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MATEMATUKA
MATHEMATICS

DOI 10.31489,/2019M2/8-14
UDC 517.994+-517.949.8+519.6

A.Sh. Akysh (Akishev)

Almaty, Kazakhstan
(E-mail: akysh41@mail.Tu)

Splitting method and the existence of a strong

solution of the Navier-Stokes equations'

In the author’s article from the previous issue of the journal from the properties of the ONS solutions the
relation between pressure and module square of velocity vector is set. Based on which the uniqueness of the
weak and existence of strong solutions of the problem for three-dimensional equations of Navier-Stokes as a
whole over time are proved. The result is a contribution to a qualitative mathematical theory of the Navier-
Stokes equations. However, one of the actual problems in the theory of equations of Navier-Stokes is the
choice of the mathematical method for proofs of the existence of a theorem. In the work splitting method
is chosen to solve the Navier-Stokes equations. The rationale of this method is given. The compactness of
the solution sequence is showed, thus the existence of strong solutions of the problem for three-dimensional
Navier-Stokes equations as a whole over time is proved.

Keywords: the Navier-Stokes equations, splitting method for the Navier-Stokes equations, compactness, the
existence of strong solutions, determination algorithm of strong solutions.

0.1 Problem statement and splitting method

In [1, 2] the initial-boundary value problem for nonlinear equations of Navier-Stokes relatively to the velocity
vector U = (U, Us, Us) € J(Q) and the pressure P in domain @ = (0,7 x £ is reduced to

aaitj_NAU—i—(U,V)U—V]UfZf(hx), (1a)

U(0,x) = ®(x), U(t,x)‘ 0, (1b)

x€00N
where t € (0,T],VT < o0; x € Q, Q C Rs, 9Q — is the boundary of , x € Q C Rs; Q is a convex domain
J(Q) - space solenoidal vectors; La.(Q) — is the subspace of C(Q). ka,O(Q) is Sobolev space functions equal
to zero on 0f2;

The input data f and ® of the problem (1) meet the requirements:

i) £(t,%) € Loo(0, T5 Ly (2)) N J(Q); i) B(x) € Ly(2) N W3,0(2) N I(R), Vp.

IThe work was done on the personal initiative of the author, since there was no financial support.
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Splitting method and the existence of a strong solution...

Further, we use the Holder inequalities

/Ude

Q

1
q

b
/|U|pdx /|V|qu @)
Q Q

IN

in addition, the integration by parts formula

/VAde:—/VVVde+/V‘;—de. (3)

o0

To solve the problem (1) we use the splitting method. Let known vector-function be an approximation {u”}
in the moment nr, 0 < 7— step, then vector functions {u"*'/2}, {u"*'}, n =0,1,--- ,M; T = M7 < o0
determined by the decisions of the following subsystems:

Un+1/2 —_ U~

+ (Un, V)Un+1/2 o V‘Un+1/2|2 _ fn7 (4)
T

with initial

u’(x) = ®(x) A B(x)|,, =0 (5)
and " 1
unr —_unr
- AU =, (6)
i
boundary conditions
Uttt =0, n=0,1,--- ,M—1. (7)

Lemma. For solving the splitting method scheme(4)-(7) fair estimates:
U™ 2,00 < 10" 1,0 + TIE" |, ) (8)
ntl <||® T "
02X 10" |, @) < 1@z, @) + oDhax £z, 2
Vp=2k, ke N, n=0,1,--- M —1. (9)
Proof. Multiply the scalar equation (4) on a function vector
p(En+1/2)p71Un+1/2,

we integrate work over the domain €2 and let us use identity EP = 5-|U|??, then similarly, both of works (see [1],
inequalities (10)—(14)) find

2/(E"+1/2)de + T/U"V(E"+1/2)de - 27'/U”+1/2V(E”+1/2)pdx =
Q

p/ En+1/2 p— 1U7’+1/2(U”+7f")d (10)
Q

The second term from the left side (10) is transformed with integration in parts?, then the right-hand side is
estimated by the inequality Holder:

/U”V E”+1/2) dx = —T/dwU" (E”+1/2) dx—l—T/U" E"+1/2) dx = 0; (11)
Q

p p p
—QT/U"“/’ZV (E”+1/2) dx = QT/divU”“/? (E”“/?) dx — QT/U"“/?n (E”+1/2) dx=0; (12)
Q Q o0

