', B. Kaitmakamsae!,
C.M. Myxammaz!, H. Tox6ymyT!*

! Bauotcnesocmounwiti ynusepcumem, Huxocus, Typuus;
o gl )
2 Pedeparvroti yrusepcumem dyue, Huzepus

MopemupoBaHue 3¢dpdeKkTa TOPU30HTAIBHON M BEepPTUKAJIbHOI
nepegaun BUY-nadeknuu ¢ momonibo 3¢ eKTuBHBIX
CTpaTeruii KOHTPOJid

B crarpe paspaborana maTemaTnyueckas MOMAENb MJjs n3ydeHns auHamukn nepenadn BUY-undekrnun, u
[IPOAHAJIN3UPOBAHO BJIMsIHIE MOPU30OHTAJILHONW M BepTUKAJbHON nepemaun uHdekimu B Typrwm. Mosens
aJAITHPOBAHA C UCIOJIH30BAHUEM IMOATBEPXKIEHHBIX CIy9YaeB KaK BEPTUKAJILHOM, TaK M TOPU30HTAJIBLHOMN
nepegaaun BUY ¢ 2011 mo 2018 rogasi. C moMomipio oneparopa CJIeIyIOero MOKOJIEeHUs MMoJIydaercs 6a-
30BBIIl PENPOIYKTUBHBIA HOMED MOJIEIN, KOTOPBIA IOKAa3aJl, COXPAHSETCs JIM OOJIe3Hb WJIM UCYe3aeT CO
BpemeneM. JlaspHelmnit aHa N3 BBISBUJI, YTO MOJE/h JOKAJIHHO ACUMITOTHYECKH YCTOWYNBA TPU 6A30BOM
BOCIIPOU3BOJICTBEHHOM unciie Ry < 1 m Hecrabuibna npu Ro > 1. Haubosee uyBcTBUTE/IBHBIE TTApaMe-
TpbI, 3ddeKTUBHBIE 111 GOPBOBI ¢ MHOEKIHE, Oy YeHbl C UCIIOIHL30BAHIEM IPSIMOIO HOPMAJIN30BaAHHOTIO
WHJIEKCA TyBCTBUTEILHOCTU. HaKOHEIl, pe3yIbTaThl, MOy IeHHBIE C TIOMOIIBIO CETYATHIX U KOHTYPHBIX I'Da-
bUKOB, IOKA3BIBAIOT, YTO CHUYKEHNE 3HAYEHUN CKOPOCTH Iepeiadu, moKasaTeseil CMepTHOCTH OT BoJie3Hel
¥ TIPOTPECCUPOBAaHUs UI'PAET BayKHYIO POJIb B KOHTPOJIE pacipocTpaHeHus: nepegadn B Y.

Karouesvie crosa: BUY, maTeMaTndecKoe MOJEINPOBAHUE, CTPATEMNN YIIPDABJIEHNS, aHAJIN3 YyBCTBUTEJIb-
HOCTH.
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Grid method for solution of 2D Riemann type problem with
two discontinuities having an initial condition

This study aims to obtain the numerical solution of the Cauchy problem for 2D conservation law equation
with one arbitrary discontinuity having an initial profile. For this aim, a special auxiliary problem allowing
to construct a sensitive method is developed in order to get a weak solution of the main problem. Proposed
auxiliary problem also permits us to find entropy condition which guarantees uniqueness of the solution
for the auxiliary problem. To compare the numerical solution with the exact solution theoretical structure
of the problem under consideration is examined, and then the interplay of shock and rarefaction waves is
investigated.

Keywords: 2D nonlinear scalar conservation law, Riemann problem, finite differences scheme in a class of
discontinuous functions.

Introduction

In the half plane Rﬁ_ = R? x [0,T) we consider the following problem for the function
u=u(z,y,1)

Ou  Ofi(u)  Ofa(u)
E—’— Ox * Oy =0, (1)

ur, P1 <@ <P,
u(rcosp,rsing,0) =ug(p) = (2)
ugz, @€ [07 27T] \ [4,01, 902] :
Here u; and wusy are known constants. The existence and uniqueness of the global weak solution verifying the
entropy condition of problem (1), (2) is proved in [1-4]. But the methods in these articles do not give enough
information about the qualitative nature of the solution. A similar one-dimensional problem has been examined
in detail in [5-8].
Obtaining exact solutions of the problems in terms of (1), (2) for the cases fi(u) = “72 and

fa(u) = “?3 was first discussed in [9]. This technique is referred to as Guckenheimer structure in the literature.
In [10-18] Guckenheimer structure is developed under conditions

" /
Al faw) € CY (R0, [ > 0,500 > 0, (B >0 ®
2
and generalized characteristic analysis method has been suggested. In [19-23] various numerical methods have
been developed for problem (1), (2).

In [22-25] a new method is proposed in a class of discontinuous functions to obtain the exact solution
of problem (1), (2) in which fi(u) = “72 and fo(u) = “72 have both continuous initial functions with compact
support and two-piece constant initial function. The same method is also included in [26] for the Cauchy problem
for the one-dimensional Hopf equation.

*Corresponding author.
E-mail: bsinsoysal@dogus. edu.tr

Mathematics series. Ne 2(102) /2021 115



B. Sinsoysal, M. Rasulov, O. Yener

In this paper for problem (1), (2) we introduce a special auxiliary problem with some advantages over the
main problem. Using the proposed auxiliary problem, a new finite difference method is developed to find the
numerical solution of the main problem. To compare the resulting solution with exact solution, and for sake
of simplicity, we first consider the exact solution of the problem with f;(u) = “72 and fo(u) = “72 Proposed
method is also valid for other fi(u) and fs(u) functions satisfying condition (3).

As is well known, equation (1) is invariant to the transformation (z,y,t) — (cz,cy,ct) for any ¢ > 0, and
due to the existence and uniqueness theorem the problem has a self-similar solution as follows

Ty

u(z,y,t) —u(t, +

For this reason, equation (1) will be considered in the domain (5 =5 n= %) Under the coordinates (&,7)
equation (1) can be written as follows for a continuously differentiable u

1), t>0.

(€ —w)ug + (n—u)uy, =0. (4)

The initial condition for (4) becomes

lim u(&,n) =uo(p), ¢ e€l0,2n].
tanp = g,

§2+772%oo

So, outside a sufficient distance on (£,7) domain, the discontinuities of up(y) function produces two types of
simple waves; shock waves and rarefaction waves (including semi-contact discontinuity). The importance of
Riemann solution is the examination of the interaction of these waves in the region that includes the coordinate
origin.

Since equation (4) is a first order differentiable equation, the following is equivalent to an ordinary differenti-
able system of equations

(5)

du(€n(8)) _
T - 0.
Thus, the function u takes constant values over the following characteristics

dn B E—u
¢ n—u
It is clear that the characteristics are the following lines for any k&

n=u+k(§—u).

As it is seen, the characteristic lines are the lines that end at the singular points (£,1) = (u, u) of the integral
curve of (5). These singular points match the characteristic lines defined as follows after the transformation of u

T = ut,
{ Yy = ut.
Thus, the singular curve of the characteristics becomes I'(u) : {n = £}. The singular curves of the singularities,
similar to the singular curve of characteristics, are the same as I'(u), I's (u,u) C {(&£,n) € R?, n = &}, since
each of the lines originating from the origin of singularity of Riemann data are the edges of the characteristic
domain.
When u; = 1, us = —1, two noninteracting rarefaction waves originating from {z > 0,y = 0} and

{z =0,y > 0} occur sufficiently outside of the region that includes the coordinate origin. The solution at t = 1
becomes as follows [19]

1, ¢>1andp>1,
-1, ¢< -1 or n<—1,
n, £€>n and —1<n<l1,
£ £<n and —1<€é<1

u(x,y,l) Zv(fﬂl) =

as shown in Figure la.
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Figure 1. a) The exact solution to (1), (2) when u; =1, ug= -1, t =1.
b) The exact solution to (1), (2) problem, u; = =1, us =1, t =1, [19].

Since these waves do not interact, we can expand them to (£,7) domain.

When u; = —1, us = 1 in the solution of problem (1), (2) two shock waves occur along the lines
{z >0, y=0} and {x =0, y > 0} sufficiently outside the region that include the origin. We can expand these
waves without interaction until the coordinate origin, preserving the entropy condition and reach the solution

as follows
-1, £€>0, n>0,

u(§,m) =

1, otherwise

as seen in Figure 1b.
Auziliary problem and numerical solution

To find the numerical solutions to the aforementioned problems various finite difference methods have been
investigated in the literature [1, 9, 21]. As it is known, the solution to the one dimensional Riemann problem,
even when the initial function is sufficiently smooth, contains discontinuities whose locations are unknown
beforehand. In two-dimensional problems the number of discontinuities may be infinite. Special investigation is
required to see which of these discontinuities are physically meaningful. Thus, directly using finite differencing
for the problems which have discontinuities in the solution may spread the discontinuities to several points.

Due to the difficulties of working with the discontinuous functions, the paper proposes an original method
to find the numerical solution of the problem that expresses the physical properties of the problem correctly. To
this end, no problem arise in using the familiar methods in the literature to find the numerical solution to the
auxiliary problem, which has advantages over the original problem but also is conventionally equivalent to the
original problem. By using the numerical solution to the auxiliary problem one can find the numerical solution
to the original problem.

As mentioned before, a classical solution may not exist for problem (1), (2). In this case, we define a weak
solution as follows.

