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A.T. Assanova!, A.E. Imanchiyev'?, Z.M. Kadirbayeva!s

! Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan;
2K. Zhubanov Aktobe Regional State University, Kazakhstan;
3 International Information Technology University, Almaty, Kazakhstan
(E-mail: assanova@math.kz)

A nonlocal problem for loaded
partial differential equations of fourth order

A nonlocal problem for the fourth order system of loaded partial differential equations is considered.
The questions of a existence unique solution of the considered problem and ways of its construction are
investigated. The nonlocal problem for the loaded partial differential equation of fourth order is reduced
to a nonlocal problem for a system of loaded hyperbolic equations of second order with integral conditions
by introducing new functions. As a result of solving nonlocal problem with integral conditions is applied a
method of introduction functional parameters. The algorithms of finding the approximate solution to the
nonlocal problem with integral conditions for the system of loaded hyperbolic equations are proposed and
their convergence is proved. The conditions of the unique solvability of the nonlocal problem for the loaded
hyperbolic equations are obtained in the terms of initial data. The results also formulated relative to the
original problem.

Keywords: nonlocal problem, loaded partial differential equations of fourth order, integral condition, system
of loaded hyperbolic equations, algorithm, unique solvability.

Introduction

Many problems of dynamics and kinetics of gas sorption, processes of drying by air stream, movement
of adsorbed mixtures and others lead to the study of nonlocal problems for the systems of hyperbolic
equations with loading [1-10] and also for nonlocal problems with integral conditions for equations of hyperbolic
type [11-16]. In order to solve these problems, the theoretical methods of ordinary differential equations, loaded
differential equations, numerical-analytical method are applied, and new approaches and methods are developed
as well. Conditions for solvability are received and ways for finding the approximate solutions are offered.
Mathematical modeling of various processes in physics, chemistry, biology, technology, ecology, economics and
others are leaded to nonlocal problems for the higher order loaded differential equations with variable coefficients
and parameters. Despite the presence of numerous works, general statements of nonlocal problems for the
higher order loaded partial differential equations remain poorly studied up to now. Therefore, the problems
of solvability of nonlocal problems for the fourth order partial differential equations with and without loading
remain important for applications [17-21].

The Goal of this paper is to study boundary value problems with data on the characteristics for the fourth
order system of hyperbolic equations with loading and to establish coefficient criteria for unique solubility and
to construct algorithms for finding their approximate solutions. Therefore, in the present paper we study of a

6 Bectnuk Kaparanmgurckoro yuuBepcurera



A nonlocal problem for loaded...

questions the existence and uniqueness of classical solutions to nonlocal problem for the fourth order system of
loaded partial differential equations and the methods of finding its approximate solutions. For these purposes,
we are applied method of introduction a new functions [22, 23] for solve of this problem.

We consider on the domain © = [0, 7] x [0,w] a nonlocal problem for the fourth order system of the loaded
partial differential equations with two independent variables

Ot 3 94—y, iy,
030t Z{Ai(t,x)% + Bi(t,x) 8303—’675} + C(t, x)u+

3 m 4—3 4—1i
+ 3 S {Kinttw) )Ll ””)+Li,k(t,x)MHt . +ZMlktx) (th,2) + f(t), (1)

Oxt—t Ox3—0t
=1 k=1 k=1
3u(0, x Bu(T, z
P(a;)a a<x03 ) + 5(30)78 8(1'1; ) = (), z € [0,w], (2)
u(t, z 2ul(t, z
w(t,0) = vo(t), 2 gx ) ), % =), teT] 3)

=0
Here u(t,z) = col(uy(t,x), ua(t, x), ..., un(t, x)) is unknown function; the n x n matrices A;(t,z), B;(t,z),
C(t,x), K;k(t,x), L (¢, ), M; 1(t,z), i = 1,3, k = 1,m, and n vector function f(¢,z) are continuous on £2;
0<t; <ty <..<ty<T;then xn matrices P(z), S(z), and n vector function ¢(z) are continuous on [0, w];
the n vector-functions 1o (t), 11 (t) and () are continuously differentiable on [0, T7].
Let C(£2, R"™) be the space of continuous vector functions u : £ — R™ on £ with norm
fullo = gna [t

)

i+j
38;75;@ ceC(Q,R"), i=1,3, j=0,1,is
called a classical solution to problem (1)—(3) if it satisfies to system of loaded equations (1) for all (¢t,z) € 2
and meets the conditions (2) and (3).

We will investigate the existence of a unique solution to the nonlocal problem for the fourth order loaded
partial differential equation (1)—(3). We use method of introduction a new functions for solve of the problem
(1)—(3) and construct of its approximate solutions. The nonlocal problem for the fourth order system of loaded
partial differential equations is reduced to a nonlocal problem for a system of loaded hyperbolic equations of
second order with integral conditions by introducing new functions. An algorithms of finding the approximate
solution to the equivalent nonlocal problem with integral conditions are constructed and their convergence is
proved. The conditions of the unique solvability of the nonlocal problem for the system of loaded hyperbolic
equations with integral conditions are established in the terms of initial data. The results also formulated relative
to the original of the nonlocal problem for the fourth order system of loaded partial differential equations.

A function u(t, z) € C(Q, R™), having partial derivatives

1 Scheme of the method

O?u(t, x) ou(t, )

Introduce a new unknown functions w(t,z) = B o(t,z) = 3
x T

Taking into account of first and second conditions in (3), we have

x x 13
ot ) = (1) + / w(t, dE,  ult,x) = o(t) + Y1 (D + / / wit, €1)dé de.

Then problem (1)—(3) is reduced to a following problem

2
gwgut =Ailt, x)g—i) + Bl(t,x)% + As(t, x)w+
3 Ow(ty, x) dw(t,z)
—|—Z{K1 k(t,x) o +L1,k(t,x)T s +K2,k(t,x)w(tk,x)} ¥ F(t ) + gt 2,0, 0), )
=1 f=ty
P(m)M + S(@M = (), )

or ox
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w(ta 0) = ¢2(t)7 te [07T]7 (6)
xT T 5
o(t,2) = (1) + /0 w(t,E)de,  ult,z) = bolt) + 1 (O + /0 /0 wlt,€)dé dE, (7)
where 5 9
gt z,v,u) = As(t, 2)v(t, ) + Balt, x)a—: + Bal(t, x)ai: Ot z)ut
3 Kaalt: o) + Laats 0 08| bront ) P00 et mutin ) ).

From (7) it follows

o(t. x . T 9w w(t. . . ¢ ré w 1
ou(t, ):wl(t)+/(J 0 (t,f)d& Du(t, ):wo(t)+¢1(t)x+/0 /o %dfldé (8)

ot ot ot
A triple functions (w(t, x),v(t, x), u(t, z)), where w(t, z) € C(Q, R"), 3w8(t,x) e C(,R"), 3wétt, 2) e C(,R"),
T
2
% € C(@,BY), andu(t,a) e c@R), 28 ¢ o prr), uta) € C0,RY), %t{x) € C(Q,R),

is called a solution to problem (4)—(7), if it satisfies the system of loaded hyperbolic equations second order (4)
for all (t,z) € €, the boundary conditions (5), (6), and integral relations (7).

The problem (4)—(6) at fixed v(¢, x), u(t, ), is a nonlocal problem for system of loaded hyperbolic equations
of second order with respect to w(¢,z) on Q. The integral relations (7) allow us to determine the unknown
functions v(t, ) and u(t, x).

ovu(t, x) and Ou(t, x)

for all Q.
5t n 5t or all (t,x) €

From (8) we define the partial derivatives

The problem (4)—(6) can be interpreted:

e as a nonlocal problem for the system of loaded hyperbolic equations of second order with distributed
parameters v(t, z) and u(t, z);

e as an inverse problem for the system of loaded hyperbolic equations of second order, where the unknown
functions v(t, x), u(t,x) determine from integral relations (7);

e as a control problem for the system of loaded hyperbolic equations of second order, where the control
functions v(t, x), u(t, z) satisfy integral constrains (7).

Since the function w(t,z) and the functions v(t,z), u(t,2) are unknown together to find a solution to
problem (4)—(7) we use an iterative method.

2 Algorithm for finding of solution to problem (4)—(7)
A triple functions (w*(t,z),v*(t,x),u*(¢t,2)) we determine as a limit of sequences of triple functions
(w®P (t,z), v (t,z), uP)(t,x)) and p = 0,1,2, ..., by the following algorithm:

ov(t,x . . . .
Step - 0. 1) Let v(t,z) = ¢1(¢), u(t,x) = ¥o(t) + ¥1(t)x, (¢,2) =1(1), = o(t) + Y1 (t)x in
right-hand side of system (4). Then from nonlocal problem for the system of loaded hyperbolic equations (4)—(6)
ow O (t,z) owO(t,z) nd *w O (t, z)
o ot " Dot

ou(t, x)

we find w(©) (¢, z) for all (¢,z) € Q. Also we find its partial derivatives

for all (t,z) € Q;
2) From integral relations (7) we determine v(%) (¢, z) and u(%) (¢, x):

v(o)(t,x):¢1(t)+/0z Ot €)de, uO (L, 1) = o(t) + v (t x+// V(L €)derde,  (ta) € Q.

v (t, x) ouO (t, )
A TR

w0 (t, z) o = wO(t, ) ouO (t, ) B £ guw© t §1
o =+ [P a 2D i+ [ P e,

Then from (8) we find

And so on.
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ov(t,z)  dvPV(t,z)

Step - p. 1) Suppose that  v(t,z) = v®=V(t,z), wu(t,z) = uP D (t,2), pra 5 and
t (p=1)(¢
8uf9t, 2) == Mait(,x) in right-hand side of system (4). Then from nonlocal problem for the system of
: : . . .. owWP(t,x)
hyperbolic equations (4)—(6) we find w®) (¢, z) for all (t,x) € Q. Also we find its partial derivatives o
x

ow® (t, ) *w®) (t, )
5t and pRen for all (t,x) € Q.

2) From integral relations (7) we determine v(®) (¢, 2) and u(®) (¢, z):

®) (1, 2) = T @), u® dé, de, ) eq.
o) () ¢1<t>+/0w (LEE, uP(t,2) = do(t) + vt m+// D(t,6)dende, () €

P (t, ) d ouP) (t,z)

Then from (8) we find 5 an 5

P (t,x) T owP(t,€) ouP)(t, z) € Q) tfl
S =+ [ a2 g b+ [ [ g

p=12 ..
8 Nonlocal problem for system of loaded hyperbolic equations

We also consider an auxiliary nonlocal problem for system of loaded hyperbolic equations second order

0w ow ow
pyen = A (¢, x)a—x + Bl(t,x)a + As(t, x)w+
+Z{K1 ‘ &”S’“’ ) 4 Lty ) 8wétt, ?) Kt it 2) |+ F(t), (9)
P(m)w + S(x)w —p(z), zel0w) (10)
w(tv O) = 1/12(t)7 te [OaT] (11)

Here the functions F'(t,z) € C(£2,R™).
Let tO = 07 tm+1 =T.
_ m—+1
By lines of loading t = t, kK = 1,m, we divide of domain Q = |J Q,, where Q, = [t,_1,%,] X [0,w],
r=1
r =1,m+ 1. By w,(t, ) denote the restriction of function w(t, z) to the subdomain €, such that w, : Q, — R"
and wy(t,z) = w(t,x) for all (t,z) € Q, and r=1,m + 1.
Further, by A.(z) denote the value of w,(¢,z) under t = ¢,._1, 7 = 1,m+ 1. We replace w,(t,z) by
87:67‘ (tr—la .13)

Wy (t, ) + Ar(z) in each domain Q,, r = 1,m + 1. This implies @, (t,—1,2) = 0, and . = 0, for all
z € [0,w] and r =1,m + 1.
Then the problem (9)—(11) is equivalent to the problem with unknown functions A, (z):
0w, oW, ‘ 0w,
Ervi Aq(t,x) o (t,z)\-(z) + Bi(t, x)ﬁ + Ao (t, x)w, + As(t, z) N\ (z)+
—i—zm:{fﬁ k() M1 () + Ko g (8, ) Nog1 (o }+iL1k M +F(t, x), (12)
= ’ — ot t=t),
Wy (tr—1,2) =0, z € [0,w], r=1,m+1, (13)
wr(tao):w2(t)_w2(tr—l)7 te [tr 17 ]7 T:1,m+1, (14)
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Pah(e) + S@hnals HS(”%WH@(% z € [0,w], (15)
W + As(x) = Mg (2), z € [0,w], s=1,m. (16)

Here relations (16) are conditions of continuity at interior lines t = t5, s = 1,m of desired function w(t, ).

The problems (9)—(11) and (12)—(16) are equivalent in the following sense. If the function w(t,z)
is a classical solution to (9)—(11), then system of pairs (A.(z),w,(¢,x)), where A.(x) = w(t,—1,2) and
Wy(t,z) = w(t,z) —w(tr_1,x), and (t,z) € Q,, and r = 1, m + 1 is a solution to problem (12)—(16). Conversely,
if the system of pairs (A (x), w} (¢, x)), (t,x) € ,, and r = 1,m + 1, is a solution to (12)—(16), then the function
w*(t,x) defined by the equalities

w*(t,x) = Xi(x) + wi(t,z) forall (t,z)eQ,., and r=1,m+1,

is a classical solution to problem (9)—(11).

From compatibility condition at (0,0) we obtain:

Ar(0) = o (tr—1), r=1,m+1 (17)

At fixed A, problem (12)—(14) is Goursat problem for system of loaded hyperbolic equations of second order on

2, with respect to wy(t,x), r=1,m+ 1.
Let V (t 31‘) BwT(t z) W ( ) 3@2)(15,35)
T
Goursat problem (12) (14) is equivalent to the system of three integral equations on Q,. at fixed \,.(z)

Vi (t, z) :/ {Al(T )V (7, 2) + Bi(7, 2)Wo(1, 1) + Ao(7, )i, (7, 2) + ZLl 1 (7, 2) Wi (b, )+
tr—1 k=1

FF(r,x) + Ay (7 @) A (@) + Ao (1, 2)A(2) + Z{Kl 1 (7, ) A1 (2) + Ko po(7, x))\kJrl(ac)}}dﬂ (18)
=1

E

Wo(t,2) = va(t) + /Ox{Al(t OVi(t,€) + Bi(t, Wi (t,€) + Ao (t, ) (1,) + > L k(t, ) Wiy (t, )+

k=1

F(t,€) + A1(t, )N (€) + Ao(t, A (€) +

NE

(K100 ©) + KastONn (O} pas. (19

k=1
t —
Bolt,0) = 2(0) —baltr) + [ Woria)dr (20)
tr—1
Substituting ‘7;«(’7', x) = W in the right-hand side (18) and repeating the process v times, and v € N, we

obtain
Vo(t,z) = Dy (t,2) A (@) + Y Dyt 2) M1 (2) + B (8, 2) M (@) + Y By (£, 2) Mgt () +
k=1 k=1

+Gl/,’r‘(t7 $7 ‘Z’) + HV,T(tu Q}', WT, wr) + FV,’I"(t7 ‘T)7 (21)
where

t t T1
Dyvr(t,:c) :/ Al(T,Z')dT+/ Al(Tl,ZL')/ Al(Tg,x)dngﬁ + ...+

tr—1 tr—1 tr—1
t T1 Ty—1
+ Al(Tl,ZIJ) Al(TQ,{E).../ Al(T,M‘T)dTydTl,,l...dngTh
t7~71 trfl t'r—l
. t t T
D, i(t,z) = Ky (1, 2)dr + Aq(r,x) Ky (11, x)dmdr+
tr—1 tr—1 tr—1

t T -
+/ A1(7-7x)/ Al(le-T)/ K1 (12, x)drodmdr + .4
tr—1 tr_1 t

r— L —
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t Tv

Ty—1
+ Al(Tl,if).../ Al(Tl,,.’E) Klvk(T,H,l,$)dTU+1dTy...dT1,

tr—1 tr—1 tr—1

t T T1
E,.(t,x) :/ AQ(T,:c)dT—i—/ Al(T,(E)/ Ao (1, z)dmdT+

tr—1 tr—1 tr—1

t r ‘r1
+/ Al(ﬂx)/ Al(ﬁ,x)/ Ao (1o, x)drodrdr + ...+

tr—1 tr—1 tr—1

t Ty—1 Tv
+/ Al(ﬁ,x).../ Al(Ty,z)/ Ao (Tyg1, 2)dryp1dT,...dT1,

tr—1 tr—1 tr—1

t t T
Eu,r,k(tax) :/ K27k(7',1‘)d7'+/ Al(T,Ji)/ K27k-(7'1,1‘)d7'1d7'+
tr—1 tr—1 tr—1
t T 1
+/ Al(Tvﬂﬁ)/ A1(T1,x)/ K (T2, x)drodmdr + ..+
tr_1 tr—1 tr_1

t Ty—1 Ty
—l—/ Al(Tl,x).../ Al(TU,J))/ Ko 1 (Ty41, 2)dTyy1dT, .. .dT1,
tr—1

tr—1 tr—1

t Tv—1 ~
Gy (t,z,V,) :/ Al(ﬁ,m).../ A1 (1, 2) Vo (1, )dTy .. odrodT,
t

br—1 tr—1

t m
H, , (t,x,W,,w,) = / {Bl(T, )W, (1,z) + Ao (7, )W, (1, 2) + Z Ly (7, 2) Wit (th, :L')} dr+
tr—1 k=1

t T1 . m .
+/ Al(ﬁ,x)/ {Bl(TQ,J))Wr(TQ,Qf) + Ao (1o, )W, (T2, ) + E L17k(T27$)Wk+1(tk,.Z‘)}dTQdTl—F
tr—1

tr—1 k=1

t Ty—2 Tv—1 —
+...+/ Al(ﬁ,x).../ Al(ﬂ,_l,x)/ [Bl(Tu,x)Wr(Ty,x)+A2(Ty,x)zﬂr(n,x)+

tr—1 tr—1 tr—1

+ Z Ly (70, x)WkH (tk, x)} dr,dr,_1...dT,
k=1

t t T
F, . (t,z) = / F(r,z)dr +/ Aq (7'1,33)/ F (1o, z)dradm + ...+
tr—1 tr—1

tr—1

tr_1 tr_1

t Ty—2 Ty—1
+/ Al(Tl,x).../ Al(Tu_l,l‘)/ F(ry,x)dr,dry—1...dr,
tr—1

(t,r) €., r=1m+1, veN, k=1m.

From (21) we find V,(t,,z) = W for all x € [0,w], and r = 1, m + 1. Then, substituting their into (15)
and (16), and multiplying both sides (15) by Ay, = tm41 — tm, we obtain the system of differential equations
with respect to functions A.(z), and r =1, m + 1:

hn P(2)A1(2) + hin S (@) Y Dy (8 ) Mg () +
k=1

+hms(33)[l+ Du,m+1(tm+17x)])‘m+l($) =

= —th(l') |:Eu,m+1(tm+17 :E))\erl(x) + Z Eu,m+1,k(tm+1; $))\k+1(l’) -

k=1
_hms(x)Gu,m+1(tm+1; z, varl) - hms(m)Hu,m+1(tm+1; z, Werlv {Dm+1)_
*th(I)Fv7m+1(tm+lv 93) + hm‘P@)» T € [va]v (22)
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[I+Dy5(tsax Z th /\k—i-l( )_).\s—&-l(x) El/é tavx Z tswr )‘k+1( )
k=1 k=1

_Gv,s(tsa'ra VG) - Hu,s(t37I7W9aas) - Fu,s(t87x)a s = 1ama S [0,(.4)]. (23)

We denote by Q, (z) and E, (z) the n(m -+ 1) x n(m + 1) matrices composed of the coefficients A,.(x) and \,.(z)
n (22), (23), respectively, r = 1,m + 1.
So, we can rewrite the equations (12) and (13) in the compact form

Ql,(l‘))\(l‘) = —El,(l‘))\(l‘) - Fu(l‘) - GU(-’L‘, ‘7) - Hu(mv W’ @), (24)

where F, () = (hnS(2) Fymi1 (b1, 2) = hin@(2), Fu i (b1,2), ooy oo (b 7))
Gl/('r7v) = (th(x) |:Gl/,m+1(tm+1axaVm+1)7GV71(t17xaVv1)7--~7Gu,7n(tm7x7‘/7n))lv

Hl/(z7 Wa {D) = (th(I)Hu,m+l(tm+17 xZ, Wm+17 {Em+1)7 Hu,l(tlv €, Wla {El)a ) Hl/,m(tma Z, Wm; ﬂjm)),

System (24) with conditions (17) given us Cauchy problem for ordinary differential equations with respect
to Ar(z), r=1,m+1.

If we know @, (t, ) and its partial derivatives V,.(t, z), Wr(t,x), then from Cauchy problem (24), (17) w.
find A\, (z) and A.(z) for all z € [0,w], where r = T,m + 1. Conversely, if we know A,(z) and its derlvatlve
Ar(z), then from Goursat problem (12)-(14) we can find @, (¢, ) and its partial derivatives V,.(t, ), W, (t,x)
for all (t,z) € Q,, r = 1,m + 1. For solve Goursat problem (12)—(14) we use equivalent system of three integral
equations (18)—(20).

Since the w, (t, ) and A, (x) are unknown to find a solution to problem (12)—(16) we use the iterative method:
1) At fixed w,(t,z) from the Cauchy problem (24), (17) we find the introducing parameters A,(z) and their
derivative \.(z) for all z € [0,w], 7 = T,m + 1; 2) At fixed \,(z) from the Goursat problem (12)-(14) we find
the unknown functions @, (¢,z) and their partial derivatives V, (¢, z), Wr(t, x) for all (t,z) € Qp, r=1,m+ 1.

Let h= max (t; —ti—1), alz)= max |A1(t, z)||, Br(x) = max ||Kix(t,z)||, k=1,m.
i=1,m+1 t€[0,T] t€[0,T]

The following assertion given us a sufficient conditions of unique solvability to problem (12)—(16) and a
convergence this iterative process.

Theorem 1. Let for some v, v € N the (n(m + 1) x n(m + 1)) matriz Q,(x) is invertible for all x € [0, w]
and the following conditions are valid:

1) [Qu(2)] 7| < v (x), where v, (x) is positive and contmuous on [ w] function;
2) qy(;[;) = ’Yy(fl?) . {ea(w)h _ Z [O‘(?# + [ea(l)h _ Z [O‘(j#]h Z ﬁk(x)} <x<1,
j=0 j=0 k=1

where x - const.

Then problem with parameters (12)-(16) has unique solution.

Theorem 2. Let for some v, v € N the (n(m+ 1) X n(m + 1)) matriz Q,(x) is invertible for all x € [0, w]
and conditions 1)-2) of Theorem 1 are fulfilled.

Then nonlocal problem for system of loaded hyperbolic equations of the second order (9)-(11) has unique
classical solution.

The proofs of Theorem 1 and 2 are similar of proof Theorem 1 in [22].

Therefore, for problem (4)—(7) we have the following statement.

Theorem 3. Let

i) the n xn matrices A;(t,x), Bi(t,x), K; 1(t,z), L x(t,x), M; x(t,x), i = 1,3, k =1,m, C(t,x), and n
vector function f(t,z) are continuous on Q;

i1) the m x n matrices P(x), S(x), and n vector function p(x) are continuous on [0, w];

iii) the n vector-functions o (t), ¥1(t) and V¥a(t) are continuously differentiable on [0,T);

iv) the nonlocal problem for system of loaded hyperbolic equations of the second order (9)—(11) is uniquely
solvable for any F(t,z) € C(Q,R"), p(x) € C([0,w],R™) and 1o(t) € C1([0,T],R™).

Then problem with integral conditions (4)—(7) has a unique solution.

This Theorem is proved on the basis of the above algorithm and is similar of proof Theorem 2 [23].

From equivalence of problem (1)—(3) and (4)—(7) it follows

Theorem 4. Let

1) the conditions i)—iii) of Theorem 3 are fulfilled;

2) for some v, v € N the (n(m + 1) x n(m + 1)) matriz Q,(z) is invertible for all x € [0,w] and
[Qu(2)] 7| < v (x), where v, (z) is positive and continuous on [0,w] function;
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3) the following inequality holds:

¢ () = (z)- {ea(z)h - ZV: la(@hp + {ea(z)h - Vi: W}hZ@c(m)} <x<l1,

il !
j=0 J: j=0 J k=1

where x - const.

Then problem (1)-(3) has a unique classical solution.

So, the nonlocal problem for system of loaded partial differential equations of the fourth order (1)—(3) is
reduced to an equivalent nonlocal problem with integral conditions for system of loaded hyperbolic equations
of the second order. For solve of the nonlocal problem with integral conditions for system of loaded hyperbolic
equations of the second order results of articles [22-23] are used. Algorithms of finding solutions to the nonlocal
problem with integral conditions for system of loaded hyperbolic equations of the second order are constructed
and their convergence is proved. The conditions of the unique solvability to the nonlocal problem for system of
loaded partial differential equations of the fourth order are established.
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A.T. Acanosa, A.E. Nmanunes, 2K. M. Kagupbaesa

Tepriummi perTi mepbec TybIHABLIBI XKYKTEJITreH
anddepeHnaJIabIK, TeHJIey YIIIiH OeiljiokaJ ecen

Teprinm perTi gepbec TybIHABLIBI )KYKTereH JuddepeHInaliibiK, TeHIeyaep Kyieci yiin 6eioka ecerr
KapacThIpbLIFaH. KapacThIpbLIbIIT OTHIPFaH €CEITiH KaJFbI3 HIenriMinig 6ap 60Jybl Macesesepi MeH OHBI
Taby kosmapbl 3eprresmdi. 2Kana yHKIMsaIap €Hrisy o/ici apKbIIbl TOPTIHII PeTTi Aepbec TYBIHIBLIbI
KYKTereH guddepeHnualiiblK, TeHIeyaep Kyieci yimH 6eiioKas ecen eKiHI peTTi »KyKTeJIreH rumnepoo-
JIAJIBIK, TEHJEYJIep Kyiteci YIiH MHTerpaJablK mapTTapbl 6ap Oeityiokas ecenke kenripiiesdi. Horwmxkecine
aJBIHFAH WHTErPAJIIBIK MIapTTaphl 6ap OeiyIoKasI ecemnTi mmenty yImH OyHKIIMOHAIBIK TapaMeTPJIEp eHri3y
o1ici KotaHbL bl 2K yKTeares runepoosialiblK, TeHIeyIep »Kyieci YIiH HHTerpaJsIblK mapTTapbl 6ap oeii-
JIOKAJI €CEINTiH, XKYBIK, IIENIiMIepiH Taby aJrOpPUTMIEP] YCHIHBLIFAH YKOHE OHBIH YKUHAKTBLIBIFBI JI9JIEJIeH-
rer. 2Kykresren runepboIaiblK TEHIEYIED KyHeci VIH WHTerpasiIblK mapTTapbl 6ap Geifokan ecenTiy
OipMoH/Ii IHermiIiMALTIrHiH mapTTapbl 6acTalKkel 6epiaiMaep TepMuHiHIe ajbiHran. HoTnxkenep coiikecin-
e GacTankbl TOPTIHINI peTTi Jiepbec TYBIHIBLILL XKYKTeIreH anddepeHnnaiblK TeHaeyIep Kyiteci yiin
GeflIoOKA eCcenKe KATBICThI TYZKBIPHIMIAJFAH.

Kiam ceadep: Geitmokas ecem, TOPTIHINI peTTi Aepbec TYBIHIBLIBI XKYKTereH TudhepeHnaIbK, TeHIey-
Jiep, MHTETPAJIIBbIK MAaPT, >KYKTEJITeH TUIEePOOIAIBIK, TeHEYIep Kyiieci, aaroputM, 6ipMoH/Il mremniTiMIiTik.
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A nonlocal problem for loaded...

A.T. Acanosa, A.E. Nmanunes, 2K.M. Kanupbaesa

HenokanbHasa 3a1a4a Jijisi Harpy>KeHHoro andepeHIimaabHOro
ypPaBHEHUS B YaCTHBIX NPOU3BOAHBIX YETBEPTOTO MOPSAIKA

PaccmoTpena mHenokaspHas 3amada A1 CHCTEMBI HATPYKEHHBIX AuddEpPEHITNAIbHBIX YPABHEHNNH B 9aCT-
HBIX IIPOU3BO/IHBIX YETBEPTOro NOpsiaka. Vcciie1oBaHbl BOIIPOCH! CYI[ECTBOBAHUS €IUHCTBEHHOIO PENIEHNs
paccMaTpuBaeMoil 3a/1a4r M CIIOCOOBI ero MOCTpoeHusi. MeTo1oM BBeJeHUsT HOBBIX (DYHKITNN HETOKAIbHAS
3a/a4a JJIs CHCTEMbBI HArPYKEHHBIX AuddepeHnaabHbIX YPAaBHEHN B YACTHBIX MPOU3BOAHBIX I€TBEPTOTO
IIOpsJIKa CBeJIeHa K HeJIOKAJIbHO 3a/a4e C MHTEIDAJIbHBIMU YCJIOBUSMH JJII CUCTEMBI HAarDY>KEHHBIX I'UIlep-
OOJIMIECKNX YPAaBHEHU BTOPOrO MOpsiaka. JIjist perneHus mo/ly9eHHON HETOKAJIbHON 3a/1a9i C WHTErpajib-
HBIMH YCJOBUSIMHA TIPUMEHEH MeTOJ BBeJeHUsS (PYHKIMOHAJIHHLIX HapaMeTpoB. lIpemioKeHbl aaropuTMbl
HaXOXKJEHUs IPUOJIMKEHHOIO DeIeHNs] HeJOKAJIbHON 3aJa4Yi C MHTEIPAJIBHBIMU YCJIOBUAMHM JJIsI CHCTe-
MBI Harpy2KEeHHBIX TUIEPOOTNIECKUX YPABHEHNI BTOPOTO MOPSIIKA U JIOKa3aHa WX CXOAUMOCTb. [losryaenbr
YCJIOBHSI OJTHO3HATHOM PAa3PENIMMOCTH HEJIOKAJIBHON 3aJIa9H C MHTETI'PDAJIbHBIMU YCJIOBUSMU JIJISI CHCTEMBI Ha-
IPY?KEHHBIX THIePOOIMYECKUX YPABHEHUH B TEPMHHAX MCXONHBIX JaHHBIX. Pe3ynpraThl chopMysIMpOBaHbI
OTHOCHUTEJIBHO WCXOJTHOM HEJOKAJIBbHON 3aJa4un JJIsl CUCTEMbI HATPYKEHHBIX TuddepeHnnaabHbIX ypaBHe-
HHUI B YaCTHBIX IIPOM3BO/HBIX Y€TBEPTOIO IOPSIKA.

Kmouesvie carosa: HETOKAIbHAS 33244, HATPYKEHHbIE MM dEePEeHITNAbHBIE YPABHEHUST B 9aCTHBIX IPOU3-
BOJHBIX YE€TBEPTOrO IMOPsAAKA, MHTEIPAJIHLHOE YCJIOBHE, CUCTEMa HATPYKEHHBIX THIEePOONIEeCKAX YpaBHe-
HUIi, aJITOPUTM, OTHO3HAYHAS PAa3PENIIMOCTb.
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Order of the trigonometric widths of the Nikol’skii-Besov classes
with mixed metric in the metric of anisotropic Lorentz spaces

In this paper we estimate the order of the triginometric width of the Nikol’skii-Besov classes Bp™ (T") with
mixed metric in the anisotropic Lorentz space Lqo(T") when 1<p= (p1,...,pn) < 2 < q= (q1,...,qn). The
concept of a trigonometric width in the one-dimensional case was first introduce by R.S. Ismagilov and he
established his estimates for certain classes in the space of continuous functions. For a function of several
variables exact orders of trigonometric width of Sobolev class W, , Nikol’skii class H, in the space Lq
are established by E.S. Belinsky, V.E. Majorov, Yu. Makovoz, G.G. Magaril-Ilyaev, V.N. Temlyakov. This
problem for the Besov class By, was investigated by A.S. Romanyuk, D.B. Bazarkhanov. The trigonometric
width for the anisotropic Nikol’skii-Besov classes Bpy (T™) in the metric of the anisotropic Lorentz spaces
Lqo(T™) was found by K.A. Bekmaganbetov and Ye. Toleugazy.

Keywords: trigonometric widths, anisotropic Lorentz space, Nikol’skii-Besov class with mixed metric.

Introduction

Let V C Ly(T™) be the normed space and F' C V' be some functional class. The trigonometric width of the
class F' in the space V is defined as follows (see [1])

dy(F,V) =infsup inf [[£() = #(Qasi-)lly
M feF U Q%)

M
where ¢(Qpr;x) = chei(kj’x), Qar = {ki,...,kas} is the set of vectors k; = (kI,..., k%) from the integer
j=1

lattice Z™ and ¢; are some numbers (j =1,..., M).

The concept of a trigonometric width in the one-dimensional case was first introduced by R.S. Ismagilov [1]
and he established its estimates for certain classes in the space of continuous functions. For a function of several
variables exact orders of trigonometric widths of Sobolev class W, Nikol’skii class Hy in the space L, are
established by E.S. Belinsky [2], V.E. Majorov [3], Yu. Makovoz [4], G.G. Magaril-Ilyaev [5], V.N. Temlyakov [6].
This problem for the Besov class Bj, was investigated by A.S. Romanyuk [7], D.B. Bazarkhanov [8]. The
trigonometric width for the anisotropic Nikol'skii-Besov classes Bpy (T™) in the metric of the anisotropic Lorentz
spaces Lqp(T") was found by K.A. Bekmaganbetov and Ye. Toleugazy [9].

We study the problem of estimating the order of the trigonimetric width of the Nikol’skii-Besov classes
Bg™(T") with a mixed metric in the metric of anisotropic Lorentz spaces Lqo(T").

Preliniminaries and auziliary results

Let f(x) = f(z1,...,z,) be ameasurable function defined by T". Let multiindexes 1 < p = (p1,...,pn) <
< 00. A Lebesgue space Lp(T™) with mixed metric is the set of functions for which the following quantity is

finite
27 27 p2/p1 Pn/Pn-1
Hf”Lp(T”): /O <... (/(; f(.rl’...7xn)|p1dx1> ...> dxn

1/p
Here, the expression (fo% \f(t)|pdt> for p=oc is understood as supg<; <o, |f(t)[-

1/pn
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For the function f € Ly(T") we denote

As(fix) = Y ar(f)et,

kep(s)

where {ayx(f)}xezn are Fourier coefficients of the function f with respect to the multiple trigonometric system
p(s) ={k = (k1,....kn) €Z": 2571 < |ky| < 2%,i=1,...,n}, (k,x) = Z?Zl kjz; — inner product.

Let 0 < a = (a1,...,0,) < 00,0 <7 = (71,...,7,) < oo. The class of Nikol’skii-Besov Bg7(T") with a
mixed metric is the set of functions f from L, (T™) for which the following inequality holds

<1

= 4

1o = {2 21507 Mo

SEL !

where || - ||;, is the norm of discrete Lebesgue space [, with a mixed metric.

Let f(x) = f(z1,-.., %) be ameasurable function defined on T™. We denote by~ f*(t) = f*1 " (t1,...,t,)
the function obtained by applying to the first nonicreasing permutation, successively with respect to the variables
r1,...,T, for fixed other variables.

Let multiindexes q = (q1,...,¢n), 0 = (01,...,0,) satisfy the conditions: if 0 < ¢; < oo, then 0 < 8; < oo,
if ¢; = oo, then #; = oo for every j =1,...,n. An anisotropic Lorentz space Lqg(T™) is the set of functions for
which the following quantity is finite

l/en
°n ’r ondy, \ "ty

1 o) = / (/ (/0o ey, ) ) )
0 0 t1 tn

Let Q) be a set containing at most M vectors k = (k1,...,k,) € Z"™.
Lemma 1 [10]. Let 2 < q < oo. Then for any trigonometric polynomial

QM7 Z ez(kJ x)

and for any number N < M there exists a trigonometric polynomial P(2x,x) containing at most N harmonics
and such that
1P, P@x. oy < CMNT2,

moreover 0 C Qs and all coefficients P(Qy, x) are the same and do not exceed M N 1.
Corollary 1 [11]. Let 2 < q = (q1,---,qn) < 00, 0 < 6 = (61,...,0,) < co. Then for any trigonometric

polynomial
QM7 Z ez(kJ x)

and for any number N < M there exists a trigonometric polynomlal P(Qy,x) containing at most N harmonics
and such that
HP(QMv ) - P(QNa ')Hng('ﬁ‘n) < CMN_l/Q’

moreover Qx C Qs and all coefficients P(Qy,x) are the same and do not exceed M N 1.
For any s € Z} we consider a linear operator

(Tn, ) () = f(x) = | D @ —t(Qn,,x) |,

kep(s)

where t(f2n.,x) is a trigonometric polynomial from Corollary 1, which is approaching the «blocks
ts(x) = Z eikx)
kep(s)
Lemma 2. Let 1 < p < 2, the multiindex q = (¢1,...,¢,) be such that 2 < ¢; <p' forall j =1,...,n and
0<0=(61,...,0,) <oo. Then the norm operator T, acting from L, (T") to Lgg(T™) satisfies the following
inequality

1T 1 ) gy < Cr2HI NG /2P0,

18 Bectnuk Kaparanmurckoro yHuBepcureTa
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Proof. Taking into account that the coefficients of the polynomial ¢(Qy,,x) are the same and do not exceed
2(1.5) N=1 by Parseval’s equality we have

||TNS||L2(Tn)*>L2(Tn) S 012(1,S)Ns—1. (1)

Further, using the generalized Minkowski’s inequalities and Corollary 1 we can write

NeJ L u g (rmy = W1 Ly (1m0 ) — Q- < CR2HINSH? La (TP
TSl <11 > e — () < C2MFINS V2 |
kep(s) Lg=g+ (T")
Therefore, by definition, ”TNs||L1(T”)—>Lq*9*(11'”) we find
ITN Ly (0 ) = L g (T7) < Cy2WSI N2, (2)

Further, using the Riesz-Thorin interpolation theorem for Lebegue spaces and anisotropic Lorentz spaces,
we obtain
1-A A
ITNN Ly (m7)= Lo ge (1) S TN Ml LTy 5 Lo ) TN T (T7) 5 Lo g (T7)» (3)
where 0 < A< land 1/p=(1—X)/2+A\/1,1/q=(1-))/2+)/q* and 1/0 = (1 — \)/2 + \/6*.

By substuting (1) and (2) to (3) and performing elementary transformations, we reccieve at the required
estimate with the additional condition 0 < 6 = (04,...,0,) <p’ = (p/,...,p’). For the remaining values of the
parameters 6 = (1, ...,6,) the validy of the assertion follows from the embedding Lqg, (T™) < Lqg, (T™) for
0<6;=(01,...,0L) <0y=(6%,...,02) < 0.

Let us formulate a special case of the embedding theorem from E.D. Nursultanov’s paper ([12]) as a Lemma.

Lemma 3 [12]. Let 1 < p = (p1,..-,0n) < 4 = (q1,---,qn) < 00, 0 < 7 = (74,...,7) < 00 and
a=1/p —1/q, then

BpT(T") = Lgr (T™).