201(6) follows divU™ /2 = 0, consequently in equality (12) urtt/2n =g [3; 46].
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p/(En+1/2)’”_1 U2 x /|U"|2pdx ; (13)

Q (o)
)

pT / (E”“/?) ) U”+1/2f”dx<7'

[U™12) " dx / £ [7ax | (14)
Q

Now from the identity (10), using the relation (11)—(14), we arrive at the inequality

/ IUn+l/2|2de <
Q

2p1

2p—1 1

2p 2p

< 5 /\U”+1/2|2pdx /|U"|2pdx +r /|f"|2pdx
Q Q Q

1
2p

Where there is the estimate for the fractional step n + 1/2 of the splitting method, that is (8) of the lemma 1.
% b 2\
(/ U 2Prax) < (/ U ) + T(/ o7 ") or

5 o o
U2 @) < Uz, @) + TIE" L, ), Vo =2k, k€ N.

To obtain the estimate (9) for the whole step, multiply the equation (6) by vector function p(E"*1)P—1yun+i
and integrate the result over §)

2/(En+1)p dX*T]),U,/(AUnJrl,UTH»l) (En+1)p—1 dx—
Q Q

_Tp/ (V|Un+1|2,Un+1) (En+1)p—1 dx:p/Un+1Un+1/2 (E"H)p_ldx+
“ Q
e / U (BT dx (15)
Q
For the second term on the left side (15) we find

3
—Tpp / (AUt Ut (B dx = rpp / (E"+hyp Z VUL )?dx+

Q Q -

41l — D [(BV ) H(VE Rk 2 0, (16)
Q
Taking into account (16) from (15) we have

3
2/(E”+1)pdx+7p,u/ En+1 Z Un-H dx+

Q Q a=l1

41l — D [(B" ) 2(VE Rk <
Q

<p / (BT lun Ut 2dx 4 1p / (ErHhP Ut rdx, (17)
Q Q

10 Becrnuk Kaparanmauickoro yHuBepcuTeTa



Splitting method and the existence of a strong solution...

The right-hand sides (17) are estimated using the Holder inequality, i.e.

2p—1 1
p/ (En—&-l)P*l urtlynt1/24x < 2:%1 /|Un+1‘2pdx /’Un+1/2|2pdx
Q Q Q
Hence, taking into account the estimate (8) for the fractional step n 4+ 1/2, we write
1
2p 2;
p/ (En+1) Un+1Un+1/2dX < /|Un+1‘2pdx /’Un|2pdx (18)
Q
and
2p 1 1
2p
Tp/ o N A /|U”+1|2pdx /|f” Pax | . (19)

Now using (16), (18), (19) from inequalities (17) we obtain

2p—1 1

2p 2p

2;11/(U”+1)2”dx§ T /yU"“\Q”dx /yU"y2pdx +
Q Q Q
e WAL [l 7ax
Q Q

2p
Where, dividing both parts by a positive value 52+ ( o+t ’2pdx> , write down
O

p

/IUn“V’dx < /|U”|pdx +T /|f"|pdx ) Vp =2k, k€N
Q

Which, summing over n = 0,1,--- , M — 1, we have

P

1 1
/|U”+1 Pdx| < /|<I>|”dx + T max /yf”|”dx
Q Q Q

Or equivalently the norm of the space L,(2) estimate (9) in Lemma, Q. E. D.
Corollary. For solutions of the splitting method schemes (4)—(5), the following estimates are valid:

pomax U |y (0) < (18]l Lae) +T max L, 0) = i, (20)

o ax U™ Ly 0) < 1@l +T max [If"]lL.0) = R (21)
= < 2 1 2 2
Z T Z ||VU(Z+1HL2(Q) < ;(Hq)HLQ(Q) +T/2(1 +T)an||L2(Q)> = Rs, (22)
n=0 a=1

= 2 1

> TIVE oy < 5 (120, + TR ) = B (23)

Cepusi «Maremarukas. Ne 2(94)/2019 11



A.Sh. Akysh(Akishev)

Proof. The estimates (20), (21) follow from (9) respectively at p = 2 and p = 4. To prove the estimate (22),

write (17) when p =1

3
/ U™ Pdx + i / > (VUL+H)2dx < / Ut Uttt 2ax / Urifrdx. (24)
o o=1 Q

Q
Where to the right parts, using successive inequalities 2ab < (a? + b?), (8) and Cauchy-Bunyakovsky, we get