Definition 1. A function u(x, y,t) satisfying initial condition (2) is called as a weak solution of the problem
(1), (2), if the following integral relation

of (@,y,t) | v?(z,y,t) (Of (x,y,t)  Of(x,y,t)
/szm{“(x’y’t) ot 2 ( or T dy >}dzdydt

+ [ f(x,y,0)u(z,y,0)dzdy = 0
RZ

holds for any test function ¢ : R? x R — R, f(x,y,t) € Ccee.
To obtain the weak solution following [22], if we integrate equation (1) for any a and ¢ over

Dzy:{a<§<x,c<n<y}CR2,
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we find the following

) T py Yy T
5 | [ i ([ eannans [Cenna)
= % (/J uz(a,n,t)dnJr/m u2(€,c,t)d§) : (6)

Here a and ¢ may also be Foo. Let us include the following function

w(z, / / (&, t)dédn. (7)

We can show

Muw(z,y,t) = u(z, y,t). (8)
Here M(-) = g g) is a differential operator. In the notation of (7) and (8) we can write equation (6) as follows
ow(z,y,t) Y 2 L[ 2
+f (u*(z,m,t) — u?(a,n,t)) dn+ = (u?(&,y,t) — u?(& ¢ t)) dE = 0. 9)
at 2/, 2/,

For equation (9) the initial condition will be
w(z,y,0) = wo(z,y). (10)
Here wo(x,y) is defined as any continuous and differentiable solution of the following equation
Muwg(z,y) = uo(z,y).

We will call problem (9), (10) auxiliary problem.

The auxiliary problem has the following advantages:

1 The differentiability property of the function w(z,y,t) the solution to equation (9) is better than the
function u(z,y, t).

2 To find u(x,y,t) its derivative with respect to any variable is not used, as aforementioned derivatives do

not even exist.
1 t Yy a
U(xvyat) = _5/ |:/ U2($7Tl7t)d77—/ UZ(aﬂ?at)d??
0 c c

From (6) we get
+ /z u?(€,y, t)dE — /w u?(€, e, t)dg} dr

Now, for any positive numbers a; and b; we consider the sum

(l‘ yat> (3C—a1,y7t) +’U($7y7t)_v(m7y_blat)
aq b1

[ e [ e
1 s cnon
*J{ [ 1) e [ en-noma
1 vt [ icunals}
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According to the consideration (3), we can obtain the following estimate

(.’17 yat) (x_alay7t) +’U(l‘,y,t)—’l}(3?,y—b1,t)
aq bl

- % [2M(d — )T +2M (b — a)T} N HQMT(d —¢) b+1 2MT(b— a)}

1[2MT(da1 J +2MT(bb1a)} HzMT ((dal I (bbla)ﬂ = % (11)

ai

where E is a constant. Condition (11) is called entropy condition. This condition implies that, if we get fixed
t > 0 and let x and y tend to —oo and oo, respectively, then we can get only jump down in both direction across
one discontinuity.

Now we will describe the finite difference algorithm to find the numerical solution of problem (9), (10). To
this end we build a grid on D, region as follows.

Assuming L is a sufficiently big positive integer, we cover D(_y, 1) region with = x;, y = y; lines and build
a grid

Qghf,‘?y) {(i,y;) + w5 = —L+ihg,y; = —L+ jhy,i=0,1,2,..,n,j =0,1,2,....,m}.

Now, let us divide [z;, z;11] and [y;, y;+1] into p and ¢ pieces, respectively. Then, let us define the grid formed

by these points as

Qgi;% )= ={& =x; +vhe; ny=y; +phy; v=0,1,2,..,np, pn=0,1,2,...,mg}.

It is clear that (J; QEZ% )) = Qgh[ ? )+ Let us write the integrals in (9) in quadratic form as follows
hoy -

Yi qJ] 1 T; h p-i
/z u?(z,1,t)d Z (@i, N i), 5/5 u? (&, yj, t)dE ~ fZUZ(&/,yj’tk)’
- - v=0

/9:/ (57777 )dfdn hghnZZU xu,y#,tk)

v=0 pu=0

If we take these into account (9), we obtain the following systems of finite difference equations

q-j

Z xmn,uatk) —U2(.’170,77M,tk))

Wi jk+1 =

hth& o U2 2
55 D (UG te) = U (6o 1) (12)

(i=0,1,2,...,n; j=0,1,2,....m; k=0,1,2,..).

For (12), the initial condition is as follows

Wi,j70 zwo(a:i,yj), (i:0,1,2,...,n; ] :O,l,Q,...,m). (13)

Corresponding difference analogy for (9) is

k 47
h
V(xiayjatk-‘rl) = V('xwy]atk ?t Z { Z |: xlvnuvtk) - UZ(U” Wu,tk)

=0 p=1
pt
+he Z {U2(€V7yjatk) —U%(&,, ¢, tk)} }
v=1

As above
V(Z‘i, Yjs tk-l-l) B V(xi—zn yYjs tk+1) + V(le, Yis tk-‘rl) B V(.Ti, Yj—q1» tk-‘rl)
Y4 q1
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V(i yj, te) = V(Tiop,, Yjs tr) n Vi(zs, yj, te) — V(i Yj—qu» tk)
D1 q1

h h
o |:U2(xi7 nuvtk) - Uz(a’777;tatk):| + — |:U2(xivn,u7tk)
1 P

h k qj
_Et { Z
=0

p=1

_U2(xi—p17’r}uatk :| +Z |:U2 gvay_ﬂtk) 2(£V7yj—q17tk):|

hg A a(j—aq1)
5 [U(6 1) - 2<5wc,tk>]]—qj > (U2 (im0, 1) = U (&)

p(i—p1)

hf Z [UQ §V7yj7tk) 2(§V7Catk‘):|} < %7
v=1

where E7 is a constant. So we have obtained entropy solution of the Cauchy problem for Burgers equation.
From (12) we obtain the following

ioJ
Ui ka1 = hahy > Y W@y, g trgr), (i =0,1,m; j=0,1,...,m; k=0,1,...). (14)

v=1p=1

In addition, by using equation (9), finite difference schemes on higher orders with respect to ¢ (such as
Runge-Kutta method) can be used.

Numerical experiments

Two sets of computer experiments are performed using the algorithm proposed above. Such as grid steps
with respect to spatial and time variables and the size of the grid is [0,T] x [—4.0,4.0], he = %I, hy = hy

q )
hy =259 hy =9 p=q=10,n=m =533, t, = 0.005.

In the first of the series of experiments, as seen in Figures 2 and 3, it is assumed that the jump strip on the
initial condition is in each quadrant of xy plane. The results obtained for the cases u; = 1, us = 0 and u; = 0,
ug = 1 are shown in Figure 2 and 3, respectively. Solutions of the auxiliary problem (12), (13) are shown in the
first column of Figure 2 and Figure 3. By using (14) the solution of the auxiliary problem is obtained and the
second column shows the solutions of the main problem (1), (2). In the third column, contours of shock and
rarefaction waves are illustrated.

As seen in Figure 2, in the cases of the initial profile at (1,0,0,0) and (0,0, 1,0) it is observed that two
rarefaction and two shock waves occur. In the other cases, at (0,1,0,0) and (0,0,0,1), one shock and one
rarefaction wave are detected (Figure 3). Comparing the results obtained with the solutions found in [15] with
same data, the importance of the proposed auxiliary problem emerges.

In the second series of experiments, as seen in figures, it is assumed that the jump-fan is in each quadrant
of the zy plane. In these cases, as shown in Figure 4, one shock and one rarefaction wave occur in all cases.

In Figure 5, we assume that the initial data has u; = 0, us = 1 and the dynamics of the wave propagation
at T'= 1 are shown. The results obtained for the cases u; = 1, us = 0 and u; = 0, uy = 1 are shown in Figure 4
and 5, respectively. As seen from the figures one shock and one rarefaction wave always occur on the quadrants.

The solutions we obtained show that the proposed numerical algorithm is highly sensitive and describes all
of the physical properties of the phenomenon correctly.
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Conclusion

In this study an original method for the numerical solution of the initial value problem for two-dimensional
conservation law with two-piecewise constant discontinuous initial condition that accurately describes the all
physical properties of the problem is proposed.

In addition to this, the auxiliary problem has provided the entropy condition, which provides the uniqueness
of the solution. In establishing efficient algorithms for the numerical solution of the two-dimensional Riemann
type problem the method incorporates an auxiliary problem that is equivalent to the original problem, and yet
has advantages over it.
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3 Betixenwm ynusepcumemi, Cmambya, Typrus

Bacrankpr kyiige eki y3ijici 6ap Puman tunri
€Ki eJIIeM/Ii eceIlTi eIy iH, TOp dJIicCi

Beprreynin MakcaTbl — bacTankbl npoduii 6ap 6ip epkin y3ijgicTi cakTally 3aHBIHBIH, €Ki JIIeM/Ii TeH eyl
yuria Kommu ecebiniy canapbik menrimia asay. Ot yImiH HEri3ri ecernTiy 9JICi3 IIeNniMil aay/1a ce3iMTall 9IiCTi
KypyFa MYMKIHIIK OepeTiH apHailbl KOMEKIII ecen KYPbLIaIbl. ¥ CHIHBIIFAH KOMEKIIT €Cell, COHBIMEH KaTap,
KOMEKIII eCcenTi MeNnTiMHIH, >KaJIFbl3 60J1ybIHA KEIJIIK OepeTiH SHTPONUSHBIH IAPTTAPBIH TabyFa MYMKIH/IIK
6epei. CaHIbIK MIEITiM/Il 19T IIEeNIIMMEH CaJIbICTBIPY YIITIH aJIIbIMEH €CENTIH TEOPUSIIBIK, KYPBLIBIMbI, COTAH
KeliH COKKBI TOJKBIHIAPBI MEH CUPETY TOJIKBIHIAPBIHBIH 63apa OPEKETTECYl 3epTTEJIreH.

Kiam cesdep: GelCHI3BIKTBI CKAIAPbl 2D cakray 3aHbl, PUMaHHBIH ecenrepi, y3imicTi dpyHKImAIAp Kia-
CBIHJAFBI aKbIPJIbI-abIPBIMIbLI CXEMa, €Ki OJIIIEM/I] ecernTep.