Furthermore we need the following sets

Y™(N,v)=4¢s=(51,---,8n) €LY : Z’Yjsj >N,
j=1

N*"(N,y) ={s=(51,...,5,) €L} : Z’yjsj =N
j=1

2, 0<y = (M,--om) < v =, m) < 00,0 > 0 and

Lemma 4 [15]. Let n € N, n
0<e=(e1,...,6n) < o00. Then

{2—6@, s)}
sEY™(N, v)

where n = min{v; /v :j=1,...,n}, A={j:v/vi=n7=1,...,n}, 1 =min{j : j € A}.
Lemma 5 [13]. Let n e N, n>2,. 0 <y =(71,...,7) <00, ERand 0 < & = (g1,...,&,) < 00. Then

{Tsm s)}
SER™ (N, ~/)

Main result

v

< 027N NZjeantiny Ve

1 (Z7)

= 9 N NTja 1/
le(Z7)

The main result of this paper includes:

Theorem 1. Let 1 < p = (p1,...,0n) < 2 < q = (q1,---,qn) < Py = (Pb---,P0)s Po = max{p; : j =
=1,...,n}, 1 <7=(m,....,7),0 = (61,...,0,) and @ = (,...,,) be such that a; > 1+ 1/p; — 1/po
forall j=1,...,n. Let ( =min{o; —1/p;+1/g;:j=1,....n}, D={j=1,...,n:a; —1/p; +1/q; =},
ji=min{j:j € D}, ¢; =g, forall j € D and ¢q; > g;, for all j ¢ D.
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Then the following relation holds
3 (BST(T™),Lao(T™)) = M~ (i1 =1/Pi+1/2) (10g Np) 1P D =1 /pn $1/20 4 Doy (2714 (g

where |D| is amount of elements of the set D, ay = max{a;0}.
Proof. Let f € BST(T"). For any natural number M there exists the natural number m such that

M = 2mPI=1 We will seek an approximating polynomial P(Q2/,x) in the following form

P(Qix)= Y As(fix)+ Y H(Qw%) #A6(f, ), (5)
('.8)

mg('y,,s)<,8m

where

g= g —1ps + 172 B0 S™ (/2= 1)), ~ (1165 1/m),) | Has, = Vs, +1/a5),
JED\{j1}

v; = (aj = 1/pj +1/q;)/(ej, — 1/pjy +1/aj,), 5 =1,....n, vj =7; for j € D and 1 <} <« for j ¢ D. The

polynomials ¢(Qy,, %) are chosen for every “block” t5(x) = Z ¢'® %) according to Corollary 1 and numbers
kep(s)

N, = 2(%—1/Pj1+1/Po)m2—(0—1/P+1/Po—175)}_

Note that according to Lemma 4

Z N, = 2(aj1—1/17j1+1/1’0)m Z 9—(a=1/p+1/po—1s)

m<(+' 5)<fm m(+ 8)<m

< 9(@i =1/pjy +1/po)m ” {2—(a—1/p+1/po—1,5) }
Iy

sEY"(m,’y')
< (@31 =1/piy +1/po)mo—(as =1/pjy +1/po ), (IDI=1) _ gm,, (IDI=1) = pr.

so that (a; —1/p; +1/po — 1)/(aj, = 1/pj, +1/po —1) > vj at j & D.
Moreover according to equality (5) and Minkowski’s inequality we have

1) = P Qs )y oy <

<O S (B (f)=Ds(f) # QN 0) HOYD A =
m< (v s)<Bm Las (T™) (7' 9)2m Lago(T™)
=C1 (I (f) + 12(f)) - (6)
Firstly we estimate I5(f). By Lemma 3 we have
B() < Cal {21 (5 Yy e | S 50 (7)
A,

According to Hélder’s inequality with parameters 1/60=1/7+1/e, where 1/e=(1/6—1/7), and Lemma 4,
taking into account that " <y we find

B = {280 (1. g 2110000 <

seyn (Bm,'y/) lo

X
L

< H{zm’S)nAs (£ M gpom }

sEY"(ﬁm,'y,)

x <

lE

{2_(aj1 —1/pj;+1/aj5, )('sz) }

sGY"(ﬁm,'y/)
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< Gl fllggr oy -2~ (Con 7P o) B Eseovin Ve <
< 032_(aj1_1/pj1+1/Qj1)6mijED\{jl} (1/6;=1/75) (8)
Inserting (8) into (7) we have
I, < 042_(aj1_1/pj1+1/qj1)ﬂmm2ng\{jl} (1/6;=1/75)
Next by using 3 we obtain
2*(%‘1*1/%1 +1/%1)5m:2*(%1*1/m1 +1/2)Bmmzjen\{jl} (1/2*1/Tj)+’

and consequently
I2(f) S 042_(0‘1'1_1/1711 +1/2)Bmm2jeD\{j1} (1/2_1/Tj)+_

Taking into account that M = 2"m(PI=1) we have
Ig(f) < C5M_(aj1_1/pj1+1/2) (logM)(lDl_l)(ajl_1/p11+1/2)+zj€D\{11} (1/2_1/Tj)+. (9)

Now, let us estimate the value I;(f). By using the Littlewood-Paley theorem (see [14]), we obtain

Li(f) = Yoo (As(f)=Ds(f) * Q) <
mg('y,,s)<ﬁm Lao(T™)
5 1/2
<Gl S A -at) @) <
m<(y'5s)<Bm Lo (T)

S CG AS (f> ) * Z ei(k7.) - t(QNsa ) =

kep(s) Lqgo(T™)

sER” (m,ﬂm,'y’ ) Iy

= Co | {ITst2 (£ )y} (10)
where X"(m, fm, ") = {s € Z} : m < (v/,s) < Bm}.

By using Lemma 2 and inequality of different metric for trigonometric polynomials in the Lebesgue spaces
with mixed metric (see [14]) for 1 < p; <po (j =1,...,n), from (10) we have

sEN"(m,ﬁm,'y/) Iy

Li(f)<Cr

{2(1,s>NS(1/2“/p°) 188 ()l orn)}

sGN"(m,ﬂm,’y/) Is

<Cy

{2(1,S)NS_(1/2+1/P0)2(1/P+1/p0,s) ||As (f’ ')”Lp(jrn)}

sEN"(m,Bm,'y/) In

= Oy {N;(1/2+1/P0)2—(&—1/P+1/P0—1,S) . 9(a;s) HAS (f7 ')”Lp(T")} (11)

sER” (m,ﬁm,w,) Iy

According to Holder’s inequality with parameters 1/2 = 1/7 + 1/e, where 1/ = (1/2 — 1/7)4+ and by (11)
we find

n(f) < Cs | {2NA0 (£ o }

X
I

SGN”(m,ﬁm,'y/)

x <

}SGN"(m,ﬁm,'}/)

ZE
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<
le

—(1/241/p4) o — (c— 1s
< Csllfll pgr(rm) {Ns (1/241/80) g~ (a=1/p+1/po-1.9

}SEN" (m,ﬁm/y/)

< Oy {Ns(1/2“/%)2—(a—1/p+1/p0—1,s)

}SGN"(W”L,BM,’)/)

la
for any function f € Bg7(T").
By continuing (12), according to the Lemma 4 we have

Il(f) S 0827(1/2+1/p6)(0¢j1*1/pj1 +1/P0)m><

X

{2(1/2+1/p’o)(afl/pﬂ/po—l,s) . 2—(04—1/p+1/p0—175)}

SERN™ (m,ﬁm,'y') I

= 082_(1/2_‘_1/1)6)(0‘.7'1 —-1/pj, +1/P0)m >

X <

lE

{2—(1/2+1/pé,)<a—1/p+1/po—1,s>}

seR” (m,Bm,’y’)

<

< 082(1/2+1/p'0)(ah1/pj1+1/po)mH {27(1/2+1/p;,)<a71/p+1/p0717s>}
le

sey " (m,'y')

1

< 092—(1/2+1/p6)(()4j1—1/pj1+1/p0)m2_(1/2+1/p6)<a.f1_ﬁ+%—1>mmzj€D\{jl} 1e; _
— 092*(04.7’1*1/17.11 +1/2)mmzjen\{jl} (1/2*1/‘@‘)4,,
as (aj —1/pj +1/po — 1) / (o, —1/pj, +1/po — 1) > 7j at j & D.
Taking into account that M = 2mm(PI=1) we find

I(f) < CroM (@ =1/ms41/2) (g ) 1P (000 =1 /i #1/2) - K iny (1/271m0), (13)

Inserting (9) and (13) into (6) we obtain the inequality, which gives the upper estimate in (4).
For the proof of the lower estimate we consider the following value

M
en(F)y =sup inf [[f =) el
uF)y FEF {byJ 1, ; ’ v

which is called the best M-term appoximation of the class F' in metric space V.
Moreover, by the definition, the following inequality holds

GM(F)V S d%;[(F, V)
By using the condition 2 < ¢; (j =1,...,n) we have
em(f)racrny < Criem (f)Lge(rn)-
For the proof of the lower estimate we will use double relation, which follows from the general results of

S.M. Nikol’skii (see [15]). According to this relation for any function f € La(T"™) the following equality holds

em(f)p,rny = Inf sup (x) P(x)dx| , (14)

1 peLt |IPly, qn,)<1

Tn

where £ is a linear span of a system of functions {e!®*)}ycq. .
We consider the function

n
f(x)=m" >jep\giiy Vi Z H 2*(%‘+1*1/Pj)82 Z ei(kM)’

mg('yl,so)<m+nj:1 kéep(so)
where D' ={j € D: 2<7;}U{ji},s0=1(s}, ..., 9),s) =s;at j€ D' and s} =0 at j ¢ D'".
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In the paper [16] it was proved that the function C12f(x) belongs to the class B (T").
Let us construct the function P(x) satisfying the condition (14).

Let ‘
ux) = Y,y et (15)
(7',80)<m k€p(so)
and Qjs be an arbitrary collection of integer vectors k = (k1, ..., ky).

We denote by

v(x) = Z Z t(kx)

(7v",s0)<mk€E€p(so) NQUns

the function, containing only those terms of (15), for which k € Q,;. By Minkowski’s inequality and Parseval’s
equality for function w(x) = u(x) — v(x) we have

Wl (pny < Cis M2,

We consider the function P(x) = Cp3' M ~/?w(x), then || P||1, (=) < 1. Since the function w(x) = u(x)—v(x)
does not contain the harmonics from ), then function P € £1. Thus, the function P(x) satisfies the conditions
from (14).

According to (14) and by Lemma 5 we obtain

eM(f)Lz(Tn) Z Cl4M_1/2

(x) w(x)dx| >

Tn

ZCI4M—1/2m—2jED,\“1}1/7j Z H2—(aj+1—1/pj)sg? Z 1=
(wl,so)=mj:1 kep(so)

> Oy M Pm Sseonon Vo ST T2 es <
("/,750):mj:1

— O MY~ Xiepniny VT {2*(%1 —1/pj )(1»5)}

RIPI(1,s)

l1
= M~Y2mm~ Ziepnuny /797 (e =1/pjy Jmyp, (1IDI-1) (16)
where 8 = (sj,,..., 85, )-
Taking into account that M =< 2"m(PI=1 from (16) we have

em(f)pyrny 2 C'152_(0‘“_1/1”1H/Z)mﬂlzjw\“l}(1/2_1/”%r =

= (1161\/[—(% —1/pj1+1/2)(1OgM)(|D\—1>(% —1/pjy +1/2)+E e py gy y (1/2-1/75) 4 (17)

By (17) lower estimate in (4) follows.

Remark. Note, that for p = (p,...,p), 7= (7,...,7) and q = 0 = (g, ..., q) the statement of the theorem
coincides with the corresponding result of A.S. Romanyuk [7].
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K.A. Bexkmaranberon, K.E. Keppenes, E. Teneyrasnor

Ammzorpontsl JIopeHI KeHicTirinaeri MeTpuKachIHaFbl
apaJac merpukaJjabl Hukojbcknii-bBecoB KiackIHIarbl
TPUTOHOMETPHUSAJIBIK, KOJIJIeHEeHHIH peTi

TpuronomerpusiIbIK, KOJIJEHEH YFBIMBIH OipestmeM i kargaiiaa asiramn per P.C. Mcmaruinos enrizai xkone

y3lricciz hyHKIumsIap KeHicTirinae GipkaTap Kjaacrap VIIiH ojapra baramaynap 6enriteni. Kemn aftHbIMAJIbI

dynknuanap ymin L, kenicriringe Cobonesrin W, , Hukonsckuiiain Hy KaacrapbHarbl TPUTOHOMETPHs-

JIBIK, KOJIJIEHEeH e VIl 101 barataynapasl O.C.Bemunckuit, B.E. Maitopos, 0. Makososz, I.I'. MarapuJi-

Nnbaes, B.H. TemnsikoB anbikTa b1. By ecenTi B;q Becos kiacer ymrin A.C. Pomantok, /I.B. Bazapxanos
«@

seprreni. Anumsorpoursl Hukonsckuit-Becos By, (T™) Kiacel yIIiH TPHTOHOMETPUSILIK, KOJIICHEH AHI30-
TponTsl Jlopenr keHicTikTepi Mmerpukachigga K.A. Bekmaranberos xoue E. TesieyrasbiMeH TabbLIIbI.

Kiam cesdep: TPUTOHOMETPUSLITBIK, KOJIIEHEH, aHn30TponThl JlopeHt keHicTikTepi, apajgac meTpukaasl Hu-
KobcKuii-BecoB Kitacer.
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K.A. Bekmaranberos, K.E. Kepsenen, E. Tosneyrassr

ITopsimoK TPUTOHOMETPHUYECKOIrO IOMEePEeYHNKA KJacca,
Hukosbckoro-BecoBa co cMmenntaHHOIT MeTPHUKOiIT B MeTpUKe
aHM30TPOITHOTO IMpocTpaHcTBa JlopeHiia

TlonsiTne TpUroHOMETPUYECKOrO MOMEPEYHUKA B OJHOMEpPHOM ciiydae Buepsble Beegeno P.C. Mcemaruiio-
BBIM U UM OBLIM YCTAHOBJIEHBI OIEHKU JIJIsST HEKOTOPBIX KJIACCOB B MPOCTPAHCTBE HEMPEPBIBHBIX (DYHKITUIA.
st GyHKIMiT MHOTHX MEPEMEHHBIX TOYHBIE MOPSIIKN TPUTOHOMETPUIECKHUX MOMEPeIHNKOB Kitacca Cobo-
nesa W, , Hukonsckoro Hy B nmpocrpancTse Lg ycranosnensl O.C.Bemunckum, B.E. MaitoposeiM, FO. Ma-
koBo3oM, [.I. Marapui-Unbsiesbim, B.H. TemisikoBbiM. DTa 3aga4a s Kiacca becosa B;q HCCJIeJOBAHA,
A.C. Pomanokom u JI.B. BazapxanosbiM. TpuronoMerpudyeckuii mOMepedHUK Jjisd aHU30TPOIIHOTO KJIac-
ca Hukonbckoro-Becosa By, (T™) B MeTpuKe aHH30TPOIHBIX IpocTpaHcTB Jlopenma Lqe(T™) 6bur Haiinen
K.A. Bekmaraun6erossim n E. Toneyrassr.

Karouesvie caosa: TPUTOHOMETPUYECKUI ITOIIEPEYHUK, aHU30TPONIHBIe IIpocTpancTsa Jlopenna, kmacc Hu-
KOJIbCKOTO-BecoBa co cMermanuoit MeTPUKOiL.
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One approach to solve a nonlinear boundary value problem
for the Fredholm integro-differential equation

A quasilinear boundary value problem for a Fredholm integro-differential equation is considered. The
interval is divided into N parts and the values of the solution to the equation at the left end points of
the subintervals are introduced as additional parameters. New unknown functions are introduced on the
subintervals and a special Cauchy problem with parameters is solved with respect to a system of such
functions. By means of the solution to this problem, a new general solution to the quasilinear Fredholm
integro-differential equation is constructed. The conditions of the existence of a unique new general solution
to the equation under consideration are obtained. A new general solution is used to create a system
of nonlinear algebraic equations in parameters introduced. The conditions for the existence of a unique
solution to this system are established. This ensures the existence of a unique solution to original problem

Keywords: quasilinear Fredholm integro-differential equation, quasilinear boundary value problem, a new
general solution, iterative process.

Introduction

Integro-differential equations (IDEs) are often encountered in the applications as mathematical models of real
processes [1-6] The solvability of different problems for IDEs and methods for solving them have been studied
by many authors [1, 4-20] General solutions play an important role in investigating qualitative properties
of problems for IDEs and solving them. However, the classical general solution exists not for all Fredholm
integro-differential equations (FIDEs) (see [7, 10]). Therefore, a new concept of general solution to FIDE is
proposed in [11]. Employing parametrization’s method [21] and choosing a regular partition Ay of the interval
[0,T] (see [9, 10]), a Ay general solution z(Ap,t,A) to the linear FIDE is introduced. In contradistinction
the classical general solution, #(Ax,t,\) exists for all linear FIDEs and depends on a parameter A € R™V.
The paper [22] introduces the concept of the Ay general solution to a nonlinear ordinary differential equation.
In [12], the concept of the Ay general solution is extended to FIDEs with nonlinear differential parts. The use
of such a solution allows one to reduce a nonlinear boundary value problem (BVP) to a system of nonlinear
algebraic equations in parameters A, r = 1, N.

We consider the quasilinear FIDE

d m T
G = A0S0 [ nalr)dr + folt) +ef (), tE DT, wE R (1)
k=1 0
subject to the boundary condition
Bz(0)+ Cx(T)=d, deR", (2)
where € > 0, the n x n matrices A(t), ¢x(t), ¥r(7), k = 1, m, and the n vector fy(t) are continuous on [0, T,
f:[0,T] x R™ — R™ is continuous, ||z| = max |z;]|.
i=1n

The aim of this paper is to construct the Ay general solution to equation (1) by using analogous solution
to a linear FIDE and solve BVP (1), (2).

Let us denote by C ([O,T 1, R") the space of all continuous functions z : [0,7] — R™ with the norm
llz|lh = trer[léix [lz(®)|]. A solution to problem (1), (2) is a continuously differentiable on [0,7] function x(t)

satisfying equation (1) and boundary condition (2). Here and below in the article, we assume that the functions
observed at the end-points of the intervals have one-sided derivatives.
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1 The Ay general solution to equation (1)

Let An be a partition of the interval [0, 7] with the points: to =0 < < ... <ty =T.
We introduce the space C([0,T], An, R™Y) consisting of all function systems z[t] = (21 (t), z2(t), ..., zn (1)),
where functions . : [t,_1,t.) — R"™, r = 1, N, are continuous and have finite left-sided limits , litm o LT (t), with
—tp—

the norm ||x[”| = max sup |z, (¢)].
2 r=1N t€[tr—1,t,)

First, we set € = 0 in equation (1) and consider the linear FIDE

d = T
d% = Aty +)_ @k(t)/ r(T)y(r)dr + fot), t€[0,T], yeR™ (3)
k=1 0
Applying parametrization’s method (see [10; 345]) to equation (3), for the partition Ay, we get the special
Cauchy problem for the system of IDEs with parameters

m N t;
dv, g
= A (v + M) + Y@kt Y / (7)o (1) + Al + fo(t), t€ [tr1,t,), (4)
dt k=1 j=1"7ti—1
vp(tr—1) =0, r=1N. (5)
A solution to problem (4), (5) for a fixed parameter A = \* = (A}, \3,...,Ay) € R™ is a function system

v[t, A*] = (vl(t,/\*),vg(t,)\*),...,UN(t,)\*)) € C([O,T],AN,R"N), where v,.(t, \*), r = 1, N, are continuously
differentiable with respect to ¢ on their domains, satisfy the system (4) for A, = A%, r = 1, N, and initial
conditions (5).

We construct the nm x nm matrix G(Ay) = (Gp,k(AN)) with the elements

N t, T
Gpr(AN) = Z / U (1T) X, (T) / X Hrm)er(m)drdr, pk=1,m,
7“:11%_1 te g

d
where X,.(t) is the fundamental matrix of differential equation d%f = A(t)z on the interval [t,._1,1,].

Assume that the matrix [/ — G(Ay)] is invertible and its inverse is represented in the form

[1-G(AN)] ' = (Rip(An),  kp=Tm,

where [ is the identity matrix of dimension nm, Ry ,(An) are square matrices of dimension n.

The invertibility of the matrix I — G(Ay) provides the existence of a function system v[t, \] = (vq(¢,\),
va(t, A), ..., un(t, )\)) € C([O,T], AN,R”N), a unique solution to the special Cauchy problem (4), (5) for any
A= (A1, A2,...,An) € R and fy(t) € C([0,T], R™). Moreover, the following inequality is valid

loEs Allly < X[ Fol- Allls

where x is a constant independent of X € R"™ and fo(t) € C([0,T],R"), and
Fo[t,)\} = (Fo,l(t,)\),Fowg(t,A),. - ,FO,N(t,)\)) € C([O,T},AN,RnN), with elements

m N t;
For(t, A) = AD A+ Y or(t) Y / Ur(r)dTA; + fot), t€[ty—1,t;) r=1,N.
k=1 j=17ti-1

The number y is called a well-posedness constant of the special Cauchy problem (4), (5). Since I — G(Any)
is invertible then, by results obtained in [11], there exists a unique Ay general solution y(Ay,t, \) to equation
(3) and

N
y(ANatv)\):/\T+Zdr,](ANat))\] +br(AN;t)a te [t'r‘flatr)a 7“:1,N7
=1
N
Y(AN,T,N) = Ay + Y dn(An, T)A; + by (AN, T),
=1
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with the following coefficients and right-hand sides

drj (AN 1) = X(t) / X7 [Z Rip(An)Vp i (AN)+

tr—1 k=1

+ / ¢k(T1)dTl]dT, te [tr_l,tr], j#£r, rj=1N,

drr (AN, t) /X {ZW [an,pAN Vpr(AN) + /Wn dn]+A( )} T

p=1 tr—1

t

(Bt = 5,00 [ X ]}jwk §ijPANMAAMﬁn+h<ﬂ F=TW,

too1 p=1
tr T
Vor(An) = 7) X (T XY m)A(T)drdr+
() tT/l%() ()t/l (1) A(ry)dr,
N m U T t,
+305 [wnx@ [ X memdndr [ o,
i=1k=1," e oy
N & T
w@v.) =X [ woxm [ X @
Tzlt,«,1 te g

Given a vector A(®) = ()\EO),)\QO),...,)\E\?)) € R™™ and numbers py > 0, p > px, pu = p — px, We choose
the piecewise continuous on [0,7] function y(®(t) = y(AN,t,)\(O)), the function system v([t] = (vgo)(t),
véo)(t), UE\?)( t)) with elements vﬁo)(t) =y ) - A e [tr—1,t-), 7 = 1, N, and compose the following sets

GO()—{( 2) € 0.7 |2 - yO W) < p},

SO, p2) = {A = (A dereoAw) € RV s A = A < pr, 7 =T N},

SOt pu) = {ult] € C(0,T], An, R™) : Jul] = vO]]l2 < pu}

&3(p) = {(ta) € lhyrty). o =y OW) < p}, p=TN-1

N
G(p) = {(t.2) 1 € [twoatal. o = 5O 0)] < o} and G(Ax.p) = U G2,
r=
In order to construct the Ay general solution to equation (1), we employ again the parametrization’s
method.

If a function z(t) satisfies equation (1) and (¢, z(t)) € G°(Ay, p), then the functions x,(t), r = 1, N, as the
restrictions of z(t) to [t,_1,t,), satisfy the system of nonlinear IDEs

m N tj
d;t" = AWz, + Y or(t) Y / Gi(T)a; (T)dT + folt) +ef (t,2,), t € [tr—1,tr),
k=1 j=1"ti—1

and (t,z,.(t)) € G%(p), r =1, N. Introducing the parameters \,=z.(t,_;) and making the substitutions
ur(t) = 2, (t) = Ap, t € [tr—1,t), r =1, N, we obtain the system of nonlinear IDEs with parameters

7 = A(t)(u, + ) +Z¢k /t.jlwk(T)[Uj(T)+)\j}d7'+f0(t)+€f(t,ur+>\r), t € tr_1,tr), (6)
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subject to the initial conditions
ur(ty1) =0, r=T,N. (7)

Problem (6), (7) is the special Cauchy problem for the system of nonlinear IDEs with parameters.
We represent problem (6), (7) as an operator equation and apply an iterative process for finding its

solution. Set X = {u[t] = (u1(t),u2(t),...,un(t)) € C([0,T),An,R™) : u(t,—1) = 0, r = 1,N},
Y = C’([O, T], Ay, R”N), and introduce the linear operator H : X — Y in the following way:

Hult] = (wg“(t), wi (), ... ,w§§>(t)),

m N t;
with w) (t) = i, (t) — A(t)ur — Y r(t) / Ur(T)ui(T)dr, tE[tr_1,t,), r=1N.
k=1 j=17%i-1

The domain of H is D(H) = {u[t] = (ua(t),uz(t), ..., un(t)) € X, where u,(t) is continuously differentiable

on [ty_1,t.), r =1, N}. It is easily seen that H is a closed unbounded linear operator.

Now, we can write down the special Cauchy problem (6), (7) as a nonlinear operator equation
Hult] = eF (u[t], \) + Folt, A], (8)

with F(uft], A) = (w0 (t), S (@t), ..., 0w #), w@ () = ft,u-(t) +\), t€E[ty_1,t,), r=1,N.

Let L(Y, X) be the space of hnear bounded operators A : Y — X with the induced norm. Our assumption
that the special Cauchy problem (4), (5) is well-posed with the constant y leads to the invertibility of the
operator H : X — Y and the estimate HH‘lHL(KX) <x.

Theorem 1. Let the special Cauchy problem (4), (5) be well-posed with a constant x and the following
inequalities be valid:

i) ||f(t,2") = f(t,a")|| < Llla’ — 2”|, L is a constant, (t,2'), (t,2") € G°(p);
(i) g- = exL < L;

(iii) l 1 ex max_ sup ||f(t,0n(t,A) + Ar)|| < pu for all X € S(AO py).
—qe  r=1,Nt€[t,_1,t,)

Then for any A € S\ py), there emists a wunique function system ult,\,e] = (ui(t,\e),
ua(t, N\, €),...,un(t, A €)), the solution to the special Cauchy problem (6), (7) belonging to S(v(o) pu), and the
following inequality is true

|lul-, A e] — v sup || (8 vn (8 A) + M) |- (9)

r=1,Nt€[t,r_1,t,)

)\]HZ S 1 —q5€

Proof. Since the operator H has a bounded inverse, equation (8) is equivalent to the next operator equation:
ult) = eH ' F(ult],\) + H ' Fylt, A (10)
For any fixed A € S(A(), py), the solution to equation (10) we find by the iterative process
uOt, X\ e] = vlt, N,

uIOE N e] = eHTUF (™[t N e, \) + H M Rp[t, A, v=0,1,2,..., (11)

Using our assumptions, we obtain the following inequalities:

[V el ol A, = A FL AN, Sex max s (e @)+ 02)
r=1,N t€[t,_1,t,)

H“("H)[w}\,d - u(”)['aA»E]HQ <e|H™ (™[, N e]) - F(“(V_l)[")"g])Hz =

a7

<ex max  sup Hf(t,u&")(t, Ne)+A) — f(t,u&”_l)(t, Ae)+ A

r=1,N t€[t,_1,t,)

< (13)
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< stHu(”)[~,/\,e] — u(”_l)[-,)\,a]’ » V=12,

[u D[N ] — o ex max  sup [[f(ton(8A) + M) - (14)

||2 L =g " =T Nteft, 1.t

The inequalities (12)—(14) and condition (iii) of Theorem 1 provide the convergence of the iterative
process (11) to the function system u[t, A, €], a unique solution to equation (8) in S(v[t, A, pu), and validity
of estimate (9). O

Definition 1. Let a function system ult, \,e] = (ul(t,)\,s),ug(t)\,a),...,uN(t,)\,E)) € S(v[t, A, pu) be a
unique solution to the special Cauchy problem (6), (7) with parameters X = (A1, Az, ..., An) € S(AO, py). Then
the function x(An,t, A €) given by the equalities: x(An,t, A\, e) = A\ + u,(t, A\ €) fort € [t,—1,t.), 7 = 1, N,
and z(An, T, \e) = Ay + t_l}%n_o un (t, N\, €), is called a A general solution to equation (1) in G°(An, p).

Definition 1 and Theorem 1 imply the following assertion.
Theorem 2. Under conditions of Theorem 1, there exists a function x(Ay,t,\,€), which is a unique Ay
general solution to equation (1) in G°(Ay, p), and this function can be represented in the form

(AN, t, N e) = y(An, t, A) + Az(An, t, A €),

where the function Az(Ap,t, A e) is compiled by the equalities Ax(An,t, A, ) = u.(t,\,e) — v:(¢, A), for
t € [tr_1,tr), r =1, N, Az(An,T, N\ e) = . liqrﬂn OuN(t,)\,g) -, li:IFn OUN(t,)\). Moreover, the following estimate
—T— —T—

is valid

sup ||Az(An,t, A e)]l < ex max_ sup ||f(t,ve(t,A) + A |-
te[0,T] —qe  r=1,Nt€[t,_1,t,)

2 The solvability of problem (1)-(2)

In this Section, we investigate the solvability of quasilinear BVP (1)—(2). We first consider a linear BVP for
equation (3) with the boundary condition (2).

Substituting the Ay general solution to equation (3) into the boundary condition (2) and the continuity
conditions at the interior points of the partition, we obtain the system of linear algebraic equations in parameters

N
B+ CAy +CY dnj(Ax, T)A; = d— Chy(AN,T), (15)
j=1
N —
Z pi (AN, Tp)Aj — App1 = —by(An,tp), p=1,N -1 (16)

We rewrite equations (15), (16) in the form

Q*(AN)/\ = _F*(AN)

In accordance with Theorem 2.2 in [10], the invertibility of the matrix Q.(Ay) : R™™ — R™V is equivalent
to the unique solvability of linear BVP (3), (2).

Now, we study the solvability of quasilinear BVP (1), (2). If x(¢) is a solution to equation (1), and
z[t] = (z1(t), 2(t), ...,zn(t)) is a function system of its restrictions to the subintervals [t,_1,t,.), r = 1, N, then
the equations

t—1>1tm—0 mp(t) = xp+1(tp)> p=1,N—-1, (17)
hold. Equations (17) are the continuity conditions for solutions to equation (1) at the interior points of
partition Ajy.

Let z(Apn,t, A €) be a Ay general solution to equation (1) in G°(Ay, p). Substituting the corresponding
expressions of z(Apn,t, A\, e) into boundary condition (2) and continuity conditions (17), we get the system of
nonlinear algebraic equations

N
BAL+ CAy +CY dnj(Ax, T)A; + CAx(AN, T, N e) = d — Cby(An, T), (18)
j=1
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N
Ap+ 3 dp (AN )N = Apr1 + Az(An,tp, N g) = =by(An,t,), p=1,N- L (19)

j=1

We rewrite system (18), (19) in the form:

Q«(AN)A = —F.(An) — AQx(AN, A €), (20)
where
CAz(AN, T, \e¢)
AQ. (AN, ) = Az(An,t1, A €)
Az(Ay,ty-1, )\ e)

As proved in Theorem 3.2 [12; 31] the solvability of problem (1), (2) is equivalent to that of system of
nonlinear algebraic equations (20). The conditions of the solvability of (20) are established in the following
statement.

Theorem 3. Let the conditions of Theorem 1 are met and the following assumptions hold:

(i) Q«(An) is invertible and ||[[Q.(AN)]7 | < s

(i) 0. _qe(lfq (a+ Ko +eL) +1) <1,

where @ = max max ai;( K max 7)||dT;
. ma ZH S0 Ko = mnm >§_j/ ()]

1 EX

iii -—=—~max (1,]|C||) max su t, v, t,)\(o) + XNl < pa.

() =5 - Ty max (L H)r_lNETrerf( (tX0) + X0)|| < o

Then system of nonlinear algebraic equations (20) has a unique solution X = (A1, Xa, ..., Ax) € SN, py).
Proof. A solution to equation (20) is found by the iterative process

A(O) = [Q*(AN)]il : F*(AN)v

AV = —[Qu(AN)]TH{Fu(AN) + AQ. (AN, A6 }. (21)

Under conditions of Theorem the following inequalities hold:

D = AO|| < - [|aQu (AN, A, &) | < - max (

max HAJB AN,tr,)\ H

< v-max (1, ||C||)_7Xq miD](Vte[SUPt , ||f(t;’0r(t,>\(0)) + )\go))H,
T 1,

[ACFD 20| ng{l Xq (a+KO+eL)+1}H/\(”> A =12,
- Ye

1 £X
(v+1) _ (0 . (0) (0)
[|A A0 < o T Vmax (1, ||C\|),m?>;[te[tsru1i)“ £ (&0 (8, AO) + A |

Similarly to the proof of Theorem 1, the iterative process (21) converges to the vector A € S(A©,py), a
unique solution to equation (20). O

From Theorem 1 and Theorem 3.2 in [12], we obtain

Theorem 4. Let the conditions of Theorem 3 be fulfilled. Then quasilinear BVP (1), (2) has a unique solution
x*(t) such that (t,z*(t)) € G°(An, p).
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J1.C. JTxxymabaes, C.T. Mbab6aena

®pearosibM MHTErpaJIabIK-IudHepPeHINAJIIBIK TeHAeyi YIIiH
CBI3BIKTBHI €MeC IIeTTIK ecenTi mIenryaiH Oip Tocii

®peroTbM UHTErPAIILIK-TU(DOEPEHITHAIBIK, TEHJIEY] YIITiH KBa3UCHI3BIKTHI MIETTIK €Cell KAPACTHIPBLIIH.
NurepBan N Gesikke OeJiiHemi yKoHe KAPACTBHIPBLIBINT OTBIPFAH TEHJEY IIEINMiHIH imKi nHTepBaIIap/IbIH
COJI 2KakK IIeTKi HYKTeJepiHaeri MoHAepi KOChIMINIA ITapaMeTpJiep perinje enrisinesi. ki narepBasiapra
Genricis yHKIUIAp €HTi3iIeai KoHe OChbl (bYHKIUSIAD KyiteciHe KAaTBICTBI mapaMeTpiiepi 6ap apHalb
Kommn ece6i memineni. Apnaiibr Komu ecebinin TabblLaraH IIemniMi apKbLIbl KBA3UCHISBIKTHI DPpearosbm
WHTErpaJIIbIK- 1 depeHnuaIbIK TeHIEYiHiH 2KaHa »KaJIIbl MeIiMi KypblIaibl. KapacTeIpbLIbII OTHIPFaH
TeHJEY/IH *KAJIFbI3 XKaHa merriMi 6ap 6oy mapTrapbl ajbiHFaH. 2KaHa KaJMbl MIEMTIIMHAIH, KOMEriMeH eH-
riziJireH mapameTpJepre KaTbICTBI ChI3BIKTBI eMeC aJrebpasiblk, TeHeysep xKyiteci Kkypoutaiasl. Ocbr xKyiie-
HiH 2KaJIFBI3 IelriMi 6ap 6osy mapTrapbl TaralblHIAJIFaH, OyJI MIapTTap KBa3WUCHI3BIKTHI MIETTIK €CEITiH
JKAJIFBI3 MIErmMiHiE 6ap OOybIH KAMTAMAChI3 eTeql.

Kiam ce3dep: KBa3uCHIBBIKTH PPeAroIbM HHTETPAIBIK- MO MEPEHINAIIBIK TEH Y1, KBA3UCHI3BIKTHI IIIeT-
TIK ecell, >KaHa »KaJIIbI IIeITiM, UTEPAIUIBIK ITPOIIECC.

J1.C. JIxxymabaes, C.'T. Mbiab6aesa

OauH 1oaxod K pelleHuio HeJIMHEITHOM KpaeBoii 3ajjadu JJ1s
nHTerpo-anddepenimaabHoro ypasueuus ®@pearoapma

PaccmoTpena kBasuinHeliHast KpaeBast 3a/1a49a JJIsi HHTErpO-auddepeHInaIbHoro ypasaenust @pearoabma.
WurepBan monenen na N gacreil, a 3HAYEHUS PENICHUsT PACCMATPUBAEMOrO YPABHEHUS B JIEBBIX KOHEUHBIX
TOYKaX IOJUHTEPBAJIOB BBEJEHBI B Ka4deCTBe JOIOJIHUTEIBHBIX ITapaMeTpoB. Ha moauHTepBasiax BBEJIEHBI
HOBBIE HEM3BECTHBIE (DYHKIINN W OTHOCUTEHLHO ITOW CHCTEMbI (DYHKII pellieHa creruaibHas 3aga4da Ko-
mu ¢ mapamerpamu. HoBoe o0iree perieHne KBa3WJIMHEHHOTO HHTErPO-AuddepeHITHaIbHOr0 yPaBHEHUST
®pearosbMa IIOCTPOEHO Yepe3 HailfleHHOe pelleHue cuermaabHoil 3agaun Kommu. [losmy4ens! yciaoBus cy-
[IECTBOBAHUS €IMHCTBEHHOTO HOBOT'O ODOIIEro peIeHuns pacCMaTpuBaemMoro ypapHerus. C MOMOIIBIO0 HOBOTO
ODIITEr0 PEIIeH s COCTaBIeHA CUCTEMA HEJIMHENHBIX aarebpaniecKux ypaBHEHNH OTHOCUTEIBHO BBEJIEHHBIX
I1apaMeTPOB. YCTAHOBJIEHBI YCJIOBUS CYIIECTBOBAHUS €JUHCTBEHHOI'O PEIIEHUs 3TOH CUCTEMBI, 00ecIIednBa-
IOIUe HaJIMYUe eJUHCTBEHHOI'O PelleHUs KBa3W/IMHEHHON KpaeBoll 3a1a4u.

Kmouesvie caosa: KBasuamHeitHOe nHTErpo-auddepeninaabaoe ypapaenne Opearosibma, KBa3uiInHEHHAS
KpaeBas 3aJada, HOBOe 00liiee pellleHre, NTEPAIMOHHBII IPOIecc.
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Cohomology of simple modules for algebraic groups

In this paper, we consider questions related to the study of the cohomology of simple and simply connected
algebraic groups with coefficients in simple modules. There are various calculating methods for them. One
of the effective methods is to study the properties of the Lyndon-Hochschild—Serre spectral sequence with
respect to the infinitesimal subgroup, the Frobenius kernel of a given algebraic group, and the properties of
various cohomological sequences. We have studied the properties of various short exact and corresponding
long exact cohomological sequences of modules over an algebraic group associated with simple modules with
highest restricted weights. Some properties of the cohomology of the Frobenius kernel with coefficients in
simple modules with higher restricted weights are described. We also studied the properties of the Lyndon—
Hochschild—Serre spectral sequence on the first quadrant for simple modules with highest restricted weights.
The limiting values of the points of the first quadrant of the spectral sequence are described. It is proved
that for the simple, simply connected algebraic group G over an algebraically closed field k of characteristic
p > h with an irreducible root system R and for a simple G-module V' with restricted highest weight, there
is an isomorphism of G-modules

H’(G,V) = Home(k, H (G*, V)™V for all j > 0,

where G is the Frobenius map kernel for G, h is the Coxeter number of the root system R. This isomorphism
allows us to reduce the calculation of the cohomology of group G with coefficients in simple modules with
higher restricted weights to the calculation of the corresponding cohomology of the Frobenius kernel G*.

Keywords: algebraic group, Chevalley group, representation of Lie group, Frobenius kernel, simple module,
cohomology, spectral sequence, exact sequence, restricted weight.

Introduction

The cohomology of simple modules is known only for small degrees cohomology and for small groups. For
example, the first degree cohomology of simple modules are completely calculated for SLs [1], SLs [2], Sp4 [3],
Ga, p > 13 [4]. Similar results for the second cohomology of simple modules were obtained for the following
groups: SLq [5], SL3 [6], Spa, p > 7 [7], and Ga, p > 7 [8]. The third degree cohomology of simple modules is
described for all simple algebraic groups of rank two [9].

In this paper, we continued the research which started in [10], [11]. We studied the cohomology of simple,
simply connected algebraic groups with an irreducible root system over an algebraically closed field of positive
characteristic with coefficients in simple modules with restricted highest weights. Let G be a simple, simply
connected algebraic group over an algebraically closed field k of characteristic p > 0 with an irreducible root
system R, g be a Lie algebra of the group G, and G* be the kernel of the Frobenius map Fg : G — G. We will
also apply the following standard notation:

B is the Borel subgroup of G,

T is the maximal torus of G,

R, is the set of positive roots,

S ={ai, - ,q} is the set of simple roots,

A1, -+, N are the fundamental weights,

X (T) is the additive character group of T,

X (T)={Xe X(T)|(\,a¥) >0 nna scex a € S} is the set of dominant weights,

X1(T)={Xe X(T)|0 < (\a") <p mna Beex a € S} is the set of restricted weights,

Sapp A=A — (A+p,a¥)a+rpa, « € Ry, r € Z is the action of the affine Weyl group W), on X(T),

k» is the one-dimensional B-module,
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H°(\) = Ind%(ky) is the G-module induced from the one-dimensional representation k) of the Borel
subgroup,

L()) is the simple G-module with the highest weight A € X (T).

For a rational G-module L, denote by L(? the Frobenius twist of degree d. Thens, there is a unique d > 0
and a rational G-module V such that V(9 = L. Denote it by L(-9).

We say that G-module L admits a good filtration (or HC-filtration) if the filtration factors are isomorphic to
the modules induced from the one-dimensional representations of the Borel subgroup of G. A rational module L
over an algebraic group G is called acyclic (or G-acyclic) if H’(G,L) = 0 for all j > 0. For a simple G-module
V' with restricted highest weight, the following isomorphisms of G-modules were obtained before:

HY(G,V) = Homg(k, H(G*, V)(7V) (see [10, (2.4)])

and
H*(G,V) = Homg(k, H*(G*, V)V, p>3h —3, (see [11,(3.2)]).
In this paper, it is proved that a similar isomorphism is also hold in the general case. The main result is as
follows
Theorem 1. Let G be the algebraic group with an irreducible root system over an algebraically closed field k
of characteristic p > h and V' be a simple finite-dimensional G-module with restricted highest weight. Then

HI(G,V) = Home(k, H (G*, V) for all j > 0.

To obtain the condition p > h we use the following known facts:
elfp>hand A=w-0+ pv for some v € X, (T) and w € W, then

Hi<G1,HO()\))(—1) ~ HO(s(i—l(w))/Q(u*) ® ku)y (1)

where u is the maximal nilpotent subalgebra of the Lie algebra g that corresponds to negative roots and S(u*)
is the symmetric algebra of u* [12, p. 478|, [13].
To apply formula (1) to calculate H*(G*, H(w - 0 + pv))(=1, we will use the following character formula
[12; 501]:
XHO (ST P k)= Y D (=) Payuya(w - p = v)x(n), (2)
nEX 4 (T) weW

where P(;_y(u))/2(w - 1 — v) is the dimension of (w - p — v)-weight subspace of SU=1W)/2(y).

e It is well known that the cohomology groups H™(G*, HO(A\))(=1 (X € X,(T)) as G-modules admit a good
filtration [12, Lemma 4.5]. Recall that a more hard condition was used in [11], the completely reducibility of
the G-module H*(G*,V)(=1),

eIf A\ € X, (T) and j > 0 then HY(G,H"()\)) = 0, that is, the induced module H%(\) is G-acyclic
[14, Corol. 3.4], [15, Lemma 2.1, (iii)], [16, IL.4.13, (1)].