TM/Z U"‘”‘1 dx <

Qal

/ U Pdx 4+ 7 | U™ ol £ [aey -

l\D\H

Here, summing up n, we have

- 3
/|U"+1|2dx+u Z Z/ VU ) 2dx <
Q

n=0 oa=1

1
2 2

%/|<I>|2dx+ Z /yU"+1|2dx /\f"|2dx

Q
Where by virtue of the nonnegativity of the first integral in the left part and estimates (9), we arrive at an
inequality (22), i.e

M-1 3
K Z Z ||VUn+1HL2(Q) = 2||(I)HL2(Q) +maxHU"+1HL2(Q)TmaXHf HL -

n=0 a=1

To prove (23) the estimate (17) we write at p = 2, replacing n with m

3
/|Um+1|4 dx+,u7'/Em+1Z Um+1) dx+2uT/(VEm+1)2dX§
Q a=l1 Q

1

4

N[N

< i/|Um It dx + 7 /|Um+1y4dx /|fm;4dx
Q

Q Q

Which is the sum of m from 0 to n,

- Z /|Um+1|4dx+u Z /Em+1 Z VU dx+

_OQ

+
3
\]
—~
—
a
3
s
S
IS
%
A
e
—
—
T
3
S
IS
[
A
Al

Here, as in the previous case, we find

oy / VEM Rk < (@], TR max (|67, 0

m=0

Where follows (23).
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Splitting method and the existence of a strong solution...

Having excluded from the subsystem (4), (5) a vector function with a fractional exponent {n + 1/2} of the
splitting method, we obtain a system of the whole step

U7 — AU (U™, v)U™H —2VE™H = £ U = (U —U™) /7, (25)
with initial boundary conditions
U'(x) = ®(x), U"|,,=0, m=0,1,--- ,M—1. (26)

Theorem. If the input data of the problem (1) satisfy the requirements i), ii) and 0Q € C?, then there is a
strong generalized solution to the U problem (1) and have place of evaluation of spaces

U™ € W35(Q) NI (Q),¥m € N,

3
mll2 2 2 _
U7 Iz, 0) < ’“‘ZHV%HLM) + 37|, () = Re, @7)
a=1
||AUm||i2(Q) < Rg/12 = Ry, (28)
IVUIE, ) < Re/n=Rs, a=T3, (29)
||Um||wg(Q) < Rol|AU™ ||, ),  Ro — const, Vm € N. (30)

Proof. In order to establish inequalities (27)—(29) from the equation (25) we pass to the identity

/ (U7 — pAU™ ) dx = / (™ — (U™, V)U™ ! 4 2VE™ 1) dx.
Q Q

We square the integrals and from which we turn to inequality

3 r/ ((UF)? + (pAU™#1)? — 207 AU 1 ) dx < 3T max [£7]|1, o)+
m=0 Q

#3307 [ O U ax 12 3 AVE o .
m=0

m=0

Then pair work on the left side, converting with integration by parts, find the inequality

T /Q U AU x> 1) /Q VU Px — ) / V.| dx. (32)
m=0 a=1 a—1 5

In the right part of such force on Young’s inequality at ¢ =1 and p = 2:

3 T/ (U™, V) U™ 2ax < 3 max U™ 3,0 > 7
m=0 m=0

3
VU™ 7,0y = 3R1Rs.
Q a=1

As a result, from (31), taking into account (32) and estimates from Lemmas we obtain the inequalities (27)—(29)
for strong generalized solutions of the problem (1la)—(1b).

Since the boundary of the domain 9Q € C? find the estimate (30), using inequalities from [4], just for any
functions U(xz) € W3 (2) N W3 (Q):

||Um||wg(9) < Ryl|AU™ ||, (), Ym € N, Ry — const.

Theorem is proved.
To show the compactness and existence of solutions, we denote a set of approximate solutions of systems
with initial-boundary conditions (4)—(7) via {U7}, and the predicted values on the interval [0,7]— through UT.
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Of the estimates (27)-(30) implies the uniform boundedness the norms of interpolating functions
U™ Wgé () N I (€). Consequently, the set {U7} strongly compact in the space Wi(Q). From it you can
select convergent subsequence. It will converge strongly in W3 (Q) to some elements U(t,x) € W (Q).

The second derivatives and nonlinear terms, respectively, will have its weak limits in L2 (Q).