B. Cuncoiican', M. Pacymnos?, O. Enep?

! Viueepcumem Joeye, Cmambyas, Typuus;
2 Hnemumym nedmu u 2aza Hayuonaavrot axademuu nayx Asepbatioocana, Baky, Asepbaidscan;
3 Vnueepcumem Betikenm, Cmambya, Typyua

CeTouHbI1 MeTO/1 pellieHus AByMepHOil 3ajauu tuna Pumana
C AByMsd pa3pblBaMM, UMEOINNMI HAYAJIbHOE COCTOAHUE

Ilens mamHOrO WCCIEIOBAHNST — MOJyYEHUE YUCICHHOTO pelreHns 3aaadqu Komm /11t IByMEepHOroO ypaBHe-
HUSI 3aKOHA COXPAHEHUs C OJTHUM IPOU3BOJIBHBIM Pa3PBbIBOM, MMEIOIIUM HA4YaJbHbIA npoduisb. as sToro
paspaboTaHa cCrenuajbHas BCIOMOTraTelbHAs 3aJlada, MO3BOJISIONAsT TOCTPOUTh YYBCTBUTE/HHBINA METO/T
JJIsl TIOJTy9eHust c1aboro pelreHns OCHOBHOM 3amaqun. [lpemraraemast BcmomoraTeabHast 3a/1a9a TAKXKE T10-
3BOJIAET HAWTU yCJIOBHE SHTPOINHU, rapaHTUPYIOIee eMHCTBEHHOCTb PellleHns BCIIOMOraTesbHON 3ajladvu.
st cpaBHEHUST TUCJIEHHOT'O PEIIEeHMsI C TOYHBIM CHAvYaJ I UCCJIeI0BaHa TEOPETHYECKas CTPYKTYpa paccMar-
TpUBaeMOH 3a/1a4M, & 3aTeM HU3Yy4YeHO B3aMMOJEHCTBHE yJapHBIX BOJIH M BOJIH Pa3perKeHU.

Kmouesvie caosa: HemmHENHBIN cKaJIApHEBIL 2D 3aKoH coxpaHeHud, 3ajada Pumana, KOHEYHO-pA3HOCTHAS
CXeMa B KJIacCe Pa3pPBIBHBIX (DYHKIUI, JBYMEPHOE YpaBHEHUE.
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On convergence of schemes of finite element method
of high accuracy for the equation of heat
and moisture transfer

In this paper difference schemes of the finite element method of a high order of accuracy for the non-
stationary equation of moisture transfer of Aller are constructed and investigated. The increased order
of accuracy is achieved through special sampling of temporal and spatial variables. The stability and
convergence of the constructed numerical algorithms are proved, the corresponding a priori estimates are
obtained in various norms, which are used later to obtain estimates of the accuracy of the scheme under
weak assumptions on the smoothness of solutions to the differential problem.

Keywords: Aller’s equation, finite element method, difference schemes, stability, a priori estimates, convergence,
accuracy.

Introduction

As it is known, research in the field of heat and moisture transfer is fundamental in solving many applied
problems, for example, problems of hydrogeology, agrophysics, ecology, building physics, etc. [1]. The interaction
of heat fluxes in the soil-ground and snow cover determines the processes of infiltration, migration and frost
heaving, evaporation and transpiration, metamorphism and snow melting. These processes determine conditions
for overwintering and growing crops. In addition, the role of moisture migration and infiltration in the formation
of productive moisture reserves in agricultural fields is of great importance. Mathematical models of these
processes are described mainly by the Aller or Aller-Lykov moisture transfer equation [2]. This paper considers
numerical methods for solving boundary value problems for the Aller moisture transfer equation written in a
more general form. In this case, difference schemes of the finite element method of the fourth order of accuracy,
constructed and investigated in [3], are used. These schemes have certain advantages over other schemes: a) high
order accuracy scheme (above two); b) in addition to the solution itself, its derivative (velocity) is simultaneously
found with the same accuracy; ¢) using interpolation representation

y(t) =y oo (t) + 9" o (8) +y" Tl ogy () + 5" (1), (1)

Boo(t) = 26> =387 + 1, gy (t) =362 — 282, ¢7,(t) = 7(€3 =267 +€), o1y (t) = 7(&* — &),

if necessary, it is possible to get a solution and its derivative at any time; d) since the scheme is two-layer, it
is possible to use a variable step without loss of accuracy; e) the scheme is conditionally stable and requires 4
times more arithmetic operations than the schemes of the finite difference method, but this scheme allows to
choose large time steps to achieve a certain accuracy. To obtain an estimate of the accuracy a special technique
for obtaining a priori estimates is used. The classical approach to the study of the convergence of difference
schemes based on the Taylor formula imposes high requirements on the smoothness of the desired solution.
Recently a number of results have been obtained on the estimation of the rate of convergence of difference
schemes for equations of mathematical physics. These results can be found in [4-8]. Similar studies for various
non-stationary problems were carried out by the authors in [3, 9-11].

*Corresponding author.
E-mail: dutebaev_ 56@mail.ru
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Statement of the problem

The problems of the thermal and water regime of the root layer of the soil, evaporation, transpiration, etc.
are described by the following equation (the Aller equation in general form) [1]

% = Lw—l—a% (Lou) + f(x,t), (x,t) eQr={ze€Q, 0<t<T}. (2)

Here Q = {z|z = (z1,22), 0 < x4 <la, a=1,2},

Pm 81,[,

0 m m
Lt =3 50— ('f <:c>axa> — " (@), TEQ pn=12,..,
a=1

0<ko<klz)<ky, ¢"(z)>0,m=1,2,

where o, ko, k1 are positive constants.
For equation (2) the initial condition

u(z,0) = uo(x), z€ (3)

is set and some local or non-local boundary conditions are given.
Local conditions are classical boundary conditions, for example, the first boundary value condition

u(z,t) =0, x€09Q, te(0,T). (4)

Conditions are called non-local if the boundary conditions are relations connecting the values of the sought
solution and its derivatives at the boundary and interior points of the domain. Similar conditions arise in the
mathematical modelling of processes of various natural phenomenon, for example, in the study of problems of
moisture transfer, thermal conductivity, mathematical biology, control, etc. For example, for equation (1) in the
one-dimensional case, the non-local boundary conditions

w(0,t) = Mu(l,t), wugy(0,t) = Aug(l,t), t€][0,T]

are given in [1-2].
Let us formulate a generalized statement of problem (2)—(4). We call the generalized solution of problem

(2)—(4) as the function u(x,t), in which each t € [0, 7] belongs to Sobolev space H = W4 (£2), has a derivative
%7; € L2(0,T) and satisfies the relations [12]

(dilff),ﬁ) +oay (Chc‘lf),ﬁ) T as(ult),9) = (£(1),9), ¥9(x) € H, u(0) = ug (5)
almost everywhere on (0,7). Here
am(u(t),d) = —(Lyu,9) = /Zm: (km(x) aaxu . 68719 + qm(x)uﬁ) dr, m=1,2.
o am1 oY e}

For bilinear form a,, (u,9) there is an evaluation a,,(9,9) > k[9||°.
Note that the dimension of the operators Ly, Lo can be different, i.e., p; # po, and so L; can be strongly
elliptical and Lo can be a degenerate operator that does not contain all second derivatives of variables z,,.

Discretization in space and time

We discretize problem (2)—(3) with respect to spatial variables using the finite element method. Let H, C H

be many elements of the form ¥, = vazl a;¢i(r). Here {¢; = ¢;(x)}Y, is the basis of piecewise polynomial
functions that are polynomials of degree on each finite element (a segment in one-dimensional case, a triangle

or rectangle in two-dimensional case, etc.).
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Let us write relation (5) a semi-discrete problem for ¢ € [0, T7:

(dugt(t)ﬁh) +o0ay (%,W) +ag (up(t),9%) = (f(t),9%), VI, € Hy, (6)

Uh(O) = UQ,h-

Problem (6) corresponds to the Cauchy problem in time for the system of ordinary differential equations of

the first order for coefficients of the approximate solution uy,(t) = Zf\il a;(t)¢; from Hy, :

da(t)

M
dt

+Ga(t) = ®(t), a(0)=a’.

Here, d(t) = {a:(t)}Y, {Zii(O)}ivzl are dimension vectors N; M = {(¢;, ¢j)}£vj:1 is the mass matrix,
G = {a(¢;, (blj)}?;.:l is the stiffness matrix and ®(t) = {@(t)}fvzl is a vector of the right side.

The same problem can also be written in the form of an operator equation

dup (1)
dt

D

+ Aup(t) = fr(t), un(0) = uo,n, (7)

up(0) = ug,p-
Here up(t) is the element of finite-dimensional space Hy, for any moment in time ¢, operators D and A
operate from Hj, to H,: D = M +0G1, A= Gy, M = ((¢i,¢j))£vj=1 is a subspace coordinate system mass

matrix Hy, and G, = (am(di, ¢j))£vj:1 is a stiffness matrix corresponding to the operator L,,u, m = 1,2 in
Hy,.

We approximate problem (7) with a three-parameter finite element method of the fourth order of accuracy
in time [3]:

a_ 2 ’.‘_. A+ o
Dizk - Ak 4 AR — g,

YDIZE 4 QA=Y 4 BATEL — ¢, (8)

0 _ 50
Yy = uo, Yy = U1,

where p J
n ~ n n Y o n Y
y=y"=yltn), §=y"" =yltn+7), y=9"=—(tn), y=9""" = —(tn + 1),
dt di
A 12
o1 = - / ft)dt, ¢2= =y f(t) <8119§1)+ 82?9%3)> dt,

tn tn

s1 =15y — 35a/3, So = 140y — 350@/3,
ol = 7(E+1/2), of) = 7( —3¢2/24¢/2), £=(t—t,)/T

Scheme (8) obeys the condition of the fourth order of approximation in time
at+B=7v a>0, 0<B<a/(3), a,B = 0%, 0<e<1. (9)
Circuit stability conditions are
a=7%/12, B3>0, v>0, , R>((1+¢)/4)A,
where R = 1 (’yD2 + %(35 + oz)AZ) , A=T1pA%

A high order of accuracy of the scheme is achieved due to a special discretization of temporal and spatial
variables [3].
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Investigation of the accuracy of discretization in space

Let us estimate the accuracy of the solution of problem (2)—(4). All notations are borrowed from [13]. The
following theorem holds.