To prove Theorem 1, we will also use the properties of the Lyndon-Hochschild—Serre spectral sequence. For
the short exact sequence of group schemes

1-G'—-G—=G/GH =1
and the G-module V| the following Lyndon—Hochschild—Serre spectral sequence holds [16, 1.6.6.(3)]:
Ey™ = H™(G/)GY, H™(G', V) = H"™™(G,V); (3)
Let V be a simple G-module with restricted highest weight. According to [17, Sec.1, p. 768],

H™(G/GY H™(GY, V) = H™(G, H™(G*, V)(7Y).

Hence,
Ey™ = HY(G,H™(G, V)Y). (4)
If E™ is the stable value of the point (n,m) of the spectral sequence (3) then for any j > 0,
H(G V)= @ EZ (5)
n+m=j
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1 Properties of the Lyndon-Hochschild-Serre spectral sequence

First, we prove the properties of the spectral sequence (3) necessary for the proof of Theorem 1.
Lemma 1. Let p > h and V' be a simple G-module with highest weight A € X1(T'). Then for all m > 0 there
s an exact sequence of G -modules

0 — H™ YGY, H'(\)/V)"Y — H™(GY, V)Y — H™(GY, HO\)Y — 0. (6)
Proof. A simple G-module V is the socle of the induced module H%()), i.e. there is a short exact sequence
0—V — H°(\) — H°(\)/V — 0.
Consider the corresponding long cohomological exact sequence of G'-cohomology
oo — H™(GHL, V)Y — H™(GH HOON) Y — H™(GH HON) V)Y — (7)

We apply induction on m. According to [18, 4.9], formula (6) is true for m = 1. If it is true for all m < a — 1,
then from the exactness of sequence (7) it follows that the sequence

0 — HYG, H'\) V)Y — HY(GY, V)Y — HY(GY, HO(\)D — .. (8)

is also exact. If H*(G, H°(\))(=Y = 0 then as it can be seen from (8), that the sequence (6) is exact for m = a.
If
HY(G', H°(\)Y #0

then according to (1) and (2),
Ha+1(G1,H0()\))(_1) =0.

In this case, from the long exact sequence (8) it follows that the sequence
0 — H NG HOW)/V)EY — HY(G', V) D —
— HY(G', H°(\))Y) — HY(GY, H'(\)/V)D — 0

is exact.
We prove that H(G', H(\)/V)(=1) = 0. Indeed, the highest weight p of any composition factor HO(\)/V
in Jantzen filtration is strongly linked to A and p < A [19, p. 54]. Therefore,

HY(G, H'(\)/V)=Y =0,

Thus, the short sequence (6) is exact for any m > 0.

Lemma 2. Let p > h and A € X1(T). Then H"(G, H™(G', H*(\))("Y) =0 for all n > 0 u m > 0.
Proof. According to (1) and [12, Lemma 4.5, G-module H™(G*, H°(\))(=1) admits good filtration for all
m > 0. It is well known that non-trivial induced modules are G-acyclic [14, Corol. 3.4], [15, Lemma 2.1, (iii)],
[16, 11.4.13, (1)]. Therefore,
H"(G, Hm(Gd» HO()‘>)(_1)) =0

for all n > 0 and m > 0.

Proposition 1. Let p > h and V' be a non-trivial simple G module with the highest weight from the restricted
region. Then E3"™ =0 for all n > 0 and for all m > 0.

Proof. According to the formula (4), E5™ = H"™(G,H™(G',V)(=Y). Let us prove the statements of
the lemma by induction m. Since V is a nontrivial simple G'-module with highest restricted weight, then
HO(G',V)=1 = 0. Therefore, E5*° = 0 for all n > 0. Assume that E5** = 0 for all n > 0 and s < m, we prove
triviality E5°™ for all n > 0. Consider a long cohomological sequence of G-cohomology that corresponds to a
short exact sequence (6)

oo — HY(G,H™ (G, HO (V) V)

— HY(G,H™(G', V)Y — H™(G, H™(G', H'(\)"Y) — ... (9)
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According to Lemma 2, H"(G, H™(G', H°(X\))(=Y) = 0 for all n > 0. Then from the exactness of sequence (9)
it follows that, for all n > 0, there is an isomorphism

H™ (G, H™ (G, V)TD) = H (G, H™ (G HO () /V)Y), (10)
Now we prove that H™(G, H™~Y(G*, H°(\)/V)(=Y) = 0. By the induction hypothesis,
Ey® = HY(G, HY(G", V)" = H(G,H*"1(G", H°(\)/V)"D) =0

for all s < m. This means that the socle of G-module H()\)/V has G'-cohomology of all degrees up to the
degree m — 2, which direct summands have zero G-cohomology. Let L(u) C socgH(M)/V. Then, applying
Lemma 1 for V' = L(u), we obtain the following exact sequence:

0— H™ (G, H(u)/L(n)" " —
H (G L)) — H™1(G HO (1)) — 0, (11)
Let H™2(G", H()/L(12))=" = 0, then
HP (G, L)) = H™ LG, HO ()Y,
Hence H™ 1(G', L(1))~Y, as G-module, admits a good filtration. Thus,
H™(G,H™ Y(GY, L(n)) V) = 0.
If H™=2(G', H(u)/L(11))=Y) # 0 then by induction hypothesis,
H™(G, H™2(GY, HO(u)/L(1)) ") = 0 for all L(u) C socgH(N)/V.

Then, due to the exactness of the sequence (11),

H™M(G,H™ NG HO(\) V)Y = D H™(G,H™ (G, HO(u)) V) = 0.
L(pu)CsocgHO(N)/V

Since for all L(u) C socgH°(N\)/V, G-module H™ '(G',H°(1))~" admits a good filtration, then
H™(G,H™Y(G', H(\)/V)(=1) = 0. Therefore, according to the formula (10), H"(G, H™(G',V)=1) = 0.
Thus, it is proved that Ey™ = H™(G, H™(G', H*(\)/V)(=1) = 0 for all n > 0 and for all m > 0.

Lemma 3. Let p > h and V be a simple G-module with highest weight from the restricted region. Then
EY7 = E% and HY (G, V) = EY? for all j > 0.

Proof. According to the definition, E};'}" is the cohomology of the sequence

E;_rl—z,m-‘rz—l N Ezz,m N E;’L+z,m—z+1.
Then it is obvious that E%7, = E%. Thus, ESY = E%J, if
j+2 = oo - ’ 2 T oo

0,j 0,j 0,j
E2j:E3]:”':Ej_{_72' (12)

Let us prove the condition (12) by induction on j. For j = 0, this is obvious. Let (12) holds for all j < a. Let us

n,m

prove that it is true for j = a. Since, according the induction hypothesis, E;}5 is the cohomology of sequence
—a—1,m+ ; +a+1,m—
E;L a m-ra _) E;L m _) E;L a m (l’
then EOf = E0ly, if
Ey 12 = BST0 — 0 whenever EY® # 0.
Let ES® # 0. Thus, it is obvious that E, “~"** = 0 and, according to the Proposition 1, ES™"" = 0. Therefore,
the condition (12) is true for all non-negative j, and Eg 7 = E% for all j > 0.
According to the Proposition 1, E5"™ = 0 for all n > 0 and m > 0. If j = n + m, then EJ~"™"™ = 0 for

0 <m < j—1. Then _Ego—m:m = ngm’m =0 for all 0 < m < j — 1. Thus, according to the formula (5),
HI(G,V) = E% = EJ7 for all j > 0.
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2 Proof of Theorem 1

According to Lemma 3, H7(G,V) = Eg” for all j > 0. Using the formula (4), we obtain

Since

By = HO(G,HY (G, V)Y,

HY(G, H/(G',V)"Y) = Homg(k, H (G, V)(~1)

then B’ = Homg(k, HI(G',V)(=1). Therefore,

H’(G,V) = Homg(k, H (G*,V)=Y),

The proof of Theorem 1 is complete.
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AnrebpaJiblK TpymniaJjap yHiiH >Koi
MO/1yJIbJIEP/IiH, KOTOMOJIOTUSIJIaPhI

MakaJstaza »koit 6ipbaitlaHbICKaH aJaredpaJIbIK, IPyIIHaIap/IbliH, KOIMAOUIIMEHTTEPIHIH K9 MOJLYJ/IbIep/Ieri
KOTOMOJIOTHSIJIAPBIH  3epTTeyre OGallJIaHBICTBI CypakTap KapacThipblaraH. OJapibl ecenTeyaiH oSpTypJi
omicrepi 6ap. Tuimai ecemrrey omictepain 6ipi — Oy, mHGUHUTEINMATBAL 1mKi rpynmara — GepiareH aJ-
rebpaJiblK rpynmnanbie, PpobeHnyc ssapochiHa KaThICThl JInHgoH—Xoxmuaba—Cepp CIeKTPIIiK TizbeKTepiHiy
KACHETTEPIH XKoHEe OPTYPJIi KOTOMOJIOTHSIIBIK, J0J1 Ti30EeKTep/IiH KACUeTTepiH maiiiaaany. ABTopJap YIKeH
CaJIMarbl MIEKTEJITEH KO MOJYJ/Ib/Iepre KATBICTHI aJreOpaJIbIK, TPYIIIa MOY/IbAEPIHIH OPTYPJIl KBICKA DT
JKOHE COMKECTi Y3BIH JI9J1 KOTOMOJIOTHSJIBIK, Ti30eKTepHdiH KacueTTepiH 3eprreni. PpobeHnyc sApOCHIHBIH
KOO PUIMEHTTEP] VIKEH CaJMaFbl MIEKTETeH KO MOy IbIep/Ieri KOTOMOJIOTUSIJIAPBIHBIH, KeHOIp KacueT-
Tepi cunartaaasl. COHBIMEH KaTap, YJIKEH CAJIMAFDI IIEKTEJITEeH YKol MOy Ibaep YimiH JIuwagon—Xoxmuiba—
Cepp criekTpJik TizbekTepinin 6ipiHI KBagpaHTTarbl KacuerTepi 3eprreiai. CruekTpirik TizbexkTis 6ipiHImi
KBaJIPAHTTAFbl HYKTEJIEPiHiH IMEeKTIiK MoHAepi ecenrresi. Cunmarramack! p > h anredbpaJsiblk TYHBIK k epicine
KATBICTHI K911 6ipbaitanbicKaH, Tydipsep Kyiteci R kemripinveren G aarebpaJiblK, IPYIIACH] JKOHE YKOFaPbI
caJIMarbl IeKTesred ko V' G-mojtysti yiriu:

H’(G,V) = Homa(k, H (G', V)™V 6apabirsr j > 0,

myrgarsl G — G ymin ®pobennyc Getreneyinin smpocsl, b — R Ty6ipmep xyitecinin Kokerep camsr. By
n3omopdusM G rpynnachbiHbiH, KoM OUINEHTTEP] KOFAPhl CAJIMAFBI IIEKTEJNEeH YKol MOYJIbIEepIaeri Koro-
MoJtorusiapbia ecenreyai G OpoBeHnyC sIIPOCHIHBIH CORKECTI KOTOMOJIOIHSIIAPBIH €CEITEYTe OKETIEI.

Kiam cesdep: asnrebpasbik rpymmna, [llesasuie rpynnacet, Jlu rpynnaceiasiy, kepinici, @pobeHnyc siipocsl,
JKOM MOJIYJIb, KOTOMOJIOTHsI, CIIEKTPJIK Ti30€K, JoJ1 Ti30eK, MEeKTE/INeH CaJIMaK.

[I.III. 6paes, JI.C. Kaunbaesa, C.K. Menntukoxkaepa

KoromoJsiorum mpocThIxX MOIYJIE€il AJIst
ajJireOpamvdecKnux rpyn

B crarbe paccMoTpeHb! BOIPOCHI, KAcAIOIUECss U3YYeHUsT KOTOMOJIOTHH IPOCTBIX OJIHOCBSI3ZHBIX aJiredpan-
YeCKUX TPYIII ¢ KO3PPUIUEHTAMI B TPOCTHIX MOy isiX. CyIIeCTBYIOT pa3ndHbIE METOIBI UX BHIYUCIEHUSI.
OpmanM 13 3pHEKTUBHBIX METOMIOB SIBJISETCS MCIOJb30BAHNE CBONCTB CHEKTPAIBLHON MOCJIEI0BATETHLHOCTH
JIunpona—Xoximuiaba—Ceppa OTHOCUTENBHO NHMUHATE3NMAJILHON HOArpy b — siipa Ppobennyca JaHHON
anrebpamvyecKoil TPyIIbl U CBONCTB Pa3/IMYHBIX TOYHBIX KOTOMOJIOTHYECKUX IOCJIeI0BaTe/IbHOCTE. ABTO-
paMu u3ydeHbl CBOICTBa Pa3JINYIHBIX KOPOTKUX TOYHBIX M COOTBETCTBYIOIINX JJIMHHBIX TOYHBIX KOT'OMOJIO-
IMYECKUX MTOCJIEIOBATEILHOCTEN MOLYJIeH HaT aJredpanvdecKoi rpyioii, CBA3aHHBIX C IIPOCTBIMUA MOJLYJISIMU
CO cTapmuMy orpaHudeHHbIME Becamu. OmmcaHbl HEKOTOPBIE CBOiCTBa Koromosiorun sijipa @pobenunyca c
KO3 DUITMEHTAMH B MPOCTBIX MOIYJISIX CO CTAPIIUMHU OMPAHMYEHHBIMU Becamu. Kpome TOro, mcciaemoBa-
HBI CBOMCTBA CHEKTPAJIbHON nocienoBarebHocTr JInunona—Xoxmmiabaa—Ceppa Ha IEPBOM KBaJ[PAHTE JJIst
MPOCTBIX MOJIYJIel CO CTAPIINMU OTPaHUYeHHBIMU Becamu. ONUCaHbI Mpe/ie/TbHbIE 3HAYEHUSI TOUYEK EPBOTO
KBaJIPAHTa CIIEKTPAJILHON IOCJIEI0BATEILHOCTH. JOKA3aHO, ITO /I MIPOCTOM OHOCBSI3ZHOM ajredpamdec-
Kot rpynnbl G HaJ| ajnrebpanvyeckKy 3aMKHYTBIM 110JIeM k XapaKTepUCTUKH P > h ¢ HEIPUBOIAMMON CUCTEMOMN
xopHeit R u mist npocroro G-mojyist V' co cTapiiuM OrpaHHYEHHBIM BECOM MMeeT MecTo m3omopdusMm G-
MOMyJIei
HY(G,V) = Home(k, H (G*,V)™Y) mst Beex j > 0,

rae G — sanpo orobpaxkenns Ppobennyca mias G; h — ancno Kokerepa cucremsl R. JaHHbIA n30MopdhU3M
MMO3BOJISIET CBECTHU BBIUMC/IEHIE KOTOMOJIOTHH I'PYTIIbl G ¢ KO3 PUIMEHTAMI B TPOCTHIX MOJIYJISIX C OTPAHU-
YEHHBIMH CTAPIIAMI BECAMU K BBIUKMCJIEHHUIO COOTBETCTBYIONMX KOroMoJoruu siipa ®pobennyca GL.
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Kmouesvie caosa: anrebpamdeckasi rpynmna, rpynna lllesaste, mpencrasimenune rpymnmst Jlu, sapo @Ppobe-
HHYCa, IPOCTON MOYJIb, KOTOMOJIOTHSI, CIIEKTPAJIbHAS [TOCIEI0BATEILHOCTD, TOUYHAS IOCIEI0BATEIbHOCTD,
OrpaHUYEHHBIN BeC.
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Deformations of the three-dimensional Lie algebra sl(2)

Deformation is one of key questions of the structural theory of algebras over a field. Especially, it plays
a important role in the classification of such algebras. In odd characteristics of algebraically closed fields,
local deformations of classical Lie algebras are completely described. Local deformations are also known for
classical Lie algebras with a homogeneous root system over an algebraically closed field of characteristic 2,
except for the three-dimensional Lie algebra s[(2). In the characteristic 2, deformations of Lie algebras
with an non-homogeneous root system are calculated only for Lie algebras of small ranks. In this paper
we investigate deformations of the three-dimensional classical Lie algebra s[(2) over an algebraically closed
field k of characteristic p = 2. We also describe three-dimensional two-sided Alia algebras associated with
Lie algebra sl(2) in the characteristics 2 and 3. It is proved that, in characteristic 2, the space of local
deformations of the Lie algebra s[(2) is five-dimensional. The structural specialty of the second cohomology
space of the adjoint representation of the Lie algebra s[(2) are analyzed. In particular, the subspace of
cosets of restricted cocycles is described. It is proved that the subspace of classes of restricted cocycles
is two-dimensional and the corresponding local deformations are restricted Lie algebras in the sense of
Jacobson. It was found that a family of simple three-dimensional unrestricted Lie algebras correspond
to unrestricted non-trivial cocycles. In characteristics 2 and 3, three-dimensional two-sided Alia algebras
that are non-isomorphic to the Lie algebra s[(2) are constructed. In the process of the study, a complete
description of the space of all derivations of the Lie algebra s[(2) is obtained.

Keywords: Lie algebra, module, representation, derivation, outer derivation, deformation, restricted defor-
mation, cohomology, cocycle, commutative cocycle, Alia algebra.

Introduction

Over an algebraically closed field of characteristic zero, classical Lie algebras are rigid. Deformations of
classical Lie algebras in positive characteristics were studied in [1-10]. In [11-14] deformations of Cartan type
Lie algebras are studied.

In this paper deformations of the three-dimensional classical Lie algebra g = s[(2) over an algebraically closed
field k of characteristic p = 2 are calculated. It is well-known that, in the case when p > 2, the Lie algebra
5[(2) is rigid [6]. We prove that in characteristic 2 the Lie algebra s[(2) admits a five-dimensional space of local
deformations (Theorem 1). To prove Theorem 1, we use information on the structure of the space of outer
derivations of the Lie algebra g. In section 1 we give a complete description of the space of outer differentiations
of the Lie algebra g (Proposition 1). The dimension of the space of outer derivations of the Lie algebra g was
previously calculated in [15]. In section 2 the spaces of usual and restricted second cohomologies of the Lie algebra
g with coefficients in the adjoint representation are calculated. According to the general theory of deformation,
a necessary condition for the deformation of a Lie algebra is the non-triviality of its second cohomology with
coefficients in the adjoint representation. However, in the general case, the correspondence between the 2-cocycle
classes of the second cohomology for the adjoint representation and the deformations of the Lie algebra is not
one-to-one [8]. In this connection, we prove that the parametrizability of local deformations of a restricted Lie
algebra g by elements of the second cohomology H?(g,g) (Lemma 1). By restricted local deformations of a
Lie algebra g we mean deformations corresponding to elements of the second restricted cohomology HZ(g, g).
A restricted cohomology of a restricted Lie algebra was first introduced by Hochschild in [16]. In the last section 3
the space of commutative cocycles with coefficients in k is calculated (Proposition 2). Commutative cocycles
play an important role in the structural theory of two-sided Alia algebras [17-19] and in the second cohomology
groups of current Lie algebras [20]. An algebra (A4, o) is called a two-sided Alia algebra if the identities

[a,b]oc+ [b,c]oa+ [c,alob=0,
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aolb,c]+boleal+cola,b =0

hold, where [a,b] = aob—boa is the usual commutator. The two-sided Alia algebra is Lie-admissible, i.e. the
space A becomes a Lie algebra respect to the multiplication [a,b] = a o b — b o a. The Lie algebra deformed
by commutative cocycles is a two-sided Alia algebra non-isomorphic to the Lie algebra itself. It was proved
in [17] that if p # 2,3, then among the classical Lie algebras only the three-dimensional Lie algebra s[(2) admits
commutative cocycles. Commutative cocycles for some important classes of Lie algebras such as current Lie
algebras, Kac-Moody algebras, finite-dimensional semi-simple algebras were studied in [21].

Let g be a Lie algebra over an algebraically closed field k of characteristic p. The space of i-dimensional
cochains C'(g, g) of an ordinary cochain complex is defined as the space of skew-symmetric poly-linear functions
¥ : N\'(g) — g with differential d defined by

i+1
dw(lh l2’ T 7li+1) = Z(_l)] [lja ¢(l15 e alja e ali+l)]+
j=1
Z(_l)p-‘rqd}([lpa lq]7 e 7/l;77 e 7217 e 7li+1)a
p<q
where [1,l2, -+ ,l;41 € g, and the notation E means that the element /; should be omitted.

Let

Z'(g,9) = Kerdn Ci(g,g) is the space of i-dimensional cocycles,
Bi(g,g) = Imdn Ci(g,g) is the i-dimensional cochains,

and H'(g,g) = Z'(g,9)/B"(g, g) is the i-dimensional cohomologies.
Ifwe Z'(g,9), ¥ € Z%(g,9) then

7&]([11, lg]) — [ll,w(lg)] —+ [lg,w(ll)] = O fOI‘ all ll, 12 - g, (1)

= ([l 2], 13) + ¥([l1, 13], 12) — ¥([l2,l3], 1) — (2)
(I, (2, 13)] + [l2, ¥ (11, 13)] — [l3,9 (11, 12)] = 0 for all Iy, 1,13 € g.

Let now g = sl(2). Choose a basis {e, h, f} of the Lie algebra g with the multiplication table [h,e] = 2e,
[h, f] = —2f, [e, f] = h. In the dual space g* we choose the dual basis {e*,h*, f*} for the basis {e,h, f}.

We identify the space C(g, g) with the space /\l(g*) ® g. The cohomological class of the cocycle 1 € Zi(g, g) is
denoted by [¢].

1 Derivations

Proposition 1. Let g = sla(k) be the three-dimensional classical Lie algebra over an algebraically closed field
k of characteristic p = 2. Then the following isomorphisms of the vector spaces over k hold:

(a) Z'(g,9) = (w1, wa, w3, wa, Ws, We )k

(b) H' (g, 8) = {[wr], [wal, [ws], [l
where w; = e* e+ h* Qh,wa=e*Q f,ws3=f"Re,ws=fF*Qf+h*"@h, ws=e€e*"Rh, wg = "R h.

Proof. (a) First we prove that the cochains wy,ws,- - ,ws are cocycles. To do this, it is sufficient to check
condition (1) for the basis elements e, h, f. Indeed, since

—wi([e, h]) — [e,wi(h)] + [h,wi(e)] = —2wi(e) — [e, h] + [h,e] = —2e — 2e + 2¢ = 0,

—wi(le, ) = [, (Nl + [frwi(e)] = —wi(h) + [f,e] = =h = h =0,
—wi([h, 1) = [hywr (N] + [f,w1 ()] = 2w1 (f) + [f, h] = 2f = 0,

then wy is a cocycle. Similarly, the condition (1) is easily verified for other cochains.
Let

w=ze*Re+a2e" Qh+ 123" R f +1y1h*" Qe+ 1yh*@h+1y3h* R f
+taf @etznf @htaf ©feZ (g 0),

where x;,¥;,2; € k. The following implications hold:

—w(le,h]) — [esw()] + [hyw(e)] = 0 = y5 =0,
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—w(le f) = [e;w(Hl + [fiw(e)] =0 = y1 = y3 = 0, 21 +y2 + 23 = 0,
—w((h, ) = [hw(H] + [f,w(h)] =0 = 51 = 0.

Therefore, from the condition (1) it follows that y; = y3 = 0 and z1 + y2 + 23 = 0. These equalities form a
linear system with respect to x;,y;,2; € k. The rank of this system is 3, so it has a six-dimensional space of
solutions. As a basis of Z1(g,g), one can choose cocycles wy,ws, - ,We.

(b) Let w = Z?Zl ajw; € Z'(g,9), where a; € k. Suppose that w € B!(g, g). Then for the basis elements of
Li algebra the equalities

w(e) = [6, bie + boh + bgh], w(h) = [h, bie + boh + bgh], OJ(f) = [f, bie + boh + bgh]

hold, where b; € k. From these equalities it follows that a1 = az = a3 = a4 = 0, as = c1, ag = c3. Thus, the
cocycles wy,ws,ws,wy are linearly independent and its cosets form the basis of the space H'(g, g).
The proof of Proposition 1 is complete.

2 Local deformations

Theorem 1. Let g = sl(2) be the three-dimensional classical Lie algebra over an algebraically closed field k
of characteristic p = 2. Then the following isomorphisms of vector spaces over k hold:

(a) Z°(g,9) = (Y1, V2, V3, Ya, Us, Ve, V7, Ys)k;

(b) H*(g,9) = ([¥1], [V, [¥s], [a], [¥s])k:

(c) HZ(g,0) = ([¥s), [¥6))k,
where 1 =" AR @e+h A" Q@ fiha=e" AR Qf,p3=h""ANf"@e Ys=€eNf"Qf bs=e"A[f"®e,
Yg=€e*"ANh*@h, v =h* N f*Q@h, Yg=€e*" AN f*®h.

Proof. (a) Since for any cochain ¢ € C?(g, g),

—¢([6, h]’f) +’(/)([€,f],h) —¢([h,,ﬂ,€) =0

and
—le,1(h, )] + [h,vale, /)] = [f, ¥a(e, h)] = [e, f1 = [f,e] = 0,
—le, ¥2(h, /)] + [, ¥a(e, )] = [f, va(e, B)] = =[f, f] = 0,
—le,s(h, )] + [h, ¥s(e, f)] = [f, ¥s(e, h)] = —[e,e] = 0,
—le,®a(h, )] + [, Yale, )] = [f, ¢ale, B)] = [h, f] =0,
—le,¥s(h, /)] + [h, ¥s(e, )] = [f, ¥s(e, )] = [h, ] =0,
—[e;¥6(h, )] + [h s (e, f)] = [f: ¥s(e, h)] = —[f,h] = 0,
—le, ¥z (h, /)] + [h, ¥r(e, )] = [f, (e, )] = —[e, h] = 0,
e, ¥s(h, f)] + [k, Ys(e, )] = [f, (e, h)] = [h, h] = 0,
then by (2), the cochains 1,13, - , g are cocycles.
Let

V=" Nh" Qe+ ze* AW " Qh+ a3 AR Q f+y1e" AN f* Qe+ e NffRQh+yse* ANf R f

F2h A e+ 2mh* Af*@h+23h* A fF @ f e Z%(g,0),

where z;, y;, z; € k. Then from the cocycle condition (2) it follows that z; 4+ 23 = 0. Therefore,
dim Z2(g,g) = 9 — 1 = 8. The cocycles ¢, j = 1,2,---,8 form the basis of Z?(g, g).
(b) Let

8
= a; € Z2°(g,0)
j=1

and
w=bie"Q®e+be*Qh+b3e* @ f+bsh*Re+bsh*@h+bgh* R f

+brf* @e+bsf* @h+bof* @ f € Clg,g),
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where a;,b; € k. Then from the condition ¢ = dw it follows that a1 = as = a3 = 0, as = b, as = bs, as = bs,
a7 = by, ag = by + bs + bg. Therefore the cocycles

W1, P2, 3, V4, U5

are linear independent and its cosets form a basis of H%(g, g).
(¢) For the adjoint g-module g there is the following Hochschild exact sequence [16]:

D
0— H.(g,8) — H'(g,8) — S(g,0%) = H(g,0) — H(g,9) — S(g, H'(5,0)),

where
S, V)=A{u:g—=V | ulaaly + asls) = Ju(ly) + abu(le), ar,as € k, 11,12 € g}

is a space of semi-linear maps from g to V. The maps T and D defined by

T.(h) = [0 wl)] — w(?),

p—1

Dy(l)la = > (ad ) (%1, (ad 1)~ (1)) — w (I, 1),

Jj=0

where I1,1; € g, w € Z1(g,9), and v € Z?(g, g). In particular, if p = 2 then
Tu(l) = [, w(ln)] — w(i), (3)

Dy (l1)lz = (1, [, b)) + (11, (1, 1)) — w7, 1), (4)

If Dy (l1) is a inner derivation for the Lie algebra g for some {1 € g then It is obvious that the image of cocycle
coset [¢] under the map

D : H*(g,0) = S(g, H' (g, 9))
is trivial.
By (3) and Proposition 1,
Twl = TW4 = U, ng = w57 ng = wﬁa

where u is a semi-linear map defined by u(h) = h, u(e) = u(f) = 0. Therefore, IT = S(g, g?). Then from the
previous exact sequence it follows that the following sequence is exact:

D
0 — H(g,9) > H*(g,0) — S(g, H'(9,9))- (5)
Using (4) and the statement (a) of Proposition 1, we get
Dy, (h) = w1 +wa, Dy, (h) = wa, Dy, (h) = ws, Dy, (h) = ws, Dy, (h) = ws.

Then, by the statements (a) and (b) of Proposition 1, the maps Dy, (h), Dy, (h) are inner derivations of g,
and the maps Dy, (h), Dy, (h), Dy,(h) are outer derivations. Therefore, [t4], [¢)5] € HZ2(g,g) and [11], [¢2],
[¢3] ¢ H%(g,9). Then the statement (c) follows from the exact sequence (5).

The proof of Theorem 1 is complete.

Lemma 1. The cocycle cosets of the space H?(g,g) define nontrivial local deformations of the Lie algebra g.
Proof. By Theorem 1,

H?(g,9) = ([v1], [, [¥s], [Ya], [5])k-

Denote by s((2,¢;) the local deformation of the Lie algebra g corresponding to the cocycle coset [¢;]. For the
basis elements of the Lie algebra s[(2,¢;), we also use the notation of the basis elements of the Lie algebra g.
The multiplication of the Lie algebra sl(2,t;) is defined by

[ll,lg]tJ = [ll,lg] + tj’(/Jj(ll,lg), l1,l5 € 5[(27tj)7 tj € k.

First, we consider the Lie algebra s[(2,¢1). It is a simple Lie algebra. Therefore, it corresponds to a nontrivial
local deformation of the Lie g.
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If j € {2,3,4,5} then sl(2,t;) is not a simple Lie algebra. Any homomorphism s[(2,¢;) — g is not one-to-
one. Indeed, if ¢ : sl(2,t;) — g is a homomorphism of Lie algebras, then ¢(h) = 0if j = 2,3, tad(h)+o(f) = 0if
Jj =4,and t5¢(h)+¢(e) = 0if j = 5. Hence, the cocycle cosets 19, 13, 14, 15 define nontrivial local deformations
of the Lie algebra g.

The proof of Lemma 1 is complete.

Remark 1. By Theorem 1, H?(g,g) is a proper subspace of H?(g,g). This means that not all local
deformations of the Lie algebra g admit a restricted structure.

8 Deformations by commutative cocycles

Let g be a Lie algebra over an algebraically closed field k of characteristic p and V' be a g-module. A bilinear
map 7 : g x g — V satisfying conditions

([, 2], 1) + n([l2, Is], 1) + n([ls; L], 12) =0, (6)

17(11712) = 77(127l1)7 (7)

where 11, la, I3 € g, is called a commutative cocycle with coefficients in V. Let Z2 (g,M) be the space

of the commutative cocycles with coefficients in V' and Z2, (g) = Z2,.(g,k). If p # 2,3, then among
classical Lie algebras only a three-dimensional classical Lie algebra sl(2) admits commutative cocycles and
dim Z2,,(sl(2)) = 5 [17, Theorem 1|. In characteristic p = 2, from the condition (6) it follows that if
n € Z2,.(s1(2)) then n(h,h) = 0. Hence, using the condition (7), we get the following

com

Proposition 2. Let g = sl(2) be the three-dimensional classical Lie algebra over an algebraically closed field
k of characteristic p = 2. Then

Z2yn(9) = (i s i=1,--,5)y,
where
me e) = 1; mae, h) = na(h,e) = 15 ms(e, f) = ns(f,e) = 1;
na(h, f) =na(f,h) =1 ns(f, f) =1
(not specified components are equal to zero).

Remark 2. A statement similar to Proposition is also true in the case of characteristic p = 3. Indeed, according
to (6), any commutative cocycle 7 satisfies the equality n(e, f) = n(h, h). Therefore, a basic commutative cocycle
73 may be chosen so that the equalities

na(e, f) =ns(f,e) =n3(h,h) =1
hold.

Remark 3. In the space g = s[(2) the commutative cocycles of Z2, (g,g) define Lie-admissible two sided
Alia algebras non-isomorphic to g [17]. Since

Z(9,0) 2 22, (0) ®g

then, according to Proposition 2 and Remark 2, in characteristics p = 2,3 there exist three-dimensional Lie-
admissible Alia algebras non-isomorphic to the Lie algebra s[(2).

The work of the second author was supported by grant AP05131123 of Ministry of Education and Science
of the Republic of Kazakhstan by theme «Cohomological and structural problems of non-associative algebrass.
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A.A. Ubpaesa, [I1.I11. bl6sipaes, B.E. Typbaes

Y esmmemzai s((2) JIn anrebpachiabiy, gebopMaliusiiapbl

HedopMmarusi epicke KaTbICTBI anrebpajapblH KYPBLIBIMJIBIK, TEOPHUSCHIHBIH, MAHBI3/IBI CYPAKTAPBIHbIH,
6ipi GosbIm TabBLIAABI. OCipece, OCBIHIAN aJrebpaiapiblH, KIACCHU(PUKAIUSICHIHIAFBl OHBIH, OPHBI
epekire. CunarramMachl Tak, ajareOpaIblK, TYHBIK ©picTep/ie KIACCUKAIBIK, JIn asrebpaiapbIiHbIH JIOKAJIBI
necdopmanusIapbl TONBIK, ecenrenred. CoJl CUSIKTBI, CAIIATTaMachl 2-re TeH epicre Tybipsep xKyiieci 6ip-
TEKT] KJIACCUKAJBIK JIu anreGpasapblHbiH JOKaIbI gedopmarmsitapbl ga s[(2) Jln anrebpaceiaan 6acka
xKarpaiapaa Gesrini. Cuarramacel 2-re TeH epicre TybGipsep Kyiieci GIpTeKTi eMec KJIACCUKAJBIK, Jlu
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asrebpasIapbIHbIH, JIOKAJIbIl JedpopManusiapbl TeK paHri Temed JIu ajaredbpasapbiiia ecernresiren. Maka-
JIaJla, CUIATTAaMaChl p = 2 anrebGpasiblk, TYHBIK k epicingeri ym esmemal Kiaaccukauslk, s1(2) JIu anrebpa-
CBIHBIH JedopMalusIapbl 3epTTesai. 2 »KoHe 3-Ke TeH opic cunarramasapbiaaa, s/(2) Jlu agrebpacbiMen
GallyTaHBICTHI YIII OJIIIEM/I eKi »KaKThl Asina anrebpasapbl KapacTeipbuirad. CumarramMacsl 2-Te TeH epicTe
5[(2) JIn anrebpachbIHbIH JIOKAIbIL gedopManusIapbl KeHicTirinin 6ec emmemai exeni mpsenaenmi. sI(2) Jln
aJIreOpachIHbIH KiPIKTIpiJINeH MOy IiHIH eKiHIII KOrOMOJIOTHsJIap KEHICTITIHIH KYPBIIBIMIBIK, €peKIeiKTepi
TaJigaHabl. Jdepbec xkarmaiiia, MeKTeJIreH KOMUKIIEP KAACTapbIHbIH, imKi KeHicTiri curmarraaasl. [lexres-
PeH KOIMKJIJIEP KJIACTapPbIHBIH, IITKI KeHICTIriHIH eKi eJImeM/ Il XKoHe CONKecTi JJOKaJIbIl e OpMAIUsLIapIbIH
JI>kek0OCOH MaFbIHACBIHIA IIeKTeareH JIu anrebpasiapbl ekeni moenaenai. [IlekTemeren TpuBUab eMec
KOTIMKJIJIepre »Koil yiur esmmemai JIu ajarebpasapblHbIH Yilipi coffkec KeeTiHi aHBIKTAIILI. 2 KoHE 3-K€ TeH
cunarramasapaa, s((2) Jlu anrebpacbina n30MOPMTHI eMec yII esmeM i eKi »KakTbl Asna asrebpaapbl
KypbuLael. 2Kyprisisires seprreysep normxkecinge s/(2) JIu anrebpachlHblH 6apiIblK JuddepeHnpaiiayiap
KEHICTITiHiH TOJIBIK, CUTIATTAMACHI AJIBIH/IHI.

Kiam cesdep: Jlu anrebpacsl, MO/Ly/Ib, KOpiHic, nuddepennmaniay, CbIpTKb quddepernuaiiay, redpopma-
s, MeKTeIreH JedopMalys, KOrOMOJIOrUsl, KOIUKJI, KOMMYTaTUBTI KOIMKJI, Ajna ajarebpacsl.

A.A. Ubpaesa, II1.I11. l6paes, B.E. Typbaes

Hedopmanuu Tpexmepoii aareopor JIu sl(2)

Hedopmariust siBsIeTCsS OJHUM U3 KJIIOUYEBBIX BOIIPOCOB CTPYKTYPHOI Teopuu aarebp Has nmojeM. OcobeHHO
BAXKHYIO POJIb OHA WIPAET IPHU KJIACCH(PUKAINU Takux ajaredp. B HedeTHBIX XapakTepucTHKax ajredpan-
YeCKM 3aMKHYTBIX IT0JIel JIOKAJIbHBIE jledpopMaluu Kiaaccudeckux anebp JIu ommcansl noiHocTbio. Takrke
M3BECTHBI JIOKAJbHBIE Je(OpMaIlii KJIACCHYeCKUX aaredbp Jlu ¢ oaHOpomHO#N cucTeMoi KOpHEH Hajl aJi-
re6panvIecKy 3aMKHYTBIM IOJIEM XapaKTEPUCTUKU 2, KpoMe TpexmMepHoi anre6por Jlu s[(2). B xapaxre-
pucruke 2 nedopmaruu anre6p Jlu ¢ HEOIHOPOJHON CHCTEMOI KOPHEH BBIMUCIEHBI TOJBKO JJIst ajrebp
JIn manpix panros. B crathe msydennr nedopmarnmm TpeXMEpHON KIacCHYIecKoi anrebper Jlu s[(2) masn
ajrebpanvecku 3aMKHYTBIM 1ojieM k xapakrepuctuku p = 2. Ouucanbl TpexMepHbIe ABYCTOPOHHUE ajired-
pbl Asma, cBs3anHble ¢ asrebpoii JIu sl(2) B xapakrepucrukax 2 u 3. JokasaHo, 9TO B XapaKTEPUCTHUKE
2 MPOCTPAHCTBO JIOKAILHBIX jedopmanmit anrebpsr JIn s[(2) nmarumepno. [IpoanaamsmpoBaHbl CTPYKTYP-
HbIE 0COOEHHOCTHU TIPOCTPAHCTBA BTOPOH KOMOMOJIOTUY IPUCOEAMHEHHOTO [IPeICTaBIeHns aare6pnt Jlu s((2).
B wacrrocTH, OmEICaHO MOAIIPOCTPAHCTBO KJIACCOB OIPAHMYEHHBIX KOIMKJIOB. JIOKa3aHo, YTO HMOAIPOCTPAH-
CTBO KJIACCOB OI'PAHUYEHHBIX KOIUKJIOB JIBYyMEPHO M COOTBETCTBYIOIINE JIOKATbHBIE Te(DOPMAIIAN SBJISTIOTCST
orpannieHHbMEu ajredbpamu Jlu B cmbice [Ixkekobcona. Brisicneno, 4To HEOrpaHUYIEHHBIM HETPUBHUAIHHBIM
KOIIMKJIAM COOTBETCTBYET CEMENCTBO MPOCTHIX TPEXMEPHBIX HeorpaHudeHHbIX ajrebp Jlu. B xapakrepuc-
TMKaxX 2 ¥ 3 MOCTPOEHBI TPEXMEPHBIE JBYCTOPOHHME ajirebpbl Asma, memsomopdubie anredpe JInm s((2).
B xo/1e mpoBeieHHOr0 nCcse0BaHKs Oy Y€HO [IOJIHOE OIMCaHUe IIPOCTPAHCTBA BeeX uddepeHnnpoBanuit
asre6per JIu s((2).

Kmouesvie crosa: anrebpa Jlu, momysns, npeacrasienne, qmuddepeHmpoBanne, BHEITHee auddepeHnnpoBa-
Hue, nedopMaliusi, orpaHuYeHHas JedopMalyst, KOrOMOJIOI s, KOIUKJI, KOMMYTATUBHBIN KOIMKJI, ajarebpa
Anma.
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Asymptotic solutions of scalar integro-differential equations with
partial derivatives and with rapidly oscillating coefficients

The work is devoted to the development of an asymptotic integration algorithm for the Cauchy problem for
a singularly perturbed partial differential integro-differential equation with rapidly oscillating coefficients,
which describe various physical processes in micro-inhomogeneous media.This direction in the theory of
partial differential equations is developing intensively and finds numerous applications in radiophysics,
electrical engineering, filtering theory, phase transition theory, elasticity theory, and other branches of
physics, mechanics, and technology. For studies of such processes, asymptotic methods are usually used. It
is known that currently rapidly developing numerical methods do not exclude asymptotic. This happens
for a number of reasons. Firstly, a reasonably constructed asymptotics, especially its main term, carries
information that is important for applications about the qualitative behavior of the solution and, in
this sense, to some extent replaces the exact solution, which most often cannot be found. Secondly,
as follows from the above, knowledge of the solution structure helps in the development of numerical
methods for solving complex problems; therefore, the development of asymptotic methods contributes to
the development of numerical methods. Regularization of the problem is carried out, the normal and unique
solvability of general iterative problems is proved.