Remark. In [4] for some difference schemes corresponding to three-dimensional system of non-linear Burgers
equations, proved stability in the space £,,Vp.
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O.11. Axprimn (Akpires)

HaBbe-Ctokc TeHAeyiHIH bIABIPATY DiCi >K9HEe
9JIJ1 IIEIIIMHIH TaObLIATHIHIbIFbI

ZKypHAIIBIH ©TKEH CAaHBIHIAFBI ABTOPIBIH MakaaachiHga ymesamem i Hasbe-Croke Tegaeymnepi (HCT) me-
mIiMJIepiHiH KacreTTepiHeH KbICHIM MEH KbLIJIAM/JIBIK BEKTOPBI MOJIYJII KBaJpaThIHBIH apakKaTbiHac Oaiiia-
HbIcbl TabbutraH. Ockl HoTmke Herizinge HCT-HbIH miemiieTinairi kepcerisireH. 3epTTeyIIiHIH TaHIaFaH
kenicririgge ymesmemai HCT-ra Koiibiran ecenTiy oJ1Cci3 MIemiMiHiH, »KaJKBIIBIFBI MEH 911 IIeTiMiHiH
Y3aK yaKbIT OOWBI TAOBLIATHIHIABIFLI JToJesaeHred. byn anbiaran Hotrxke HCT-HBIH MaTeMaTUKAJIBIK, Ca-
1a, TEOPUSICHIH JTAMBITYFa 9pi Kapail Jga e3 yJecin Koca 6epMek. AJl Kasipri makTarbl ©3eKTi Mace eTepIiH
Herigriciuin 6ipi — KOWBLIFAH €CENTiH, IIeNnriMiH Taby YIIiH MaTeMaTHKAJbIK, 9/IiCTEP/IiH BIHFAMIbl OipeyiH
Herizzmey. Makanama HCT-abig memiMia Tabyra KOJIAMJIBI 9iC PETIHAE BIABIPATY 9iCi TaHmgaJFaH. OIiC
HerizzaeJin, ol mentiM/ii Taby ajJropuTMi YCHIHBUIFAH.

Kiam cosdep: HaBre-Croke Tenzmeynepi, HaBbe-Ctoke TeHgeynepine viapipary omici, HaBbe-CTokc Tenmey-
JIepiHiH, MenriMiHig, TaObLTATBIHBIFDL, SJIi MM/ Taby aJrOPUTMI.

AIII. Akein (Akwuries)

Metona pacHielyieHus U CyIlecTBOBaHUE CUJIBHOTO
permnenns ypaBuenuii HaBoe-Crtokca

B mpempiaymem HoMepe TaHHOTO KypHAJIa B CTAThE aBTOPa YCTAHOBJIEHO COOTHOIIEHIE MEXK/IY JTaBJICHUEM
¥ KBaJIPATOM MOJLYJIsl BEKTOpa CKOpocTH u3 cBoiicts pemenuit YHC, Ha ocHOBe 4ero JI0Ka3aHbl €MHCTBEH-
HOCTB CJIaOBIX U CYIIECTBOBAHWE CUJIBHBIX PEIIeHM 3a7a4un JJIsi TpeXMepHbIX ypasHenunii Hapbe-CToKca B
OeJjIOM 110 BpeMeHH. Pe3y.HbTaT ABJIAETCA BKJIQJI0M B Ka‘{eCTBeHHyIO MaTeMaTI/I‘{eCKyIO TEeOPpUuIo ypaBHeHI/Iﬁ
Hasbe-Crokca. OHako 01HO#M U3 akTyaJbHBIX 11pobiieM B Teopun ypasHenusi HaBbe-CToKca SBJISIETCs BbI-
60p MaTeMaTHIECKOTO METOA JIJIs IOKA3aTeIbCTBA TEOPEMBI CyIeCTBOBaHUs. B HacTosieil paboTe BhIOpaH
MEeTO/T pacITenyieHus st pemrenust ypapaeanit Hasbe-Crokca. /lano obocHoBanme storo merosa. [lokazana
KOMIIaKTHOCTB ITIOCJI€JOBATE/JIbHOCTH peI_[IeHI/II\/‘I7 TeM CaMbIM JOKa3aHO CYIIECTBOBaHUE CHUJIbBHBIX peIHeHI/Iﬁ
3a/a4u JJIsi TpeXMepHbIX ypaBHennit Hapbe-CToKca B 11€7I0M 110 BPEMEHU.