Theorem 1 Let u(z,t) € Lo {[O,T]; W@ n W %(Q)} If a narrowing of space Hj, into a single finite

element is a polynomial of degree k, then for the solution of problem (7) there is an estimation of accuracy

t t
/ (e, ) — wn(a, )2 de’ + o0 / (e, #) — un(z, )| dt
0 0

t
+ /[U(x,t') —up(z,t)]dt'|| < ME* {[lu(z, 0], + ollu(z, 0)];,
0 1

t
+ [ 0) [t 0]y, de b o Vee 0.T) M = Mo b ).
0

Proof. We integrate identity (5) over ¢ from ¢, = n7, n = 0,1, ... to t,+1 = t, + 7 and apply the formula
for integration by parts

tn+t1

[ (), §) = o a1 (u(t), §) + az(u(t), 9)] di+ [(u(t),9) + o ax (u(t), V)] ;2"

tn
Lot
- (f(t),9)dt, ¥O(z) € H (11)
tn
Similar actions for identity (6) give
o1 29
[—(uh, Oy) — oay (up, 95) + ag(uh,ﬂh)} dt + [(un,9n) + oar(up, 9p)] [, = / (f,0p)dt, YO, (x) € Hy.
tn tn

Here and further @ = du/9dt. Choosing ¥ = ), € Hp, C H in (11) and subtracting both obtained identities, we

have
trnt1

{—(u — uh,ﬁh) —oai(u— uhﬂ?h) + as(u — uh,ﬁh)} dt
tn
+ [(w — up, ) + o a1 (v — up, )] \i:“ =0, Vy(x)€ Hy. (12)

Let z = u — up = e, + &, Let us choose a trial function
In(t) = —/fh(t’)dt’ € Hy, t<s; On(t) =0, t>s, In(t) = En(t), Dn(s) = 0. (13)
t

Taking into account the introduced designations, identity (12) can be written in the form:

tnt1

{*(Emfh) — o ay(€n,&n) + ag(Dn, 9p) | dt+ [(En, On) + o ar(En, 9n)] i:“

tn

trnt1

- / [(en,&n) + o ai(en,&n) — az(en, In)] dt— [(en, Vn) + Ual(eh’ﬂh)”izﬁ :

tn
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Since Clg(’léh,’l?h) = %%ag(’ﬁh,ﬂh), then the last identity can be written as:

tnt1 tn+1

[ (entdt—o [ @) di+ oa0n 0 tn) + (6h00) + oar(en )

tnt1

= — [(en,Un) + Ual(eh’ﬁh)m:“ + %‘12(1% In)(tn) + / [(en,&n) + oai(en,En) — azlen, Vn)] dt.

tn

(14)

Let us sum up (14) by n = 1, m — 1, where is the number m corresponds to the moment in time s = m7:

S S

~ [ (et = o [ ar(6n )it + 500,046 + (66,00 + ran n, 0]

0 0

S

— [(eh, ﬁh) + O’(ll(h,ﬁh)“(s) + %az(ﬂmﬁh)(()) + / [(eh,gh) + U(ll(e;“fh) — ag(eh, 19}1)] dt.
0

Considering the properties of the function ¥ (t) (see eq. (13)) and the initial condition &, (0) = 0, from the

last identity we have
S S

/(fhvfh)dt'f‘o'/al(gh»fh)dt"‘%GQ('ﬁh,'ﬁh)(O)
0 0

S

= —[(en, 9n)(0) + oai(en, ¥1)(0)] — / [(en,&n) + aar(en, &n) — az(en, Vp)] dt.
0

Let us introduce one more function
t
wy(t) = /gh(t’)dt’ € Hy, t <s; wp(t) =0, t>s.
0

Then ¥, (t) = wp(t) — wr(s), and, finally, we have the energy identity:

S S

[ @i+ o [arengi+ Sasonun)(s) = e0).un(s)

0 0

S

o (en(0), wn(s)) - / [(ens &) + o ar(en, €) — as(en, wn (t) — wn(s))] dt.
0

Let us estimate the terms on the right hand side of (15):

(en(0), wn(s)) < er(wn(s), wn(s)) + L(6h(0), en(0)),

461
aa(en(0),wn(s)) < exan(wn(). wn(s)) + 1 ar(en(0),(0))
/(6h,§h)dt Sé‘s/ (§h,§h)dt+é/ (en,en)dt,
0 0 0
/Ch (en,&n)dt| < 84/ ax (£h7§h)dt+é/ a1 (en, ep)dt,
0 0
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S

/ as(ep, wp(t) —wp(s))dt
0

1

< 55/ ag(wp (1), wy(t))dt + sesaz(wp(s), wr(s)) + E/ as(ep, ep)dt.
0 0

Choosing 1 = €3 = €3 = €4 = 1/2, and €5 from condition €1/2+¢e5T < 1/4, from (15) we get the estimate

/(fmfh)dt‘f'o'/al(fhafh)dt+a2(wh7wh)(5)

0 0

<M / az(wp, wy)(t)dt + (ex(0),er(0)) + cai(en(0), en(0))+ (wn(s), wn(s))
0

S S S

+oay(wp(s), wn(s)) +/ (eh,eh)dt—i—a/ al(eh,eh)dt—i—/ as(en, ep)dt |,
0 0 0
where M = max(8, 1/T, 16T'). Applying Gronwall’s lemma, we obtain the error estimate
/ (Eny En)dt + 0/611(&” En)dt + az(wp, wp)(s)
0 0

< M [(en(0),€n(0)) + oar(en(0), en(0))] + (wa(s), wn(s)) + oai(wa(s), wn(s))

—|—/ (emeh)dt—f—a/al (eh,eh)dt+/ as (e, ep)dt).
0 0 0

It’s obvious that ko [[wp(s)]|] < am(wh,wn)(s) < k1w (s)|3, (€n,€n)(s) = ||€n(s)]lo- Therefore, we have the
final estimate for the error

S S S 2
[+ o [l | [ oo
0 0 0 1

<M en @I + 0 lentOl + [ sl e+ [ len®lZat+ [ lentoliar). ()
0 0 0

For solutions u(z,t) € WEt1(Q), Vt € [0, T], there is an evaluation [13]:
len(0)llg < ME*luolly, len(O)ly < MA*Hfuolly 4,

llen(®llg < MA@y, llen(®)lly < MA|fu(t)]4s-

Therefore, based on (16) and the triangle inequality ||zp| < |len| + ||€r|| the statement of the theorem holds.
The theorem uses the standart notation for the Sobolev space WA ™! from [13].

Accuracy research of discretization in time

Let us now turn to the estimation of the discretization error for problem (7) in time. Investigation of the
error in approximating scheme (8) using the Taylor formula, as already mentioned, leads to overestimated
requirements for the smoothness of the solution to the original problem. An alternative to this method of
estimating the accuracy is the application of the Bramble-Hilbert lemma. This method of accuracy estimation
is the main one in the theory of the finite element method for solving elliptic equations [13-16]. We also note the
paper [8], in which the Bramble-Hilbert lemma is used to estimate the accuracy of solving difference schemes
for elliptic problems.
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Let us apply the Bramble-Hilbert lemma to estimate the accuracy of the solution to the original problem
with respect to the time variable. Recall that the solution wuy, () of semi-discrete task (7) for each ¢ is an element
of the discrete subspace up(t) € Hp,.

The following theorem holds.

Theorem 2.Let A* = A >0, D*=D >0, AD = DA and the conditions of approximation (9) and stability
(10) are fulfilled. Then to solve the scheme (8) approximate solution to problem (7) such that d;;ﬁlh( t) € L2[0,T]
and the accuracy estimate

t
/||uh () — y(t)|2 dt' + o /Huh () — y()| dt" + / ¢)] dt’
0

d4
< M7t lur (0)]lg + ollun(0)]; + 1+0/H Un )

dt’ (17)

is correct.

Proof. Denote by H, argument function subspace ¢, which are a cubic Hermitian spline of the form (1) on
the interval [t,,,t,+1] , » =0,1,2,.... Consider scheme solution (8) to y(t) € H,. Simultaneously for each ¢, y(t
is an element of the subspace Hj,. Actually y(z,t) € Hf = H, ® H,.

Difference scheme (8) corresponds to the following weak setting

tn+1

[~ (0). ) = 0 a(y(6),9:) + ax(y(t), 0-)| db

(), 95) + o an(y(t),0.)] [+ = / (f,0,)dt, ¥0,(x) € HY, (18)

where y(t) is the cubic Hermitian spline (1).
In (18) select

—/gf(t)dtﬁ t<s; 9.(t)=0, t>s.
t

It’s clear that U,(t) = &-(t), t < s and 9,(s) = 0. Substituting the function 9, (t) into (18) and performing
same transformations with the resulting identity that we used when evaluating z, = u — up = ep + &, we get
the following energy identity

[ i+ o [are g+ Jax(on,0.0)
0 0
= (er,9:)(0) + oay(er, V) / (er, &) +oar(er, &) — as(er, V)] dt.
0

Denote by
t

we(t) = /{T(t’)dt’ EHpt<s, w(t)=01t>s
0

and note that e,(0) = up(0) — u](0) = up,p, — up,r, = 0. Then the last identity becomes

t t
[ i+ o [ a6 e+ Jartunw)s)
0 0
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S

= _/ [(er, &) + oar(er, &) — az(er, wr(t) — w-(s))] dt. (19)
0

Applying the Cauchy-Bunyakovsky inequality, e-inequality and Gronwall’s lemma, as in the estimate &, (¢), we
obtain from (19) the following estimate

S S S 2
/ (]2 dt + 0 / & (1)1 dt + / &, (t)dt
0 0 0 1

<M /neT(t)n%dtw/ ||ef<t>|\?dt+/ lea ()2t | - (20)
0 0 0

Now let us estimate the error of the scheme (8) (.(t) = &-(t) + e-(t). By the triangle inequality and
(a+b)* < 2(a? + b2) we have

S S S 2 S S
Jiceiiaero [icika| [ cwa| <2{ [leiao [ el
0 0 0 1 0 0

S 2 S S S 2
+ /eT(t)dt +/||er(s)||gdt+a/||eT(s)||?dt+ /eT(t)dt
0 1 0 0 0 1

For the last term, we apply the Cauchy-Bunyakovsky inequality and get

2
s 2

/eT(t’)dt’ < /1dt’ /eg(t/)dt' gs/neT(t’)Hfdt’.
0

0 1 0 0 )

From this and (20) we have the estimate

S S S 2
Jlclide+o [1colta | oo
0 0 0 1

<M \Ier(8)||§+0\\er(8)llf+/Her(t)\lgdtﬂffﬂ)/Hef(t)\lfdf . (21)

Consider the linear functional e, (up) = up — u7. We introduce the change of variable ¢t = t,, + nr,
0 <n < 1. Then, we get

ér(un(n)) = er(un) = up(tn +n7) — uj(ty +n71) = Un(n) — a7 (n).