Keywords: singularly perturbed, partial integro differential equation, regularization of an integral, solvability
of iterative problems.

Introduction

A mathematical description of physical processes in micro-inhomogeneousmedia suggests that the local
characteristics of the latter depend on a small parameter which is a characteristic scale of the microstructure
of the medium. To construct mathematical models of such processes, an asymptotic analysis of the problem is
performed for It turns out that the limits of the solutions to the problem are described by some new differential
equations that have relatively smoothly varying coefficients and are considered in simple domains.These
equations are mathematical models of physical processes in micro-inhomogeneousmedia, and their coefficients
are effective characteristics of such media. For mathematical studies of such processes, asymptotic methods
are usually used. It is known that currently rapidly developing numerical methods do not exclude asymptotic
ones. This happens for a number of reasons. Firstly, a reasonably constructed asymptotics, especially its main
term, carries information that is important for applications about the qualitative behavior of the solution
and, in this case to some extent replaces the exact solution, which most often cannot be found. Secondly, as
follows from the above, knowledge of the solution structure helps in the development of numerical methods for
solving complex problems; therefore, the development of asymptotic methods contributes to the development
of numerical methods. Thirdly, for some problems, especially those related to fast oscillations, there are simply
no effective numerical methods that give a sufficient degree of accuracy. The first of the problems with an
irregular dependence in perturbation theory that arose in connection with the problems of celestial mechanics
and electrical engineering were nonlinear equations, which are often called oscillating equations at present. Tasks
of this kind arise everywhere where certain transient processes take place. Studies of oscillating and singularly
perturbed oscillating systems described by ordinary differential equations to the splitting methods were carried
out in [1-4] and regularization methods in [5-8]. An analysis of the main results of the study for systems
of homogeneous and inhomogeneous differential equations prompted the idea to study singularly perturbed
integro-differential equations with rapidly oscillating coefficients.A system of integro-differential equations in
the absence of resonance is considered, i.e. when the integer linear combination of frequencies of the rapidly
oscillating cosine does not coincide with the frequency of the spectrum of the limit operator [9, 10]. It should be
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noted that when developing an algorithm for constructing an asymptotic solution to the problem, the ideas of
the regularization method used to study ordinary integro-differential equations [11-21] and integro-differential
equations with partial derivatives [23-24] were used.
We consider the Cauchy problem for the integro-differential equation with partial derivatives:
8% =a(x)y(z, t,e) + [ K(z,t,8)y(s,t,e)ds + h(z,t)+ )
o
+€g($)008@y($7t78), y($05t75> :yo(t) ((xat) € [x07X] x [07T])7

where fB'(z) > 0, g(z), a(z) is a scalar functions, y°(t) constant, € > 0 is a small parameter. Denote
by M(z) = —a(z), 8/(x) is a frequency of rapidly oscillating cosine. In the following, functions
A2(x) = —if'(x), As(x) = +if'(x) will be called the spectrum of a rapidly oscillating coefficient.

We assume that the conditions are fulfilled:

(i) a(z), g(x), B(z) € C®[xg, X]; h(x,t) € C>®[zg, X]| x [0,T], the kernel K(z,t,s) belongs to the space
K(z,t,s) eC¥{zp <z <s<X,0<t<T}

(i) Mi(z) = a(z) # N\j(z), j=2,3, N(z)#0, (Vo € [xo,X]), i1=1,2,3;

(iii) M (z) <0, (Vz € [zg, X]);

(iv) for Vx € [z, X]| and ny # ng inequalities

n2a(z) + ngAs(x) # Ai(z),
)\1(%) + ng)\z(fﬂ) + ng)\g(m) 7é )\1(1})7 (ViE € [iE(),X])

for all multi-indices n = (ng,n3) with |n| = ny +mn3 > 1 (n2 and n3 are non-negative integers) are holds.
We will develop an algorithm for constructing a regularized [5] asymptotic solution of problem (1).

1 Regularization of problem (1)

Denote by o; = 0; (¢), independent of ¢ magnitudes o, = e~ :8(t0) g, = ¢+28(t0) and rewrite system (1)
as
i [t / i [t ’
e M@y, te) — 5P (¢ Ho M OWo, 4 0 T ON0, ) y (a6 -

(2)
—f; K (z,t,8) y(s, t,e)ds = h(x,t), y(zo,t,€) = y°, ((z,t) € [x0, X] x [0,T]).

We introduce regularizing variables (see [5, 6]):

and instead of problem (2), consider the problem

- 3 N
eZL 4+ 3 N () 2L — Ai(2)f — eLE (e 0y + €T on) § —
i=1 g

3)

— [ K (x.t,5) §(s,t, X2 e)ds = h(z,t), , §(2,t,7,)amgr—0 = 1°, ((2,1) € [20, X] x [0,T]),

for the function § = g (x,t,7,¢), where is indicated: 7 = (71,72,73), ¥ = (¥1,%2,%3). It is clear that if
Y(=)

€

g =g (z,t,7,€) is a solution to problem (3), then the vector function y = g (w, ,5) is an exact solution to

problem (2), therefore, problem (3) is extended with respect to problem (2). However, it cannot be considered
fully regularized, since it does not regularize the integral term Jg = f;ﬂ K (x,t,8)g(s, wis) ,€)ds. To regularize
the integral operator, we introduce a class M. that is asymptotically invariant with respect to the operator Jy
(see [5], p. 62). Recall the corresponding concept.

Definition 1. A class M, is said to be asymptotically invariant (with ¢ — 40) with respect to an operator
Py if the following conditions are fulfilled:

1) M. C D(Py) with each fixed € > 0;

2) the image Pyg(z,e) of any element g(x,e) € M, decomposes in a power series

Pyg(z,e) = Za"gn(x,e)(a — 40, gn(z,e) € Mc,n=0,1,...),

n=0

convergent asymptotically for ¢ — 40 (uniformly with x € [z, X] ).
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From this definition it can be seen that the class M. depends on the space U, in which the operator P, is
defined. In our case Py = J. For the space U we take the space of vector functions y (z,t,7), represented by
sums

3 *
y(z,t,7,0) = yo (x,t,0) + Zyi (z,t,0)e™ + Z y™ (z,t,0) e(moT) 1
=1 2<|m| <Ny
Y T (0) ey (2, t0) g™ (. 1,0) T (2, 8,0) € O, X] X [0,T), (4)

1<|m|<Ny
m = (07m27m3)71 < ‘m‘ =mg +m3 < Ny,l':ﬁ,

where is denoted: A (z) = (A1, A2, A3), (M, A(x)) = mada () +msAs (z), (e1 +m, A () = A () + maAs (2) +
+mgAs3 (x); an asterisk x above the sum sign indicates that the summation for |m| > 1 it occurs only over
multi-indices m = (0, mg, mg) with mg # mg, e = (1,0,0), 0 = (01,02) .

Note that here the degree N, of the polynomial y (z,t, T, o) relative to the exponentials e™ depends on the
element y. In addition, the elements of space U depend on bounded in £ > 0 terms of constants o1 = o1 (&)
and o3 = 03 (¢), and which do not affect the development of the algorithm described below, therefore, in the
record of element (4) of this space U, we omit the dependence on o = (01, 03) for brevity. We show that the
class M. = Ul —y)/e is asymptotically invariant with respect to the operator J. The image of the operator on
the element (4) of the space U has the form

£/ xi(9)do
zq

x 3 xT
Tyatr) = [ Kbl 0ds+ Y [ Kt sils e ds+
xo izlxo

x x

- L [ (mA(0))d0 * 1 [ (er+m,(8))d6
+ Z K(x,t,s)y™ (s, t)e "o ds + Z K (z,t,8)yt T (s,t) e =0 ds.

2<|m|<N- 5o 1<|m|<N. 5

Integrating in parts, we will have

[ L J Ai(0)do F Kt 9w (s.t) 2T r(0)d0
Ji(z,t,¢€) :/K($7t78)yi(87t)€ =0 dSZE/WSZ;Z(S’)de %0
2
xo

Zo
K ; éf’ki(@)de - 7 K ) gfxi(e)de
_ (J:,t,s)yz(s,t)e J B / 0 K(z,t,8)yi(s,t) o ds| —
s=xo Zo
K(x,t,x)y;(x,t) = S 2@ K (x t 20)y(zo,t) / D K(z,t,8)yi(s,t)\ =) Xi©)do
=g | —2 127 T o - —€ — A e 0 ds.
xo
Continuing this process further, we obtain the decomposition
o ) L[ xi(0)do
Ji(z,t,e) = 20(—1)”5’”‘ (I} (K(x,t,8)yi(s,t)) € ™ — (I (K(2,t,5)yi(5,1))) y—y, | -
1 v 1 v—1 .
I?:W"Ii bwe) I (v>1,i=13).
Applying the integration operation in parts to integrals
. 1 [ (m,A(0))do
Im(x, t,e) = [ K(z,t,s)y™(s,t)e o ds,
Zo
x 1 [ (ex+m.A(6))do
Jeram(z, t,e) = [ K(x,t,s)yT™ (s,t)e *0 ds,

Zo

we note that for all multi-indices m = (0, m2, m3) , ma # mg, inequalities

(m, A(z)) = mada(z) + mgAs(z) #0 Vz € [xg, X|, ma+m3 > 2.
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are satisfied. In addition, for the same multi-indices m = (0, mg, m3) we have
(e1 + m, A(x)) # 0V € [z, X], ma # mg, |m|=ma+mg > 1.
Indeed, if (e; +m, A(z)) = 0 for some z € [xg, X] and my # mg, ma + m3 > 1, then maoda(z) + mgAz(z) =

= —X1(x), ma+mg > 1, which contradicts condition (iv). Therefore, integration by parts in integrals is possible.
Performing it, we will have:

[ L ma0)d0 K(z,t, 1 [ (m,(8))do
Jm(x,t,e):/K(x,t,s)ym(s,t)e =0 / (2,4 5) ® 5,1) e o =
_ K(x,t,s)y’”(:c,t)e%fo (m,2(6))d6 _E/ ( 9 K(z,t,8)y™ (s, t))eil{] (mA@)d0 |

(m, A(s)) ds  (m,A(s))
s=xg xo

. K(m,t,x)ym(x,t)eéxf; (m MO0 K (2, t, 20)y™ (0, 1)

(m, A(x)) ~ (mA(x0))

ds.

[0 Kt s)y™(s.t)\ L] (mA@)de
_5/<a (e, 1,5)5™ s, ))e

Therefore, the image of the operator J on the element (4) of the space U is represented as a series

Tz (t,7) = [} K (t,5) 20 (s) ds + > f( 1) e (1Y (K (t,8) 2 (5))),_, e o MO

1=1v=0

= (Y (K (t,5) = <s>>>52t0}+§( e (I (K (1) 2 () oo 0 T2

— (I, (K (t,8) 2™ (5))) g, ] + J;l - Z|<N 20(—1)1’51/4-1[(];,7” (K (t,s) zcatm <s)))s:t X

L[t (ej+m,\(0 ” eitm
xes Jiy (e+mA(0)) (Ij,m (K (t,s) 257 (S)))s:to]T:Mt)/E'

Continuing this process, we obtain the series

oo 1 [ (mA(0))do
Jm(x,t,zs) = Z (_1)V€V+1 (151 (K(x7t78)ym(87t>))s:te o -
v=0

- (ITI:’L (K(gjv t? S)ym(s, t)))s:to] )

1 1
— Oz Lm| > 2),
s

1 [ (er+m,A(8))d6
Joy+m(z,t,8) = f K(z,t,s)yert™ (s, t)e o ds =

e1+m f (ex+m, A(a))da
(x,t,8)y°1T™ (s,t) -
=€ f GETmYO) de” 0 =

j (e1+m,\(0))do N

K(x,t s)y61+m(s t) B 50 N

=¢ (e1+mA(5))

S=xq

1 (ertm
—sf (2 W)en{( 1M A(9))do

(e A ds| —

K(x, t, x)yel+m (-7;7 t) %zjo (ex-+m.A(6))df K(x’ t, xO)yeﬁ_m (.%‘0, t)
=& e — _

(e1 +m, A(x)) (ex +m, A(z0))

Cepust «Maremarukas. Ne 1(97)/2020 55



B.T. Kalimbetov, Kh.F. Etmishev

S.

- / 0 K(x,t,s)y" " (s,8)\ 1) (ertma@)is
9s (e +mA(s) )°©

Zo

Continuing this process, we obtain the series

1
e

oo (e1+m,\(0))do
Je1+m(xvt7€) = Z (_1)U6U+1 (Ig1+m (K(xvtvs)yel+m(57t)))s:ze ’ ’
v=0

S ==

~ (I (Kt )y (5,1))) |

1 1 0
1° R A ——— (N (T | >1
fm = e v AE) ™ T e rmaE) 05 2 b ImE 2D,

Therefore, the image of the operator j on the element (4) of the space U is represented as a series

1 a(0))do
y(x,t,7) thsyostds—l— Dev T (17 (K (z,t,8)yi(s,1))) ., e *© —
s=t

— (1Y (K (z,t, S)yi(S,t)))s:to] +

1/ 1/+1 v m %f(m,)\(e))dO v m
+ Z Z (L (K(z,t,8)y™ (s,1))) o€ ™ = (L (K (2, t,8)y™ (5,1))) gy | +

2<|m|<Ny v=0

1 [ (ex+m,A(8))d6

o0
+ 2 X 0t (I (K (s, 8)y ™ T (s,8))) e 70 -
1<|m|<Ny v=0 -

(I (Rt )y (1), ]

It is easy to show (see, for example, [25], pp. 291-294) that this series converges asymptotically for ¢ — +0
(uniformly in (x,t) € [z, X] x [0,7T]). This means that the class M. is asymptotically invariant (for e — 40)

with respect to the operator J.
We introduce operators R, : U — U, acting on each element y(z,t,7) € U of the form (4) according to the

law:

Roy (x,t,7) = /K(x,t,s)yo(s,t)ds, (50)
3
Riy(z,t,7) = Z (I (K (x,t,5)yi(s, 1)) ,_, €™ — (I} (K(Ivtas)yi(sat)))s:$0}+
Y [ (Rt (5,1) oy 0 — (1 (Kot g™ (5,8) |+ 61

1<|m|<N-

* el1+m T e]+m
+ 0y |:<Igl+m (K(as,t,s)y 1 (S’t)))s:w elertmm) _ (121+m (K(x,us)y ' (S,t)))s_m}

1<|m|<N,
3
Rysry(e,t.7) = 3 [(1F (B (ot )y (5.)) g €7 = (0 (K (2, 6,803 (5.00)) oy, ] +
O [ Kt )y (5.0)) oy € = (I (K (st )y™ (5,1))) 2, | + (5041)
2<|m|< Ny

+ Z [(I§1+m (K(x,t, 5)zertm (S’t)))szm elertmr) _ (Ié’l+m (K(x,t, 5)zertm (s,t)))szzo] ,v> 1.

1<|m|<N,
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Now let §(x,t,7,€) be an arbitrary continuous function on (z,t,7) € [z, X] x [0,T] x {ReA1(z)} with
asymptotic expansion

gz, t,7,¢€) ZE ye(z,t,7), yk(z,t,7) €U, (6)

converging as € — +0 (uniformly in (z,t,7) € [:co,X] x [0,T] x {ReAi(x)}). Then the image Jg (x,t,7,¢) of
this function is decomposed into an asymptotic series

JZ (z,t,7,¢€) Zs Jyi (z,t,7) = Zar ZRT_SyS (2,8, 7) | r=yp(a) fe-
=0 s=0

This equality is the basis for mtroducmg an extension of an operator J on series of the form (6):

Jij(x,t,7,e) = <Zs Yk mt7‘>éisri:fir—sys(%t77)~
r=0 s=0

Although the operator .J is formally defined, its utility is obvious, since in practice it is usual to construct the
N—th approximation of the asymptotic solution of the problem (2), in which impose only N-th partial sums of
the series (6), which have not a formal, but a true meaning. Now you can write a problem that is completely
regularized with respect to the original problem (2):

Lej(u,t,7.e) = 3t + z Xj(@) 2L — M (2)§ — Jj — eX (€01 + e an)j =
= h(z, t) y(mo,t 0 5) =9y ((z,t) € [xo, X] x [0,T]).

(7)

2 Solvability of iterative problems

Substituting the series (6) into (7) and equating the coefficients with the same degrees ¢, we obtain the
following iterative problems:

3
0
Lyo (z,t,7) = Y \; (2) 873(-) — Mi(@)yo — Royo = h (2, 1), yo (0, 1,0) = y°(1); (80)
j=1 /
ayo ( ) T2 T3 — .
Lyl (.’I},t,T) 89: + — 9 (6 o1 +e 02) Yo + R1y07 Y (anta()) - O, (81)
0 T
Ly (@.t,7) = _% + % (€01 +e™o2) y1 + Riy1 + Rayo, Yo (20,t,0) = 0; (82)
Oy
Ly (z,t,7) = Lt 9(@) (€01 +e™0o2) yp—1 + Rryo + ... + Riyr—1, Yk (20,£,0) =0,k > 1. (8k)

ox 2
Each of the iterative problems (8;) can be written as

z (z,t,7) EZ)\J ——)\1( )y — Roy = h(x,t,7), y(x0,t,0) = y~, 9)
j=1

where

*

h(x,t,7) = ho(x,t) + Zh (z,t)e" + Z hm(ac,t)e(m’T) + Z h61+m(x7t)e(el+m’7) el,
=1 2<|m|<N, 1<|m|<N,

is the known vector function of space U, y* is the known constant vector of the complex space C, and the
operator Ry has the form (see (59))

3 * *
Roy(l'ﬂf,’r) =R, yo(it,t) + Z yi(ac,t)e”-i- Z ym(l',t)e(m’T) 4 Z ye1+m(l.7t>e(e+m,‘r) 2
i=1 2<|m|<N, 1<Im|<Ny

x

2 J K(z,t,s)yo(s,t)ds.

xo
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We will determine the solution of equation (9) as an element (4) of the space U:

*

3 *
y(x,t,7) = yo(x,t) + Zyi(m, t)e’ + Z Y™ (x, )™ + Z yertm (z, t)elertmT) =
i=1

2<|m|<N. 1<|m|<Ny

*

3 *
= yo(x,t) + Z yi(z, t)ei+ Z Y™ (x, t)e ™) 4 Z y™ ()™ (10)
i=1

2<|m|<N, 2<|m! <Ny
where for convenience introduced multi-indices

mlzel+m5(1am27m3)7 |m1|:1+m2+m322a

mg and mg are non-negative integer numbers. Substituting (10) into equation (9), and equating here the free
terms and coefficients separately for identical exponents, we obtain the following equations:

=M (2)yo(x,t) — /K(x,t, $)yo(s,t)ds = ho(x,t), (11)
[)‘l(‘r) - )\1(1’)} yi(xvt) = hi(xat)v i=1,3, (111)
[(m, A(@)) = A(2)]y™ (2, 8) = K™ (2, 1), mg #ms, 2<|m|< Ny, (11,,)
[(m", AMz)) — A1 ()] yml(a:,t) = (,t), ma#ms 1< |m'| < Ny (12)
The equation (11) can be written as
yo(z,t) = / (f)\l_l(:c)K(x,t, s))yo(s,t)ds - Al_l(x)ho(x,t). (11p)

to

Due to the smoothness of the kernel —\[ ! (x) K (z,t, s) and heterogenei ty —\[ ! (x)ho(z, ), this Volterra integral
system has a unique solution yg(z,t) € C*®[zg, X]| x [0, T]. The equations (112) - (115) also have unique solutions

yi(z,t) = (@) — A (@) Rz, t) € OF[zo, X] x [0,T], i=2,3,
since \;(z) # A1 (z), i = 2,3. Equation (11;) are solvable in space C*°[xg, X] x [0, 7T if and only
P, t) = 0 (W, 1) € [0, X] x [0,7]). (13)

Further, since (m, A(z)) = mada(x) + msAs(x) # A1(x), |m| = ma + mg > 2 (see condition (iv) the absence of
resonance), the equation (11,,) has a unique solution

y" (1) = [(m, Ax)) = Mi(@)] " W™ (@, t) € C=[wo, X] x [0,T], 2 < |m| < Ny
We now equation (12). Let us show that when ‘ml‘ > 1 the functions (m',A(z)) # Ai(z). Indeed, let
(m* A(t)) = A1(t), |m!'|>1. Then
A1 (l‘) + mg/\g(l‘) + m3)\3(x) = )\1(1‘) =4 mg/\g(l‘) + m3)\3(x) =0 < mo 75 ms, Mg +mg > 1,

which cannot be (see definition of class U). Thus, equation (12) for |m!| > 1 has a unique solution

2 (2,t) = [(m @) = Au@)] T R (2,), 1< | < Na,
inn class C*°[zg, X] x [0,T].

We have proved the following statement.

Theorem 1. Let conditions (i)-(#), (iv) be fulfilled and the right-hand side

3 *
h(z,t,7) =ho(w,t) + Y hi(z, )™ + > W@, )™ 4 > haT (g, et e U

i=1 2<|m|<N. 1<|m|<Ng

*
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of equation (9) belongs to the space U. Then, for the solvability of equation (9) in space U, it is necessary and
sufficient that condition (13) is satisfied.

Under constraint (13), equation (9) has the following solution in space U:

3
y(@,t,7) = yolx, 1) + £(x,1) ﬁ+Z = Ni(@)] " Hilw, e+
+ > A=) = M(@)] T H™ (2, )™+ (14)

2<|Im|<Ng

*

ST [(mh @) = (@) T HO (@ el ),

1<|m|<NH

where £(xz,t) € C®[xg, X| x [0,T) are arbitrary function, yo(x,t) is the solution of an integral equation (11p),
m= (Oam27m3) , M2 #m?n |m| =my+mg > 1.
Subject the solution (14) to the initial condition y(zg,t,0) = y.(t). Then we have

3
E(xo,t) — Ay H(zo)ho(zo, t) + Z i (o) — Ar(zo)] ™ hilzo, t)+

+ > [m Axo)) — Ma(zo)] T A (o, 1)+ [(m", Mxo)) = Aa(wo)] ™ B (o, t) =y &
2<|m|<Np 1<|m|< Ny
3
& &(r0,t) =y + AT (o) ho(xo, t) = > ilwo) — M (o)) P (o, 1) — (15)
=2
— > lmy A@o)) = M(@o)] T A (o, 1)~ [(m", Mzo)) — A (xo)] ~ A+ (o, 8).
2<|m|< Ny, 1<|m| <Ny,

However, the functions £(z,t) were not found completely. An additional requirement is required to solve
problem (13). Such a requirement is dictated by iterative problems (8), from which it can be seen that the
natural additional constraint is the condition

oy 9(93)(

_|_

o 5 e + ey + Ry +plx,t,7) =0, (Y(a,t) € [z, X] x [0,T7]), (16)

*

3 *
where p(z,t,7) = po(x,t) + > pi(z,t)e™ + S p™(z,t)e™T) 4 3T patm(z t)elt™T) € U is the

i=1 2<|m|<N. 1<|m[<Ny
known vector-function. The right part of this equation:
0
Gz, t,7) = — a—gz + % (e™01 +eoa)y + Qz,t,7) =

8 *
=5 yo(z,t) +Zyl (z,t)e™ + Z Y™ (z, )™ 4 Z yrtm(z, t)elartmn) | 4

2<|m|<Ny, 1<|m|<N,
(z) 3 *
+g (o1t ehan) ?/O(mvt)JrZ;yi(w,t)e”Jr%Zl;N Y™ (, )el™ )+

+ Z yel+m(x,t)e(el+m’T) + p(z,t,7),
1<|m|<N,
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may not belong to space U, if y = y(x,t,7) € U. Indeed, taking into account the form (14) of the function
y =y(z,t,7) € U, we will have
3

T .
) (s + em) o, t) + Y yilw, t)e™ +

=1

Jy
Z(x.,t = t — =
(:E? 77-) G(x’ 77—) + ax

*

+ Z ym(z,t)e(m’T)+ Z yel+m(x,t)e(ej+m’7)

2<|m|<N; 1<|m|<N.

3
= —g(;)y (z,t) (€01 + €og) + Z 792 z) (2, 1) (e”JrTQJl + eTl+T302) +
i=2

% *
+7g(2x) (€01 +€%an) | > g™ t)e™ 4 Yy (@ )el T 4 (7).

2<|m|<N, 1<|m|<N.
Here are terms with exponents

et =MD 011y, €T (my + 1 =mg), e M) (my + 1 = my),
(%)

er2+(e1+mﬂ')( me +1= mg)’ eTst(er+m,T) (m3 +1= m2)

do not belong to space U, since in multi-index m = (0, ma, m3) of the space U must be msy # ms, ma +mg > 1.
Then, according to the well-known theory (see [5], p. 234), we embed these terms in the space U according to

the following rule (see (x)):

o —

Tt = 1, e tmm) =1 (my + 1 =ms3, my # mg), e+m7) =1 (mg + 1 = ma, my # ma),

()

er2t(etmT) = el (mgy + 1 = mg, ma # mg3), estertm) =72 (mgz + 1 = my, mg # ms3).
In Z(z,t,7) need of embedding only the terms

3
M(z,t,7) = Z % ) (€7 ™01 + €T ay) + @yl(%t) (e 20y + €M 0y)

i=

*

79(2 z) (e™01 + €™ o9) Z ym(x,t)e(m’T) + Z yeﬁm(x,t)e(eﬁm’ﬂ
2<|m|<N, 1<|m|<N,

Sz, t,7) =

We describe this embedding in more detail, taking into account formulas (%) :

2
M(xz,t,7) = Z % ( T2 eT’“+T302) + @?ﬂ(%t} (eTl+T2U1 + 671"'7302) =
k=1

- %x) 107401 + 3 (0,07 o0 + (o e +
+yo(z,1)e™ oy + y3(z,t)e™ oy + y3(z, t)e 2735 ] =

= M(z,t,7) = @ [y1(z,t)e™ ™0y + yy (2, t)e™ TP op+

+y2 (2, t)e*™ 0y + yo(z, t)o2 + ys(z, t)oy + y3(33,t)€27302] .
(note that in M (z,t,7) there are no members containing e™ measurement exponents |m| = 1);

*

S(Q? ¢ 7_) — g(Qx) ( 20+ 67—30'2) Z y'rn(x7t>e(m,7') + Z yel+m($,t)€(el+m’T)
2<|m|<N, 1<|m|<N,
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] S e ()
2<|m|<N.
+ z*: yel+m(x’t) (e(el+m,7)+720.1 +6(61+m,r)+730—2) =
1<|m|<N:

*
-~ X
= S(xvtaT) = % Z ym(x,t)01+ Z zm(x,t)ag—i— Z ym(x,t)e(m77)+
2<|m|<N., 2<|m|<N., 2<|m|<N.,
mao+1=ms mz+1=ms mao+1#ms,ma+1#mo
*
+ Z Yy (2, t)oy + Z yr (@, )0 | €™ + Z Yot (z, t)elert ),
1<|m|<N., 1<|m|<N., 1<|m|<N.,
mo+1l=m3s ms+1l=mgo mao—+1#mg,mz+1#mo

After embedding, the right-hand side of equation (16) will look like

*

~ 0 > _ -
G(:L’, t, 7_) _ _a o (:L’, t) + Z vi (:E, t)e“—ﬁ— Z Y™ (:L’, t)e(m;r) + Z ye1+m(x’ t)e(61+m,r) 4
i=1

2<|m|<N. 1<|m|<N-

+M(z,t,7) + S(z,t,7) + Riy(z, t,7) + p(x, t,7),

moreover, in S (z,t,7) the coefficient at €™ do not depend on y(z,t). As indicated in [5], the embedding
G(z,t,7) — G(x,t,7) will not affect the accuracy of the construction of asymptotic solutions of problem (2),
since Z(I, t, 7') |7':1l1($)/8 = Z(I, t, T) |T:¢(z)/5.

We show that the problem (9) has the unique solution in the space U if (16) is satisfied.

Theorem 2. Let the conditions (i)-(iv) take place and the right-hand side

3 *
h(a,t,7) = ho(z, )+ Y hi(z,t)e™ + Y h"(z,t)e™D + Y h T @ et e U

i=1 2<|m|<N. 1<|m|<Ng

*

satisfy the condition (13). Then the problem (9) is uniquely solvable in the space U under the additional
condition (16).
Proof. To use the condition (16), we calculate the expression —% + @(672 +e™)y+ Ry +p(z,t, 7). Since

3 * *
0 ,
o yo(a,t) + Y wilw, )™+ > y(@ )™ 4 >yt (g el | 4
. i=1 2<[m[<N. 1<|m|<N.

3
+M (2, t,7) + St )+ Y (10 (K (2t 8)yi(s, 1))
1=1

— eTi — (IZO (K(z,t,s)yi(s,t)))szmo}ﬂL

> U8 K@ty (5,6) e = (19, (K (@t s)y™ (s,1), |+
1<|m|<N.

+ > wLAmmmﬁWm» wmﬂﬂﬁm@mmwm@M)]+
1<|m|<N. =T s=zg
+p(z,t, 7).
therefore(16) takes the form

0(E(,t) | K(ata)

O )\1(.’17) f(l’,t) +p1(f£,t)€ﬁ +p0(x,t) =0.
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Taking into account the initial condition (15), this equation has the unique solution

x

E(z,t) = e | ¢ (o, t) +/pi(s,t)e_q(5’t)ds

Zo

where ¢(z,t) f At (s,t,s)ds. Hence, under the conditions of Theorem 2, the solution (14) in the space

U is uniquely determlned
Applying theorems 1 and 2 to iterative problems ( we construct the series (8y), with coefficients in the class

U. Let yn(z,t) = Z eFyy. (x,t,7(z, €)) be the restriction of the N-th partial sum of this series at 7 = ¥(z, ¢).

As well as in [2], 1t is not difficult to prove the following
Theorem 3. Let the conditions (i)-(iv) be satisfied. Then for e € (0,g0], where g9 > 0 is sufficiently small,
the problem (1) has the unique solution y(z,t,€) € [xo, X] % [0,T], and the estimate

ly(z,t, e = yen (2, 0l (120, x1x0,7) Cye¥tl (N =0,1,2,...),
takes place, where the constant Cy > 0 does not depend on € € (0, o).
8 Construction of the solution of the first iteration problem in space U

Theorem 1, we will try to find a solution to the first iteration problem (8). Since the right side h(z,t) of
the equation (8g) satisfies condition (13), this system has (according to (14)) a solution in space U in the form

vo(z,t,7) = y8 (2, 1) + oV (@, t)e™, (17)

where y(()o) (z,t) is the solution of the integrated equation

x

y(()o)( t) = / (fafl(x)K(m,t,s))y((] )(s,t)ds —a Yz)h(z,1),

Zo
where ago)(x, t) € C*[xg, X] x [0, T] are arbitrary functions. Subjecting (17) to the initial condition
yo(zo0,t,0) = 3°, we will have

(0) (0)

y$ (o, t) + oV (w0, t) = y ©

LEEEPEN oy (xo,t):yo—l—a_l(xo)h(;vo,t).

To fully compute the functions ago) (z,t), we proceed to the next iteration problem (8;). Substituting into it
the solution (14) of the equation (8y) we arrive at the following equation:

d d .
Lyi(z,t,7) = 0 y(()o)( ) — o (ozgo)(%t)) e+

+@ (6T201 + 6T302) (y(()O)( ) + agm (m,t)eTl> + (18)

+

K(w,t,x)ago) (1) , K(x,t,xo)ago)(;vo,t)
Ai(x) A1 (o) 7

(here we used the expression (51) for Riy(x,t,7) and took into account that for y(z,t,7) = yo(z, ¢, 7) only the
terms with e™ remain in the sum (51)). It is not difficult to see that the right side

d d
H(a,t,7) = ==yl (0,8) = = (" (@,0)) ™ +

9 (g, 4 ) (W 1) + 00 (@)™ ) +
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K(z,t,2)al” (2,1) o Kt al? (20, 1)

Ai() A1 (o) ’
of equation (18) belongs to space U. Equation (18) is solvable in this space U if and only if condition (13) are
satisfied, which in our case take the form

_d o K(z,t,x) (0 _
. (0‘1 (x,t))+ M) a3 (x,t) = 0.

+

Attaching to this system the initial conditions Otgo)(ﬂio, t) = y° + a1 (x0)h(xo,t), we find uniquely functions

© ) 1y O [ (K(st.s)
t) = t —)d
a; ' (x,t) = oy ' (xg, t)exp / ( e s 9,
zo
therefore, we uniquely calculate the solution (17) of the problem (9p) in the space U. Moreover, the main term
of the asymptotic of the solution to problem (2) has the form

T

K(s,t L J a0)do
sl t) =3 .0)+ oot § [ (B2 Jast e n ™
1

Zo

where ago)(mo, t) = y° + a=(z0)h(xo, 1), y(()o)(x, t) is the solution of the integrated system y(()o)(a:,t) =

= [ (—a (@)K (2 t, )5 (s, )ds — a= (@) h(z, 1),
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Bb.T. Kamumberon, X.®. Ermutien

2KbpurjaM ociuIgnusJIaHaTbIH KO3 DUIIMEeHTTi
Jaepoec TYBIHABLIBI CKAJIAP MHTErpo-and depeHmanablk
TeH/leyJIepAiH, AaCUMIITOTUKAJIBIK, IITenriMaepi

MakaJtasia MUKpPO-6ipTeKTi eMec opTaiarbl OpTYPJIi (PUBUKAJIBIK, [TPOIECTEP/Il CUTIATTANTHIH »KBLJIIAM OCITHJI-
JIUSATUSIAHATBIH KO3(MOUITMEHTT] Aepbec TYBIHABLIBI CHHTYJISP aybITKBIFAH WHTErpPOo-IuddepeHInaIIbIK,
Tegaey yrrH Kommn ecebiH acMMITOTHKAJIBIK WHTETPaJIay aJrOPUTMIH 93ipseyre apuaaraH. By gepbec
TYBIHJBLIBI TUddEPEHITNAIIBIK, TEHIEYIED TEOPUICHIHIAFBI OAFbIT KAPKBIH/IBI JIAMBII KeJIe/l »KoHe Pauo-
dusnka1a, 3JIEKTPOTEXHUKAA, CY3y TEOPUSICHIHIA, (Da3asIbIK 6Ty TEOPUSICHIHIA, CEPIIM/IIIK TEOPHUSICHIHIA
JKoHe (PUBMKAHBIH, MEXaHUKa MEH TeXHUKAHBIH OacKa ja 0esiMjepiHje KenTereH KOJIIaHbiCc Tabaabl. MyH-
Jai IporecTep/i 3epTTey YIIMH 9/IeTTe aCUMIITOTUKAJIBIK 9/icTep KOJIJAHbLIa bl Ka3ipri yakpITTa KapKbIH-
JIbI TAMBIT KeJle YKATKAH CAHJIbIK 9IiCTEP ACUMITOTUKAJIBIK, 9ICTEPIl YKOKKA IBIFApMAaUThIHEI 6esrimi. By
GipHere cebenrrepre baittaHbICThI 601a b1, BipiHimigeH, Heri3ae/reH acuMITOTUKAJIBIK, IIEITiM, dCipece OHbIH
Heri3ri MyIieci, mernriM/IiH camachl TypaJibl KOCBIMIIA aKIIapaTThl aJIyFa KoHe OChl MarbIHa 18 KobiHece Taby bl
MYMKIiH GOJIMaFaH HaKThI MIENIIMJI aybICTBIPYFa MYMKIHIIK Oepemi. Exinmmigen, korapbiia afiTbLIFaHIal],
HIeITiM KYPBUIBIMBIH OLITy KYPZesi ecenTep/i MeNyIiH CAHIIK, 9JiCTEPIH 2KacayFa KOMEKTECe/Il, COHIBIKTaH
ACUMIITOTUKAJIBIK, 9JIICTED/IIH JJaMybl CaH/IBbIK, 9JIICTEP/iH JaMybIHa BIKIIAJI eTe/ii. EcenTin peryispusanusichl
JKYPri3iJIreH, KA/l UTEPAIUSIIBIK eCeNTEPIiH, KAIBIITHI KoHe 6ip MOH/II e IiM/ LTI 19J1e/IeHTeH.

Kiam cesdep: cuHryisip aybITKY, Aepbec TYBIHIBLIbI AuddOEpEeHITnaIbIK, TeHIEYIeD, HHTETPAJIIBI PEryJlsi-
pU3alusIay, UTePAIUSIbIK €CeITePIiH MIeiMIiJIir.

B.T. Kaamum6eros, X.®. Ermuren

AcumMmnToTndeckne perneHusl CKaJIsIPHBIX
nHTErpo-And pepeHnaabHbIX YPAaBHEHUI C YaCTHBIMUA
MMPOU3BOJHBIMI 1 C OBICTPO OCHUIINPYIOIUMEI KO3(DPUImeHTaMmn

CraTbsi IOCBsIIIEHa Pa3paboTKe aJropuTMa aCUMITOTHYECKOIO WHTErpUpOBaHUs 3aja4du Kormm st cuH-
TYJISPHO BO3MYIIIEHHOTO MHTErPO-InddepeHNnaIbHON0 YPABHEHNST B YACTHBIX MTPOU3BOIHBIX € OBICTPO OC-
NULUTHPYIOMUMU KO3 DHUIIMEHTAMHU, ONUCHIBAIONUMA PAa3IndHble (DU3UIECKUE IIPOIECCHI B MUKPOHEOIHO-
POIHBIX Cpeax. DTO HaIpaBJE€HUE B TEOPUU YPABHEHUI C YACTHBIMU MPOU3BOIHBIMUA WHTEHCUBHO pa3BU-
BAETCsI M HAXOJWT MHOTOYNCJ/IEHHBIE TPUMEHEHUS B PAJUOMUINKE, IJTEKTPOTEXHUKE, TEOPUH (PUIHTPAIUN,
Teopun (HA30BBIX [IEPEXOIOB, TEOPUU YIIPYTOCTH U JIPYTUX pasfestax (PU3NKH, MEXAHUKH U TexHuku. Jlms
HCCJIETOBAHNUS TAKUX IPOIECCOB OOBIYHO UCIIOIB3YIOTCSI aCUMITOTHYECKHE METOAbI. VI3BeCTHO, YTO OYPHO
pa3BUBAIOIINECS B HACTOSIIEE BPEMS UNCIEHHBIE METO/bI HE MCKIIOYAIOT ACUMIITOTUIECKUAX. DTO MTPOUCXO-
JHUT 1O Py IpuduH. Bo-11epBhIX, pa3yMHO HOCTPOEHHAs aCHMITOTHKA, OCOOEHHO ee IJIABHBIN 4JIeH, HeCeT
CYIIIECTBEHHYIO J[JIsl TIPUJIOXKEHUI MHQMOPMAIUIO O KAYECTBEHHOM IOBEJIEHUN PEIIEHNs M B 9TOM CMBICJIE B
OIpEIETIEHHOM Mepe 3aMeHsIeT TOYHOE PEIleHre, KOTOPOe Jallle BCero He MOXKeT ObITh HaiineHo. Bo-BTOpBIX,
KaK 9TO CJIeJlyeT U3 CKA3aHHOI'O BBIIIE, 3HAHNE CTPYKTYPBI PEIIeHIsI TIOMOTaeT Ipru pa3paboTKe YNCIIEHHBIX
METOJIOB PEeIleHNUs] CJIOXKHBIX 3aJ1a4, MMO3TOMY Pa3BUTHE ACUMIITOTUIECKUX METOIOB CIIOCOOCTBYET pa3BU-
THUIO YUCJIEHHBIX MeTONOB. llpom3Benena perynspuzanus 3ajadu, JTOKA3aHA HOPMAJIbHAS W OJHO3HATHAS
Pa3peNmMOCThb OOIIIX UTEPAIMOHHBIX 3334,

Karouesvie crosa: CUHTYIIpHOE BO3MYIIEHHE, AuddepeHnnaabHoe ypaBHEHNE ¢ YaCTHBIMA TPOU3BOIHBIMU,
peryisapu3aliisl HHTerpajia, pa3pelnMOCTb UTEPAIMOHHBIX 33/1a4.
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Constructing the fundamental solution
to a problem of heat conduction

In this article, we discuss auxiliary initial-boundary value problems which will subsequently be used to
solve boundary-value problem of heat conduction with axial symmetry in a degenerating domain. One of
the problems is posed with homogeneous boundary conditions in order to construct a fundamental solution
that is used to determine thermal potentials. The initial condition contains the Dirac function. The solution
to the problems is found explicitly using the Laplace integral transformation. The boundary value problem
is also considered in the absence of axial symmetry. It is shown that this problem splits into families of
boundary-value problems similar to the problems considered above. In conclusion, we state the boundary
value problem of heat conduction with axial symmetry in a degenerating domain, and its fundamental
solution, found above, is written out.

Keywords: equation of heat conduction, fundamental solution, Laplace transformation, axial symmetry,
Bessel equation.