Kmouesvie crosa: ypasuernust Hasbe-Crokca, MeTos paciierienns Jist ypasaennit Hasbe-CTokca, KOMIAKT-
HOCTb, CYIIECTBOBAHUE CUJIbHBIX PEIIeHUM, aJITOPUTM OIIpeJeJIEHUS CUJIbHBIX PEIIeHU.
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Some new integral inequalities for (s, m)-convex and
(cr, m)-convex functions

The paper considers several new integral inequalities for functions the second derivatives of which, with
respect to the absolute value, are (s,m)-convex and (a,m)-convex functions. These results are related
to well-known Hermite-Hadamard type integral inequality, Simpson type integral inequality, and Jensen
type inequality. In other words, new upper bounds for these inequalities using the indicated classes of
convex functions have been obtained. These estimates are obtained using a direct definition for a convex
function, classical integral inequalities of Holder and power mean types. Along with the new outcomes, the
paper presents results confirming the existing in literature upper bound estimates for integral inequalities
(in particular well known in literature results obtained by U. Kirmaci in [7] and M.Z. Sarikaya and N. Aktan
in [35]). The last section presents some applications of the obtained estimates for special computing facilities
(arithmetic, logarithmic, generalized logarithmic average and harmonic average for various quantities).

Keywords: convex function, (s, m)-convex, («, m)-convex, Hermite-Hadamard inequalitiy, Jensen inequality,
Hoélder inequality, power mean inequality.

Introduction

Convexity has become a very attractive topic for many authors over the past decades, since it has applications
in many areas of pure and applied mathematics. The following basic two definitions are well known in the
literature [1]:

Definition 1. The function f : [a,b] — R, is said to be convex, if we have

fQz+ (1 =ANy) <Af(x)+ 1 =A)f(y)

for all z,y € [a,b] and X € [0,1].
Definition 2. A function f : [a,b] — R is called either midconvex or convex in the Jensen sence, or J—convex
on [a, b] if for all points z,y € [a,b] the inequality

! <x+y> < f@+ /W)

5 5 (1)

is valid. Many important inequalities are established for the class of convex functions, but one of the most
important is so called Hermite-Hadamard’s inequality (or Hadamard’s inequality). This double inequality is
stated as follows in literature:

Let f: I CR — R be a convex function and let a,b € I, with a < b. The following double inequality:

f(a+b)§ ! jf(w)dwﬁw- 2)

2 b—a 2

The above inequality is in the reversed direction if f is concave.

In [2] Toader defines the m-convexity:

Definition 3. Let real function f be defined on a nonempty interval I of real numbers R. The function f is
said to be m-convex on I if inequality

fQz+m (1 =XNy) <Af(z)+m(1—A)f(y)
holds for all z,y € I and m, \ € [0,1].
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In [3] Breckner defined a new class of functions that are s-convex in the second sense:
Definition 4. f:[0,00) — R is said to be s-convex function in the second sense if

fOz+1-Ny) <Xf(2)+1-N)f(y)

holds for all z,y € [0,00), A € [0,1] and for some fixed s € (0,1]. It is clear that the ordinary convexity of
functions defined on [0,00) for s = 1.

In [4] Mihesan introduced the following class of functions:

Definition 5. f : [0,00) — R is said to be (a, m)-convex function if

fQz+ 1 =Ny) <A (z)+m (1= f(y)

holds for all x,y € [0,00), A € [0,1]; and for some fixed o, m € (0, 1].

A series of works ([5-38| and references therein) devoted to («, m)-convex and (s, m)-convex functions and
established some Hermite-Hadamard, Ostrovski, Jensen et al. type inequalities (1) and (2).

The following theorem was proved by Dragomir and Pearce, in [5]:

Theorem 1. Let f :[0,00) — R be a m-convex function with m € (0,1]. If 0<a <b< oo and f € Li[a,b],
then one has the inequality:

’ a) +mf(L mf(a
i [ e < i [ HEL0IG, J0 i), y

Some generalizations of this result can be found in [36-38].

In [6] Ozdemir et al. the following lemma is proved.

Lemma 1. Let f: I C R — R be a twice differentiable mapping on I° (I° is interior of I), where a,b €
and m € (0,1]. If f” € L|a,b], then the following equality holds

mb
flo)+ fmt) 1

2 mb—a J,

(mb —a)?

_ b /0 (t — )" (ta +m(1 — t)b)dt. (4)

In [7], Kirmac: proved the following lemma
Lemma 2. Let f : I C R — R be twice differentiable function on I° with f € L[a, b]. Then we have

(b_a)2(11+12)=bla/abf(m)dx—l[f(a)—i_f(b)—kf(a—’—b)} ()

2 2 2 2

where .