This functionality is limited for continuous functions wp(n) € C[0,1]. Moreover, it is limited for
an(n) € W20,1]. So it is written as

1/2

&7 ()| = Jiin(n) — a7 ()] < M / (dmﬂh)zd
0

m=0 dnm

This functional vanishes on polynomials up to the third degree inclusive in the variable 7, i.e., on the segment
[0,1] 4] a third-degree polynomial that interpolates @y. Based on the Bramble-Hilbert lemma, from the last

estimate one can obtain 1/2
1

@) = fan(o) - ar) < 07 | | (ddj;’)dn
0
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Returning to the previous variables we have the estimate

: 1/2
n+1 d4u 2
- - h
ertn )] = n(0) ~ 0] < 72| [ () ) et
tn
Then
S m—1 tnt1 m—1 tnt1 d
/wMMM:Z/meWSZ/MW i dm
0 n=0 tn n=0 tn

tny

d*u
dt*

~ (1)

m—1
=3 w2
n=0

duh
M2 8/
ﬁ Hﬁ4

Similarly, the estimate

dt

d*u
28 h
/H@ Wt < b1°r |MM

holds. If limitations H d;;ﬁﬁ (t)H are required for each t , then we obtain
0

t
s 4 2 4 2
2 -2 7 d Up 2 8 d Up
lex(s)]2 < 1%r / (dt4> il < 3t | T
m—1 0
L, 2

HeT(s)H1 M27'8max

Tdr
Further, based on these estimates we obtain the statement of the theorem from (21).
On the convergence of the scheme
In order to estimate the approximation error we need to go from uy; to the solution w in the right-hand sides
of z=u—y=(u—up) = (y—un).
For k = 0,1 the following estimate holds [13]:
lunlly = llu —w+unll, < [lull, + llu—unll, < llull, + Mhbjlull,, < M||u||k+1'

Therefore, estimate (17) has the form

t
/||uht’ ()2 dt + o /||uht’ ()2 dt + / )] dt’
0

4 2
ey |

< M7 uO)lly + ()l + | @+ 1) [ |55

Thus, we formulate an assertion about the convergence of the solution of the vector scheme (8) to the
solution of the original problem (2)—(4).

Theorem 8. Let A* = A >0, D* =D >0, AD = DA and the conditions of approximation (9) and
stability (10) of scheme (8). Then for its solution, which approximates the solution to problem (2)—(4) such that

4

0*u
) o

(o)

u(, 1) € Lo {[0,T); WET (@) W 3(9) (2,6) € Lo {[0,T]; W 3(Q)},
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the accuracy estimate

t
/||ux v =y )2t + o /||ux ) — y(a, )2 dt’ + / y(z, )] dt’
0

1

4

<M {7t | ul, 0)lly + ollu(z, 0)[l, + | (1+0) / Ha“@c )

2
dt’
ot 5

0

5 | Ntz Ol + olue O lr + | (1+0) [ )] d
0

is correct.
Algorithm for implementing the scheme
We consider one of the possible algorithms for implementing the scheme (8). We rewrite it as
Mg+ My = p1, M2+ maay = o, (22)
where
T T2 . T )
pr=7¢1 + (D + EA) y— A% p2=1é2tady+ (’YD + 561‘1) 2
T 72 T
mi1 = D -+ 514, mig = 75‘4, mo1 = OéA, Moo = ’)/D -+ 5[314

Integrals in ¢y and ¢9, for example, are calculated by Simpson’s formula. Assuming that the operators A and
D commute and excluding ¢ from equation (22), we obtain

Cj=F. (23)

Here C =y D? 4+ 5(8+7)AD + %(35 +a)A?, F =mapr — miaps.
Equation (23) can be solved either directly by inverting the operator C' or by factoring it as

C =~C1Co =7 [D? — (z1 + 22)TAD + 32272 A%],  Cp = (D —m7A), k=12
Then equation (23) is solved using an algorithm
nCiy=F, Cy=y. (24)
After finding ¢ from (24) solution g; is calculated, for example, from the equation ('yD +3 BA) g; = s — aAg.
Conclusion

Problems for the Aller moisture transfer equation are considered. On the basis of the finite element method
difference schemes of high order of accuracy are constructed and investigated. The high order of accuracy of
the circuit is achieved through special discretization of temporal and spatial variables. The convergence of the
constructed algorithms is proved. Estimates for the accuracy of the scheme are obtained under weak assumptions
on the smoothness of solutions to differential problems. Other boundary value problems can be studied similarly,
in particular, nonlocal boundary value problems for equation (1). In addition, these results can be carried over
to loaded equations with nonlocal boundary conditions.

Remark

A separate article will be devoted to computational experiments for test problems with local and non-local
boundary conditions.
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II. Otebaes!, I X. Yren6eprenosa!, K.O. Treyos?

L Bepdax amvindaes. Kapakarnax, memaexemmir yrusepcumems, Hywic, Oz6excman;
20n-Xopeamu amoindaes. Tawskenm axnapammoms mMerHoA02UANLD
yrusepcumeminiy, Hyxicmeei 6oaimweci, Hyxic, O3bexcman

2KbLTy-bIIFaJI TaChIMAJIIAY TEHJEYl YIITiH >KOFapbl JRJIAIKTI aKbIPJIbI

140

3JIEMEHTTEP J/IICiHIH, CXeMaChIHBbIH, YKNHAKTBLJIBLIFbI TYPaJibl

MaxkaJsaga Ajiepain bLIFaJI TachbIMaJIIay OeficTalmOHAPIIBIK, TEHIAEY1 YIIH XKOFaphl J9/IIIKTErl aKbIPJIbI dJ1e-
MEHTTEp OIICiHIH afbIPBIMJIBIK CXeMaJiapbl KYPbUIBII 3epTTesai. JoIiKTiH Koraprbl peTiHe yaKbIT YKOHE
KEHICTIKTIK alHbIMAJIbLIAPBIH apHAWBl JUCKPETU3AIUAIAY apKbLIbI KOJI »KeTkisineni. Kypbuiran canabik
aJIPOPUTMJIEP/IH TYPAKTBLIBIFBI MEH YKUHAKTBLIBIFBI JIDJIeIEH T, JuddepeHnaliIblK, eCenTiH, memrimIepi-
HiH TericTiri TypaJjbl 9Jici3 Oo/KaMIapMeH CXeMaHbIH, JIJIIIK Oarasiay/iapblH ajly YIIiH Mali aJIaHbLIFaH,
OPTYPJIi HOpMaJIap/ia COMKeC alprOPJIbIK Oarasayiap aJIbIH/IbL.

Kiam cesdep: Annep TeHeyi, aKbIPJIbl 3JIEMEHTTED SIICI, albIPBIMIIBIK, CXEMAJIAPDI, TYPAKTHIIBIK, allpuop-
JIBIK, Oarasiaysiap, YKUHAKTBLIBIK, JTOJITIK.

J. Vrebaes!, I'X. Vrenteprenosa!, K.O. Tneyos?

! Kapaxaanaxcruti zocydapemeennudl yrusepcumem um. Bepdaza, Hyxyc, Ysbexucman;
2 Hyxyceruti puavan Tawrenwmckoeo yrusepcumema
UHPOPMAYUOHHBLT MeTHOA02UT UM. anb-Xopeamu, Hykyc, Ysbexucman

O CXOAMMOCTHU CXeMbI MeTOoJa KOHEYHbIX 3JIeMEHTOB IOBBIIIIEHHO

TOYHOCTHA [IJId YpaBHE€HUA TEIlJIO-BJiaroriepeHoca

B crarpe mocTpoeHs! u HCCIeI0BaHBI PA3HOCTHBIE CXEMBI METOA KOHEYHBIX 3JIEMEHTOB BBICOKOI'O IIOPHAI-
K& TOYHOCTH Il HECTAIMOHAPHOIO ypaBHEeHUs Biarornepenoca AJuiepa. [TOBBIMIEHHBIA MTOPSIIOK TOYHOCTH
JOCTUTAETCS 33 CYeT CHEIUATHHON IUCKPETH3AIllNd BPEMEHHBIX M IPOCTPAHCTBEHHBIX NepeMeHHBIX. [lo-
Ka3aHa YCTOHYMBOCTBb M CXOJUMOCTb IIOCTPOEHHBIX YHMCJICHHBIX aJTOPUTMOB, IOJIy4YeHBbl COOTBETCTBYIOIIUE
aIIpUOPHBIE OIEHKN B Pa3JIMYHBIX HOPMaX, KOTOPbIE NCIIOJIb30BaHbI B TAJbHENIIIEM /I IIOJIYyYEHUSI OIIEHOK
TOYHOCTU CXE€MBI IPHU CJIAOBIX MPE/ITOIOKEHUIX O TVIAJKOCTH peleHuit quddepeHnnaabHoil 3a1a4un.