Introduction

Problem I. In the domain Qo = {(r, ) : 0 <r < oo; t > 0} we consider the boundary value problem for

equation

ou a® 0 ou
e N I s 1
ot r Or <T 87“) ’ (1)

satisfying the boundary condition
. u(r, t)

1 =—p(t), t 2
P30 Inr wlt), t>0, 2)
i u(r, ) =0, (3)

Problem II. In the domain Qo = {(r, t) : 0 <r < oo; t > 0} we consider the boundary value problem for
equation (1) under boundary conditions (2), (3) and and initial condition

u(r, 0) =0, r > 0. (4)

It is known that equation (1) follows from the equation
ou o (0?u  O%u
— =aq —+— ],
ot 0x2 = 0y?

passing to polar coordinates.
Problem III. In a case without axial symmetry, we consider the following problem
in the domain
D ={(r;t):0<r<t; 0<a<2m 0<t<T}

du_ a[L0 [, oy, 1o
5‘t_a r Or " or r2 0a2 |’
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satisfying the boundary conditions

u(r, a, t)
_— = t); 0<t<T
A Ty - Wi 0<i<T

Tl_igl_u(r, a, t) =ui(o; t) = ue(z; y; t)|\/W:t; (o t) € O,

where 0€2; is the lateral surface of the cone.
Earlier [1-4] we studied a homogeneous problem for the heat equation in the angular domain
G={(z;t): t>0,0 <2z <t} (as the domain 2):
find a solution to the heat equation
ou  ,0%
at " oz
satisfying the boundary conditions:

w(zx, t)),_o =0, wu(z, t),_,=0.

o=
In the work [5] in the domain G the boundary-value problem of a homogeneous heat equation with boundary
conditions:

Ju
ox

., Ou

=0,—| =0.
z=0 7 Ox

x=t
was considered.

Solving the boundary value problems was reduced to solving the Volterra integral equation of the second
kind with a kernel

1 t+7 (t+7)° 1 t—T
Kt m) = 2aﬁ{(t_T)§ P <_4a2(t—r)> * (t—71)° P <_ 4a? )}

It is shown that the kernels of the obtained integral equations are “incompressible”, that is, the norm of the
integral operator acting in the class of continuous functions is equal to unity. By the Carleman-Vekua method,
solving the integral equation was reduced to solving the nonhomogeneous Abel equation. The explicit form of
the solution of the integral equation has allowed to estimate the solution to the posed boundary value problem
and precisely to determine the uniqueness classes of the solution to the posed homogeneous problem.

In [6], along with the direct problem, the conjugate boundary-value problem for the heat equation in the
weighted functional class was also studied, and it was established that the posed boundary value problem is
Noetherian problem.

We also note that boundary value problems for a spectrally loaded parabolic equation reduce to this kind
of singular integral equations, when the load line moves according to the law x = t [7-11] and problems for
essentially loaded equation of heat conduction [12].

In all works, the boundary of the domain moves at a constant velocity. Attempts to study the solvability of
boundary value problems for the heat equation in non-cylindrical domains with a variable velocity of changing
the boundary were made in works [13-14].

In works [15-17] the second-order Volterra singular integral equation with the above kernel K(t, 7) is
investigated. The multiplicity of eigenvalues and eigenfunctions for the Volterra integral operator is determined
depending on the value of the spectral parameter and its spectrum is found.

In this paper, assuming that the isotropy property is fulfilled in the angular coordinate (axial symmetry),
we study the problem for the heat equation in polar coordinates, to which the two-dimensional problem in the
spatial variable is reduced.

In [18], the two-dimensional Dirichlet problem for the heat equation with respect to the spatial variable in
an infinite dihedral angle was also considered. Using the Fourier transformation, the problem was reduced to a
one-dimensional boundary value problem with the parameter.

Now we are studying the boundary value problem for the heat equation in the cone. To construct a solution
to the problem we consider two auxiliary problems I and II.

The problem I solved in paragraph 1 is necessary to construct a fundamental solution, which will be further
used in determining the thermal potentials. The solution to the original problem will be further presented as a
sum of thermal potentials.
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The solution u (7, t) to problem IT found in paragraph 2 is used in the integral representation of the original
problem to annul the boundary condition at the boundary x = 0. In paragraph 3, we have formulated a result
that follows from the contents of paragraphs 1 and 2.

In paragraph 4, a boundary value problem is considered in the absence of axial symmetry that is problem III.
It is shown that this problem splits into families of boundary-value problems similar to the problem considered
in paragraph 1.

1 Function of the thermal instantaneous point source

We will seek its solution in the class of originals of the Laplace transformation with respect to the variable ¢,
depending on the parameter r, r > 0.

We introduce the notation for the Laplace image: Llu(r, t)] = u(r, p).

As a result of applying the transformation to the equation (1):

2 2
a a 5
Up = 7(ur+ruw) = 7ur+a Uy

taking into account the property of the Laplace transformation:

ug <+ pu(r, p) —u(r, 0),

and to conditions (2) and (3), we obtain in the domain {r, r > 0} the boundary-value problem for the ordinary
differential equation:

d>n  1du p o(r —ro)
el e T i S S 5
a2 " rdr a2t a?r (5)
o, p)
| =—
o Ty = PO, ©)
lim_w(r, p) = 0. (7)
The homogeneous equation corresponding to equation (5) as a result of the replacement: z = ?r is
transformed to a modified Bessel equation:
d*>u  1du
— 4+ -— —u=0. 8
a2 " zdz ¢ (8)
The solution of equation (8) has the form: ([1], formula 8.494(1))
Uhom(2) = C1 Ip(2) + Co Ko(2), (9)

where ([19], formula 8.447):

X (z 2n > 2n
IO(Z):Z (2) ; Ko(Z):—anIO(Z)+Z22:72w(TL+1),
n=0 n=0

(n)” (n!)

P(z) = 1;/((;) is Euler psi-function.
The following asymptotic formulas and approximations hold [19]:
when 0 < z << 1
Ip(z) = 1; Ko(z) = 1n %, C =~ 0,57721...— Euler const.

when z >> 1
e 1 9 1
I = {14+ — - il
o2) 271’2{ +8z+128z2+<z3>}’
n—1 1 1
™ 1 I'(k+13) T (n+3)
KQ(Z) = — e 7 . 2 _|_(...)3 - 2
2z LZ_O (QZ)k k'T (fk: + %) (22)" n! (fn + %)
Here:

|©3] < 1 and ReO3 > 0, when Rez > 0;
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|©3]| < |co sec(arg z)|, when I'mz = 0;
0 <|©3| <1, when Rez > 0.
Returning to the variable r in (9), we obtain the general solution of the homogeneous equation corresponding

to the equation (5):
p p
Uhom (1, p) = C11o ({7‘) + C2 Ko <\af 7“) .

Then, according to the method of variation of arbitrary constants, we write the general solution of equation

(5) in the form:
i) = i (") + catryza (2. (10)

To determine the functions C4(r), Ca(r) we compose a system of equations:

ol ) I (ﬁ +CL(r) Ko (22 =0,

a

ol (1o (B2)) + cf )k (10 (B2)) = 2,
After some simplifications, taking into account formula 8.486 from [19], we obtain:

cl() 1o (B2) + Chr) Ko (22) =0,

—{(r) 1 (B2) + cf Ky (D) = 2e),

By virtue of formula 8.477 (2) from [19], the determinant of this system is equal to:
s=n () () e () m (5F) =
a a a a /P

Then the solution of the system takes the form:

- a a
1 70 /P
=0+ ?K()( a ) T < To,
0; r>mrg

and

where

_ L[(()<’r\/i))l() rvb ; 0<r<nmg
G<T7 rO?.p): r

Cepust «Maremarukas. Ne 1(97)/2020 71



M.T. Kosmakova, A.O. Tanin, Zh.M. Tuleutaeva

Now we will define the values of the constants. Let be Vp : Rep > 0.
Then, by virtue of asymptotic formulas and approximations, we have:

IO (\/fr) — +00,
r— +00 =
Ko(ﬁr) 0.

a

Therefore, to satisfy condition (7), it is necessary to set C; = 0.
When r — 0 (at Vp : Rep > 0) we get

b (%)

Inr

a

— 0, — -1

Inr

From condition (6) we have

u(r,p) .. Cy 2a o
ll—% In r r1—1>I(IJ1+lnr1n<C\/f)T == 2.

We have obtained a solution to problem (5) — (7)

(1) = o) Ko (“X7) 4 6o, o, ) (1)

By virtue of the formula [20], (p.241; formula No.117)

L |:1 .e4gzt:| = KO (’I" p)
2t a

and
1 a+b a—>b
L {Qtexp < 5 ) Iy ( 57 )} = Ky (w/aer pr) Iy (,/ap— pr)
when Rea > Reb > 0, after applying inverse Laplace transform to (11) and some simplifications, we obtain:
1 r2 + 7“3 7o
u(r, t) = ui(r, t) + 227 P ( 1%t > - Io (m) ) (12)
where ( , )
1 r2 ¢ exp ( —gzz2G—)
t = —_— _—— t = — d . ].
)= (o (< 1)) wot0 = [ =5y ar (13)
(12) is the solution to problem (1)—(3) and the initial condition
S(r —
ul(r,()):w; 0<r<oo, 0<ry<-+oo,

which is verified directly. For example, after replacement z = ﬁ function (13) takes the form

> 1 2 72
Ul(r,t):/T ;6 g0<t4a222>d2§

2aV/t

Then condition (2) can be written as

Y (1) r\
li — =1 Ei |- —
rl—%(p(t) Inr /L z dz r1—1>r%)2lnr ’ <2a\/f> ®),

2a\t

because ([19], 8.214 (1)) from the representation

o0 k
Ei(r) =C+ln(-2)+ Y kf” -
k=0 ’

Ei (— (2;\/2)2) gt

lim = lim
r—0 2Inr r—0 Inr

we have
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2 The first boundary value problem for a semirestricted domain

In the domain Q. = {(r, t) : 0 <7 < o0; t > 0} we consider the boundary value problem for equation (1)
under boundary conditions (2)—(3). This problem occurs in the theory of a diffusion trace behind a drop and a
solid particle.

We will seek its solution in the class of originals of the Laplace transform with respect to the variable ¢,
depending on the parameter r, r > 0. In this paragraph we use the results of paragraph 2.

As a result, we get

wn(r ) = (;t exp <_42;t)> fo(t) = /Otmg(;fg”))@(f)dr (14)

(14) is the solution to problem (1)—(4) and this fact is verified directly.
3 Main result

From the contents of paragraphs 1 and 2, the following theorem is proved.
Theorem. The function

7,2

texXp | ~1a2(e=7) 1 ]
u(r, t):/ wg@(T)dT+exp <T TO) .IO(TTO),
0

2(t — 1) 2a%t 4a?t 2a%t

where ((t) is a continuous function for ¢ € (0, +o0) and |p(t)] < Mt~ | const M > 0, is the solution to the
problem (1)—(4).

4 Case without azial symmetry

In the domain
D ={(r;a;t):0<r<t; 0<a<2m 0<t<T}

find the solution to the equation

ou 521 0 ou 1 d%u
7 - = Rt - 7 1
at " [r or (T 8r>+r2 8a2]’ (15)
satisfying the boundary conditions
u(r, a, t)
—_— = N T 1
50 In(1/r) uo(t); 0 <t <T, (16)
Tlil%lﬁu(r, Q, t) = Ul(OZ; t) = uc(x; Y; t)' /z2+y2:t; (a; t) € ana (17)

where 02 is the lateral surface of the cone.
To the boundary problem (15)—(17) we apply the Fourier method (the method of separation of variables).
We seek the desired solution u(r, a, t) in the form

u(r,a,t) =U(r, t)0(«) (18)
Substituting (18) into (15) we get
1 1
O(a)-Us = a® |- (r- Ur)i () + U - 0/ (a)
T
or )
U= U 0@)
a? U () 7

where A is a non-negative const.
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We get the system of differential equations

0//(a) + M(a) = 0, (19)
Ui~ S (r-U) + 92U =0
The solution to the spectral problem
0//(a) + \0(a) = 0,
6(0) = 0(2m)
is a system of orthonormal eigenfunctions and eigenvalues
1
0,(a) = —— exp(ina); A, =n? ne Z 20
(@) = —=exp(ina) (20)
The solution to problem (15)—(17) has the form
u(r, 00 t) = 3" Un(r, 1) - 0n(a). (21)
nez
When A, = n? for the second equation of the system (19) we obtain
ou, a* 9 oUu, a’n?
_ 9, aN T = 22
ot 7"87‘(71 8r)+r2U 0 (22)
For the function (21) we apply the condition (16):
Uo(r, t) Un(r, t) - 0,(a)
lim + Z ————— | = ().
r—0 | In(1/r) neZ {0} In(1/7)
Expanding the function ug(t) in a Fourier series on the eigenfunctions 6,,(«), we obtain
uO(t) = Z Cn(t) : Gn(a)a
nez
where
27
ealt) = / o () - On(0)dor,
0
From here we get the condition for the unknown functions U, (r,t), n € Z:
UO(T7 t)
= t); 23
N 1/~ Yol (23)
. Un(r, t)
lim——— =0 Z\ {0 24
G 0. nez\(o) (24)
For the function (21) we apply the condition (17):
l:niu(r’ «, t) = llgl}: Un(r7 t) 97,(04) =up (av t)'
nez
Expanding the function u;(«, t) in a Fourier series on the eigenfunctions 6,,(«), we obtain
ui(a,t) = Z Ui (t) - On(a),
nez
where )
Urp(t) = / up(a,t) - 0y (a)da. (25)
0
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Then from the equality

Z (thn(r t) ) . Z un(t

nez nez

we get one more condition for the unknown functions U, (r,t), n € Z

llg}s Un(r,t) = uin(t),
where the functions uy,(t) are defined by equality (25).
We introduce the replacement of an unknown function U, (r,t),

Cl2 2
Ualrot) = wn(rt)esp {3

Then substituting replacement (27) into equation (22) and into conditions (23), (24
boundary value problems for determining a new unknown function v, (r, t):

I.n=0.
ug _a®> 0 (v
at o or \' or )
. UO(Ta t) _
M 1) ~ o)
llgwo(r t) = uyo(t),
where )
wo(®) = [ (a0
0
II.n#0.

- vn(r, t)
r=o0ln (1/r)

7141_}11;%@ t) = u1n(?)

n € Z by the formula

(27)

26), we obtain

(28)

(31)

(32)

(33)

Thus, we have obtained a family of boundary value problems (28)-(30) and (31)—(33), each of which is
a boundary problem of the form (1)—(3). The issues of solvability of these boundary-value problems will be

investigated later.

Solving boundary value problems (28)—(30) and (31)—(33), we find functions {v,(r, t), n € Z}, and further,

using (20)—(21) and replacement (27), we formally construct a series

u(r, a,t) Zvnrtexp{

neZ

n2

It is known that the series (formula 5.4.11.2 from [22], p.585):

o
Zexp{ t—&-ln@z}

ne”Z

converges for V¢ > 0.

t+ma}.

Remark. The justification of the passage to the limit under the sign of the sum in all the series below

follows from the uniform convergence of these series [21].
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Conclusion

In the second part of the research, we solve the problem in the domain of degenerating to a point at the

initial moment of time:

In the domain Q = {(r, ¢) : 0 <r <#¢; ¢t> 0} to find a solution to equation (1)

ou_at o (on
ot ror\'or)

satisfying the boundary conditions (2)

and

lim u(r, 1)
r—0+ In7r

=—p(t), t >0,

lim u(r, t) = —4(t), t > 0.

r—t—

The function G(r,&,t) = £Go(r, &, t), where

2a2t 4a?t 2a2t

7’2 2 T
Go(r,f’t):lexp{— +£ }IO< 5 >7

is a fundamental solution to equation (1), £ is parameter. We note that this function was defined in Theorem.
Thermal potentials will be preliminarily constructed using this fundamental solution.

Further, on the basis of the integral representation of the solution of the boundary value problem in the

form of a sum of thermal potentials, we will reduce the study of the original problem to the study of the Volterra
integral equation of the second kind, following [21] and [1-6].
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M.T. Kocmakosa, A.O. Tanun, 2K.M. Tyneyraesa

Bip >XbLTyeTKi3TIINTIK ecebiHiH,
dbyHmaMeHTaIbIbI MIETIMIH KYPY

MakaJstazia OCbTIK CUMMETPUSAIBI XKOUBLIATHIH OOJIBICTAFBI 2KBITYOTKI3TIIMITIKTIH, MIETTIK eCenTepiH HIbIFapy
YIITiH KOJITaHyFa OOJIATHIH KOMEKII OACTAKBI-TIIETTIK eCenTep TaJKbIIAHFaH. BipTeKTi IeKapaJIblK, MmapTTa-
PBIMEH KOMBLIFaH eCenTep/in 6ipeyi KblTy HOTEHIINAIAPBIH AHBIKTAY YIITIiH KOJIIAHATHIH DYHIAMEHTAIb/IbI
merriMal Kypy VImH Koiiblrral. Bacranker maprer Jupak dysxnusaceia kKamtuasl. Ecenriy memivi Jlammac
WHTETPAJIIBIK, TYPJIEHIIPYl KOMeriMeH aiKblH Typ/e TaOblaraH. COHBIMEH KAaTap, OChTIK CHMMeTpus 0OJi-
MaraH JKarJai/Iarel MIETTIK eCell KapacThIPBLIALI. Byl ecerr »Korapbi/ia KAPaCTHIPBLIFAH YKCAC MIEKAPAJIBIK,
ecenTep/iiH MOFbIpbIHa GeJiineTiHi KopceTiireH. KopeIThiHab! GeJ1iMiH/Ie OCHTIK CUMMETPUSIIBI KONBIIATHIH
OOJIBICTAFBI YKBLIYOTKIZTIMTIK MIETTIK ecebiHIH KOMBIIYhl KOPCETIITeH YKOHE OHBIH KOFapbIa TaObLIFaH
dyHIaMeHTAIbIbI TIEeITiMi XKa3blJIFaH.

Kiam cesdep: XKbUTyOTKISMINITIK TeHmey, pyHIaMeHTa bIbl memnriM, Jlammac Typiesaipyi, ocbTiKk cuMMeT-
pusi, Beccenb Teneyi.
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M.T. Kocmakosa, A.O. Tanun, 2K.M. Tyneyraesa

ITocTtpoenmne byHIaMEHTAJIHLHOTO PEIIeHUs
O/IHOI1 3aJIa9M TENJIOIIPOBOAHOCTH

B CTaThbe O6Cy}K,ZI;eHbI BCIIOMOTraTeJ/JIbHbIE Ha9aJIbHO-KPaeBbI€ 3a/1a91, KOTOPbI€ BIIOCJIE€ICTBUA 6y,ZLyT HCIIOJIb-
30BaHbI JJIsI PEIIeHUs KPAeBO# 3a/1a4i TENJIONPOBOJHOCTH C OCEBOM CHUMMeETpPHEil B BBIPOXKIAIOINIEiicst 06-
JIaCTH. O,ILHa U3 3aJa9 C OAHOPOAHBIMU I'DAHUYHBIMU YCJIOBUAMU IIOCTABJICHA I IIOCTPOEHUA (byH,HaMeH—
TAJIbHOT'O peHieHnd, KOTOPO€ UCHOJIb3yeTCs AJId OIIpeaeJIeHUs TEeIlJIOBBIX ITOTEHIINAJIOB. HaFIa.TIbHOe yciioBue
copepxkut byukuo Jupaka. Perenne 3a1a4 HaifleHO B IBHOM BUJIe € TIOMOIIBIO WHTErPAJIBHOTO MPE0s-
paszoBanust Jlamnaca. Takke paccMOTpeHa KpaeBasi 3aJiada IIPU OTCYTCTBUU 0CeBOil cuMmMerpun. [lokasaHo,
qTO 3Ta 3aJada pasbUBaeTCs Ha CeMeMCTBa KPaeBbIX 33/1a4, aHAJIOIMYHBIX PACCMOTPEHHBIM BbIlle. B 3a-
KJIIOYEHUH [IPUBEJIEHA TIOCTAHOBKA KPAEBON 3aJIa4i TeIJIOPOBOIHOCTH C OCEBOH CUMMeTpueil B BBIPOXK1a-
forrelicss 06/1aCTH U BBIMUCAHO €€ (DyHIAMEHTAJIBLHOE PEeIlleHne, HaliIeHHOE BBIIIIe.

Kmouesvie crosa: ypaBHEHIE TEIJIOMPOBOIHOCTH, (DyHIAMEHTAIBLHOE peleHne, mpeobpaszoBanue Jlamaca,
oceBasl CUMMeTpUsi, ypaBHeHue Beccessi.
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2b,3

Spectral problem for the sixth order
nonclassical differential equations

In this article we investigate the correctness of boundary value problems for a sixth order quasi-hyperbolic
equation in the Sobolev space

Lu=—D%u+ Au— \u
(D¢ = %, A=3" ;—;2 — Laplace operator, A — real parameter). For the given operator L two spectral
problems are introduced and uniqueness of these problems is established. The eigenvalues and eigenfunctions
of the first spectral problem are calculated for the sixth order quasi-hyperbolic equation. In this work we

show that the equation Lu = 0 for A < 0 under uniform conditions has a countable set of nontrivial
solutions. Usually, this does not happen when the operator L is an ordinary hyperbolic operator.

Keywords: a sixth order quasi-hyperbolic equation, eigenvalues, eigenfunctions, nontrivial solutions.

Formulation of the problem

Let 2 — be the limited area of space R™ variables x1, z, ..., ,, with smooth compact boundary I' = 9. Let’s
consider the following differential operator in the cylindrical area Q@ = Q2 x (0,7), S=Tx(0,T), 0 <T < 400

6

u+Au—)\u:f(x,t), xeQ, te(0,7), (1)

Lu = _ﬁ

where f(x,t) is a given function.
Boundary value problem I3 »: It is required to find a function w(x,t) which is a solution to equation (1) in
the cylinder @ that satisfies following conditions

u(zx,t)|s =0, (2)
ou 9%u 9%y
u(x,O):a(x,O)Zw(x,O):ﬁ(x,O)zo, x €, (3)
Ou 0%u

Boundary value problem IIs y: It is required to find a function u(z,t) which is a solution to equation (1)
in the cylinder @ that satisfies conditions (2), (3) and

D}u(z,t)|i=r = Dju(z,t)|i=r =0, x € Q. (5)

The study of the solvability of boundary value problems for quasi-hyperbolic equations began, apparently,
with the works of V.N. Vragov [1, 2]. Studies in [3-7] are related to further investigations of operators similar
to L. One of the main conditions for correctness in these studies was the condition that the parameter \ is
non-negative. Investigations of nonlocal problems with integral conditions for linear parabolic equations, for
differential equations of odd order, and for some classes of non-stationary equations have been actively carried
out recently in the works of A.I. Kozhanov [4, 6, 7]. In [5], the solvability of problem (2), (3), (5) for fourth
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order quasi- hyperbolic equations with p = 2 is investigated. In the work [8] boundary value problems with
normal derivatives were studied for elliptic equations of the 2/—st order with constant real coefficients. For
these problems, sufficient conditions for the Fredholm solvability of the problem are obtained and formulas for
the index of this problem are given. An explicit form of the Green function of the Dirichlet problem for the
model-polyharmonic equation Alu = f in a multidimensional sphere was constructed in [9]. [10, 11] are devoted
to an investigations of the solvability of various boundary value problems of order 0 < k1 < ko < ... < k; < 2[—1
for the polyharmonic equation in a multidimensional ball.

In this paper, we describe calculation of eigenvalues /\%)()\,(721)) of spectral problems I3 x(I13 ) for a sixth
order quasi-hyperbolic equation and study solvability of boundary value problems I3 5(II5 ») for cases when A

coincides or does not coincide with )\7(71)(/\7(%)).
Supporting statement
We denote by V3 — the linear set of functions v(x,t), belonging to the space Ly(Q) and having generalized

derivatives with respect to spatial variable up to the second order inclusively belonging to the same space and
with respect to the variable ¢t up to the order 6 inclusively, with the norm

Iollvs = / [U + 27: (axzaxj)z ((6';;56) ]d dt

Obviously, the space V3 with this norm is a Banach space.
1

Let v(z) be function from the space I/?/2 (©2). The following inequality is true

/sz(x)dm<co/ﬂivi(x)dm, (6)

where constant ¢ defined only by area € (see, example [12]).
For the function from the space V3 satisfying condition (3), the following inequality holds:

S

/ 2, to)da < T / / o2 (2, ) dedt, to € [0,T), M)

/ / (z,t)dadt < —/ / vZ, (2, t)dxdt. (8)

Let w;(x) be the eigenfunction of the Dirichlet problem for the Laplace operator corresponding to the
eigenvalue u;:

Aw;(z) = pjw;(z), w;i(z)lr =0.
8 Main results

Theorem 1. Let A > cq,c¢; = min{——=, — }, ¢o from (6). Then the homogeneous boundary value problem

co )

I3\ has only zero solution in the space V3 On the interval (—oo,c;) there exists a countable set of numbers

)\5%) such that for A = )\%) the homogeneous boundary value problem I3  has a non-trivial solution.
Proof. First, we prove the uniqueness of the solution to the problem I3 5. Let A > T. We consider the

equality
T
/ / (A—1t)Lu - wdzdt = 0.
0 Jo

Integrating by parts and using conditions (2), (3) we get

A- T/[u (z,T) + Zu2 (z T)]dx+5/T/u2 dxdt+
2 o it — x; 9 2 0 o ttt

+= Z/ /u dxdt = _AMA- T)/Qu2(x,T)dx—/Q\/OT/Quzdxdt:I- 9)
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When A > 0 it follows from this equality that u(z,t) = 0.
We now consider the case of negative values of A. On the one hand due to expressions (6) and (7), there is

an inequality
AMA-T
I =] - ( )/ dex—f// u?dzdt| <

< W(A%T)T?’ /OT/ tttdmdt—k—coZ/ /u ddt. (10)

On the other hand, due to inequalities (7) and (8) we get

MNA-T T ANT6 [T
1] < %Ts /0 /Q 2 dadt + ‘2!23 /0 /Q W2, drdt.

Ifeg = —é, then by evaluating the right side of (9) by (10), we get

A-T -
5 Q[uftt(m7 T) + ; “iz (2, T)]|dx+
5 \(A—T)T3 [T 1—[Neo o~ [T
PRSI 7 [ o+ L2205 [ ] 2 o <0 (1)
2 o Ja 2 oo Ja

Since inequality |Alco < 1 holds and we can choose number A close to number T, the inequality
5— \N(A-T)T% >0

holds for fixed values of A. Then, from (11) it follows that u(z,¢) = 0.

In the case of ¢; = 0 we have

4
— 76

A _ T n
9 [u?tt(xv T)+ Z “il (z, T)]dz+
Q i=1

4 A T TS
0= 8JAN il / /Qutttdxdt—&— Z/ /Qu dxdt < 0. (12)

Since 40 — [A|T® > 0, then choosing again A close to the T,

40 — 8|A|(A —T)T? — |INT® >0

inequality can be achieved. Then, from (12) we also get u(x,t) = 0.
The solution to equation (1) is sought in the form u(x,t) = ¢(t)w;(z). Then function ¢(t) must be the
solution to equation

=DPp(t) + [1j — Ne(t) =0, (13)
satisfying condition
0(0) = ¢'(0) = ¢"(0) = ¥"(0) = ¢'(T) = ¢"(T) = 0. (14)
a) If pj — A > 0, then general solution (13) has the form

vt 3 5t 3
o(t) = Cret + C’geTcosgfyjt + Cze2 singfyjt—i—

vt

w3 3
+Cye it Cw‘*cos%wt + Cge_%singfyjt, (15)

where 7, = (11; — A)8. Taking in account (14), the numbers C;,j = 1,6, should be a solution to an algebraic
system
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C1+Cy+Cy+ C5 =0,

Ch+ 5Cy + %205 — Cy — 305+ %2Cs = 0,

Cp— 30y +LCs +Cy — 105 — B0 =0,
Ci—Cy—Cs+C5=0,

E%Cy + E(3C — 28)Cy + E(C + L8)Cs—

E2C, —E'(AC + L8)Cs5 + E~1(42C — 18)Cs = 0,
E2C; — E(3C + £8)Cy + E(LC — 18)C5+

E72Cy+ E- (-0 4+ L8)C5 — E-1( 0+ 18)Cs = 0,

where
v; T

3 3
E=e72,C= cos\[’ij S = sm\g%T.

The determinant of this system will be equal to
3
D(vj) = 5 [2E*C —3E® —6EC + 10+ 4C* —6E~'C —3E~ > + 2E7°C],

and it can not be zero, therefore, in this case, problem (13), (14) have not non-trivial solutions.
b) If u; — A < 0, then general solution (13) has a form

t
o(t) = Cre2 it g 12 5 -‘1-026 Pt sin ; + Cse” 2 Wtcosg +

+Cye 2 F it gip 20 2 + Cscosy;t + Cgsiny,t, (16)
where ~; = (A — p1;)5. Considering (14), the number C;, j = 1,6, should be a solution to an algebraic system

Ci1+C3+4+C5 =0,

L0y + 10y — L03 + 5Cy + Cs = 0,

10+ L0y + 103 - 420y~ C5 =0,

Co+Cs—Cs =0,

E(C —18)C + E(AC + B28)Cy — BT (0 + 15)Cs+
+EY(LC = 28)Cy — 20S5C5 + (C2 - §2)C = 0,

E(LC —L3)C, + E(2C + 18)Cy + E-1 (L0 + L5)Ca+
FE Y (=Y30 4 18)Cy + (—C? 4 8%)C5 — 205C5 = 0,

V3 T T
where E = 20T ,C = 72 ;S = szn'“2

This system has a nontrivial solution if the determinant
1
D(v;) = —C?%8? = jsm%jT =0, (17)

is equal to zero. From (17) we get desired set of eigenvalues

k 6
N3 = e+ <T”) C k=12 (14)

The theorem 1 is proved.
Consequence 1. The problem I3 ) does not have real eigenvalues other than the numbers )\;}C) from (18) and

the family {)\ jk }5k=1 does not have finite limit points. All eigenvalues of {/\5}2 }5%<=1 are finite multiplicity.

Proof. The fact that the problem I35y does not have real eigenvalues other than the numbers )\ﬁ), follows
from the basis of the system of functions
{wi()}52,

in space W3 ().

Suppose that the family {/\ﬁ) }J‘?f’kzl has a finite limit point. Then there is a family (j;, k;) of pairs of natural

numbers such that j; + k; — oo such ¢ — oo and the sequence )\ﬁ) will be fundamental. Note that the indices
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Ji, cannot be limited together, since in this case Ajr = pjr + (%)6 , k=1,2,..., which cannot be true for a
fundamental sequence.

Further, the indices k; also cannot be limited together, since in this case the sequence {j;, — ;. }, will be
limited, which is not the case. Therefore, for the indices j; and k;, j; — oo, k; — oo hold for i — co. But then
Ajuk; — —00, which again does not hold for a fundamental sequence. From the above, the validity of second

part of consequence follows. The finite multiplicity of each eigenvalue /\ﬁ) follows from the fact that for fixed

numbers j and k the equality )\5- k) = >‘§13€1 is only possible for a finite set of indices j; and k;. Consequence is
proved.

Note that for the case n = 1 the eigenvalues p; could be in exact form, and then it is easy to give constructive

conditions for the simplicity of each eigenvalue )\(k) or to provide examples in which the eigenvalues will have a

multiplicity greater than one. In the general case, it is also easy to give simplicity conditions, but it seems that
they will not be constructive.
Consequence 2. The eigenvalues /\ﬁ) of the problem I3 ) correspond to the eigenfunctions

) (@, 1) = wi (@)l (t),

where function np,(cl)(t) represented as

(1) ¢
A= s BB

t
—(3CK(Ey, — ;") + 5v/3Sk(Ep + Ef V) + 6)e§wcos”§—

t
(3V3Ck(Ey + Ei7Y) — 1584 (Ey, — B7Y) + 3\/§)e§“”“tsin%+

(=3Cw(Br + E-Y) + (4 4+ 5vV3)Su(Br — EY) — 6)e wcoﬂ;tJr
t
(3VBCw(Ex + E; ) + 15Sk(Ey, — Ep') — 6v/3)e™ Wswﬂ; +

(6Ck(Ey, + E; ") — 6V3Sk(Ey — Ep ) + 12)cosyit + 128y (Ex — E 1)szn*ykt]

k wk
Ep=e k,Ck:cosﬁ2 Sk:sm , C=Const, k=1,2,...

Now consider the problem II5. The study of problem I 13 is similar to I3. The following theorem holds.
Theorem 2. For A > c¢1,¢1 = min{—é, —%}, the homogeneous boundary problem II5 has only zero
solution in the space V3. On the interval (—oo, ¢1) there doesn’t exist a countable set of the numbers A2 such

that for A = /\g) homogeneous boundary problem I3 has only trivial solution.
The solution to equation (1) is sought in the form u(z,t) = ¢(t)w;(z). Then, function () must be solution
to equation (13) that satisfy conditions

(0) = ¢'(0) = ¢"(0) = ¥"(0) = ¢""(T) = $""(T) = 0. (19)
a) If p1; — XA > 0, then general solution ¢(t) has a form

L\/g 7t

p(t) = Cre®’ + Cye™ 7’th+036 z sin——y;t+

oIS

it 3 it 3
+Cye 1t 4 Cg,e*%cosg'yjt + Cge*%sing'yjt,

where v; = (u; — )\)%. Considering (15), Cj,j = 1,6, should be a solution to an algebraic system

Ci14+Co+Cy+C5=0,

Ch+ 5Cy + %205 — Cy — 305+ L2Cs = 0,

Cp— 10y +8Cs+Cy — 105 — BCs =0
01—02—C4+C5:0,

E%C) + B(—1C + 280y — E(2C + 18)Cs+

E2C, —E'(AC + L38)Cs5 + E~1(4C — 18)C6 = 0,
E2Cy + B(LC + L8)Cy + B(—LC + 19)C3—
E2C,+ E~N(-1C+L8)Cs — E~1(42C + 18)Cs = 0,
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T

3

where £ =e 2 ,C = cos@’ij, S = sinT?”ij. The determinant of this system will be equal to

3
D(y;) = —5 [2B°C +3E* + 6EC + 10+ 4C* + 6B~ + 3577 + 257°C],

and it can not be zero, therefore, in this case, there are no non-trivial solutions.

b) If p1; — A < 0, then function ¢(t) has a form

3 it 3 it V3 it
p(t) = CleTSWCOS% + C’2673%'tsin% + Cge*Tthcos’yéJr

V3 it
046—73wt8m% + Cscos’}/jt + C’Gsz’n%—t,

where v; = (A — /lj)%- In this case, C}, j = 1,6, should be a solution to an algebraic system

Ci1+C3+C5=0,

§01 + %02 — @Cg + %C4 +Cs =0,

10+ L0+ 105 — B0y — C5 =0,

Co+Cy—Cs =0,

—B(3C+ L8)Cy + B(EC - §8)Cy + E~Y(—3C + 28)C5—
E-Y (20 + 18)Cy + (C? — 5%)C5 + 205C5 = 0,
—E(RC+18)C + E(AC - L8)Cy + E-H(LC — 19)Ca+
+E Y (AC +L38)Cy - 205Cs + (C? — 52)C = 0,

where E = egWT, C = cos WT, S = sin2’ . The determinant of this system will be equal to

2 2

3
D(y;) = § [E* +8EC® +6+12C + 8E7'C° + B~?],

also can not be zero.

(2)

In conclusion, the problem II5 5 does not have real eigenvalues A ik The theorem 2 is proved.

Acknowledgements

This work was done with support of grant AP 05135319 of the Ministry of Education and Science of the

Republic of Kazakhstan.

84

References

Bparos B.H. K Teopun kpaeBbix 3ajax jjig ypasuenuii cmernansoro tura / B.H. Bparos // Tuddepen.
ypasuerus. — 1977. — T. — 13, Ne 6. — C. 1098-1105.

Bparos B.H. O mnocranoBke M paspemmMOCTH KPaeBbIX 3aJaX sl yPABHEHUI CMEIaHHOrO THIa
/ B.H. Bparos // Marem. anaius u cMmexkHble Bopochl MareMaruku. — Hosocubupck: Hayka, 1978, —
C. 5-13.

Eropos I1.E. Heknaccuyeckue ypaBHeHusi MareMaTu4ueckoii ¢pusuku Boicokoro nopsiuka / .E. Eropos,
B.E. ®enopos. — Hosocubupck: 3. BII CO PAH, 1995. — 131 c.

Koxanos A.U. 3amaua compsizKeHust Jjis HEKOTOPBIX HEKJIACCHIeCKUX IudepeHInaabHbIX YPaBHEHUH
Boicokoro nopsizika / AWM. Koxanos, E.®. Illapun // Ykp. mar. Bect. — 2014. — T. 11, Ne 2. — C. 181-
202.

Pinigina N.R. On the question of the correctness of boundary value problems for non—classical differential
equations of high order / N.R. Pinigina // Asian-European Journal of Mathematics. — 2017. — Vol. 10,
No. 03.

Koxanos A.V. Kpaesble 3aa4uu Jisi HeKIaccuIeckux auddepeHIuanbHbIX yPaBHEHH BBICOKOIO TTOPSiI-
ka / A.U. Koxanos, H.P. Iluauruna // Mat. 3amerku. — 2017. — T. 101. — Bemr. 3. — C. 403-412.

Bectnuk Kaparanmguackoro yHuBepcureTa



Spectral problem for the sixth order...

7 Koxanos A.J1. Hosble KpaeBble 3ajadu JJjis KBa3UTHIEPOOIUIECKOrO THIA YETBEPTOrO IOPSIIKA
/ AU. Koxanos, B.JI. Komaunos, 2K.B. Cynranrasuesa // Cubup. ajekrpon. mareM. u3s. — 2019. —
T. 16. — C. 1410-1436.

8 Coumaros A.Il. Duaunruygeckue cucrembl Boicokoro nopsika / AIL. Comnaros // Huddepenn,. ypasHe-
nust. — 1989. — T. 25, Ne 1. — C. 136-144.

9 Kaupmenos T.II1. IIpencrasiaenne dyukmyuu ['puna 3amaan Jupuxite 115 moIurapMOHAIeCKUX Y PABHEHMH
B mape / T.III. Kampmenos, B. /1. Komamnos, M.JO. Hemuenko // Joxmamer PAH. 2008. — T. 421, Ne 3. —
C. 305-307.

10 Kanryxun B.E. Heobxonumbie 1 10CTaTOYHBIE yCJIOBUS PA3PEMIMMOCTA KPAEBBIX 338 JJIsI IOJIUTAPMO-
auveckoro ypasaenns / B.E. Kanryxun, B.Jl. Komanos // Ydumvcknii mat. xypu. — 2010. — T. 2. —
C. 41-52.

11 Kausibmenos T.ITI. O6 uHTErpabHBIX MPEICTABIEHUSIX IPABUJIBHBIX OIPDAHUYEHUN U PEryJIsipHBIX PACIIU-
penuii juddepenimansabix oneparopos / T.II. Kanbmenos, B.E. Kanryxun, B.1. Komanos // JTokiaisi
PAH. — 2010. — T. 81, Ne 1. — C. 94-96.

12 Jlappikenckas O.A. Jluneiinbie u kBasuiuHeiinble ypasHenus sjummnrudeckoro tuna / O.A. Jlagbrken-
ckast, H.H. ¥Ypamsresa. — M.: Hayka, 1973.

AN. Koxanos, B./I. Komanos, 2K.Bb. Cynranrasuesa,
A H. Emup Kaspr orty, I /1. CmaTosa

AJITBIHIIBI PETTI KJIAaCCUKAJIBIK eMec nuddepeHnnaabIkK,
TeHJleyre apHaJIFaH CIIEKTPJIK ecell

Maxkamnaga C.JI. CobosieB KeHICTIiriHIE aMTBHIHINB PETTI KBAa3UTHIEPOOIAJBIK TEHJEY VIMH IIeTTIK ecer-
TepIiH
Lu=—D%u+ Au— \u

(Dy = %, A=3%T % — Jlamiac onepaTopsl, A — HAKThI IAPAMETD) THAHAKTDI IIENIM/IiIiri 3epTTe/reH.
Bepinren L omneparopnl LYH_IiH KJIACCUKAJIBIK, eMec TudepeHIua IblK TeHIeyre eKi CIIeKTPJIK ecell Kapac-
ThIpbLIFal. KoibliiFaH ecenTiy memiMiHiH »KaJIFbI3/IbIFbL, OipiHIn ecenTiy MeHIIIKTI MoHIepl MeH dyHKIHSsI-
JIAPBIHBIH, 6ap €KeHJIIr] JJIe/IeHreH, arHu Oyl eCeNTiH HOJIIIK eMec mentiMaepi Tabbuiran. Asropaap A < 0
yurin Lu = 0 »X9He TeHAeYaiH 6ipTeKTiIiK IMapThl OPbIHIAIFAH/Ia CIEKTPJIK eCEeNTiH MEHITKTI DyHKInsIa-
PBIHBIH, HOJIJIEH e3relle Ienmimiaep Kyiecinin 6ap ekeHairin kepcerei. 9jierre, L onepaTopbl KapalnaibiM
runepOoJIAJIBIK, OITEPATOp OOJIFAHIA, MYHIAN KACHET OPbIHIAIMANIbI.