1/2
I = / t(t—05)f"(ta+ (1 —t)b)dt, I, = / (t—0.5)(t—1) f"(ta+ (1 —t)b)dt
0 1/2
and I° denotes the interior of I.
In [8] B. Bayraktar and M. Giirbiiz the following lemma is proved.
Lemma 3. Let f : I C R — R be a twice differentiable function on I°(I°is interior of I), where a,b € I.

If f € L[a,b], then we have
f(a) + f(mb) iy (a+mb)

2 2
_ (mb— a)2 1z " o ! o " o
_ (mb-al [/O t£"(at +m(1 t)b)dt+/1/2(1 0" (at +m(1 — t)b)dt|. (6)

In this paper we give some integral inequalities of Hadamard type and inequalities Jensen type for twice
differentiable (s, m)-convex and («, m)-convex functions and give some applications to the special means of real
numbers.
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1 Some new results for (s, m)-convez functions

We start with the definition [9] of a (s, m)-convex functions.
Definition 6. For some fixed s € (0,1] and m € [0,1] a mapping f : I C [0,00) — R is said to be
(s, m)-convex in the second sense on I if

[tz +m(l —t)y) <t°f(z) + m(1 —1)*f(y)

holds for all z,y € I and t € [0, 1].
It should be noted that the following proposition is true:
Proposition 1. Any m-convex function is (s, m)-convex function.
Proof. Indeed, for m-convex functions we have

f(t.’b + m(l - t)y) < tf(ib) + m(l - t)f(y)a Vom, te [07 1]
Since t <t* and 1 —¢ < (1 —¢)® for all s € (0,1] then we can write
tf (@) +m(l =) f(y) < t°f(x) + m(1 = )" f(y)

and then
fltz +m(l —t)y) <t f(z) + m(1 —1)° f(y).

The proof is completed.
Theorem 2. Let f : [0,00) — R be an (s, m)-convex function with s,m € (0,1]. If 0 < a < b < o0 and
f € Lla, b, then has the inequality:

—a/f _s+1

Proof. It’s obvious that

(7)

ﬂ®+mﬂi)+ﬂw+mﬂzﬂ
2 2 ’

1 1
/0 fta+ (1 =)t = [ (1= ot thyat = = a/ o (8)

and )

| tttas @ = 0m)+ (1= ta+ g _a/f (9)

Since the function f is (s, m)-convex functions for all ¢ € [0, 1]
flta+ (1 —t)b) = f (ta+m(1 4)5@) <t°f(a) +m(1 —t)°f (i)
and a
Ftb+ (1 —t)a) < t°f(b) +m(1 —t)°f (E)

then

/1 [fta+ (1 —=t)b) + f((1 —t)a+tb)]dt <
0

< /01 [tsf(a) (1=t f (:M dt+/01 [#2£8) +m(1 — )7 (%)) e =

@) mf() )+ mf(2)
s+1 s+1 '

Taking into account equality (9) completes the proof.
Remark 1. From (7) for m = 1 and s = 1 we have right hand inequality (2)

/f )+f()

b—a
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Corollary 1. It is obvious that for (s, m)-convex functions the inequalities

b b mf(
—bia/a f(@)dz < min{f(a) jflf(”L), 1) ; 1]0(’") } (10)
Proof. Since the ,
! fla)+mf(,;)
e : F(b) +mf(2)
/ Ftb+ (1 = tya)dt < ————2m’
0 s+1

and taking into account equalities (8) we have (10).

Remark 2. If we choose s =1 from (10) we have (3).

Theorem 3. Let f : I C [0,b*] — R be a twice differentiable mapping on I°such that f” € L[a,b] where
a,be I. If |f"]?is (s,m)-convex on [a,b] for s,m € (0,1], ¢ > 1, then the following inequality holds

f@) + f(mb) _

) )
_ (mb—a)? (| (@)|* + mlf" ()"
=2 6177 (54 2)(s +3)
Proof. Suppose that ¢ = 1. From (4) and using the (s, m)-convexity of |f”|, we have
b mb b— 2 1
f(a) +2f(m ) _ mbl_ a/a Fla)de| < (’”2@/0 (t— ) |f" (ta + m(1 — t)b)| dt <
b—a)? [!
= M / (t =) [ 1" (@) +m(L =) | f"(D)])] dt =
0

B (mb — a)? 1 " "
= (S+2)(8+3>(|f (@)l +m|f" (b))

which completes the proof for ¢ = 1.
Suppose now that ¢ > 1. From (4) in Lemma 1 and using the Holder’s integral inequality for ¢ > 1, we have

/Ol(t—tQ) |f"(ta +m(1 —t)b)| dt = (12)

= /1(t—t2)é(t—t2)é |f" (ta + m(1 — t)b)| dt <
0

< [/01 ((t—tQ);)pdtr (/01 [(t—tQ)i | (ta + m(1 —t)b)|}th>;,
where 1 + 1 =1.