Karoweswie caosa: ypaBaeHue Ajuiepa, MeTOJ| KOHEYHBIX 3JIEMEHTOB, PA3HOCTHBIE CXEMBI, YCTONYIMBOCTS,
AIPUOPHBIE OLIEHKHU, CXOAUMOCTDb, TOYHOCTb.
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On the Lie symmetries of the boundary value problems for
differential and difference sine-Gordon equations

In general, due to the nature of the Lie group theory, symmetry analysis is applied to single equations rather
than boundary value problems. In this paper boundary value problems for the sine-Gordon equations under
the group of Lie point symmetries are obtained in both differential and difference forms. The invariance
conditions for the boundary value problems and their solutions are obtained. The invariant discretization of
the difference problem corresponding to the boundary value problem for sine-Gordon equation is studied.
In the differential case an unbounded domain is considered and in the difference case a lattice with points
lying in the plane and stretching in all directions with no boundaries is considered.

Keywords: symmetry analysis, partial differential equations, difference equations, boundary value problems.

Introduction

There are many theoretical and numerical studies on the nonlinear wave equations such as sine-Gordon and
Klein-Gordon equations in the literature (see [1-3] and the references given therein). Sine-Gordon equations are
of particular interest since they attracted much attention in the recent decades due to the exitance of soliton
solutions. Solitons are nonlinear waves and have been used in many mathematical models.

Lie symmetries are one of the most powerful methods in obtaining exact solutions of many partial differential
equations (PDEs). Many researchers have been studying this field and publishing articles and books [1-21] which
investigate the general theory of these applications. However, there is relatively small number of studies that
deal with Lie symmetries of boundary value problems for the PDEs. There are some difficulties in the application
of Lie symmetries to boundary value problems (BVPs). In symmetry analysis every symmetry of a BVP must
be a symmetry of a given PDE, a mapping of the domain to itself and a symmetry of the boundary data. In
general, the prescribed initial or boundary conditions are not invariant under the group transformation of the
corresponding PDE.

To the extent of our investigation the study of Lie symmetries of BVPs were first done by V.V. Puk-
nachov [19] and G.W. Bluman [7]. For the theoretical aspects we refer to books [6, 20, 21] In the recent studies
R. Cherniha et al. [16, 17] defined a new formula. This formula applies for the invariance of BVPs in a wide
range of boundary conditions including free (moving) boundaries and boundaries at infinity.

In the present paper BVPs for nonlinear sine-Gordon equation in the differential and difference forms are
investigated. Under the transformation groups boundary curves and boundary conditions of the equations are
obtained. The formula for the invariance of BVPs presented by Cherniha [16] is used. The main object of
this work is to investigate the invariance of a BVPs for sine-Gordon equation in differential and discrete form
under the Lie point symmetries of the corresponding equations. Note that some of the results of this work was
presented, without proof, in [4].

Preliminaries
Symmetry analysis of differential and difference equations

In this section we present the theory and definitions in the Lie symmetry analysis. Let us consider the
system of differential equations

FA(Z‘,U,U&,UQ,...,US):O,AZI,Q,...,m, (1)

*Corresponding author.
E-mail: ozguryQyildiz. edu.tr
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where x € R™,u € R™ and uy is the set of s-th partial derivatives. We can write the group of point transformati-
ons in the space (z,u) as

G, :{xi* :fi(x7u,a);uk* =g"(z,u,0),i=1,2,...,n,k=1,2,...,m}.

Using the power series and expanding the transformations about some neighborhood of the parameter a® = 0
gives

. . ofi
o =g 0B o) a =1, o,
da®
. OgF
W =ik e 2D L o) a =1,
da®
The derivatives of f and g* are smooth functions and are called infinitesimals of the group G, and denoted by

&, and n}.
Finding the Lie group of differential system (1) is equivalent to finding its infinitesimal operator(generator),
thus we seek for the infinitesimal operators of G, in the following form

Xo = € (0.0) 2 4 ()2 i =1

— i
axi auk
The set of tangent vectors to the manifold G, at the identity element a = 0 is {X,,a=1,...,r} and is a
basis of the Lie algebra of the infinitesimal operators of G,.. The determination of the infinitesimal functions £,
and 7 states the group of transformations. By X, one can determine the point transformations of the group
G, by solving the Lie equations

s k=1 ... ma=1,...,71.

of iy 09" 4 _ . _
p —fa(f),aaa =no(9),a=1,...,mi=1,...;,nk=1,...,m (2)

with the initial conditions
k

fla=o = ", 9" [a=0 = u*.
These equations obtain a one-to-one correspondence between vector fields (2) and the group of transformations
G,. The Lie algebra vector field is prolonged to the derivatives in order to modify it with differential variables

k
u;

b) k
ufz %,i: 1,....nk=1,...,m.
From that the extended infinitesimal operators are obtained as
- .0 0 e 0 k 0
%L —¢ k0 Law @ e 0 3
@ 5 al’z +"7 auk. +€z au’lf + + C2122~»-'Ls 8ué€1i2‘“is ( )
Here we denote .
1 ,
6" = Di(n*) —uf Di(&)
and (s)k (s—1)k j
Q‘fiz...is = Dis@fiz...is,l - Ufliz...is_ljDis (&),
0 0 0 0
D, — YR S S H HD Y, S T
2 ami uz auk uZ] 811151 ulllz...tn aufliz.“in
Theorem 1. [13] Let the Lie group of point transformations in the space of independent variables (x, u, u1, ug, . . ., us),

dependent variables and all s-th order partial derivatives of dependent variables with respect to independent
ones be G,.. Then system of differential equations (1) is invariant under the group G, if and only if

XQF,\(QC7U,U17UQ,...,US)|(1) =0,A=1,2,...,m. (4)

The invariance condition (4) is an overdetermined system of linear equations for the coordinates of infinitesimal
operator (3) and is called the system of determining equations.

Now, let us introduce the Lie symmetry analysis of difference equations. The difference scheme for the
solution of the system of differential equations (1) is denoted by

Hy(z,u,h,Tu) =0,A=1,2,...,m. (5)
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Here h = (hq, ha,...,hy) is the mesh space vector and T' = (11,75, ..., Ty,) represents the shift operator along
the axis of the independent variables and given by

Tilul(z1, .. @iy ey @n) = w(@r, ..o i 4+ Ry ooy Tp)e
We denote a group of transformations in the space of mesh variables (z,u, h) by G and define as
Gl = {2V = fi(z,u,a);u* = ¢"(z,u,a); "}
=o' (x,u,h,a),i=1,2,....,n,k=1,2,...,m

with the infinitesimal operator

, 0
XQ :Xa—&—gé(x,u,h)—_,a: 1,...,m7

oh;
Here ]
) 8@1
S = 5aa &= 1,...,m7
In the space of differential and difference variables (z,u, h, w1, ug, ..., us) the prolongation operator of the group

of point transformations (N}'((]h) is Xéh).

Theorem 2. [13] Finite difference scheme (5) is invariant under the group of transformations G if and only if
XM Hy(z,u,h, Tu)| ) = 0,A =1,2,...,m.
Symmetry analysis of the boundary value problem for PDEs

In this section we consider the Lie symmetry properties of BVPs. The invariance conditions under a group
of point transformations of a BVP for a scalar PDE satisfy if the group separately leaves invariant the boundary
conditions and the PDE of the BVP. The solution of the BVP resulting from the admitted point symmetry
is an invariant solution if the BVP is well-posed. On the other hand, the concerned boundary conditions are
in general not invariant under the symmetry of the considered PDEs. In view of this issue, one of the early
definitions on the invariance of a BVP was given by G.W. Bluman [5].

Let us consider a k-th order (k > 2) scalar PDE represented by

F(x,u,0u,8u,...,0%u) = 0. (6)

Here x = (1,22, ..., 2,) represents the coordinates corresponding to its n independent variables, u represents
its dependent variable, and 0’ represents the coordinates with components

u)0xs, 0y ... Oy, = Uiyiy..ayyi5 =1,2,...,m,f =1,2,.. .k
corresponding to all j-th order partial derivatives of u with respect to x.
We assume that PDE (6) can be written in the following form in terms of some specific component of the
[-th order partial derivatives of u

F(z,u,0u,0%u, ..., aku) = Uiy, — f2,u, ou, 0%u, . .. ,8ku) =0, (7)

where f(z,u,0u,0%u, ..., 8ku) does not depend explicitly on u;,i,.. 4,-
Now consider a BVP for PDE (7) defined on the domain 2, in z-space [z = (21, 2, ..., %,)] with boundary
conditions

B (z,u,0u,...,0" tu) =0 (8)
described on boundary surfaces
we(x) =0,a=1,2,...,s. (9)
Let us assume that problem (7)—(9) has a unique solution. We use an infinitesimal generator as follows
0 0
X =¢&i(z)— —. 1

This infinitesimal generator defines a point symmetry acting on both (z,wu)-space and on its projection to
x-space.
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Definition 1. [5] The point symmetry X in the form (10) is admitted by BVP (7)—(9) if and only if:

1 X®F(x, u, 0u,0?u,...,0%u) =0 when F(x,u,du,d?u,...,0"u)=0.

2 Xwg(x) =0 when we(z) =0,a=1,2,...,s.

3 X* VB, (z,u,0u,...,0"u) = 0 when B,(z,u,du,...,0" 'u) =0 on w(x) =0,a=1,2,...,s.

The above definition does not apply for BVPs with free boundaries or with boundary conditions given at
infinity. Therefore R. Chernica et al. (see [16], [17]) proposed a new invariance definition for BVPs which extends
Bluman’s definition to all possible boundary conditions. They formulated the definition of invariance for BVPs
at operators of conditional symmetry case expressing what kind of transformations can be applied to transform
boundary conditions at infinity to those containing no conditions at infinity. Consider a BVP for PDE (7) with
boundary conditions (8) and conditions defined at infinity:

Ye(x) = 00 : Ye(x, u, Ou, . . .,5‘k6u) =0,c=1,2,...,Poo, (11)

where k. < k and ps are given numbers and ~.(x) are specified functions that extend the domain on which the
BVP is defined at infinity. We assume that all functions arising in (7), (8), (9), and (11) are given such that a
classical solution of this BVP exists. Let us assume that the operator