Kiam cesdep: aJTBIHIIBI PETTI KBAa3UTUNEPOOJIAIBIK, TEHJEY, MEHINKTI MOHIEP, MEHIIKTI (pyHKIUsIap,
HOJIIIIK eMec IIeIIiMIep.

A N. Koxanos, B./l. Komanos, 2K.B. Cynranrazuesa,
A H. Evmup Kazupr ormy, I JI. Cmatosa

CrekTpaJjbHasd 3aa49a JJIsi HEKJIACCUYIEeCKNX
anddepeHITnaIbHBIX YPABHEHUIT IIIECTOTO MOPSAIKA

B crarbe uccienoBana KOppeKTHas pa3penimMOCTb KpaeBbIX 3a1a4 JJTsl KBA3UTHIEPOOTUIECKOTO Y PABHEHU ST
mrectoro mopsinka B nmpoctpanctee C.JI. CoboseBa

Lu=—D% + Au — \u,

_ 9 _xnn 8 . o
Dy = e A= Zi:l 7 omneparop Jlamaaca; A — BelecTBeHHbIH mapaMeTp. PaccMOTpeHbI JiBe HEKJ1accuie-
CcKue CHGKTpaJII)HBIe 3aJa49U OJ14 JaHHOT'O onepaTopa L n yCTaHaBJII/IBaETCSI €JMHCTBEHHOCTD ITOCTaBJIEHHBIX

3a7a4. Beramciaensr coOCTBEeHHDbIE 3HAYEHUsI M COOCTBEHHBIE (DYHKIMM ITOCTABIEHHON MEPBOM 3aJa4un JIst
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86

10

11

12

KBa3UTHUIIEPOOIMIECKOr0 yPABHEHUsI IIECTOr0 Mopsijaka. ABropaMu mokasaHo, 4ro ypasuenue Lu = 0 npu
A < 0 1 IpU BBIMIOJTHEHUU OJTHOPO/IHBIX YCIOBU 00I1a/1a€T CIETHBIM MHOYKECTBOM HETPUBUAIBHBIX PEIIeHMIA.
O6bI4HO Tako# daKT He UMEET MecTa, Korja oneparop L ecTb OObIYHBIN ruepboIMaecKuil orepaTop.

Karoueswie caosa: KBa3urunepboInIecKie ypaBHEHNs IIIECTOT0 IOPsIIKa, COOCTBEHHbIE 3HAUEHNsI, COOCTBEH-
Hble (QYHKINY, HETPUBUAJbHBIE PEITEHNUSI.
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Green function method for a fractional-order
delay differential equation

In this paper, we investigated a boundary value problem with the Sturm-Liouville type conditions for a
linear ordinary differential equation of fractional order with delay. The condition for the unique solvability
of the problem is obtained in the form A # 0. The Green function of the problem, in terms of which
the solution of the boundary value problem under study is written out, is constructed. The existence and
uniqueness theorem for the solution of the problem is proved. It is also showed that in the case when the
condition of unique solvability is violated, i.e A = 0, then the solution of the boundary value problem is not
unique. Using the notation of the generalized Mittag-Leffler function via the generalized Wright function,
we also studied the properties of the function A as A — oo and A — —oo. Using asymptotic formulas for
the generalized Wright function, a theorem on the finiteness of the number of eigenvalues of a boundary
value problem with the Sturm-Liouville type conditions is proved.

Keywords: Fractional differential equation, delay differential equation, Green function, generalized Mittag-
LefHler function, generalized Wright function.

Introduction
Consider the equation
dOL
dt—au(t) —Au(t) —pHE—7nult—71)=f(), 0<t<]l, (1)
where C‘li% is the Riemann-Liouville fractional derivative [1], 1 < a < 2, A, u are the arbitrary constants, 7 is

the fixed positive number, H(t) denotes the Heaviside function.

At present, the number of studies on fractional calculation has noticeably increased. This is due to the fact
that fractional order differential equations are used in mathematical modeling of processes that occur in various
fields of natural science, such as physics, chemistry, biology, sociology, etc.

The most general references to the theory of fractional calculus one can find in [2-5] (see also the references
in these works). A linear ordinary differential equation of fractional order was considered by Barrett [6] in 1954.
Existence and uniqueness theorem for a fractional-order differential equation is proved in [7] by Dzhrbashyan
and Nersesyan. Sturm-Liuville type boundary value problem for fractional differential operator was investigated
by Dzhrbashyan in [8]. The initial value problem for a linear ordinary differential equation of fractional order
was studied by Pskhu in [9].

Significant works were devoted to the delay differential equations (difference-differential equations) by Norkin
in [10], Bellman and Cooke in [11], Elsgolts and Norkin in [12], Myshkis [13], Hale in 1977 [14].

The initial-value problem and the problem with general linear two-point boundary conditions, the Dirichlet
and the Neumann problems for linear ordinary differential equation with Caputo derivative with delay in [15-17]
respectevely were solved.

The Cauchy problem for Eq.(1) was considered in [18], and the solutions to the Dirichlet and the Neumann
problems were obtained in [19].

In this paper, we construct the Green function of the Sturm-Liouville type boundary value problem for
Eq.(1) and prove the finiteness theorem for the number of real eigenvalues of the study problem.
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Auziliary

The Riemann-Liouville fractional operator is define by the formula

d* e B 1 ar / u(§)d¢
—=u(t) = Dgpu(t) = mdt” /(*f)ﬁ’

a

n—1<a<nmneN,

where I'(z) = [ e~*t*~'dt is the Euler gamma function.
0
The Mittag-Leffler function is given by the power series [20]

o0

ZFak+,3

k=o

and the generalized Mittag-LefHler function defines by the series [21]

E? .= —_
@p kz:: [(ak + B)k!
where (p)r = F;f;pr)k ) is the Pokhhammer symbol. The generalized Mittag-Leffler function reduces to E, g(2)

when we set p = 1.
Consider the function

W) =Watri Xy = 3 (¢~ mr) 3= B (N~ me)). v € R 2
m=0
where
(t—mr)y = t—mr, t—mt>0,
+ T 0, t—m7 <O.
It follows from (2) that
@y ] O k#i+1,

Wi (0>_{ Lk=i+1. ®)

Remark 1. For some m the expression ¢ — m7 < 0, therefore the series in (2) contains a finite number of
terms N < [£] 4 1.
Function (2) satisfies the following properties [16]

DEW,(t) = Wy_a(t), a€R, >0, (4)
tl/—l
Wl, (t) = )\Wy+a (t) + /lWy+a (t — T) + m7 o > 0, IS R, (5)

which are clear by the formula of differentiation [21]

dm
,8 1 ay) _ ,B—m—1 o
= (B ) = T L)
and by the autotransformation formula [22]:

Eg,ﬁ(t) - E(l))c,_ﬁl( ) - tEa a+6( )

of the generalized Mittag-Leffler function.
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Main results

A function u(t) is called a regular solution of Eq.(1) if D ?u(t) € C?(0,1), u(t) € L(0,1) and u(t) satisfies Eq.
(1) forall 0 <t < 1.
The problem we solve here is to find the reqular solution to equation (1) satisfying the conditions

a lim D& tu(t) +b lim D& 2u(t) =0,
clim D¢ tu(t) +d lim Dg 2u(t) =0,
where a® + b2 £ 0 and 2 + d? # 0.

Green function

Assume G(t,£) is given by

GO = Ht ~ OWalt — &) + (Wi (1 - &) + dW(1 - &) el = tWact 0 ™

with A and p satisfying the following condition
A = ac(AWo(1) + uWo(1 — 7)) + (ad — be) W1 (1) — bdWa(1) # 0. (8)

Here the function W, (t) is defined via (2).
We demonstrate the validity of the following properties for the function G(¢,&) (7).
1. The function G(t,€) is continuous for all values of t and & from the closed interval [0, 1].
This property implies from relation (7) and condition (8).
2. The function G(t,§) satisfies the conditions

ii_%[D(()Xt_QGﬁ(t,5)‘£:t+e*Dgi_2G£(ta§)|§:t—s] =1 9)

Indeed,
DG 2 Ge(t,8)=—H (t—&) Wy (t—¢)
bWa(t) — aWi (1)
~ .

Insert (10) into (9) as € =t + ¢ and £ =t — ¢. Passing to the limit as € — 0 we get the property (9).
3. The function G(t,&) is the solution to the equation

(AW (1) + uWa(1-¢ 1) +aWi (1~ ©))

eG(t,€) = AG(t, &) —pH(1 =7 = §)G(t,E +7) = 0. (11)

Here 0§, is the Caputo derivative [23; 11| defines as

pu(t) = Dj " (t) = F(21_ @) / (tu—(gji
0

This property implies the presentation of the function (7) and the relations (4), (5).
4. The function G(t,£) satisfies the boundary conditions
lim D, > lim D, =
@ Hot G{(tag)‘f'bfl_{% o G, =0
. a—2 . a—2 _
C%E%DOt Gf(t7§)+d%1§iD0t G(t,§) =0

This property obviously implies the relations (4), (5).
The function G(t, &) that possesses properties 1-4 is called Green function for problem (1), (6).
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Ezistence and uniqueness theorem

Theorem 1. Assume the function f(t) € L(0,1) N C(0,1) and the condition (8) is satisfied. Then
1) there exists a regular solution to problem (1), (6) in the form of

1
ult) = / FEOG(, )de; (13)
0

2) the solution to problem (1), (6) is unique if and only if condition (8) is satisfied.

Proof. First we illustrate that the solution to problem (1), (6) has the form (13). To clear this, multiply
both sides of Eq. (1) (given in terms of variable £) by DS‘;2G(1&, ¢€) and integrate it with respect to variable £
ranging from € to 1 — e (¢ = 0):

1—¢ 1—¢
[ ps ot - [ u@Ds el
1—e 1—¢
—p / H(t — 7)u(§ — 7)D§*G(t, €)d = / FODG?G(t,&)de, 0<t< 1. (14)
Integrate by parts the first term of equality (14):
1—¢ t
l—
| D560 ity =5 G ODE )|~ [ D46l D (e

1—

- [ Dg2Ge(.) D e ag =D 6. D )| - DGO D ule)

+ D5 2u) [D&?Gg (46| _,,, ~ Do "G “’%o] D, Celt) D u(e)

1
~DE Gt D (O + [ DEGeelt DR P u(e)de. (15)
0
Applying to (15) the properties (9), (12) of function (7) and conditions (6) of the problem we get the
following formula

1

DG 2u(e) + [ Di*u(©)D5 Geelt, ) (16)
0
Replace & with £ — 7 in the third integral on the left-hand side of the expression (14) to reduce it to

/ H(E — T)u(€ — 7)G(t,€)de = / H(L -7 - ©u()G(t,€ + 7). (17)
0

0
Put (16) and (17) into Eq. (14) and using the formula for fractional integration by parts [20, p. 15]

b

b
/ 9(5) D3, h(s)ds = / h(s) D5 g(s)ds,

a
arrive at identity
1

D~ *u(8) + D~ / ul(©) [ DS Gee(1,€) = AG(L,€) — pH (1 — £ = )G(t,€ + 7)) de =
0
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1
= Dy / FOG(,€)de
0

Taking advantage of the third property of Green function G(t,&) (11) and finding the derivative of order Dj;
we arrive at representation (13).
Next, we show that the function (13) is the solution to problem (1), (6). Formula (13) can be written out
in terms of function W, (t) in the form of bellow:
¢ 1

)= [ £ Wale—gae+ "=t 6y w1 - ) + a1 - ) e

0 0

Next, using formulas (4), (5) obtain by the previous relation that
1
Diult) = 1)+ [ 7(6) tf%+u/f G(t,€ — 7)de.
0
Prove that the solution u(t) satisfies the boundary conditions (6) (in view of relation (3)):
1
a}i_r)rg)Dg‘tl u(t) + b lim DG~ / ) [eW1(1 =€) + dWa(1 — €)]
0
x [abW1(0) — a® AW, (0) — a®>uWo(—7) + b*W2(0) — abW1(0)] d€ = 0;

clim DG u(t) + dlim D3 2u(t) = [ F€Wi(1 — &)+ dWa(1 - €)]x

o _

dé =

" {1 n —ac( AW, (1) + uWo(1 — 7)) — (ad — cb)W1 (1) + deg(l)}

A

:/1f<5><cwl<1—s>+dW2<1—£>> (1— A) dg = 0.
0

The task is now to show that if the condition (8) is not satisfied
A =0,
then the solution of the problem is not unique. Consider the function
alt) = CWa(t) + CoWeo 1 (1),
which is the solution to the problem
Dg,a(t) — Aa(t) — pH(t — 1)a(t — 7) = 0,
ahngt1 ()+bhmD 2u(t) = 0,

(18)
chm D¢ a(t) + dhm Dg*u(t) = 0.
The conditions (18) can be written out in the form
aCl + ng = 0, (19)

Ci[W1(1) + dWa(1)] + Co[eAWo (1) + cuWo (1 — 7) + dW1(1)] = 0.
Then the determinant of the system (19) is equal to

o a b
A= =0.
CWl(l) + dWQ(].) C)\Wa(l) + C/LWa(l — 7') + dWl(].)
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Thus, solution to problem (1), (6) is unique if and only if condition (8) is satisfied.
Remark. For all
Ap>0, (a—b)(c+d) >0

condition (8) is always satisfied.
On the finiteness of the number of real eigenvalues

Definition. The eigenvalues of problem (1), (6) are the values A, such that problem (1), (6) has a regular
solution that is not the identically zero.
The set of real eigenvalues for problem (1), (6) coincides with the set of real zeros for the function

B(\) = ac(AWa(1) + pWa(1l — 7)) + (ad — be)Wi (1) — bdWa(1). (20)

Theorem 2. Problem (1), (6) has only a finite number of real eigenvalues.
The function W, (A) can be written out as [2, p. 45]

e m 1.1
W,(Lrsam =3 B —mr)amr-tiw, {(m‘L’) A(1—mT)<j],
= m! (am +v,a)
where
v, {(az,az } ZHl y Dl + aik) 2F
(b1, Bi)1.4 (b + Bik) E!

is the generalized Wright function [24].

Function (20) is an integer function of parameter \. Let us investigate the properties of the function (20)
as A — +oo and A — —oo.

As A — 400 the following asymptotic formula holds true for the generalized Wright function [24], [25]:

(m+1,1)
1Y [(am +v,q)

ml—a)—v m(l—a)—v a(1— 1
)\(1 _ mT)?éi-:l —a ™\ @ 0) +1 (1 _ mT)+(1 ) +le)\1/ (1—m7)4 |:1 +0 <)\1>:| )

a

Let N be the maximum value of m that satisfies the inequality (1 — m7) > 0. Then the asymptotic formula for
function (20) is in the form

o)=Y ¢ f; P {(kmﬂfe*”“(mm (ac+(adfbc)/\*1/‘”fbd)\*Q/o‘)

+aci(17 (erl) )m Ao (1 (m+1)7’)} ~ {1+O(/\71/a)}'

Hence, as A — oo, the series above increases without limit.
The asymptotic formula for the generalized Wright function as A — —oo has form [24], [25]

w [ LD ] 53 D™ m) (1= ) D
Y (am 4 v, 0) = AP AT (v — o — al)(m + 1+ 1)!
1
+O(M )
Therefore N
Z ™y /~L(1 —(m+1)47)7!
m+ 1) '|/\\m F —a) By

m=0

(1—mr)~@ (1—mr)t= 1
o =) S s b O(MWH)] @)

Consider the limit relation in the case when u # 0

lim AVo(y) = 2 UNH“N“ ~ NT)

:
tas M(Ca)(N 7o 2
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As p =0 we have

. ac
yim AN = -5y

(23)

Since ®()\) is an entire function of the variable J, it follows from relations (21), (22), and (23) that the series
(20) may have only a finite number of real zeros. This establishes the theorem.
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M.T'. Maxkruxosa

Besimek perTi Kenriknesi apryMeHTTi guddepeHImaiIbik,
TeHJey ynrH I'pua dyHKIusIChI 9ici

MakaJrasia KoiMri ChI3BIKTBIK, TYPAKTBI KOI(MMUIMEHTTI KelTiKIe i apryMeHTTi 6eJimnek perTi auddepen-
muasaablk Teggey yine [rypm-Jlnysunas Tunti merrik ecen 3eprresred. KoibliraH ecenTis, 6ipMoH/T
memntryi A # 0 TypiHze anbiHabl. 3epTTesiin OThIPFaH ecenti menty yima ['puH ogici Koaganbuiasl. ['pun
dyukusnapsl Murrar-Jledpdaep xainbuianran QyHKIUIAPbl TEPMUHIHJIE XKa3bLIIbI. 3€PTTEJII OThIpP-
FaH eCeNTiH Ientyinid 6ap OGOJIybl KoHe YKAJFBI3JBIFBI KAWIbl TeopeMa JIoJeIeH 1i. bipMoHai menity
mapTbl Oy3bUIFal Karjgaiina, aran A = 0 6orania, METTIK eCerTiH MelNtyi KaJFbl3 eMeCTirl HAKThLIAH-
nei. Corbimen Koca Murtar-Jleddiep x)annbuianran pyHKIUsAIApbIH PaliT *Kaanblianrad QyHKIUSAIAPbI
aPKBLIbI 2Ka3y/bl KOJJAHDIN, \ YIKEeH MaHjepinge A GyHKIUAIapbIHBIH KACUETTEPl, AFHU A\ — OO XKOHE
A — —oo GonraHIa, OKBLIALI. PailTThIH KaanblIanral QYHKIUSIAPH VIIIH aCHMITOTHKAJBIK, POpMyIa-
snapbia Kosaanbi, [IItypm-JIluyBuiaas TunTi maprrapbiMeH OepijireH MIeTTiK eCenTiH MEeHITKTI MoHIepiHiH
CaHJAPBIHBIH, AKBIPJIBLIBIFGI KAWIBI TEOPEMa, AHBIKTAJIIH.

Kiam cesdep: Genmek perti auddepeHunaaablk, TeHaeyaep, KeIikmeai apryMenTTi auddepeHnaiibiK,
Teyaeyaep, ['pun dyuknusicer, Murrar-Jleddiep xamnbuianran QyHKIUICH, PaiiT )asnbluianFad QyHK-
[HSICHI.

M.T'. Maxkruxosa

Meton dyukiuu I'puna ajis qudpdepeHnuaibHOTO ypaBHEHUS
JAPOOHOTO TIOpS/AKa C 3aIla3dbIBAIONINM apryMeHTOM

B craTbe ncciienopana kpaesas 3a1a4da ¢ ycsouamu tuma L rypma-JlunyBusis miis inHeHOro 0OBIKHOBEH-
HOTO b PEPEHITNATBLHOTO YPABHEHUsT IPOOHOrO TOPSIIIKA C 3aIa3IbIBAIOIINM apIyMEHTOM C MOCTOSTHHBIMU
KO3 PUIMEHTAMH. YCIOBIE OTHO3HAYHON Pa3peIrnMOCTH TOCTABIECHHON 3aa49n MoTydeHo B Bume A # 0.
s pelieHusi UccieiyeMoil 3a/jadu aBTOpaMM IpUMeHeH MeToJ (pyHKIwu ['puHa, B TepMHHAX KOTOPOIi
¥ BBIMICAHO pelleHrne Kpaepoii 3agaun. OyHkimu ['puHa, B CBOIO O4Yepeib, 3allMCaHbl B TEPMUHAX 0006-
menno#t dyurmuu Mwurrar-Jleddiepa. /lokazana Teopema CyImecTBOBaHUS W €IWHCTBEHHOCTU PEITEHUST
uccienyemoit 3agaan. OTMEYEHO, 9TO B CJIydae, KOIJa yCJIOBUE OJIHO3HAYHOMN Pa3perIMMOCTH HAPYIIAETCs,
To ectb nnpu A = 0, pemreHne KpaeBoil 3ajadu He eIUHCTBEHHO. Vcrosb3yst 3amuch 000OIEeHHON (DYyHK-
uuu Mutrrar-Jledpdiiepa yepes o606mennyio dhyukuuio Paiita, n3ydensl Takxke cBoiicrBa dpyHKImu A npu
OO/IBIIMX 3HAYEHUSIX A\, TO €CThb NMPU A — 00 U A — —o0. llpumenss acumnrorndeckue OPMYJIbI JJIst
060061enHOM byuknuu Paiita, onpemenena TeopeMa 0 KOHEUHOCTH YHC/Ia COOCTBEHHBIX 3HAYEHUI KPaeBOit
3amaqan ¢ ycsgoBusmu tuna [ltypma-Jlnysums.

Kmouesvie carosa: muddepeHnnabHOe ypaBHEHHE JPOOHOrO MOpsaka, duddepeHnajibHoe YpaBHEHHE C
3ama3IbIBAIONINM aprymMeHToM, GpyHKIus ['puna, obobmennast dpyuknusa Murrtar-Jleddiepa, obobIeHHast
byukusa Paiira.
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Closure of special atomic subsets of semantic model

The present paper concerns some properties of the so-called small models, generally speaking, not necessarily
complete theories and their relationship with each other. In the well-known paper [1], R. Vaught have proved
the fundamental theorem-criterion on the behavior of countable prime and atomic models for complete
theories in countable language. The essence of this criterionis that in a complete theory any countable
prime model is at the same time an atomic model of this theory. The result obtained in this paper is related
to the classical problem of Vaught about countably prime models of complete theories but in more general
formulation of the notion of countable atomicity. The main result of this paper is that it focuses on the
syntactic properties on special subsets of a fragment of the semantic model the specific Jonsson theory. The
concept of the so-called model-theoretic «rheostat» was also used to obtain results related to the refinement
of the concept of atomicity in the framework of Jonsson’s theories.

Keywords: Jonsson theory, semantic model, existentially prime model, atomic model, core model.

In [1] it was proved that the atomic model is countable prime. In model theory, small models are countable
models with additional conditions, in particular, prime or atomic ones. Moreover, if a theory has a countable
atomic model, then it is unique up to isomorphism. The atomicity criterion for the models obtained by Vaught
was proved in the framework of the study of complete theories. Thus, if we are dealing with complete theories,
then any theory that has a simple model has a good syntactic characteristic, namely, any element of this model
implements some basic type. We will have a different situation if we investigate a more general picture: we omit
the condition of completeness. In this case, instead of a prime model, the concept of an algebraically prime
model is usually considered. Much has been done in this direction in [2]. But, as the results of this work showed,
the criterion of small models in the framework of the study of the concepts of atomicity or algebraic primarily
in [2] was not obtained. Moreover, for all kinds of atomic models that were considered in this work, examples
of those theories that did not even have an algebraically prime model were built.

In connection with this dissonance between atomicity and algebraic primarily, we continue to search
for additional conditions which will make it possible to find an analog of the main result from [1] for the
corresponding primarily of simplicity and atomicity for models of theories considered.

In this article, we will focus our attention on the study of special models for certain types of Johnson theory
within the framework of the above topics [6-8]. To have an idea of previous works concerning the behavior of
small models in Johnson’s theories, the following sources can be used: [4, 5|. One of the central ideas that allow
us to compare the concepts of atomicity in the sense of [1] and in the sense of [2] is the idea concept of «rheostat»
[4, 5]. It is clear that the larger the Johnson set, the closer the model considered to atomicity from [2] and,
conversely, the smaller it is, the closer to the notion of atomicity from [1]. We fix some Johnson theory 7" and
its semantic model C. All sets considered in this article will be subsets of this semantic model. The fragments
considered should not preserve the model-theoretical properties of the fixed Jonsson theory described above.
Therefore, in each case, we will stipulate certain model-theoretical conditions under which the current problem
will be considered.

Consider the necessary definitions of concepts and their properties.

Definition 1. The theory of T is Jonson theory if:

1) the theory T has infinite models;

2) the theory T is inductive theory;

3) the theory T has the joint embedding property (JEP);

4) the theory T has the property of amalgam (AP).

The following definition of the universality and homogeneity of a model identifies the semantic invariant of
any Jonsson theory, namely its semantic model. Moreover, it turned out that the saturation or unsaturation of
this model significantly changes the structural properties of both Jonsson’s theory and its class of models.
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Definition 2. [8] Let £ > w. A model M of theory T is called a x -universal for T if every model of T" with
degree strictly less than x is isomorphically embedded into M; k-homogeneous for T', if for any two models A and
Aj of theory T', which are submodels of M with the power strictly less then x and for isomorphism f: A — Ay
for each extension B of model A, which is a submodel of M and is a model of T" with the power strictly less
then « there is the extension B; of model A;, which is a submodel of M and an isomorphism ¢ : B — B; which
extends f.

k is homogeneous for T if, for any two models A and A; of T', which are submodels of M with power strictly
less than k, and for the isomorphism f : A — A for each extension B of model A, which is a submodel of M
and is a model of theory T" with power strictly less than k, there is an extension B; of model A;, which is a
submodel of M and the isomorphism g : B — Bj, which extends f.

Definition 3. [9] We say model C' of Jonsson theory T is called semantic model when it is w-homogeneous-
universal.

In accordance with the definition of the concept of Jonsson theory, it is clear that this theory is not complete.
But, nevertheless, given its semantic invariant (semantic model), we can always determine the center of Jonsson’s
theory, which is a complete theory.

Definition 4. [7] The center of Jonsson’s theory T is called the elementary theory of its semantic model.
And is denoted by T*, i.e. T* = Th(C).

The «good» exclusivity of the semantic model can be judged by the following facts.

Fact 1. Each Jonsson theory T has k*-homogeneous-universal model of power 2¥. Conversely, if the theory
T is inductive and has infinite model and w™-homogeneous-universal model then the theory T is a Jonsson
theory.

Fact 2. Let T be Jonsson theory then two k-homogeneous-universal models M and M; of T are elementary
equivalent.

Definition 5. Jonsson theory T is called a perfect theory if each a semantic model of theory T is saturated
model of T*.

A result describing the perfect Jonsson theory introduced by A.R. Yeshkeyev [7].

Theorem 1. Let T be Jonsson’s theory. We conclude that the following conditions are equivalent:

1) Theory T is perfect;

2) Theory T* is a model companion of theory T

Let Ep be the class of all existentially closed models of the Johnson theory T'. In the general case, this class
of models for an arbitrary theory may be empty. Given the well-known result of work [4], we can say that any
inductive theory has a non-empty class of existentially closed models. Since Jonsson’s theory is a subclass of
the class of inductive theories, we can say that Er is a non-empty class.

In the case of the perfect Johnson theory, the class model center of this theory coincides with Ep, which
follows from Theorem 2.

Theorem 2. If T is a perfect Jonsson theory then Epr = ModT™.

Let L is a countable language of the first order. Let T is Jonsson’s theory in the language L and its semantic
model is C.

We give important definitions related to the concept of the atomic set (V1, Vi) —cl being the central concept
of this article

Let C be a semantic model of some Jonsson theory T in a fixed language.

Definition 6. [6] Model A of a theory T is called existentially closed if for any model B and any existential
formula ¢(Z) with constants of A we have A = JT(T) provided that A is a submodel of B and B = 3T¢(T).

Definition 7. Let A be a model of T and A can be isomorphically embedded into each model of theory T,
then A is an algebraically simple model of theory T

Definition 8. The inductive theory T is called the existentially prime if:

1) it has an algebraically prime model, the class of its AP (algebraically prime models) denote by APr;

2) class Er non-trivial intersects with class APr, i.e. APr(\Er # 0.

Definition 9.A model A is called atomic in meaning work [1] if every tuple of its elements satisfies some
complete formula.

Definition 10. [2] A formula ¢(7) is a A-formula, if exist existential formulas (from ) ¢ (%) and 2(Z) such
that

TE(@ed) u TE(op < ).
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Definition 11.

(i) (A,ag,...,an—1) =1 (B,bo, ..., b,—1) means that for every formula ¢(x1,...,2,-1) of T, if A |= ¢(a), then
B = ¢(b). ’ ) )

(ii) (A,a@) =r (B,b) means that (A,a) = (B,b) and (B,b) =1 (4,a).

As classes I' we consider A or .

Consider a complete theory T in L. A formula ¢(z;...2,) is said to be complete (in T') iff for every formula
¥(xy...x,) exactly one of

TEe—=Y, TEp—

holds. A formula 0(z1...z,) is said to be completable (in T') if and only if there is a complete formula p(z1...2,)
with T = ¢ — 0. If 8(x;...x,) is not completable it is said to be incompleatable.

A theory T is said to be atomic iff every formula of L which is consistent with T is completable in T.
A model A is said to be an atomic model iff every n- tuple a;...a,, € A satisfies a complete formula in Th(A)

In connection with the new concept of atomicity from [2], we conclude that the following concept will be
similar to the definition of the full formula.

Definition 12. A formula ¢(x1,...,x,) is complete for I-formulas if ¢ is consistent with T" and for every
formula (1, ...,x,) in T', having no more free variables than ¢, or

T = V(e = ).

Equivalently, a consistent ¢(Z) is complete for I'-formulas provided whenever as ¢(Z) is a I'- formula and
(¢ A1) is consistent with T, then T |= (¢ — ).

And the concept of the atomic model from [2] is transformed into the following concept from next the
definitions

Definition 13. Let B be (I'1,I'3,) - an atomic model of T', if B is a model of T and for every n every n-tuple
of elements of A satisfies some formula from B in I'y, which is complete for I'o-formulas.

A generalization of the above definition is the definition of a weakly atomic model from [2].

Definition 14. B is weak (I'1,T'3) - atomic model of T', if B is a model of T" and for every n every n-tuple
aa of elements of A satisfies in B some formula ¢(Z) of I'; such that T |= (¢ — ) as soon as ¥(T) of 'y and
B = v(a).

Presenting sufficient number of examples given in [2] of this article, we will not give examples of the
(I'1,Ty) - atomic model and the weak (I'1,I'2) atomic model, leaving the reader the opportunity to review them
independently.

Next, we examine the special types of sets that we will deal with.

Let ¢l be some closure operator that defines pregeometry over C (for example, ¢l = acl or ¢l = dcl). It is
certain that such an operator is a special case of the closure operator, and its example is the closure operator,
defined on any linear space as a linear hull.

Before discussing the results obtained, concerning (V1, V3) — ¢l atomic models, we note that we fix some
Jonsson theory T and its semantic model C in the countable language L and V1,Vs C L :(V1,V3). Actually
those sets consists of 3,V, V3-formulas which are consistent with 7', that is, any finite subset of formulas from
V1, Vg are consistent with T". Let A C C.

Definition 15. [4] The set A is called (V1, Va) — ¢l atomic in the theory T, if

1) Va € A,3p € V; such that for any formula ¢y € Vs follows that ¢ is a complete formula for ¢ and
C E p(a);

2) cl(A)=M,M € Er,

and obtained model M is said to be (V1, Vi) — ¢l atomic model of theory 7'

Definition 16. [4] The set A is called weakly (V1, V3) — ¢l is atomic in T, if

1) Va € A,3p € V5 such that in C = ¢(a) for any formula ¢ € Vs follow that T = (¢ — ) whenever ¢ (z)
of Vo and C = ¢(a);

2) cl(A) = M,M € Er,

and obtained model M is said to be weakly (V1, Va) — ¢l atomic model of theory T

It is easy to understand that definitions 18 and 19 are naturally generalized the notion of atomicity and
weak atomicity to be Vi-atom and weak Vi-atom for any tuple of finite length from set A.

Let i € {1,2}, M; = cl(4;), where A; = (V1,V3) is a cl— atomic set. ag, ..., an—1 € A1, bg,...,bp—1 € As.

Definition 17. [4]

(i) (M1, a0, ..., an—1) =v (Ma,bg, ..., b,—1) means that for every formula ¢(z1,...,2,-1) of V, if My = (@),
then My = ¢(b).
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(ii) (M1,a) =v (Ma,b) means that (My,a) =v (Mz,b) and (My,b) =v (M,a).

Definition 18. [4] A set A will be called (V1, Va) — cl-algebraically prime in the theory T, if

1) If Ais (V1, Va) — cl-atomic set in T}

2) c(A)=M,M € APy,
and obtained model M is said to be (V1,Va) — ¢l algebraically prime model of theory T'.

From the definition of an algebraically prime set in the theory T follows that the Jonsson theory 7" which
has an algebraically prime set is automatically existentially prime. It is easy to understand that an example of
such a theory is the theory of linear spaces.

Recall that the model A of theory T is called core if it is isomorphically embedded in any model of a given
theory and this isomorphism exactly one.

Definition 19. [4] The set A will be called (V1, Vz) — cl-core in the theory T, if

1) Ais (V1,V2) acl - atomic set in the theory T}

2) cl(A) = M, where M is a core model of theory T

and obtained model M is said to be (V1, Va) — ¢l core model of theory T

Definition 20. [5] (a) A - (V1, V2) — cl-atomic set in theory T is said to be A - (V1,V3) — c¢l-X-nice-set in
theory T, VA’ : A’ - (V1,V3) — cl-atomic set in theory T, if

1) CZ(A) =M € Er ﬁAPT,
and obtained model M is said to be (V1, Va) — c¢l-E-nice model of theory T.

2) for all ag, ...,an—1 € A, by, ...,bp_1 € A', if (M, ag,...,an—1) =3 (M’ by, ...,bp_1), then Va,, € A, 3b,, € A’
such that (M, ag, ..., an) =3 (M, by, ..., by,), where M’ = cl(A").

(b) A - (V1,Va) —cl — Z*-nice-set in theory T if the condition in (a) holds with ’=3’ replaced both places
it occurs by '=3” and obtained model M is said to be (V1, Va) — cl-¥*-nice model of theory T

(¢) A - (V1,Va) — ¢l — A-nice set in theory T if the condition in (a) holds with = A’ replaced both places
it occurs by '=a’, where A C L, A=VN3.

and obtained model M is said to be (V1, V) — ¢l — A-nice model of theory T.

Theorem 3. [5] Let T be complete for J-sentences a strongly convex Jonsson perfect theory and let M is
(V1,V3) — cl-atomic model in 7.

(a) Then (i) = (i7) = (i4i) and (i7) = (i7)* where:

(1) M is (¥, ¥) — cl-atomic model in theory T,

(#i) M is (V1, V3) — cl-¥*-nice-model in theory T,

(#9)* M is e.c. and (V1, V3) — cl-X-nice model in theory T,

(#i1) M is weak (3, II) — cl-atomic model in theory T,

(b) If T is complete for V3 sentences, then (¢), (i7), (#4)* and (iii) are all equivalent.

Principle of «rheostat». [5]

Let two countable models A;, As of some Jonsson theory T' be given. Moreover, A; is an atomic model in
the sense of [1], and X is (V1, V) —cl -algebraically prime set of theory T and cl(X) = As. Since V; = Vo = L,
then A; = As.

By the definition of (Vy,V3) - algebraic primeness of the set X, the model Ay is both existentially closed
and algebraically prime. Thus, the model A is isomorphically embedded in the model A;. Since by condition
the model A; is countably atomic, then according to the Vaught’s theorem, A; is prime, i.e. it is elementarily
embedded in the model As. Thus, the models A1, Ay differ from each other only by the interior of the set X.
This follows from the fact that any element of a € A3\ X implements some main type, since a € ¢l(X). That is,
all countable atomic models in the sense of [1] are isomorphic to each other, then by increasing X we find more
elements that do not realize the main type and, accordingly, ¢l(X) is not an atomic model in the sense of [1].
Thus, the principle of rheostat is that, by increasing the power of the set X, we move away from the notion of
atomicity in the sense of [1] and on the contrary, decreasing the power of the set X we move away from the
notion of atomicity in the sense of [2].

Let APC € {atomic, algebraically prime, core}. Thus, by specifying the set X as (V1,V3) —cl — APC,
(where APC is a semantic property), we can also specify atomicity in the sense [2] in relation to atomicity in
the sense of [1]. And accordingly, according to the principle of «rheostat» after the APC property is defined,
we obtain the corresponding concepts of atomic models, the role of which is played As from the principle of
«rheostat».

Let us consider some properties of the types of models described above and their connection with some
properties concerning the syntactic characteristics of a certain «atomicity» of existential formulas. We introduce
some properties from [2], denoted by (Rp) and (R;), the essence of these properties is as follows:

(Rp): Every existential formula complete for A formulas is complete for existential formulas.

100 Bectnuk Kaparanmurckoro yuuBepcurera



Closure of special atomic subsets...

(R1): Every existential formula ¢(Z) consistent with 7" is implied by some A formula 6(Z)) consistent with T'.

We will say that Jonsson’s theory admits (Rp) and (R;) if these conditions are satisfied for all the correspond-
ing forms of formulas compatible with the theory T' .

The following results characterize properties of (Rp) and (Rp). To prove Theorem 4, we need auxiliary
lemmas. Let us give them

We will call X a subset of the semantic model C' of the above fixed Jonsson theory 7. Then the fragment
F of set X is the set of all universally existential sentences true in the definable closure of this set X. That is,
F = Thya(cl(X)), where ¢l = del del(X) = M M € ModEr, as well as M satisfies the same conditions as the
set X.

Lemma 1. Let F be some fragment (V1, Vo) — ¢l — A-nice a.p. set of X. F - is a perfect existentially prime
complete theory for 3-sentences. Then fragment F entails property (R;)

By of perfectness, all formulas with respect to the F'* - center of the theory F', due to the model completeness
of F* and the existential simplicity of the theory F', we can assume that it suffices to consider the case when
(V1 = V32) and equals (V).

Proof. Let A be a (V1,V3) — ¢l — A-nice a.p. model of theory F and let ©(Z) be an existential formula
consistent with F. Then A = ¢(a) for some (a) in A. Let {0;(Z) : i € w} be the set of all A satisfied by (@)
in A. By (V1,V3) — A — nicenessa.p, if B is a model of F and B |= 6(b) for all i € w , then (A, (@) =a (B, (b))
and so A can be embedded in B with each a; mapped to b;. Hence B |= ¢(b)since ¢ is existential. Therefore,
o follows from 6; : i € w on models of F'. By compactness, we get a single A formula (%) satisfied by (@) and
such that F' = (0 — ¢(a)), and so this fragment F' admits property R;.

Lemma 2. Let F be some fragment (V1,Vs) —cl — A — nice a.p. set of X. F - is a perfect existentially
prime complete theory for 3-sentences. Then R; entails Ry.

Proof. By virtue of Lemmal F admits the R; property. By virtue of the perfection of the theory F' and
the model completeness of F* without loss of generality, we can assume that there exists a A formula (%)
compatible with F' such that F' = 6 — (¢ A ), where (¢ A 4)) is shared with F. Then F = (¢ — 6) since ¢ is
complete for A formulas and ¢ A 0 is consistent with F. Hence F' = (¢ — ).

Therefore ¢ is complete for existential formulas. Thus, Ry is satisfied.

We proceed directly to the proof of the following theorem.

Theorem 4. Let F be some fragment (Vi, Vi) —cl — A — nice algebraically prime set X and let
A € APp N Ep from the fragment F' is a perfect existentially prime theory, complete for 3 - sentences. Then A
is (V1, Va) — A — nice algebraically prime set if and only if A is (V1, Va) —cl — A — nice — atomic.

Let F' be some fragment (V1,Va) — ¢l — A — nice algebraically prime set X and let A € APr N Er and F
fragment is a complete existentially simple theory, complete for 3 - sentences. Then A is (V1, Vo) — A — nice
algebraically prime if and only if A is (V1, Vi) — ¢l — A - nice - atomic.

Let T be an V3 theory complete for existential sentences, and let A be a countable model of T. Then A is
A-nice if and only if A is (A, X)-atomic.

Proof Suppose A is (V1, Va) —cl — A — nice — atomic. Then, from the same proof of an isomorphism of
the corresponding countable models by Theorem 4[5] and Theorem 3 (the proof of which can be found in the
work of "Core Jonsson theories"in this volume) it follows that A is (V1, Va) —cl — A — nice. The rest follows
from the perfection of the fragment F' and the model completeness of F™*.

Next, we prove in the opposite direction. Suppose A is (V1, Vo) —cl — A —nice. Then (R;) holds by Lemma
1 and also (Rp) by Lemma 2. Since A is in a particularly algebraically prime and existentially closed model
of F', we know that F' has (V1,Vsa) —cl — A — nice— atomic model.

Therefore by Theorem 4 [5] every existential formula ¢ (Z) consistent with F' is implied by an existential
formula ¢(T) complete for (A)-formulas. By (Rjp) is, in fact, complete for existential formulas. By (R;) there is
a (A) formula 6(T) consistent with F' such that F' |= (8 — ¢). Then 6 is also complete for existential formulas
and F |= (0 — ). So by Theorem 4 [5] T has a (V1,V3) —cl — A — nice— atomic model. By Theorem 2[4] F
can have only one a.p. model, so the given a.p. model A must be (V1,Vs) —cl — A — nice—-atomic.

Theorem 5. Let F be a convex perfect existentially simple complete fragment for 3 sentences of some
(V1,Va) —cl — A —nice— set X Then the following are equivalent:

(i) F* has a core model;

(ii) whenever 1 (x) is existential and F' = 3z, then there is some existential ¢(z) and integer k such that

FE (3 e A 3(@)(p A,

and (#) if F |= (01 V 02) where 01,09 are existential sentences, then F' |= 0y or F = 03).
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Proof. Since F is perfect and convex, it has a unique core model that will be the core model and its center.
Therefore, from (1) in (2) follows from Theorem 3 (the proof of which can be found in the work of «Core Jonsson
theories» in this volume).