Since | f”'|? is (s, m)-convex on[a, b], we know that for all ¢ € [0, 1],
" (ta +m(1 = 0)b)|" < £ [f"(a)|" +m(1— )" |f"(b)|". (13)
From (12) and (13) we have

‘f(a) + f(mb) 1

- f(z)da

2 mb—a J,

< 7(mb2— o)’ (é); X

x [If”(a)q/ol(t —t2)t“‘dt+mf”(b)lq/ol(t—tQ)(l —t)sdt] ,
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here
1

1 2\,s _;an ! _ 42 _ s - -
/O(t‘t)tdt_(sm)(sw) d/o(t =0 = ey

we have (11). The proof is completed.
Corollary 2. From (11) for s = m = ¢ = 1, we have estimates obtained by Sarikaya and Aktan (see [35],
Proposition 2):

f@yz| < L)+ 1.

2 mb—a

‘f(a) +fmb) 1™

Theorem 4. Let f: 1 C R — R, I C [0,00), be twice differentiable function on I° such that el [a, b]
with 0 < a < b < oo. If‘f”

is (s, m)-convex function with s, m € (0,1] then we have

o [ 3 (250

PRy
<0 2“) £(1+7) [|f”(a)|+m Iz (;)H (14)
where ) 2S+2( 1)+ s
S — S
= GG mdT= s+ 1

Proof. Since f" is a (s, m)-convex function

f(ta+ (1 —t)b) = f" (ta +m(1 — t);) <t'f(a) +m(l—t)°f (;) ,Vt € 10,1]

From equality (5) and using the triangle inequality, we can write

7@/ flayia - [£ )+f()+f(a2+b)H§

1 (2)‘/01/215(0.5—75) (1—t)°dt +
2ol

(t—0.5) (1 —1)* " dt. (15)
Obviously, the first and third integrals are easy to calculate:

1/2
<17"(a)] / FL(05 — t)dt +m
0

1
+|f"(a)] /1/2 t*(t—0.5) (1 —t)dt +m

1/2

1/2 1
/ 5T (0.5 — t) dt = €, / t5(t—0.5) (1 —t)dt = €T
0 1/2

If we do 1 — ¢ = z transformations in second and fourth integrals, we get:

1 1/2
/ (t—05)(1—t)*""dt = ¢ and / £(0.5—1) (1 —1t)°dt = &
1/2 0

Substituting the values of the integrals in inequality (15) and completing the grouping, we complete the proof.
Corollary 3. Let f : 1 — R, I C [0,00) be twice differentable function on I° such as f” € Lla,b],
0<a<b<oo. If|f”| is m-convex with m € (0, 1] then we have

,a/ f(z)de —[M+f<a;rb)]

2 e ()]
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Proof. In inequality (14) if we choose s = 1 we have:

‘= 1 _ 1 _2P(s-D4s+5

1
(s +2)(s+3)2st3  3.260 ° st 1 3,60+7)=—

48

and from (14) we get (16). The proof is completed. This inequality were obtained by Kirmaci (see [7], Corollary 1).
Corollary 4. If | f"|| o = sup |f"(z)] < oo and m € (0, 1], we have

z€la,b]

b )2
s [ s g [P IO p (D) | < B 7).,
Also putting m = 1 we get inequality
b 2
i [ e 5 |1 g (0| < B2l

The same estimates were obtained by U. Kirmaci (see [7], Remark 1).
2 Some new results for (o, m)-convex functions

The following theorem gives an upper estimate the value of the inequality (1) for a («, m)-convex function.
Theorem 5. Let f:[0,00) = R be twice differentiable function on I° such as f~ € Lla,b] with

0<a<b<oo If L ¢ I°and ‘f”

m

is (e, m)-convex function with a, m € (0,1] then we have

< (17)