Q = &) 2+ (e, u) L (12)

is a Q-conditional symmetry of PDE (7) satisfying the criterion:
Q(k)F(x, u, du, %, . .. ,8ku)|F(w,u’6u’62u““’8ku):0 =0, (13)

where Q(*) is the k-th prolongation of @ and Q(u) = 0 with Q(u) = & (z,u)u,, — n(x,u). Let us consider the
manifold for each ¢ =1,2,...,ps as

M = {v.(z) = 00 : ve(,u, du, .. .,8’fcu) =0}

in the extended space of variables x, u, uz, . . ., ué’“c). Suppose that there exists a smooth bijective transformation

y=g(z),w = h(z,u), (14)

where h(z,u) is a smooth function, g(z) is a smooth vector function that maps the manifold M into
M* = {y:(y) = 0: %} (y,u,0u,...,0%u) = 0}

of the same dimensionality in the extended variable space y, w, wy, ..., w@(,kC)(ka < k.) and
Y=Yi,---sYn-

Definition 2. [17] BVPs (7), (8), and (11) are @-conditionally invariant under operator (12) if:

1 Criterion (13) is satisfied,;

2 Q(wq(z)) = 0 when wq(z) = 0, Baly, (2)=0 = 0,a =1,...,s;

3 Q") (By(x,u,0u,...,0" ")) = 0 when wy(x) =0 and Balw,(z)=0 =0,a=1,...,s;

4 There exists a smooth bijective transform (14) mapping M into M* of the same dimensionality;

5Q"(v;(y)) =0 when 77 (y) =0,c =1,2,..., pe;

6 (Q*) ) (v*(y,u,Ou, ..., 0% u)) = 0 when v'(y) = 0 and 7} ye(y=0 = 0,c=1,2,...,r.

This definition coincides with Definition 1 when @ is a Lie symmetry operator and there is not any boundary
condition defined at infinity.

Lie symmetry analysis of the problem with sine-Gordon equation

Let us consider the nonlinear hyperbolic problem for sine-Gordon equation

Ut — Ugy = Sinu, t > 0, —00 < x < 00, (15)
U(va) = (p(l‘), (16)
ut(0,x) = (x) (17)
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Equation (15) admits three-dimensional Lie group [8] spanned by the operators

0 0 0 0
&,XQZ %,Xg,zl'a"'t%

X, =
The operators generate one-parameter Lie groups
Ti:t"=t+e, 2" =z,u" =u,
Ty :t" =t, 2" =z + e, u* = u,
T3 :t" =t +xe3, 2" = x +teg, u” = u,

respectively. Since the group T} corresponds to translation on the variable ¢, the invariance of the boundary curve
t = 0 is not preserved. Thus BVP (15)—(17) is not invariant with respect to the group Tj. For the invariance of
boundary condition (16) with respect to the symmetry group 75, the equations

t*|t:0 =0, [U* - (p(x*)”ufga(m)zo =0 (18)
must be satisfied. The first equation of (18) is an identity, while the second equation results
p(r) = p(z + €). (19)

For the invariance of boundary condition (17) we need the first prolongation of the operator Xs. Using the
prolongation formula for first-order derivatives

0
XU = X + (g + unu — (&) + wigl) — ua (&) + Utfi))af
Ut
g (20)
+ (N + ugnu — ug( 2 + Uxfg) - Ux(falc + ngi))au )
where £°, ¢! are infinitesimals with respect to the variables ¢t and z respectively, we get
0
x - < 21
2 ax ( )
Applying this operator to condition (17), we have
t*li=0 = 0, [y = ¥(&")][ur—p(@)=0 =0,
which gives
(@) =P(x +€2). (22)

BVP (15)—(17) is invariant under the group of transformations T3 if and only if equations (19) and (22) are
satisfied. These equations result is that the functions ¢(x) and ¢ (x) are constant functions.

Following the same way, we obtain the invariance criterions of boundary condition (16) with respect to the
symmetry group 73 if the equations

t+ xe3 = 0 when t = 0,
u— @(x+tez) =0 when u — p(z) =0

are satisfied. The first equation results with x = 0 or e3 = 0 that gives the trivial group. Hence we arrive at
boundary condition (16), which is invariant under the group of transformations T5 with restriction

z=0,0(x) = o(x + teg). (23)

To examine invariance of boundary condition (17) we apply the first prolongation of the operator X3 which is
obtained from formula (20)

x® =22 442 0 0

o o " ow  “on. (24)
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to (17) and we get
x=0,9(x) — Y(z + teg) = uges. (25)

Combining equations (23) and (25) we conclude that BVP (15)—(17) is invariant under the group of transformati-
ons T3 with restriction u,(t,0) = 0 and conditions:

(i) when ¢t = 0 the arbitrary functions are functions of x variable only, such that ¢(z) and ¥(z),

(ii) when ¢ # 0 then the arbitrary functions ¢(z) and ¢ (z) are constant functions.

Considering all situations presented above, we infer that BVP (15)—(17) admits two-parameter Lie group
T, o T3 that corresponds to symmetries t* =t + xes, 2* = © + teg + €2, u* = u if and only if ¢(z) and ¢(z) are
constant functions.

Lie symmetry analysis of sine-Gordon equation in the difference scheme form

In this section we study the Lie point symmetries of difference model for nonlinear problem (15)—(17). Before
we proceed, let us present some preliminaries and notations about transformation groups and prolongations in
the space of discrete variables given in [13]. We denote the sequence space (z,u,u1,us,...) by Z with

z={a'|i=1,2,..,n},

u= {uk | k=1,2,...,m}.

We denote the set of mn first partial derivatives as u; = {ul'} , the set of second partial derivatives as up = {ufj} ,

etc. The formulas for the derivatives when n = 2 for x = (J;l, x2) are

D, = 9 —I—mﬁ + uui -l-u21i + ..
Ozt ou 8U1 (’9u2 ’
Dy = 0 —I—Uzé + u12i -l-u22i + ..
8’132 ou (9’11,1 8u2 ’
where
ou 9%u 0%u
Uy = %71111 = W,Um = m,

In the proofs, for simplicity, the superscript k& on u* is omitted. The two commuting Taylor groups [18] with

finite transformations 7} = e*P1 and T? = 2P are generated by the given operators. In one dimensional case
the new coordinates
=T, (z) =z +a,
oo
u' =T, (u) = o
s=0

oo
a
uil =T, (u1) = Z STl

s=

S
Us,

S

o0
a
i = T () = 3 S
s=0 "’

are generated by the action of operator T, = e®P. Setting the arbitrary parameters h, ho > 0 the shift operators

S = eThiD1 = Z (£h) D7,

s!
+h e

Sy = eTh2D2 = Z (ihz)st
*h L ’
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are obtained. Using these shift operators, two discrete differentiation operators

1
Di=+-

S; —1),i=1,2
Di=45(5 —1),

are obtained. In the (9617 xg)—plane, the set of points

a (gl B (.2 _
{:I:Shl (I )’:I:ShQ (13 )}’avﬁ—071,2,...

is called a uniform orthogonal difference mesh and denoted by w.

In two dimensional case with dependent variable u, independent variables ¢,z and mesh variables hi, hs
we denote the spaces of differential variables, difference variables and the product of those spaces which is the
space of sequences of power series by

Z = (tuxauautauzautxv .. ')7

Z = (t,.’IJ,U,’U/t,U;w,U/tI,...,hl,hg),
h h h h
Z = (t,x,u,’ltt,ux,...,’U;t,Uz,U/tx,...,hl,hg),
h h h h
where
0%u

uij = = D;Di(u),...,w = w1 x wp

8I15 J’ l +h +h
and wj; is the difference mesh in the i-th direction, respectively.

h
Transformations in % is defined by the sequence of series with analytic coefficients,

= ZAg(z)aS,Aé =2,

s>0
where 27 is a coordinate of the vector (t,2,u,us, Ug, ..., Ut, Uz, Uts, - - .) and these series form one-parameter
R h h
groups generated by infinitesimal operators
t T 8
X=¢o+¢ —+ +Z<m +Zcmz R (26)
s>1 Yiria.. 1>1 Wiriz..oiy
Prolongating the operator (26) for the variables h; and ho gives
> 0 o 0
K=ot Dy (€) g + haDal€") 5

8h1 8h2

For first-order difference derivatives the coordinates of prolongation operator are given by the formulas

G =Di(n) —uDi(€") = S (1) D1 (€7), (27)
h  +h h +h +h

Co = Da(n) — Sz(ut)Dz(ﬁ ) = uz Da(E7). (28)
h  +h +h h +h

If the considered mesh is invariantly uniform or invariantly orthogonal, then the corresponding formulas for the
invariant meshes must be satisfied in addition to prolongation formulas (27)—(28).
We presented the five-point difference scheme

U—2u+u up—2u+u_
hi h3

=sinu (29)

for sine-Gordon equation (15) on the uniform and orthogonal mesh

t—2t4+t=0,2, —22+2_ =0
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in our paper [3]. Here we denote mesh variables by hy, ha and t=t+h,t=t—hy, 2y =x+ hy,
r_ = — hy, 0 =u(t,x), i =u(f,r),u; =u(t,r;),u_ = u(t,x_). We used the prolongation operator

o o 9 -0 -0 )
_ ¢t 7 T __ . t___ t_—_ x _ 7
P = e e e T T G T e T S e

0 0 0 0

xr a A >
&= Ox_ * 94 + "4 i Ouy - ou_

in the discrete subspace (t,,t,f, 2,2 ,u, 4, @, uy,u_) and obtained three-parameter transformation group
generated by the operators

0 0 0 0 0 0
XM=t T T o T an, T on
0 0 0 0 0 0

Xy=0e b f o e b
R T R TR A P

Difference equation (29) on the set of a finite number of points (z¥,t%) can be expressed as

k+1 k k—1 k _ k k
E - Up — — 2un +uy _ Upi1 Qun + Upil .k (30)
1- h,2 h2 = SN U,
1 2

on the uniformly spaced orthogonal lattice
By i thtl 4k — hy Bg o ahtl — ok =, (31)