The proof in the opposite direction follows from the fact that Let F™* be the center of F', then the Kaiser
shell F coincides with F* by virtue of perfection, and the Kaiser shell is F° = Thy3D, where D is the semantic
model of the fragment F. F? has a model M, each element that satisfies one of the formulas ¢(z) of data by
condition (2). Due to the convexity of F, this M model is a nuclear model of the F' fragment. Further, since F'
is a perfect and existentially simple theory M is an existentially closed model of the center F'* and by virtue of
convexity, it is unique.

[ R
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A.P. Emkees, A K. Hcaesa, H.B. ITonosa

CeMaHTUKAJIBIK, MOJIEJIb/IiH apHaiibl aTOMIbIK, aHBIKTAJIFaH
iMIKi >KUBIHAAPBIHBIH, TYNBIKTaMAaChI

MakaJstazia »KaImnbl afiTKaHIa, TEOPUJIaApbIH, SFHU TOJIBIK, Teopus OOJIybl MIiHIETTI emec, KimmripiMm mo-
JeNbAEPIHIH HAKTBHI KaCHeTTepl »KoHEe OJIapAblH e3apa OaliIaHbIChl KapacThIpbLIrad. CaHaJIbIMIbI TiJIIeri
aTOMJIBIK MOJIE/IbJIEP CaHAJBIMJIBI »Kail MOJe/Ib/Iep VIIiH (yHIaAMEHTAJIbI TeOPEeMaHbIH OeJrii Kpurepuit
Topri6in P. Boor [1] »kymbiceinma momeneni. By kpurepuiiiin MarbIHACHI, SFHU TOJIBIK TEOPUSIHBIH, Ke3
KEJITEH MOJIEJIi OChl TEOPUSTHBIH, CAHAJIBIMJIBI K9# CaHBbI OipyaKbITTa ATOMIBIK MOJEN OOJIBIT TabbLIAIHI.
OcBbI »KYMBICTarbl AJIBIHFAH HETi3rl HOTHMKE HEFYPJIbIM YKAJIIbI €Cell KOWBLIBIMBI TYPFBICBIHAH KaparaHia
TOJIBIK, TEOPUSITIAP/IBIH CaHAJIBIMIBI-2Kail MOJE/IbIep YIIiH BOOTTHIH KIacCUKAJBIK ecebiMeH Gail/IaHbICTHI.
Y CHIHBLIBIT OTBIPFAH YKYMBICTBIH MaKCaThl KaHIal 1a 6ip HOHCOHIBIK TEOPUATIAPIbIH CEMAHTUKAJIBIK MO-
HeniHiy dparMeHTiHIH apHaNbl IIKI KUBIHIAPBIHLIH, CUHTAKCUCTIK KacuerTepine OarbiTranrad. COHbIMEH
KaTap, MOHCOHJIBIK, TEOPHUsI asChIH/A aTOMJBIK YFBIM/IAPBIH HAKTBLIAYFa KATBICTHI HOTUXKEJIEPIl ajIy YIIiH
MOJIEJIB/Ti-TEOPETUKAJIBIK, PEOCTAT YFBIMbI KOJIJAHBLIAIbI.

Kiam cesdep: HOHCOHIBIK, TEOPUS, CEMAHTUKAJIBIK, MOJIEJIb, SK3NCTEHIIUAJIIbI 2Kali MOIEJIb, ATOMIBIK, MOIE/Ib,
SJIPOJIBIK, MO/JIENIb.
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A.P. Emikeen, A.K. Ucaera, H.B. Tlomosa

3aMbIKaHUIE ClieInaJIbHbIX aTOMHDBIX
IIOAMHO2KECTB ceMaHTUYeCcKoii MoaeJin

Crarbsi KacaeTcs HEKOTOPBIX CBONCTB TaK HA3BIBAEMBIX MAJIBIX MOjeJeil, BOOOIIe IoBOpsi, He 0DsI3aTelb-
HO IIOJIHBIX TEOPHIl M MX B3aMMOCBsI3U JpyTr ¢ apyroMm. B pa6ore [1] P. Boor mokaszasn dyHaaMeHTaIbHYIO
TeOpeMy—KpHTepI/Iﬁ IIOBEJCHHNA CYETHBIX IIPOCTBIX U aTOMHBIX MO,HeJIefI JJId IIOJTHBIX TeOpI/IfI Ha CYETHOM
sa3pike. CyTh KpUTepus 3aKJII0YAETCs B TOM, 9TO B MOJIHOM Teopun Jo6asi MOJE/b CIETHOTO ITPOCTOTO YUC-
Jia sIBJISIETCS OJHOBPEMEHHO aTOMHOM. Pe3ysbrar, 1oJydYeHHbIl aBTOpaMyU CTaTbH, CBSA3aH C KJIACCHIECKON
mpobsiemoit BooTa 0 C4eTHO MPOCTBIX MOJEJISIX TOJHBIX TEOpUii, HO B 6ostee obIeit (pOpMYTUPOBKE TTOHSITUST
CYETHOI aTOMHOCTH. FJ'IaBHbIlVI MOMEHTOM 3TOM CTATbU SABJSIETCS TO, YTO OHa CI)OKyCI/IpyeTCH Ha CHUHTaK-
CHUYECKHX CBOMCTBAaX CIEIMAIbHBIX ITOJIMHOXKECTB (pparMeHTa CeMaHTHIeCKON MOe KOHKPETHONH Teopun
HNoncona. Kommemnmus: Tak Ha3bLIBAEMOIO TEOPETHKO-MOJETILHOIO «PEOCTATA> OBITA TAKIKE HMCHIOIb30BAHA
JJIs1 TIOJIY9€HUSI PEe3YJIbTaTOB, CBA3aHHBIX C YTOYHEHNEM KOHIENIUN aTOMHOCTU B PaMKaX TeOpI/Iﬁ I;IOHCOHa,.

Karouesvie crosa: HOHCOHOBCKAs TEOPHs, CEMAHTHYIECKAsT MOJE/b, SK3UCTEHIINAIBHO IIPOCTast MOJEb, ATOM-
Hasl MOJIEJIb, SIJIepHAs MOJIE/Ib.
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Core Jonsson theories

The article concerns the description the new concept as core of Jonsson theories, also their combinations,
which admit a core model in the class of existentially closed models of this theory. Along with core the
property of an existentially algebraically prime theory is considered as an additional property to core
Jonsson theory. This article also discusses some combinations of Johnson’s theories, where the authors
tried to transfer some results from [1] to Johnson’s theories that satisfy the definition of core or EAP, or
their combinations. From the definition of the core and the existentially algebraic primeness of Johnson
theory, it can be noted that the core model from [1] in the framework of the study of any Johnson theory
will be a unique and rigidly embedded model of the theory were considered. And thus, such a solution to
the problem with respect to core models is considered for the first time.

Keywords: convex theory, strongly convex theory, center of Jonsson theory, semantic model, algebraically
prime model, core model, core theory.

This article in its content refers to those issues of model theory that are related to the themes defined by A.
Robinson and are related to the study of the theory’s convexity. On the one hand, a full description of a concept
of convexity is given in [1] . In work [1], a close relationship between the concepts of the theory’s convexity and
the concept of core model of this theory is studied. The concepts were considered in [1] are defined for arbitrary
theories that, generally speaking, are not complete. Also, we note that, in the proofs of the main results of this
article, the considered formulas in their complexity have a prenix length of no more than two.

In the present article, we will restrict the studied klass, generally speaking, of incomplete theories to the class
of Jonsson theories. On the other hand, we will consider the concept of core models in a more general context,
namely in the class of existentially closed models of the considered Jonsson theory. Due to the inductance of the
Jonsson theory, its class of existentially closed models of theory is always not empty. In [1], the core structures
(a model of the signature of this theory) are actually considered , not the models of theory, and as its special
case, the concept of a rigidly embedded model was considered. In our case, we will consider the core model and,
by definition, this concept will coincide with the concept of a rigidly embedded model, as in [1]. Accordingly,
all properties of the above models of theory will be translated into the concept of the core model in our sense.
The purpose of this work is to relate the results of the study of Jonsson theories [3, 4] with the study of model-
theoretical properties of core. Jonsson theories that admit a core model in the class of existentially closed models
of this theory will be called the core Jonsson theories. It is clear that any core model is an algebraically prime
model [2]. In [3, 4], new types of atomic and prime countable models of the corresponding types of Jonsson
theories were considered.

To obtain the main results of this article, we give the necessary definitions of concepts and their model-
theoretical properties. For more in-depth information on Jonsson theories, please refer to the following
sources [3, 4]. Nevertheless, we give some basic definitions and related results.

Consider the following definitions:

Definition 1. A theory T is called a Jonsson theory if:

1) the theory T has infinite models;

2) the theory T is inductive;

3) the theory T has the joint embedding property (JEP);

4) the theory T has the property of amalgam (AP).

Examples of Jonsson theories are:

1) the group theory,

2) the theory of Abelian groups;

3) the theory of fields of fixed characteristics;

4) the theory of Boolean algebras;
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5) the theory of polygons over a fixed monoid;

6) the theory of modules over a fixed ring;

7) the theory of linear order.

When studying the model-theoretic properties of Jonsson theory, the semantic method plays an important
role, i.e. the elementary properties of the center of Jonsson theory are in a certain sense associated with the
corresponding first-order properties of Jonsson theory itself. The center of Jonsson theory is a syntactic invariant
and its properties are well defined in the case when Jonsson theory is perfect. The following concepts define the
essence of the semantic model and the center of Jonsson theory [6].

Definition 2. Let k > w. Model M of theory T is called sk-universal for T, if each model T" with the power
strictly less k isomorphically imbedded in M; k- homogeneous for T', if for any two models A and A; of theory
T, which are submodels of M with the power strictly less then s and for isomorphism f : A — A; for each
extension B of model A, wich is a submodel of M and is model of T" with the power strictly less then k there is
exist the extension B; of model A;, which is a submodel of M and an isomorphism ¢ : B — B; which extends f.

Definition 3. A model C of a Jonsson theory T is called semantic model, if it is w*-homogeneous-universal.

Definition 4. The center of a Jonsson theory T is an elementary theory T+ of the semantic model C' of T,
ie. T* =Th(C) [§].

Fact 1 [6]. Each Jonsson theory T has k*-homogeneous-universal model of power 2. Conversely, if a theory
T is inductive and has infinite model and w™-homogeneous-universal model then the theory T is a Jonsson
theory.

Fact 2 [6]. Let T is a Jonsson theory. Two k-homogeneous-universal models M and M; of T are elementary
equivalent.

Definition 5. A model A of theory T is called existentially closed if for any model B and any existential
formula ¢(Z) with constants of A we have A |= 3T (T) provided that A is a submodel of B and B = 3Tp(T).

We denote by Er the class of all existentially closed models of the theory T'.

In connection with this definition in the frame of the study of inductive theories, the following two remarks
are true:

Remark 1: For any inductive theory Er is not empty.

Remark 2: Any countable model of the inductive theory is isomorphically embedded in some countable
existentially closed model of this theory.

An analogue of a prime model (in the sense of a complete theory) for an inductive model, generally speaking,
incomplete theory, is the concept of an algebraically prime model, which introduced A. Robinson [5].

Theorem 1 [9]. Let T be a Jonsson theory. Then the following conditions are equivalent:

1) the theory T is perfect;

2) the theory T* is a model companion of 7.

Theorem 2 [10]. If T is a perfect Jonsson theory then Er = ModT™*.

When studying the model-theoretic properties of an inductive theory, so called existentially closed models
play an important role. Recall their definitions.

Definition 6. A model of theory is called an algebraically prime, if it is isomorphically embedded in each
model of the considered theory.

Note that since the class of Jonsson theories of a fixed signature is a subclass of inductive theories of
this signature, then the above remarks 1,2 are true for Jonssons theories and, by criterion of Jonsson theory’s
perfectness, class of existentially closed models of considered Jonsson theory coincides with the class of center’s
model of this theory.

In connection with the interest to the AAP problem in the frame of the study of Jonsson theory in [1] a
new class of theories was defined, in which there is an algebraically prime model which is existentially closed.

Recall the definition of this class.

Definition 7. A theory is called convex if for any its model A and for any family {B; | i € I} of
substructures of A, which are models of the theory T, the intersection (1,.; B; is a model of T', provided it is
non-empty. If in addition such an itnersection is never empty, then 7T is called strongly convex.

Definition 8. The model A of theory T is called core if it is isomorphically embedded in any model of a
given theory and this isomorphism exactly one.

Recall the definition of a rigidly embedded model from [1].

Definition 9. The model A of theory T is rigidly embeddable in model B of theory T, if there is exactly
one isomorphism of A into B. It is clear that A is rigidly embeddable in every model of T if and only if A is a
core model for T and has no proper automorphisms except identical. Thus, any core model of the core Jonsson
theory is rigidly embeddable in any existentially closed model of this theory.
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All the new definitions of theories given below distinguish a fairly wide natural subclass of theories among
the class of inductive theories. The relevance of studying this class of theories is expressed by the fact that each
of the above classes of theories is determined by a natural concept that generalizes the well-known concepts of
core, algebraic simplicity, and their combinations. At the same time, new classes of theories become interesting
for studying their model-theoretical properties of incomplete theories as part of the study of Johnson theories
that are associated with the above concepts.

Since, we will deal with, generally speaking, incomplete Jonsson theories and their classes of existentially
closed models in connection with the study of core models, we distinguish a natural subclass of the class of all
Jonsson theories, which is naturally connected with the concept of a core model. We give the following definition.

Definition 10. An inductive theory T is called a core theory if there exists a model A € Ep such that for
any model B € Er there exists a unique isomorphism from A to B.

Since, by definition, any core model is an algebraically prime model, we distinguish a natural subclass of all
Jonsson theories’ class, namely, the class of such Jonsson theories that necessarily have an algebraically prime
model. We give the following definition.

Definition 11. Theory T is called existentially algebraically prime (FEAP) if it has a model A € Ep such
that for any B € Er, A is isomorphically embedded in B.

Definition 12. The inductive theory T is called the existentially prime if:

1) it has a algebraically prime model, the class of its AP (algebraically prime models) denote by APr;

2) class E7 non trivial intersects with class APp, i.e. APr(Er # 0.

On the other hand, in [1] the notion of core model was studied in the framework of the study of convex
theory or strongly convex theory. Therefore, later in this article we will consider the property of convex and
strongly convex of the considering theory, as an additional concept to the core Jonsson theory.

The following fact about the realization of existential formulas with respect to extensions is well known.

Lemma 1. Assume that A C B are models of 3="x¢, where ¢(z) is existential formula. Then

{acA:Al=gla}={be B: B} o}

Proof follows from the fact that existential formulas are closed with respect to extensions.

Sometimes, we will need structures with special properties, and we will deal with theories that satisfy certain
model-theoretical conditions. In the remainder of this section, we determine the properties that we will use and
state some elementary facts concerning them. For more information, see [7] and [5].

To denote that B satisfies every true sentence of an existential sentence on A we write A3B . Th(C), the
complete theory of C, is the set of all sentences true on C.

The convex theories have an important algebraic property: let T' be a convex theory, then for any model
A of T', any nonempty subset B C A generates a single substructure, which is a model of the T'. In particular,
the intersection of all models of T' contained in this model and which contain this set B. If the theory of T is
strongly convex, then the intersection of all models of T' contained in this model of T is also a model of T'. This
intersection is called the core model of T'. In [1] noted that if T" satisfies a joint embedding property and it is
strongly convex, then the core model of this theory is unique up to isomorphism.

In the remainder of this article, we will deal with the above mentioned combinations of Jonsson theories.
Hence, we will try to transfer some results from [1] to Jonsson theories that satisfy Definition 10 or Definition 11,
or their combinations. What is the meaning here? The fact is that from the definition of core and the existentially
algebraically primeness of Jonsson theory, it can be noted that a core model from [1] in the framework of the
study of any Jonsson theory will be unique and rigidly embeddable model of the considering theory. And thus,
such statement of the problem regarding of the core models is considered for the first time.

Theorem 3. For any core perfect Jonsson theory T, the following conditions are equivalent:

1. A is core model of T

2. A is rigidly embeddable in any existentially closed of model T’

3. A is a model of center of T* and exist an existential formulas ¢;(z) and k; € w for ¢ € I exist , such that

A, T* =T Fige; Vi e I,
and

A|:V$\/¢i

iel
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Proof.

The equivalence of items (1) and (2) follows from the fact that the theory is core and perfect. Let us prove
from (3) to (2) Let B be some model of the theory T™*, then there exists B’ such that B’ is an existentially closed
model of T*, where B is elementary embedded in B’ relative to existential formulas. Such B’ exists due to the
inductance of T*. Moreover, the power of B’ can be any power that less or equal to the power of the semantic
model of this theory. It is clear that A is elementary embedded in B’ with respect to existential formulas, then
in B’ there is an existentially closed submodel A" such that A is isomorphic to A'.

A={acA:AE \/(Z)l[a]}

il
where ¢; are existential formulas such that A’, B’ and B are models of 3=*iz¢;. By Lemma 1, therefore

A={beB:B E\/¢b]} ={beB:BE\/¢b]}

i€l i€l

Hence A’ C B and therefore A is the core model of 7.

2) = (3)

By virtue of the perfectness of theory follows that A is a model of the center and, due to of its coreness, it is
embedded exactly once in any model of this center. Further, due to the fact that the center is a model companion
of T (since the theory T is perfect), and the model companion is a model-complete theory. Accordingly, in a
model-complete theory any formula is equivalent to some existential formula. This implies condition (3)

Corollary 1. C is the core model of some perfect core Jonsson theory 7' if and only if C' is the core model
of the Kaiser Hull T° of T.

Proof: Let us prove the necessity of the statement.

Let C be the core model of the above perfect core Jonsson theory T'.

Let M be semantic model of T. Let T° be the Kaiser hull of T, i.e.

T° = {p € Ly : ¢ € V3 sentences and M = ¢}

where ¢ are the set of all sentences of the signature language of the theory T.

Such that T is perfect, then T* is a model companion of T" and hence, a model complete theory. As a
consequence of this, any formula in 7™ is equivalent to some existential formula. Since M is a semantic model
of T and a model of T*, then the Kaiser Hull 7° will be equal to the center of the theory T, i.e. T*, where

T* = {p € Ly (the set of all sentences of the signature’s language of T) : in M = ¢}.

The condition (3) of Theorem 3 holds for the model C' and T, and it follows that C is a core model of the
theory T%. Let A be an arbitrary model of T, then C' is isomorphically embedded in A in a unique way, that is,
there is C’ such that C’ C A, where C’ is isomorphic to C. Moreover, C’ is isomorphically embedded in every
model of T*.

C'=n{B:BCAand BE=T"}

Thus, it turns out that 7 is strongly convex and that C' is the core model of theory T*. .

Let us prove the sufficiency of the condition. Suppose that T* is a strongly convex theory and that C' is the
core model of theory T*. Let A be a model of T" and let M be a semantic model of theory T'. Then C' € M and
C = (4 for some C7 € M. Since C, which is a model of theory T™*, has no proper submodel we can say that

there is a model.
Ci=n{B:BC M and B =T}.

In particulary, C; C A. If C' is isomorphic to some other Cy C A, then it is easy to show in a similar way,
that C; = Cs, and therefore C' is a core model of the theory T

Corollary 2. Let C be the core model of the strongly convex perfect core Jonsson theory 7. Then there exist
existential formulas ¢;(z) for ¢ € I, such that

T* |=3Ya¢; forallie I,
and

CEVz\/ ¢

iel
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Corollary 3. The core model C is rigidly embeddable in each model of T if and only if condition (3) of
Theorem 3 is satisfied with k; = 1 for all ¢ € I.

Theorem /. Let C be the core model for some existentially algebraically simple theory T'. Then the following
conditions are equivalent.

(1) C is embedded in every existentialy closed model of the center of this theory.

(2) C is an algebraically prime model of the theory T.

Proof: We prove from (1) to (2). Let model C be embedded in each existential closed model of the center of
this theory. Suppose that model A does not belong to Er and suppose that model C' is not embedded in model
A. Since T is a Jonsson theory, then by the inductance of this theory there exists a model B € Er such that
A is isomorphically embedded in B, but model B is isomorphically embedded in the semantic model M of T.
The model B also belongs to set of existentially closed models of the theory T*.

Let C’ be an isomorphic image of the model C' in the model B. The model A’ is an isomorphic image of the
model A in the model B, if C’ is embedded in A’, then we get a contradiction with our assumption that C' is
not embedded in A. Therefore, suppose that C’ is not embedded in A" and they are not isomorphic. From this
it follows that there is a formula that distinguishes them. Let this formula be ¢(x). Without loss of generality,
suppose that in C' = ¢[c] where ¢ € (7, that is, in C’ = Jzep(x) but by assumption in the model A’, which
is isomorphic to the model A, it will be true that A’ = —pla] where a € A’. But both A’ and C” belong to
the model B, which is existentially closed in accordance with the above. Then B = Jz(p(x)&—p(z)) we get a
contradiction. So the model C is an algebraically prime model of the theory T'

From 2 we prove 1. Let C' be an algebraically prime model of the theory T. Thus C is isomorphically
embedded into any model B € ModT, but since T' C T we have ModT™* C ModT'. It follows that the model C'
is algebraically prime for the theory 7%, and from this we conclude that C' is isomorphically embedded in any
model from E7, because B C ModT™

References

1 Kueker D.W. Core structures for theories / D.W. Kueker // Fundamenta Mathematicae LXXXIX. —
1973. — P. 154-171.

2 Baldwin J.T. Algebraically prime models / J.T. Baldwin, D.W. Kueker // Ann. Math. Logic. — 1981. —
20. — P. 289-330.

3 Yeshkeyev A.R. V-cl — atomic and prime sets / A.R. Yeshkeyev, A.K. Issaeva // Bulletin of the Karaganda
University. Mathematics series. — 2019. — Vol. 93, No. 1. — P. 88-94. DOI 10.31489,/2019M1 /88-94

4 Yeshkeyev A.R. The atomic definable subsets of semantic model / A.R. Yeshkeyev, A.K. Issaeva,
N.M. Mussina // Bulletin of the Karaganda University. Mathematics series. — 2019. — Vol. 94, No. 2. —
C. 84-91. DOI 10.31489/2019M2/84-91

5 Robinson A. Introduction to Model Theory and to the Mathematics of Algebra / A. Robinson. —
Amsterdam. North-Holland, 1963.

6 Emxees A.P. lonconosckue Teopun n ux Kiaccel Mogesneii: Mmonorp. / A.P. Emxees, M.T. Kacbiverosa.
— Kaparanga: za-so Kapl'V, 2016. — 370 c.

7 Keitcaep X.Ix. Teopust momesneit / X.JIx. Keiiciep, 4.9, Ysn. — M.: Mup, 1977. — C. 667.

8 Yeshkeyev A.R. Central types of convex fragments of the perfect Jonsson theory / A.R. Yeshkeyev,
M.T. Omarova // Bulletin of the Karaganda University. Mathematics series. — 2019. — Vol. 93, No. 1. —
P. 95-101. DOT 10.31489,/2019M1/95-101

9 Yeshkeyev A.R. Properties of lattices of the existential formulas of Jonsson fragments / A.R. Yeshkeyev,
M.T. Kasymetova // Bulletin of the Karaganda University. Mathematics series. — 2015. — Vol. 79, No. 3.
— P. 25-32.

10 Yeshkeyev A.R. On lattice of existential formulas for fragment of Jonsson set / A.R. Yeshkeyev,
O.1. Ulbrikht // Bulletin of the Karaganda University. Mathematics series. — 2015. — Vol. 79, No. 3.
— P. 33-39.

108 Bectnuk Kaparanmurckoro yHuBepcurera



Core Jonsson theories

A.P. Emikeen, A.K. Ucaera, H.B. Tlomosa

AnposblK MOHCOHABIK, Teopusjap

MakaJjraarsl HEri3ri HoTUKeJIep 0J1 HOHCOHIBIK, TEOPUATAPIBIH, sIIPOJIBLIBIFBI CUAKTBI KAHA YPBIM/IbI YKOHE
JIe OCBhI TEOPUSIIAFbl SK3UCTEHIMAJIIbI TYHBIK MOJIE/Ib/IEP KJIACBIH/AFBI SAPOJIbI MOJIEJIB/II PYKCAT €TeTiH
KOMOWHAIUSITAPABI CATIATTAY OOJIBIN TAOBLIAIbI. Y1 IPOJBIKIIEH KATap OChI TEOPUSIIAFEI SIIPOJIBI HOHCOHIBIK,
TeOpUsIIAPAbIH, SK3UCTEHINAJIILI aJIreOpasIbIK »Kall TeopusIapIblH KacueTTepi KapacTolpbliran. COHbIMEH
karap, aBropJap [1] keiibip HSTI/DKeJIepILI ANPOJIbIK HeMece EAP aHbIKTaMaiapblH HEMece OJIap/IbIH KOMOU-
HALMSUIAPBIH KAHAFATTAHILIPATHH VIOHCOH TeOpHsUIApbIHA KOLIIpiln Kepui, srHu VIOHCOH TeopUsiIapbIHbIE
Keibip KOMOMHAIAATAPHIH KAPACTBIPIbI. HNoncon TEOPUATAPHIHDIH, s/IPOJILLITBIK KOHE SK3UCTEHIIMAI/IbI Kai
aHBIKTaMasapblHaH [1| sIIPOJIBIK MOMENb Ke3 KeJreH MonconapIK, TEOPUSHBIH, 3€pPTTEY asiChl TYPFBICBIHAH
aJcak Ta, KApaCTBIPBUIBIIT OTHIPFAH TEOPUSHBIH, €peKIle XKoHe KAaTaH eHri3uTiMai Momeni 60JaThIHBIH aTall
keryre 6osaabl. COHABIKTAH, AAPOJIBIK MOIEIbIAEPTe KATHICTH KOMBIIFaH Moce/le aJFallKbLIapAbiH 6ipi 60-
JIBII TAObLIAIBI.

Kiam cesdep: nesec teopusi, KATTHI JIOHEC TEOPUsi, HOHCOH TEOPUSICHIHBIH, IIEHTPI, CEMAHTUKAJIBIK, MOEJIb,
anrebpaJIblK, 2Kail MOJIE/Ib, sIIPOJIbI MOJIE/b, SIIPOJIBI TEOPUS.

A.P. Emikeen, A.K. Ucaera, H.B. Tlomosa

AnepHble TIOHCOHOBCKUE TEOPUN

OCHOBHBIM PE3yILTATOM CTATHH SBJISIETCS ONMMMCAHUE HOBOTO MOHSATHUS KaK SePHOCTH HOHCOHOBCKUX TEOPHIA,
a TakKe UX KOMOWHAIINM, KOTOPbIE JOMYCKAIOT SIIEPHYIO MOJIENb B KJIACCEe IK3IUCTEHIINATIBHO 3aMKHYTBIX
MozeJieil 3Toit Teopuu. Hapsiy ¢ siepHOCTBIO pacCMOTPEHO CBOMCTBO SK3UCTEHIMAJIBHO ajredpamdecKn
MPOCTOI TeOpHM, KAK JOTMOJHUTETHHOE CBOMCTBO sA/IEPHOI TIOHCOHOBCKOM Teopuu. Takrke aBTOpaMU U3yde-
HBI HEKOTOpPble KOMOWHAIINN TeOpHUit I7IOH(:0Ha7 rJie OHU IONBITAJINCH IIEPEHECTH HEKOTOPbIe Pe3yIbTaThl U3
[1] B Teopun Honcona, KOTOPBIE YIOBJIETBOPSIIOT ONpPEIEIEHUIO siaepHocT mwin AP, nin nx koMOuHAaIu-
sam. U3 ompesiesieHust siIEPHOCTA U SK3UCTEHITHATIBHO AJITeOPAnIecKOil TPOCTOTHI TEOPUH Momcona MoKHO
OTMETHUTBH, UTO sifiepHasl Mozenb u3 [1| B paMkax msydeHus Jjo6oit Teopuu HMoucona Oy/leT YHUKAJbHON U
2KECTKO BJIOYKMMOM MOJIEJIBIO paccMaTpuBaeMoil Teopuu. U B 3aKJIIOUEHIN OTMETHUM, UTO TaKasl TOCTAHOBKA
po6JIEMbI OTHOCUTEJIBHO SITEPHBIX MOJIEIEH M3ydeHa BIIEPBBIE.

Karouesvie crosa: BBITyKJIash TEOPHUs, CUJILHO BBIIIYKJIAs TEOPUS, IIEHTP HOHCOHOBCKOM TEOPUHU, CEMaHTUYe-
CKasl MOJIEJ/Ib, aJireOpandecKn MPOCTasi MOJIEJb, sSIAePHAasi MOJIEJb, sIepPHAsi TEOPHS.
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New exact particular analytical solutions of the
triangular restricted three-body problem

The triangular restricted three-body problem is studied in special non-inertial central reference frame with
origin at forces centre of this problem. Masses are arbitrary values. We studied the solutions of dimensionless
differential equations of motion of the triangular restricted three-body problem in rotating reference frame
in the pulsating variables. For the non-circular planar restricted three-body problem we have found out new
exact analytical solutions. In these solutions, all the three bodies form an isosceles triangle with variable
height. Also, we have found new class of analytical solutions of the planar circular restricted three-body
problem in the form of non-isosceles triangle. The basis of this non-isosceles triangle is distance between
the primary bodies, the ratio of sides of non-isosceles triangle is constant and infinitesimal small body
is at vertex of this non-isosceles triangle. Obtained exact particular analytical solutions can be used for
topological analysis of the general three-body problem.

Keywords: restricted three-body problem, non-inertial reference frame, invariant of center of forces, exact
particular analytical solutions.

Introduction

We considered the restricted three-body problem with constant masses my, mo, mg. The condition of the
restricted three-body problem statement is mo < mg, me < my1, ms > my. It is widely known that at random
masses of the primary bodies m; u ms, the restricted three-body problem has the exact particular solutions -
Lagrange solutions, when all the three bodies form an equilateral triangle [1-3]. Also there exist the solution
in the form of isosceles triangle when masses of the primary bodies are equal to each other [1-3]. The problem
has various applications, but the general analytical solution of this problem in finite form is not found. Due-to
this, lot aspects of this problem are studied by different methods and there are plenty publications on this
problem. In [4], there have been done orbit classification with numerical computation of the planar restricted
three-body problem. In the work [5], good review on resonance of the Lidov-Kozai. In the work [6], there have
been considered various applications of the restricted three-body problem to the Earth-Moon system and the
Pluto-Charon system. The libration point orbits of the system the Earth and the Moon is described in the
work [7].

In the work 8], the perturbing planar circular restricted three-body problem is used to study the restricted
n-body problem. In the work [9], the elliptical restricted three-body problem is investigated and energy analysis
has been conducted. In the work [10], the short-term capture of an asteroid is studied in the system Sun-
Moon in the framework of the restricted four-body problem. In the work [11], based on the planar elliptical
restricted three-body problem, calculation method of energy variation for one and two-impulse powered swing-by
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of spacecraft proposed for the Earth-Moon system. In the work [12], the charged restricted three-body problem
is studied, linear stability of planar solutions is investigated and resonance curves are analyzed. In the work [13],
the very long-term evolution of the hierarchical restricted three-body problem with the Lidov-Kozai cycles. In
the work [14], the invariant manifold structures of the collinear libration points of the restricted three-body
problem are investigated. In the work [15], through numerical simulation of the restricted elliptical three-body
problem the borders of stable regions around the secondary body found. In the work [16], the existence and
stability of the non-collinear libration points in the restricted three-body problem when both the primaries are
ellipsoid with equal mass and identical shape are investigated. The two planet three-body problem composed of
a central star and two massive planets is investigated and the authors show that secular dynamics of this system
can be described using only two parameters, the ratios of the semi-major axes and the planetary masses [17].

In the paper [18], the stability of the equilibrium points under the influence of the small perturbations in the
Coriolis and centrifugal forces, together with the effects of oblateness and radiation pressures of the primaries
is investigated. in the work [19], the elliptic isosceles restricted three-body problem with consecutive collision
is investigated and the existence of many families of periodic solutions has been proved. In the paper [20],
circumbinary accretion discs in the framework of the restricted three-body problem is investigated through
numerical solutions of viscous hydrodynamics equations and implicit changes of behavior of the disc near some
mass ratio.

Above mentioned analysis of publications shows that the search for new exact particular analytical solutions
for random masses m; and mg is important task. This work is a continuation of our research done in the
paper [21]. In this work, we study analytically the triangular restricted three-body problem, when three bodies
form triangle during all the time of motion. The problem is studied in the special non-inertial central reference
frame with the origin at the center of forces [2, 21] through using invariant of center of forces.

2 Equations of motion of the restricted three-body problem in different
reference frames and invariants of center of forces

2.1. Classical equations of motion of the restricted three-body problem in absolute reference frame.
In an absolute reference frame OX*Y*Z* the differential equations of motion of the restricted three-body
problem with constant masses mj,mo and mg, can be written in the following way [1-3]

“* "*
RS — Rl
*3 ’
R13

L] D%
Rl — R3

B = B — fmg By = By = g P15 (1)
R31

. B _ B B _ B

R;:F;:f mq 1 " 2+m3 3 " 2 5 (2)
Ry R33

In these equations Ef - radius-vector, ﬁfj (¢ # j) — distances between the bodies. Differentiation in time ¢t is

denoted by dot over symbol. The system of differential equations (1) describes the two-primary bodies problem

with masses mq, m3. From this differential equations system, one can obtain the well-known relation

D * D * ke T % — Tk —
miR] + msR; = a*t +b", a" =const, b" = const. (3)

The equation of motion (2) describes motion of infinitely small body mso in the Newtonian gravity field of
the two primary bodies mi, ms - the classical restricted three-body problem.

2.2. Differential equations of the restricted three-body problem in the special non-inertial central reference
frame and invariants of center of forces.

Then we go to the special non-inertial central reference frame through the formulas ﬁ:‘ = EG +7r,1=1,2,3.
where RG - radius-vector of the forces center GG in the absolute reference frame, 7;- radius-vectors of the bodies
in the special reference frame. The axes of the new reference frame are Gxyz parallel to the corresponding axes
of the absolute reference frame OX*Y*Z*. The differential equations of the restricted three-body problem (2)
in the special non-inertial central reference frame Gzyz have been obtained in the work [21]

Py — Fy =W, (4)
» R e
Fy = f (m1 + ms3 ) R (5)
A3 A
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T (m1 —kmsz) 7 - d 1 L d? 1
W=W({t)=—f—— +2I31— | —— — | — 6
O=—= g P i) e T (©)
where the dimensionless parameter of the problem is denoted by
Bk =kt) >0, (7)
™

A;; - distances between infinitesimal small body and the primary bodies
Agr = [(w2 — 1) + (2 — 11)* + (22 — 21)*]"/* = Ay,

A23 = [(372 - 333)2 + (yQ - y3)2 + (22 — 2’3)2}1/2 = A327

731 (%31,Y31, 231) - solution of the differential equations of the two primary bodies system, which can be obtained
from the (1)

-, mz+mi
T31 = —f——5—T31.
31
From the integral
731 X T'31 = C31 = const # 0 (8)

one can see that the orbit is planar and the orbit is on the plane Gzyz. The equation (3) can be rewritten in
the following form = .
(m1 +m3)RG+m1F1 + mgiy = ad*t + b", (9)

in order to define the origin of the special non-inertial reference frame, one needs to know the dimensionless
variable k. If one obtains k, then taking into account (7)

—

Fgl :f'l—ngf’l—rg(—é’l):f}—(krl)(—é’l):rl—i-kf’l :(1+k)F1

Therefore
. 1 . ko

= stla r3 = —mrzsr

Then from the equation (9), it is possible to define the origin of special non-inertial central reference frame

- - - mi—km
(m1 + m3) Rg=ad't+b" — (mlf'l + TTL3’I?3) =ad't+b" — ﬁ"%L (10)
Thus, defining the origin of the special non-inertial central reference frame leads to the defining the parameter k.
In accordance to the definition of special reference frame, the forceF5 is directed to center of forces G all the
time - to the beginning of the new reference frame. That is why

Fy x 7% = 0. (11)

The equation (11) defines invariant of center of forces established in our work [21]. Invariant of forces center of
the restricted three-body problem in the special non-inertial central reference frame in scalar form is

ms maq .
—T3 — —71 | Tosina = 0, (12)
(Aﬁs A3 )

where « - is angle between the vectors 7 and 75. Thus, in the special non-inertial central reference frame,
regardless of the primary bodies masses and properties of triangle formed by three bodies, the equation (12) is
right for the restricted three-body problem during all time of motion.

8 The triangular restricted three-body problem.

From mathematical point of view, the equation (12) takes a place in several cases. In this work we study

only one case
ms my

AL A
Other cases of fulfilment of forces center invariant (12) will be considered in another works. In the case (13)
all three bodies form triangle during all time of motion. Size, shape and orientation of triangle changes over

r1 =0, rosina #0. (13)
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time. The equation (13) takes a place in the triangular restricted three-body problem. Taking into account the
equation (7), the first equation in (13) can be rewritten as

A23>3 ms3
T =k—. 14
(Am mi ( )

Thus in the special non-inertial central reference frame, regardless from primary bodies masses and properties
of triangle formed by three bodies, the equation (14) is always right for the triangular restricted three-body
problem.

In vector form, the invariant of forces center in the triangular restricted three-body problem can be written

m1A§3’F1 + m3A§1’F3 =0. (15)

Let us consider the equations of motion of the triangular restricted three-body problem (4)—(7) in the special
non-inertial central reference frame, in the general case, when k = k(t) # const, 7o = 7 (z2,y2,22). The
invariant of forces center of the triangular restricted three-body problem (14) or (15) can be rewritten as

my \ V3
Am:( ) Ass. (16)

In our work [21], using invariant of center of forces (16) and geometrical properties of triangle, the differential
equations (4)—(6) can be rewritten as

- 22 o . H2Yy2 o
brt s =W Bt s = W (17)
.. H222
2 oy (18)
with the following designation
/31.1/3\3/2
(m3® +m?PE1/3) ) k
= = . 19
=y 7Y 2T e O (19)
x ) .
W, = Bz% + Daizy + Eoxz1, W, = Bz—i’ﬁl + Dayz1 + Eays1 (20)
31 31

d 1 d2 ]. mi — km3
Dy=2—|—— Ey=—|—— By=—f———. 21
? ﬁ(1+k>’ 2 dﬁ(1+k)’ 2=~ 1)

The equations (17), (18), in accordance to the solution of the two-body problem, in the case (8), describes
the elliptical (in particular circular), hyperbolic or parabolic triangular restricted three-body. The forces center
invariant (16) can be rewritten as

1 ? 1 ? 1 2
<332 1ok +k9€31> + (yz 1k +ky31> + (Zz T1rk +k231> =

2/3 2 2 2
- + Lx + + i + | 22+ i zZ (22)
= s TR 2R 2TIRESY) |

The system of equations (17)—(21) and (22) have four scalar values xs, y2, 22, k, that is why these four scalar
equations represent closed system of equations describing the triangular restricted three-body problem.

114 Bectnuk Kaparanmgurckoro yuuBepcurera



New exact particular analytical...

4 The differential equations of the triangular restricted three-body problem,
in the rotating special non-inertial central reference frame in the pulsating variables

Let us consider the problem in the rotating special non-inertial central reference frame G¢n(¢ in the dimen-
sionless pulsating variables. The new axe £ go through the bodies with masses ms and m;. The transition
formulas are following [1-3, 21]

To=r-£cosf —r-nsinf, ys=1r-&sin@+r-ncosh, zo=r1-(, (23)
do = dt, 13 =€ 47+ = (24)

In the analytical expressions (23), (24), the values r = r (t) = r3; and 6 = 0 (t) = 03, are defined by solution
of the two-body problem. In the rotating special non-inertial central reference frame in dimensionless pulsating
variables, the differential equations of the triangular restricted three-body problem are [21]

1 A 1

7 _ 2 / _ 1 _ — B 12 25
¢ n 1+ecos@< (p2+0§)3/2>€ 1+ ecosf tsh (25)

1 A
"og — 1— =25 26
N+ 2¢ 1+ec089< (p2+03)3/2>77 s, (26)

1 A
LA 0+ —M— =0 27
¢ +1+ecos0 (eCOS +(p2+a§)3/2>c ’ (27)

where dimensionless variables are
3/2
[1+ 12/3K1/3] 3/2 (31/3 + 123 (1 — 5)1/3) 1
A= - >0, s=— 28
1+ B)72(1 +v) 1+v T1tk (28)
k—v 1-s(1+v) my 5 9

B = = = — = t>0 =s—s°. 29
T x> Y o~ const >0, o05=s5—35 (29)

In the equations (25)—(27) and further, differentiation in 6 is denoted by stroke. Invariant of the center of
forces of the triangular restricted three-body problem (22) in the pulsating variables £,1,¢ with the denotations
(28), (29), can be written as

Vs
1—s

2/3
c-arrre= (1) [e-arer+e], a-s a=-0-. (30)
Let us denote that the three differential equations (25)—(27) and one algebraic equation (30) consist four variables
&n,C u s that is why the system is closed.

The differential equations of motion (25)—(27) of the triangular restricted three-body problem in general
case corresponding to the parameter s = s(t) # const (k = k(t) # const) in the special non-inertial central
reference frame in the pulsating variables are convenient for establishing exact particular analytical solutions.
The mass parameter v can be included into these equations in accordance to (28), (29).

While studying the solutions of differential equations of motion of the triangular restricted three-body
problem in the special non-inertial central reference frame (25)—(27) and (30), it is convenient to distinguish the
three possible cases:

1. k=my/m3=v = const (31)
2. k= const #v =my/ms = const (32)
3. k=k(t) # const. (33)

In each case it is needed to define the required four scalar values, uniquely satisfying the system of equations
(25)—(27) and (30). Let us consider each case.
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5 The first case - the isosceles non-circular restricted three-body problem.

Let consider particular and important case of the triangular restricted three-body problem (31), when the
equations (25)—(27), (30) can get significantly simplified. Let the following condition take a place

k =my/mz =v = const > 0. (34)
Let us note that in the case (34), the values of masses my u m3 are completely different. In this case, from (30)
Agl = Agg = A. (35)

From the equation (10) it is seen that, at k& = mj/mg3 the special non-inertial central reference frame Gryz
transforms into the barycentric reference frame Goxyz. It is well-known that the barycentric reference frame is
inertial reference frame. At that, radius-vector of the barycenter is defined by the relation (10) in the absolute
reference frame. Accordingly taking into account (35), the vector form of the forces center invariant to be
transformed into the invariant of masses center

mi71 + moia = 0.

In this case from (35) it comes that the triangle formed by three bodies is isosceles during all time of motion and
at vertex of this triangle is massless body. This case is studied by us in the works [22-24], but from different point
of view. The isosceles restricted three-body problem is described in general case and it can be elliptical (circular
in particular), parabolic, hyperbolic and rectilinear isosceles restricted three-body problem. Let us consider the
most interesting case, when the following conditions can take a place in the equations (25)—(27), (30)

e#0, (=0, k=mq/ms=rv=const>D0. (36)
In this particular case we have the planar isosceles non-circular restricted three-body problem and some variables
in the differential equations (25)—(27) will get simply
2 mims

oi=0=—"" - A=1, B=0.
(m1+m3)

In the barycentric rotating reference frame in pulsating variables, the differential equations of motion of the
planar isosceles non-circular (e # 0) restricted three-body problem is

1 1
//72/77 1 — - _
& =2 1+ecos9< (p2+02)3/2>f 0, (37)

1 1
T2 — (1 — =0. 38
LS 1+ecos9< (p2+02)3/2> g (38)

Taking into account (36) and (28)—(29), from forces center invariant (30) expressed in pulsating variables,
one can obtain
ms — 1My

E=¢" = 5 = const # 0. (39)

(ma +m3)

Thus in equations of the planar isosceles non-circular (e # 0) restricted three-body problem (37)—(38) the axe
& is defined. This is constant value and defined by the formula (39). Taking into account (39), the equations of
motion (37)—(38) will get more simply and we obtain dynamical system with one degree of freedom

o £ 1
T =790+ ecosh) <1_ (772+1/4)3/2) ’ (40)

" n 1
=—[(1- — 41
K 1+ ecosf ( (n2 + 1/4)3/2> (41)

From the differential equations system (40), (41), one can obtain integrals identifying new trajectory in the
planar non-circular (e # 0) isosceles restricted three-body problem

&n'+nP=c, o =&+ =const, & #0. (42)
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The differential equation (42), depending on the value ¢;, has three types of solutions. Let us emphasize that
the particular case of the equations system (40), (41) when

e=0, 731 =a=const, c31 =const#0 (43)
is studied by us in details in the works [25, 26]. In these works, the case (43) is studied through different methods.

6 The second case. Reduction to quadrature of solutions of the planar
circular triangular restricted three-body problem.

In the case (32)

k = const #my/m3 >0, (k#v) (44)
all three bodies form non-isosceles triangle during all time of motion
€ — 2 — A _e=p . B0 (45)
1+ ecosf (p2+a§)3/2 ’ ’
1 A
"y 9¢l _ 1— =0 46
n'+ 2 1+ecost9< (,02—1—05)3/2)77 ) (46)
1 A
" 0+ ——— =0 47
¢ +1+ecos€ (ecos +(p2+a§)3/2>c ’ (47)
with .
2 2 2 2 my 2
=&+ +¢°, v=—=const>0, o05;=——-—==const >0,
P & n ¢ ms 2 (1 +/€)2
a1 1/213/2
14 p2/3)1/3 3 E—
A:[ v } = const > 0, Bziyzconst;«éo.

(1+Kk)Y2(1 +v) (k+1)(1+v)

Taking into account (28), (29) and the condition (44) the forces center invariant (30) can be written as

(=)’ +0* + ¢ = (/) [(€ = &)" +n? + ¢, (48)
& = Hik =const, &3 = Tk = const.

Based on the obtained equations, we can establish exact particular analytical solutions of the planar triangular
circular restricted three-body problem. Let take a place the following condition in the equations (45)—(47)

e=0, (=0, k=const#mi/mgz>0. (49)

Taking into account (49), from the center of forces invariant (48)

n® + & = Ei + Ey, (50)
2(1+ev) (1 —ev?)
Ey=—2oT  _onst, Ey=-—— 2 — const.
S Ao 90T ) const, Ep TEBEE cons
l—e=1—(v/k)*? = const #0
From the equation of motion (45)-(47), the Jacobi integral can be derived

| Be — C — const .
5(5 +77>_§(§ +77)—W— § = C = const. (51)

The existing of the two equations (50) and (51), in the case (49) allows us to reduce to quadrature the
solution of the problem.

The parameter k, in accordance to the inequality (44), is defined from the condition of defining of possible
motion region.
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7 The third case

The general case (33) is most interesting and sophisticated, that is why it shall be investigated in another
work.

8 Conclusion

In this work, the triangular restricted three-body problem is investigated analytically in the special non-
inertial central reference frame with the origin at the center of forces. The solutions of differential equations
of the triangular restricted three-body problem is in the rotating special non-inertial central reference frame in
dimensionless pulsating variables. New exact particular solutions have been obtained.

In the planar triangular non-circular restricted three-body problem (e # 0) there have been found out new
exact particular solutions of differential equations of motion in the form of isosceles triangle with variable height
for arbitrary values of masses. There have been obtained new exact particular analytical solutions of differential
equations of motion of the planar triangular circular restricted three-body problem (e = 0) in the form of non-
isosceles triangle at arbitrary values of masses of the primary bodies. The basis of this non-isosceles triangle is
distance between the primary bodies, and the ratio of lateral sides is permanent. A massless body is on vertex
of this triangle.

We plan to perform detailed analysis of the equations of motion and to investigate stability of obtained new
solutions of the triangular restricted three-body problem. The obtained exact particular analytical solutions can
be effectively used for topological analysis of the general solution.
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IllekTenren ynioyphIIITHL VIO JeHe MOCeJECiHiH >KaHa
HaKThI JiepObec aHAJUTUKAJIBLIK MIelliMaepi

YOy phIITHI MIEKTEJINeH VI JeHE MOCEJIEC] aHAIUTUKAJIBIK YKOJIMEH apHAbl HHEPIUAJILI eMeC IIeHTPAJI-
bl CaHAK, YKYHeciHme KapacThIpblaraln. by canak »kyiieHiH 6achl Kymirep meHTpinge opHasgacagpl. Herisri
€Ki JieHe Maccagapbl Ke3-KeJreH mama. AWHaaMasbl CaHaK, *KYHeCiHIH MyJIbCUPJIEHTeH aflHbIMAJIbIIAPBIHIA
YUIOYPBIIITHI MIEKTEJITEH YIII JIeHe MOCeJIeCiHiH, omeMci3 auddepeHnuaabk Teraeyiepi 3eprresa. [len-
OepJIiK eMec »Ka3bIK IIeKTEreH YII JeHe MaCesIeCiHIe KaHa HaKThI jepbec TeHOyHipi OMiKTiri aifHaaMaJIbl
YHIOYPBINT TYPiHIE AHAJUTUKAJBIK IIEMIMIAECD aHBIKTAJIbI. 2KoHe TeHOYHipJi eMec YIIOYPBIIT TypiHe-
i ’Ka3bIK IIeHOEPJIIK MMEKTE/INeH YIII JIeHe MOCEIECIHIH KaHA aHAJTUTUKAJIBIK, TEHIEYIEP KJIACChl TAOBLIIbI.
Tenbyitipsi emec yOyphIIITHIH, HET13iH €Ki HEri3ri JeHeep apaKaIlbIKThIFBI KYPaliibl, TeHOYHipJIi emec yiir-
OYPBIITHIH OYilip KaObIpFaiapbIHbIH, KATBIHACHI TYPAKTHI I1aMa, YKOHE OChI TeHOYHipJIi eMec YIIOYpPBIIITHIH
TebeciHIe Maccachl IIEKCI3 a3 JieHe OpHajacaabl. TabbLIFaH HAKTHI JIepOec MIEeNiMIep i KaJImbl MICeTeH]
3€pTTEy VIIMiH TOMOJOTUSIJIBIK, TAJIIayFa KOJIIAHyFa OO IbI.

Kiam cesdep: meKTeJIreH YIII JIEHE MOCEJECi, MHepIUAJIIbl eMeC CaHaK, »Kyiteci, KyITep IeHTpiHiH WHBa-
PUMAaHTBI, HAKTHI JepbeC aHATUTUKAJIBIK, IIeNiMIeD.
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HoBble TouHbIE YacTHbIE aHAJUTUIECKNE peIleHus
TPEyTroJibHOIl OrpaHUYE€HHOI 3aJla4uMl Tpex TeJl

AHanuTUYECKN MCCIe0BaHa TPEYTOJbHAs OIPaHUYEHHAs 3aJ]a4a TPeX TeJl B CHelUaIbHOW HeMHEPIUAJIb-
HOI IIeHTPAJIbHOI CHCTEMe KOODJMHAT C HAJaJOM B IIEHTPe CUJI ucciemyeMoil 3ama4un. IIpm sTom maccsr
OCHOBHBIX T€JI IPOU3BOJIbHBIE. 3ydenHsl perennst 6e3pa3MepHbIX TUdHEPEHITNATBLHBIX YPABHEHUIA JIBIKE-
HUS TPEYrOJIbHOA OrpaHMYECHHOHR 3aa4ud TpexX TeJ BO Bpallalolleiica cucTeMe KOOPDAWHAT B IIyJAbCHPYIO-
IAX IepPeMEeHHBIX. B HEKpPyroBoil INIOCKON OrpaHHMYEHHON 3aJadue TPeX TeJl YCTAHOBJIEHBI HOBBbIE TOYHBLIE
aHAJIMTUYIECKNE YaCTHBIE PEIeHUs], B BUJE PAaBHOOEIPEHHErO TPEYroJbHUKA MMEPEMEHHON BBICOTHI. Takzke
AHAJIMTUYCCKNA HAMJICH HOBBII KJIACC PEIICHUN IIJIOCKOI KPYrOBOM OIPAHWYCHHOHR 3aJadd TPEX TeJI B BHAIE
HepaBHOOEIPEHHOro TpeyroybauKa. OCHOBaHMEM HEPABHOGEIPEHHOI'O TPEYIOJbHUKA SBJISIETCsl PACCTOSHHAE
MeXKJIy OCHOBHBIMH TE€JIAMH, OTHOIIIEHNE OOKOBBIX CTOPOH HEPABHOOEIPEHHOIO TPEYTOJIbHUKA IMOCTOSHHOE,
¥ Ha BEPIIUHE dTOT0 HEPABHOOEIPEHHOTO TPEYTOJbHUKA HAXOIUTCS TEJIO MAJIONH MAacCChl. YCTAHOBJIEHHBIE
TOYHbIE JACTHBIE AHAJMTUYECKNE PEIIEHNs MOXKHO 3(PDEKTUBHO UCIIOIb30BATD /I TOIIOJIOTNIECKOrO aHa-
Jin3a OOIIEro penreHust IPobIeMbl.

Karouesvie caosa: OrpaHuveHHasd 3a/avda TpexX TeJl, HEeMHepIhaJibHad CUCTeMa KOOPAWHAT, UHBapUuaHT II€H-
Tpa CUJI, TOYHbIEC 9aCTHbIC aHAJIUTUYICCKUE DEIIeHUsd.
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Movement of a material particle on an inclined plane all the points
of which describe circles in oscillatory motion in the same plane

Differential equations of material particle movement on an inclined rough plane, which performs oscillatory
motion in such a way that its every point describes a circle in the same plane, have been deduced.
Peculiarities of relative particle movement on a plane depending on the angle of its inclination to the horizon
have been investigated. The equations have been solved using numerical methods. Relative velocities have
been found and particle motion trajectories have been constructed. Kinematic characteristics of relative
particle movement depending on the angle of plane inclination, angular velocity, the coefficient of particle
friction on a plane and the radius of circular motion of plane points have been determined.

Keywords: inclined plane, oscillatory motion, relative motion, particle, kinematic parameters.

Introduction

An inclined plane is a general purpose construction element of numerous agricultural machines [1]. In the
course of processing technological material moves on it. Particle movement on a horizontal plane that performs
oscillatory straight-line or circulatory motion is the best investigated. As for an inclined plane, investigations
are mainly conducted for its rectilinear reciprocating horizontal oscillations in the direction of plane inclination
or in the transverse direction [1]. If there are non-rectilinear plane oscillations, when all its points describe a
circle and the plane itself is inclined, the movement of technological material changes significantly.

In addition to the fundamental monograph [1] that covers rectilinear reciprocating oscillations, there are
works focused on non-rectilinear plane oscillations. Academician P.M. Zaika [2]| investigated the movement of
a spherical particle on a horizontal plane, which performs translational oscillations in a circle and other [3, 7.
In fact, the problem of material particle movement on a plane that performs circular oscillatory motion was
first solved in geometric interpretation [8], generalized and applied to the cases of elliptical vibrations by
LI Blekhman [9]. Investigations of material particle movement on a rough horizontal plane, that performs
horizontal translational oscillations on various curves, are covered in the papers [10-19].

Material and research methods

Let us locate a plane in such a way that it is inclined to the horizon at an angle 8 (Fig. 1). A particle
performs relative movement on an inclined plane, where there are plane coordinates ouv arranged in such a
way that ou axis in directed in the line of the greatest inclination. The inclined plane together with plane
coordinates perform oscillations in such a way that all the points of the plane describe circles of radius R in
the same plane (Fig. 1,a, these circles are presented only in the apexes of the rectangle, which limits the plane).
Absolute particle motion is considered relative to the fixed coordinate system Ozyz, where Oy axis coincides
with ov axis, and there is the angle 8 between the inclined plane ouv and the coordinate horizontal plane Oxy.
The origin of the moving coordinate system (point o) describes a circle as well. Fig. 1 presents the two systems
at the time when their coordinate origins coincide.

In order to develop differential equations of particle movement, it is necessary to use its absolute trajectory
in the fixed coordinates Ozyz. The absolute trajectory of a particle is written as the sum of the corresponding
components in the translational motion and in the relative motion:

T =T+ Ty Y=Y+ Yr; z=z+ 2, (1)

where z; = z4(t); ye = ye(t); 2¢ = 2¢(t) is a trajectory of translational motion as a function of time;
Tp = 2, (t); Yr = yr(t); 2 = 2-(t) is a trajectory of relative motion as a fuction of time.
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Figure 1. Consideration of particle movement on an inclined plane with all its points describing
circles at oscillations in the same plane: a) mutual arrangement of the moving coordinate system
ouv and the fixed coordinate system Ozyz at the initial moment, when their coordinate
origins coincide; b) particle position on a plane, when it is projected into a line

Every point of an inclined plane, including the origin of the moving coordinate system ouw, describes a circle
of radius R. In the projections on the axes of the fixed coordinate system, relative motion of a plane is presented
by the following parametric equations:

x; = Rcos 8 coswt; Yy = Rsinwt; zy = —Rsin f coswt, (2)

where w is angular velocity of rotation of every point of a plane.

A particle slides on an inclined plane and its sliding trajectory in the moving coordinate system ouv is
written as a function of time ¢: u = u(t); v = v(¢). In the projections on the axes of the fixed coordinate system,
relative particle movement is described by the following parametric equations:

T, = ucos f3; Yr = U; zr = —usin 3. (3)
By summing translational and relative motion applying the formula (1), we obtain:
x = Rcos 8 coswt + ucos 3; y = Rsinwt + v; z = —Rsin S coswt — usin S. (4)

The dependences u = u(t); v = v(t), that describe the trajectory of relative motion (particle sliding on
an inclined plane), are the unknown functions that must be determined. By differentiating the equations (4)
with respect to the time ¢, the projections of absolute particle velocity on the fixed coordinate system Ozyz are

obtained:
7' = —Rwcos Bsinwt +u' cos 3;

Yy = Rwcoswt +v'; (5)
7' = Rwsinwt — usin 3.

Differentiation of the expressions (5) allows for projecting absolute acceleration:

2" = —Rw? cos Bcoswt + u' cos 3;
y" = —Rw?sinwt +v"; (6)
2" = Rw?sin B coswt — u” sin .

Let us deduce a motion equation in the form of mw = F, where m is particle mass, w is absolute

acceleration vector, F is the resultant vector of the forces applied to a particle. Such forces include weight

force mg (g = 9,81m/s?), the response N of an inclined plane and friction force fN at particle sliding on a

plane (f is friction coefficient). All the forces must be projected onto the axes of the fixed coordinate system.
Weight force is directed downwards, thus, its projections are written as:

{0; 0 —mg}.
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The response N of a plane is perpendicular to it (Fig. 1,b) and has the following projections:
{Nsing; 0; N cos 5} .

Since friction force is directed at a tangent to the trajectory of relative particle motion in the opposite
direction, let us find the projections of the tangent vector. They are determined by the first derivatives of the
equations (3):

x, = u cos f3; Yy =0'; 2, = —u'sin 3. (7)

The geometric sum of the components (7) provides the velocity of particle sliding on the surface of a cylinder
in relative motion:

/2+y/2+z/2_ u/2_~_,U/2. (8)

The unit tangent vector in the projections on the axes of the moving coordinate system Ozyz is obtained
from dividing the projections (7) by the vector value (8):

{ u’ cos 3 v u/ sin 3 }
—_— —_— —_— 5.
u/2 + ,U/2 u/2 + U’2 /u/2 + ,U/2

Let us break down the vector equation mw = F in the projections on the axes of the fixed coordinate
system, taking into account that the friction force fN is directed along the unit vector (9) oppositely to it:

9)

ma’ = Nsin f — fN—4cosd

my//:_fN\/%W; (10)
n_ ' sin B
mz" = —mg + Ncosf + fN 7= .

Let us insert other derivatives (projections of absolute acceleration) from (6) into the equation (10) and we
obtain the system of three equations:

m (—Rw? cos Bcoswt + u cos 3) = Nsin g — fN\}L%§

m (_RWQ sin wt + U”) = _fNW, (11)
m (Rw?sin B coswt — v sin B) = —mg-i—NCOSﬁ-i-fN%

The system (11) includes three unknown functions: N = N(t), u = u(t) and v = v(t). By solving it with
respect to N, v and v”, we obtain a very simple expression for N:

N =mgcosf. (12)

It follows from (12) that the force of N surface pressure on a particle is a steady-state one. It is possible

to obtain tentative verification that the mass m in the equations reduces, if it is substituted in (12) and (10).

After the rearrangement, the dependences u” and v” take the following forms:
" o__ 2 . _ u cosfB .

= Rw* coswt + gsin S fgim ; (13)

= Rw?sinwt — fg\/”u,czi"%é2 .
The system (13) cannot be integrated in the analytical form. It must be solved using numerical methods.
Analytical solution can be obtained for a special case when f = 0, that is for an absolutely smooth plane:

u:ﬂsmBJrcltchoswt (14)
v = cot — Rsinwt

where cq, ¢y is integration constants.
In order to find the absolute trajectory of a particle, it is necessary to insert the expressions (14) into the
parametric equations (4):
T = g—fsinﬁcosﬁ—kqtcosﬁ;
Yy = cat; (15)

z=— g; sin® B — citsin 5.

The equations (15) describe a parabola that is located in an inclined plane.
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Results

The research is conducted for a case, when 5 = 0, that is to say, in the case of a horizontal plane, the
absolute trajectory transforms into a straight line. This is predictable, since, if there is no friction, a particle
does not response to plane oscillations moves in absolute motion as if it is fixed. The relative trajectory, which
is the result of particle sliding on a plane, takes the correspondent curvilinear form near the absolute trajectory.
If 8 =0 and f # 0, numerical integration of the equations (13) shows that the trajectory of particle relative
motion is a circle. A particle slides in it after its motion is stabilized and it is possible to find the analytical
solution of the differential equation system [10-12] for this case. The form of the relative trajectory during the
transient period, that is after a particle gets onto a plane and up to its motion stabilization, depends on the
reference conditions of integration: the value of velocity and its direction at the moment of getting onto a plane.

Let us consider that a particle falls vertically and meets the plane at a right angle. Let us assume that at
the moment of meeting a plane its absolute velocity is equal to zero. Since a plane performs oscillatory motion
at this moment, there is particle sliding on a plane. The value and the direction of sliding velocity (that is to
say, the velocity of relative motion) is equal to the analogical values of the translation motion of a plane at the
point of particle entering but the velocity is oppositely directed. The point of particle entering depends on the
time ty. Since every plane point describes a circle of radius R, a particle enters a certain point of this circle,
which is determined by the radius vector angle of rotation about the angle ¢y = wty. Having inserted this value
into the equation (2), it is possible to determine the point of particle entering a plane in the fixed coordinate
system. The velocity value is determined by differentiating the equations (2). For example, y, = Rw coswt =
= Rw coswty = Rw cos pg. Thus, v'(pg) = —y; = —Rw cos ¢y. Similarly, u'(¢g) = —z; = Rwsin pg. These data
are the reference conditions of integration. Fig. 2,a presents the trajectories of relative particle motion when
it enters a plane after 45° rotation of this plane around a circle in translational motion. Fig. 2,b presents the
graph of change in sliding velocity, which is determined from the formula (8). Thus, the trajectory of relative
particle motion after its motion is stabilized is a circle and, after this, the relative velocity becomes constant.
The paper [7-9] provides the dependence of the circle radius p, is the trajectory of relative particle motion after

its motion is stabilized — on R, f and w:
2
pr=R 1—(‘709) . (16)

Rw?
n 1 0.7 v T T T .
0.15 V.
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Figure 2. Kinematic characteristics of relative motion at w=6 s~*, R=0,1 m, f=0,3: a) relative trajectories
originate from the circle of plane translational motion after 45°; b) graph of relative velocity V;. change

The (16) shows that at the set values of R and f, there is a critical value of the angular velocity w, at which
relative motion is possible. If the angular velocity of plane oscillation is lower than the critical one, sliding is
not possible: a particle «sticks» on a plane. If the angular velocity w increases, the kinematic characteristics of
a particle change: the radius ps of a circle of relative motion increases and reaches the one of a translational
motion circle (Fig. 3,a) and the time of relative velocity stabilization increases (Fig. 3,b).

Let us determine the patterns of particle movement on an inclined plane that oscillates. The investigations
show that, if there is a plane inclination beginning from the horizontal position, the trajectories of relative
motion transform from circles into curves that are similar to cycloids (extended, regular, curtailed), here, their
transformations take place with respect to the inclination of a plane in the order enumerated in the parentheses.
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Figure 3. Kinematic characteristics of relative motion at w = 10s~!, R=0,1 m, f=0,3:
a) relative trajectories originate from the circle of plane translational motion after 90°;
b) graph of relative velocity V;. change

Fig. 4 presents the correspondent graphs of trajectories and velocities for w = 65! and w = 105! at the
plane inclination being 8 = 2°. Similar to a horizontal plane, with the increase of the angular velocity w, the
value of relative oscillations increases, here, their propagation direction does not coincide with the line of the
greatest inclination, however, with the increase of the angular velocity it increasingly reaches it. As for the
initial conditions, if there are high angles of plane inclination, it is necessary to take into account the velocity of
particle motion in the vertical direction downwards at the moment of its entering a plane (V5). Relative sliding
velocity is increased by the component Vysing, that is u'(pg) = Rwsin g — Vg sin 3. This component plays its
role only at the beginning of movement. Fig. 4 presents the graphs after motion stabilization. Particle relative
velocity changes similar to a sinusoid, here, its maximum and minimum values remain constant. It is obvious
that the oscillatory motion of a particle in the direction close to the line of the greatest inclination takes place
uniformly, that is, the propagation velocity of sliding is constant. If the angle of plane inclination increases, for
example, to B = 20°, the pattern of oscillations changes (Fig. 5). The trajectory becomes similar to a curtailed
cycloid with a pitch that increases (Fig. 5,a) and relative velocity at the equal amplitude changes in such a
way that its extremum values increase in linear fashion (Fig. 5,b). It means that oscillations have accelerated
propagation.

. 1 2 3 4 5 6
a b
Figure 4. Kinematic characteristics of relative motion at
B =2 R=0,1, f=0,3:
a) relative trajectories; b) graphs of relative velocities

There is a question: at what value of the angle 8 the pattern of propagation of oscillations transforms from
the uniform to the accelerated one. It can be assumed that such a limit is the angle 3, which is equal to a friction
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angle, that is B=Arctgf (at f=0,3 8 = 16,7°). However, it is not the case, since at such an angle oscillations
have accelerated propagation. It is obvious that the angle [ is smaller than the friction angle.

It was determined by trial and error method: 8 = 15,7%. In this case the trajectory is a curve, which is
similar to a curtailed cycloid (Fig. 6,a). Relative velocity is stabilized in such a way that its value is changed
within the limits of 1...3 m/s (Fig. 6,b). The investigations show that the limit between uniform particle
oscillations and accelerated oscillations is the angle of plane inclination, which is somewhat smaller than the
friction angle.
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-1 0O 10 1 2 3 4 5 6
a b
Figure 5. Kinematic characteristics of relative motion at
B =200 R=0,1, w=10s"1, f=0,5:
a) relative trajectory; b) graph of relative velocity change
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Figure 6. Kinematic characteristics of relative motion at
B =151, R=0,1, w = 10s"1, f=0,3:
a) relative trajectory; b) graph of relative velocity change

According to Fig. 4 and 6, with the increase of the angle of plane inclination, the trajectory of a particle
changes its form: it transforms from an extended cycloid into a curtailed one. It is logical to assume that
at a certain intermediate angle [ it may be a regular cycloid. Such an intermediate angle was determined
by trial and error method as well: 3 = 11°. The characteristic feature of such oscillations is the fact that a
particle drastically changes is movement direction at the points of trajectory winding (Fig. 7,a), which is not
possible without stopping. According to the graph of regular velocity change, its value ranges within the limits
of 0...2 m/s (Fig. 7,b), that is, at the point of winding the velocity is equal to zero.
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Figure 7. Kinematic characteristics of relative motion at
B=11° R=0,1, w=10s""1, f=0,3:
a) relative trajectory; b) graph of relative velocity change

Conclusions

The patterns of particle relative motion on a rough inclined plane, all the point of which describe circles
in oscillatory motion in the same plane have been determined. At the inclination angle being 5 = 0°, that is,
in the case of a horizontal plane, a particle describes a circle in relative motion, when the minimum angular
velocity of plane oscillations is reached. If there is an increase of the angular velocity, a circle radius is the
trajectory of relative motion is increases approaching to the radius of the circle of translational motion of
plane oscillations. If the plane is inclined, beginning from a horizontal position, the trajectories of relative
motion transform from circles into curves, which are similar to cycloids (extended, regular, curtailed), here,
their transformations take place with respect to plane inclination in the order enumerated in the parentheses.
With the increase of the angular velocity w, the pitch and the amplitude of relative particle oscillations increase,
here, their propagation direction does not coincide with the line of the greatest inclination, however, with the
increase of the angular velocity it approaches to it more and more. Until the moment when there is the boundary
value of the inclination angle 8 reached, which is somewhat smaller than the friction angle, oscillatory particle
movement in the direction close to the line of the greatest inclination takes place uniformly, that is to say, the
propagation velocity of oscillations in constant. Relative particle velocity changes similar to a sinusoidal law,
here, its maximum and minimum values remain constant. If there is further increase of the inclination angle 3,
the trajectory pitch becomes changeable, that is to say, it increases and relative velocity changes at the same
amplitude in such a way that its extremum values increase according to the linear law, that is to say, oscillations
have accelerated propagation.
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C.®. ITmmmaka, H.B. Knenmauit, B.1. Tpoxansk, A.C. Ilactymenko, A.B. Hosunknii

Bapiblk HyKTesepi KeJibey >Ka3bIKTHIKTa TepbesiMesIi KO3FaJabICTa

JOHIreJIeK CaJIaThblH MAaTePUAaJIAbIK OOJIMIEKTIiH KO3FaJIbIChI

Kenbey 6ypTik »Ka3bIKTHIK, GONBIMEH KO3FAJFaH MATEPUAJIBIK, OOJIIIEKTIH OChI YKA3BIKTHIKTa TepOeIMerti
KO3FaJIBICTa OPOIp HYKTECI AOHTeIeK ChI3aThIHIAN KO3FAIBICHIHBIH AuddOepEeHITNAIIbIK, TeHIeYl KYPhIIFaH.
2Ka3bIKThIK OONBIMEH KOKXKHUEKKe KOJibey OYpBIIIbIHA TOyeJI i GOJIIEKTIH KO3FAJIbICHIHBIH CAIBICTHIPMAIIBI
epekiIesikTepi 3eprrenmi. TeHgeynep cauablk omicTepmer mremntiiai. CaabICTBIPMaIbl KBUTIAMIBIKTAD Ta-
OBLIIBI YK9HE OOJIIIEKTED KO3FAJIBICHIHBIH, TPACKTOPHUSIIAPHI CATBIHIBI. 2K a3bIKTHIKKA KOJI0ey OYDBIIIbIHA,

Cepust «Maremarukas. Ne 1(97)/2020 129



S.F.

Pylypaka, M.B. Klendii, V.I. Trokhaniak, et al.

10

130

OYPBIMITHIK, *KbLUIIAMIBIKKA, KA3BIKTHIK, OOUBIMEH OOJIIIEKTIH YiTKey KO3 DUIneHTiHe, }Ka3bIKTHIK, HyKTe-
JIEPIHIH, KO3FAJIBICHI CAJIFaH JOHTEEK PaduyChiHa OAMIaHBICTEI OOJIIEKTEPAIH CAIbICTHIPMAJIb KO3FAIBIChI-
HBIH, KHHEMATHKAJIBIK XapPaKTEePUCTUKAIAPBI TAFAbIHIAJIIbI.

Kiam cosdep: kenbey Ka3bIKTHIK, TepOeIMeITi KO3FAIbIC, CAJIBICTHIPMAJIBI KO3FAJIBIC, OOJIIIEK, KHHEMATHKA~
JIBIK, TIapaMeTpJIep.

C.®. lTummaka, H.B. Knenauit, B.M1. Tpoxansk, A.C. Ilactymenko, A.B. HoBunknii

JBu>keHrne MaTepuaJJabHON YaCTHUIIbI IO HAKJIOHHOM MJIOCKOCTH,
BC€ TOUYKHM KOTOPO#l B KOoJie0aTeJIbHOM JABUYKEHUN
OIIMCHIBAIOT KPYTM B 3TOW K€ IJIOCKOCTU

Cocrayensl uddepeHnnalbHble YPABHEHNUs JIBUKEHUSI MaTEPHAJIBHON YaCTHIBI 110 HAKJIOHHOM IIepo-
XOBaTOH IJIOCKOCTH, OCYIIECTBIISIONIEH KosiebaTeIbHOe ABUKEHNE TAKUM 00Pa30M, UTO KarKJasl €e TOUKa
OIMCBIBAeT KPYyT' B 3TOi ke mockoctu. VcciietoBanbl 0COOEHHOCTH OTHOCHUTEJILHOIO JIBH2KEHUS “ACTHIIBI
II0 IJIOCKOCTH B 3aBHUCUMOCTH OT €e yIVIa HAKJIOHAa K TOPU3OHTY. ¥ DABHEHHS DEIIeHbl YHCICHHBIMU Me-
tomamu. HaiizieHo OTHOCHTEIbHOE CKOPOCTH U IIOCTPOEHA TPACKTOPHUS JBUKEHHS JaCTHI[. YCTAHOBJIEHBI
KMHEMaTUIEeCKHe XapaKTEPUCTUKU OTHOCUTEJIbHOI'O JBUKEHUS YACTHUIBI B 3aBUCUMOCTH OT yIJIa HAKJIOHA
IJIOCKOCTH, YIVIOBOM CKOPOCTH, KO3 (DUIMEHTa TPEHUs YACTHILI 10 IUIOCKOCTH ¥ PAJUyCa KPyTa JBUKEHUS
TOYEK IIJIOCKOCTH.

Karouesvie croea: HaKJIOHHAS IIJIOCKOCTbD, KoJiebareibHOe JBHU2KEHHNE, OTHOCUTEJIbHOE JIBU2KEHUE, JaCTUulla,
KHHEMaTH4YeCKHe ImapaMeTphl.
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ECKE AJIY
ITAMATN YHEHOI'O
IN MEMORIAM OF SCIENTIST

2Ku3Hb, NocBsIlleHHasi HayKe

Vuren wu3 Ku3HU JOKTOP (DU3MKO-MATEMATAIECKUX HAYK, IPOdheccop
Hynar Cozapikbexosua JJ2KYMABAEB (1954-2020). dynar Cer3apikbexoBud
IIPOIIIEJT CBOU »KU3HEHHBIN IIyTh CTPEMUTENIHHO U SIPKO, OCTABUB B MATEMaTUKE
cBeriblit cyiefl. OH ObLIT BBICOKOKBAJIH(DUIINPOBAHHBIM CIIEIUAJIMCTOM B 00JIaCTH
KaveCTBEHHON Teopun juddepeHImaibHbIX ypaBHeHil. Bbla 3aMeuaTesbHbIM
[I€JIArOTOM, HE TOJIBKO MHOTO MPENOAaBaJj, HO U €XKeIHEBHO IMPOBOMMII MHOTO-
YACOBBIE KOHCYJIBTAIUN, YIMJI CBOUX MHOTOYHUCJIEHHBIX YYEHUKOB IpOodeccrno-

HaJIM3My, Y€CTHOCTUA U TEPIIEHUIO B PabOTe, CAMOOTBEDPYKEHHOCTU B HAYYHOM
Tpye.

J.C. Txymabaes poauiicsa 11 anpens 1954 roga B moc. Kanrarn Typxke-
cranckoro paitona FOxno-Kazaxcranckoit odnactu. C 1961 mo 1971 rr. yunicsa
B CIII Ne 386 r. Typkecrana. B 1971 r. nocTymmit Ha MeXaHUKO-MATEMATHICCKUT

dakynbrer Kaszaxckoro rocynapcrsensoro yaupepcurera uMm. C.M. Kuposa. B 1976 r. ¢ orjimunem OKOHYMII BY3
u noctynui B aciupantypy Mucturyra maremaruku u Mmexanuku AH KazCCP. Ilocie ycrennoro 3aBepiieHust
acnupadTypbl B 1979 1. 6611 npuHAT Ha paboTy B JlabopaTopuio, Bo3riasisemyio akagemukoMm O.A. ZKayrsiko-
BBIM.

Hawas ¢ mo/mKHOCTH MJIAIIIEr0 HAYTHOTO COTPYIHUKA JabOpaTopun OOBIKHOBEHHBIX MU(dEpEeHITHATBHBIX
YPaBHEHU, OH IIPOIIesI CBOM HAYy4YHBIA U TPYAOBOU IIYTh J0 3aBEYIOMIErO OJJHOIO U3 BEAYIIUX I10/1pa3Jde/IeHUi
Nucruryra MaremMarnkun — Jjaboparopun muddepennmanbubix ypapaenuii (¢ 1996 r.). B 1980 r. samumrur auc-
cepranuio Ha Temy «Kpaesble 3ajaum ¢ mapamMeTpom Jijisi OOBIKHOBEHHBIX MupepeHIIna bHbIX YPABHEHU B
6aHaAXOBOM IIPOCTPAHCTBE» HA CTENEHb KaHAuIaTa (PU3NKO-MaTeMaTuIecKuX HayK (1o creruaabaocts 01.01.02
— «Iuddepenimanbupie ypaBHeHus» ).

B 1998 r. [1.C. dxxymabaeBy npucyxaeno 3sanue npodeccopa (crenuanbaocts 01.01.00 — «Maremarukas ).
[Tos ero pyKoOBOJACTBOM OBLIM 3AIUIEHBI JBe JOKTOpCcKue u Hostee 20 Kauauaarckux auccepraruii. OH saBIIsIcsS
HayYHBIM PYKOBOJUTEJIEM 5 JIOKTOPAHTOB.

B 2004-2005 rr. [1.C. IxxymabaeB — mpejicearesib JKCIEPTHON KOMUCCHH 110 MaTeMaTUKe U WH(POPMaTUKE
Komurera no magzopy u arrecranum B cepe obpaszosanus u nayku MOH PK.

Ny onybmmkoBano 6ostee 300 paboT B aBTOPUTETHBIX MEPUOIMYECKAX W3JAHMAX, TaKuX Kak «Journal
of Computational and Applied Mathematics», «Journal of Mathematical Analysis and Applicationsy,
«Mathematical Methods in Applied Sciences», «Computational Mathematics and Mathematical Physics»,
«Journal of Mathematical Sciences», «Ukranian Mathematical Journal» u ap. Pesyabrars! ucciiemoBanmii ampo-
OMpPOBaHBI HA MHOTUX MEXKIYHAPOIHBIX CUMIIO3UyMAax U KOH(MepeHnusaX. Kro HaydHble pe3ysIbTATHI HOJIY IUIN
MIIPOKOE MIPU3HAHNE B PECILyOJIUMKE U 33 PyDOEKOM y CHEIMAIUCTOB B 00acTu JuddepeHnaabHbIX yYPaBHEHUI
¥ BBIYUCJIATENbHOM MaTemMaTnku. ChHoOpMUPOBAHHOE UM HAYTHOE HAIIPABJICHUE TIOJTY IO TaJIbHelIee pa3BUTHe
B paboTax ero y4eHHKOB, KOTOPBIE YCIIEITHO PA0OTAIOT B BEAYIINX YHUBEPCUTETAX HAIEHl CTPAHBI.

o ceroHsANIHEro JHSA OH SIBJISJICA PYKOBOJUTEJSEM HAYYHOI'O IIPOEKTa II0 I'PAHTOBOMY (PUHAHCHPOBAHHUIO,
BBINOJIHSIEMOTO B VIHCTUTYTE MaTEMATHKU U MATEMATUIECKOIO MOJIE/IMPOBAHNS, PYKOBOIUTEIEM HAYYHOTO CEMU-
Hapa I10 Ka4eCTBEHHOU Teopun JuddepeHnnaIbHbIX yPABHEHN Hay IHBIM IKCIIEPTOM [ 0CyIapCTBEHHON 9KCIIep-
tu3et MOH PK, unenom Tuccepramumonmoro cosera [l 53.04.01 npu UucTUTyTe MaTeMaTnku, mpeicemnaTeeM
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CeKIMU MaTeMaTUKu YdeHoro cosera VM, djieHOM pelakimoHHOM KoJuteruu kKypHasa «Becruuk Kaparas-
auHCKOoro yuusepcutera. Cepust MaTemaTukay, pernersenrom xypuaiaos «zsectus HAH PK. Cepusa dpusuko-
MareMaTndeckas», «Maremarmyecknit 2xKyprair», «Bectank Kazaxckoro HamoHaIbHOIO TEXHUIECKOTO YHUBED-
curera. Cepust MaremaTnka, HHOOPMATHKAS.

3a MHOT'OJIETHIOIO IIJIOIOTBOPHYO Hay4uHYO JesTebHocTb J1.C. JIxxymabaeB HarparkjieH HarpyIHbIM 3HAKOM
MOH PK «3a Bkiaj B passurue Hayku u texuukn» (2005), ITouernoit rpamoroit MOH PK. Bbur ygocroen
3panus «Jlyummuit mpernogaBaTeb By3a — 2019», KoTopoe Tak M He yCIesa HOJIYYUTh. . .

Hynar CbI3ApIKOEKOBAY CIIEIUJI KATh, MPeoOpPa30BbIBATH MUD BOKPYT cebs, kuTh oT mymu. Ocranach
MaMsATh, BOOpaBIIas B cebst sPKUH HAy THBIN TaJaHT U deoBedeckoe obasnue [ymara Chi3apIKOEKOBUYIA, OCTAJICS
€ro TBOPYECKUIl 3apsJi, 00A3BIBAIOIINI 3HABIINX €r0 KOJIJIEl U YIEHUKOB IIPOJIOJIKATh €ro JIEJI0.

Bripazkaem mckpenHue cobosie3HoBaHusT poaHbIM U Oau3kuM Jlynara Cer3apikOekoBuda. CBeTiias eMmy Ia-
MSATE!

Koarexmus garysvmema mamemamury u ur@opmayuortur mexnosozuli Kapl'V um. axad. E.A. Byxemosa
u pedkoanezusn Becmnuka Kapazandurckozo ynusepcumema. Cepusa «Mamemamuras
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