Eyith  —th=0,F5:2F | — 2k = h,. (32)

D. Levi et al. mentioned certain independence criteria for difference schemes in two dimensional case [14].
By this criteria one can calculate the values of (z,t,u) at all points beginning from the point (z% ¢¥) and a
given number of neighboring points and assures the existence of solution of the system. The following condition
on the Jacobian

O0(Ey, Ey, B3, Ey, E5)
8(tﬁ+1, xf{“, tlfL+1v foH, uﬁ-&—l)

|J| = #0 (33)

is imposed by Levi et al. [14]. This condition allows to move upward and to the right along the curves passing
through (x%,tk) (with either k or n fixed). Difference scheme (30)-(32) satisfy certain independence criteria
(33) by

tﬁ = hlk + to,l’ﬁ = hQTL + Zo-

In this step, using difference equation (29) for the BVP (15)—-(17), we write the difference problem

U—2u+u Uy —2u+u_

= sinu, (34)
hi h3
uy = ¢"(2), (35)
1 0

Uy, — U h
— 5 =y (@ (36)
In this paper the notation (¢, , u, u, Uy, Utg, - - - , h1, ho) for difference variables in two-dimensional case is used

h h h

for simplicity. Using these symbols, we rewrite the difference model (34)—(36) in the following form

Upt — Ugg = SIN U, (37)
h h
u(0, ) = " (), (38)
ur(0, ) = V(). (39)
Difference equation (37) admits three-parameter groups generated by operators [3]
X1=%,X2=8%,X3:x%+ta%. (40)
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Lie symmetry groups corresponding to the translation about time variable is described by the operator X7,
to the translation in space variable is described by the operator X5, and to the rotation is described by the
operator X3. The difference scheme (37)—(39) does not admit symmetry group generated by X7, because time
translation violates invariance of the boundary surface ¢t = 0.

The invariance of boundary surface ¢t = 0 generated by the operator X5 with respect to the transformation
group is trivial. Under the symmetry of space translation X5, boundary condition (38) is invariant if the equation

u— "z +e)=0foru—"(x) =0

is satisfied. From that it follows the condition

P"'(x) = "z + e2). (41)

For the invariance of boundary condition (39) we require the first-order prolongation formulas in space of discrete
variables. From (21) we know the coordinates for continuous derivatives in the prolongation of the operator X,
are zero. Using formulas (27)-(28), we obtain the coordinates of first-order difference derivatives

Ct = D1 (O) - utDl(O) — Sl(uz)Dl(l) = O7
h +h h +h +h +h

Cm = DQ(O) — SQ(Ut)DQ(O) — Ung(l) =0
h +h +h +h h +h

for the operator Xy with n = 0,£! = 0,£% = 1. In this case X, = X, where X, is the first prolongation of
h

h
the operator X5 in discrete space. Applying this prolongation to condition (39) we get the criterion

1/1h(x) = wh(x + €2). (42)

In consequence of combining criterions (41) and (42) one can say that difference scheme (37)—(39) is invariant
with respect to the transformation group defined by the operator X» if and only if " (z) and " () are constant
functions. Using the same procedure, we obtain the invariance criterion of condition (38) under the rotation
group spanned by the operator X3 as

t+2e3 = 0 when t = 0, u — " (2 + teg) = 0 when u — " (x) =0
which results
z=0,0"x) = "(z + te3). (43)

Under the symmetry group generated by this operator we need to prolong operator (24) for the first-order
difference derivatives in order to analyze invariance of condition (39). Substituting 1 = 0,
&' = 12,6 =t in the operator X3 in (27)-(28), we obtain the coefficients

Ct = —Uyg, C:v = Ut
h h

and the prolongation operator

xm_,9,,9_ ,90 90 _,0 _ , 9
W Yot ox o Y ou, T Ouy L ou,
h h

This operator generates the group t* =1t 4 we3, ™ = = + teg, u* = u, uy = ur — Ug€z, UL = Uy — Us€s,

U = up — Ug€z, Uk = u, — urez. Applying the operator to boundary condition (39) gives
h h h h

t+xe3 =0 fort =0,

Uy — uges — Y (z + tez) = 0 when uy — " (z) =0
h h

and consequently
x=0,9"(x) — Y"(x + tes) = uges. (44)

From equations (43) and (44) under the group of transformations X3 and with the restriction wu,(¢,0) = 0 we
conclude that difference scheme (37)—(39) is invariant in two cases:
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(1) if t = 0 for all arbitrary functions ¢"(x) and ¥"(z),
(2) if t # 0 then ¢"(z) and ¥" () are constant functions.
Remark. Note that in the prolongation operators X>™M and X3Y we omit the coordinates for the mesh variables.
h

h

Indeed, substituting the infinitesimals 7 = 0,£! = 0 of the operator X5 in D1 (£%) and Do (£%) gives zero.
+h +h

For the operator X3 the infinitesimals are n = 0,£% = x,£% = t and we calculate Dy (£%) and Do (£7) as
+h +h

where

1 h
D *E(%*l):(Dl+2*?Df+"')(l’):07

Do(t) = 2(S2 1) = (Dy + SLD3 4+ - )(1) =0,

+h h
D g—i—u——i—u i-ﬁ-u 0 +
Y " ou " o, “t iy ’
D—g+ué+u 6+u a+
2 — ) xa txaut ac:caugc
Conclusion

Some results discussed in this paper are as follows. We have investigated the BVP for sine-Gordon equation
in differential and difference cases which are defined on an unbounded domain and lattice respectively. We
obtain the invariance conditions for the problems under the group of transformations admitted by continuous
and discrete sine-Gordon equation by applying the invariance definition in [16]. The transformations act on the
difference scheme, lattices, and boundary conditions and preserve uniformity and orthogonality of the lattice.
We used the prolongation formulas in discrete space which are formulated by Dorodnitsyn in [13] and analyze
the invariance of the boundary conditions with derivative. On this basis we conclude that difference scheme
(37)—(39) is invariant under the same restrictions of differential form (15)—(17) with respect to the symmetry
groups generated by (40).
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O. Ubuapipeiv, C. Yarmak

Hoindws mexnuranrvir, yrnusepcumems, Cmambya, Typrus

nddepeHnmaablK >koHe aiibIPpbIMABIK, TEeHAeYyJIepi YIMiH MIeTTiK

152

ecenrep/eri JIujain cuMmMmeTrpusijiapbl TypaJbl

2Kammsr JTu TonTapbl TEOPUSICHIHBIH, CUTIATHIHA, OARTAHBICTBI CHMMETPHUSIHBI TAJIIIAY MIETTIK eCcernTepre eMec,
JKeKe TeHjeyJiepre Kosgaubliaabl. Makasama JIugain HYKTeJdiK cuMMerpusijiap TOObIHA KATBHICTBI CHHYC-
Topmon Tenpeysepi yinin 1merTik ecenrep mauddepeHInaIblK, *KoHe albIPhIMIBIK, TYPJIEPiHIe AJIBIHIbI.
[ITeTTik ecemrep/iiH *KoHE OJAPIBIH IIENIIMIAEPIHIH NHBAPUAHTTHIK, MapTTapbl anbikTaaran. Cunyc-l'opmon
TeHJIeyl YIITIH IIEeTTIK ecernke CoiKec KeJeTiH aiflbIPbIM/IBIK, €CENITiH, MHBAPUAHTTHI JIMCKPETU3AIUSICHI 3€PTTE-
ni. duddepennmaaipik *Karaaiiaa meKcis obJIbIC, ajl aflbIPBIMIBIK, YKargaia — YKa3bIKTHIKTA OPHAJIACKAH
2KoHe OapJIbIK, OAFBITTa IIEKaPAChl3 CO3BLIATHLIH HYKTEIEPl 6ap TOp KapacTHIPBLIFAH.

Kiam cesdep: cummeTpusiHbL Tajay, 1epbec TybIHIbLIbI TeHJIEYIIeD, ailbIpBIM/IBIK, TEHEYJIepi, IeTTIK ecerl-
TEP.

O. Mewapipeiv, C. Yarmak

Texnuueckut ynusepcumem Hondws, Cmambya, Typyus

O ImeBCKUX CUMMETPHUAX B KPAeBbIX 33JIavax JIJIst
andpdepeHnuaabHbIX U PA3HOCTHBIX yPaBHEHM

Beumy npuposasr reopun rpymnmn Jlu anamms cuMMeTpun MIPUMEHSIETCH K OTACTbHBIM yPABHEHUSIM, & He K Kpa-
eBbIM 3ajiayaM. B craTbe KpaeBble 3a7a4u sl ypaBHEHUN cuHyc-I'OpIOH OTHOCUTEIBHO IPYIIIBI TOYE€IHBIX
cummerpuii JIu mostydens Kak B audpepeHnnaabHoil, TaK U B Pa3HOCTHON dopme. OmpeseeHbl yCaIoBUst
VHBAPUAHTHOCTH KPAEBbIX 3a7a4 U ux pemrenwnii. VcciemoBana nHBapraHTHAS NUCKPETU3AINS PA3SHOCTHOMN
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3aJ[a4n, COOTBETCTBYIOIIE KpaeBoil 3a1ade st ypaBHeHUs cuayc-lopmon. B nuddepennmaasaom ciaydae
paccMoTpeHa HeorpaHWYEeHHas 00JIaCTh, a B PA3HOCTHOM — PEIIETKa ¢ TOYKAMH, JIEXKAIIUMHU B IIJIOCKOCTH
¥ TSHYIUMUCS BO BCEX HAIPABJIEHHUSAX O€3 IPAHUIL.

Kmouesvie car06a: aHAIN3 CAMMETPUN, YPABHEHUs B YaCTHBIX IIPOU3BOJIHBIX, PA3HOCTHBIE YPABHEHUSI, Kpae-
BbIE 33/Ia9U.
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