‘f(a) +2f(mb) iy (a+2mb>‘

bh— 2
< P22 (o @)+ ml 0| - €+ )|
where
__ 1 P ittt
vy M Gy

Proof. Using the triangle inequality for the equality (6) in Lemma 3, we can write

f(a)+ f(mb) *f <a+mb) < (mb — a)?
d

2 2 2
Since f” is a («, m)-convex function

X

1
+ /1 (1—t)f" (at + m(1 — t)b)dt

1/2
/ tf"(at + m(1 —t)b)dt
0 /2

S CAR A (18)

1/2

1/2 1/2
unsé ﬂﬂwﬂwm—ﬂwﬁSM%mA f“w+mwwné F(L— %) dt =

1 1 1

= W\f”(aﬂ +m|f"(0)| ‘8 - W

1

:cu%w-+mu%mﬂ

S_C"
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For the second integral |Io| we can write

1

1
2| < f”(a)I/l/zt“(lt)dt+m|f”(b) 1/2(1*%) (1 —t%)dt =

8 (a+1)(a+2)20+2

2a+2_a—3 1 2a+2_a_3
e @m0

=l @)+ m O[5

Substituting these inequalities for |I1| and |I3| into inequality (18), we complete the proof.
Corollary 5. In inequality (17) if we choose @« =1 and m = 1 we have:

LOLI0 (1) < O ey + 1570

The same estimates were obtained by Bayraktar and Giirbiiz (see [§], Corollary 2.2).
Theorem 6. Let f : I = [0,b*] — R be a twice differentiable function on I° such as f” € L[a,b] where
a,be I°. If % € I° and |f”|? is (o, m)-convex on I, for a,m € (0,1] and g > 1, the following inequality holds

f(a) + f(mb) a+mb (mb — a)?
s ()| < e e

where ) 1

1 a 1 a
F= [l kg ol OF| 4 clr@r +mlg - dllror]
1 20z+2 -1
d¢= .
and ¢ = N a1 2) 2002
Proof. Using the triangle inequality for the equality (6) in Lemma , we can write

‘f(a) Hot) (+2mb)‘ )

T= (a+2)20+2

(mb—a)® | (M2 B L )
< 5 [/O t1f" (ta+m(1 t)b)|dt+/1/2(1 )" (ta + m(1 t)b)|dt] _
_ M (L +1). 19)

Using the power mean inequality and (o, m)-convexity of |f”|? on [a, b] we get

1/2 1= 1/2 g
I < (/ tdt) V t1f" (at +m(1 — t)b)|th] <
0 0

1/2
/ {1 — 1)t
0

3(1—q)
q

<2

1/2
[f”(a)lq/0 e dt +m [ f"(0)[*

And calculating these integrals, we have

1

1
] q
3(0—q)

n <27 [l @l + I - im0 (20)

Similarly for Iy we can write

I < (/1/2 (1 —t)dt) [/1/2(1 —t)[f"(at + m(1 —t)b)th] <
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3(0—q)

<2 [If”(a)lq

+mu%qu (1— ) (1 — t2)dt

/2

1
/ (1= ) dt
1/2

And calculating these integrals, we have

1
] q
3(1—q)

R "l @ g <l o] (1)

Q=

Substituting these inequalities for (20) and (21) into inequality (19) and rearranging we complete the proof.
Corollary 6. In Theorem 6 if we choose « = m = ¢ = 1, we have

f(a)+ f(b) _f(a+b>‘ < (b—a)?

: )| € g B @I+ ®).

3 Applications to special means

We now consider the means for arbitrary real numbers a, § (o # ). We take
; ; . _ o+p
1 Arithmetic mean: A(a, 8) = “5=.

2 Logarithmic mean: L(a, ) = m, la] #18|, «, B8 #0.

3=

n41_

3 Generalized log-mean: Ly («, 5) = [&T(gi;)} ,ne€ Z\{-1,0}, a,8 € RT.

4 Harmonic mean: H = H(a,b) = ii’%, a+ B #0.

Now, using some results, we give some applications to special means of real numbers.
Proposition 2. Let a,b € R*, a < b and n € Z\{—1}. Then we have

(b—a)*

|L:lz(a’ b) - A[A(anvbn)vAn<a’b)H < 48

n(n —1)A(a™ 26" 2).

Proof. The assertion follows from Corollary 3 for m = 1 applied to the (s,m)-convex function f(z) = a,
z eR.

Proposition 3. Let a,b € RT, a < b then we have

b—a)’

|L_1(a,b) —A[H_l(a,b), A_l(a,b)H < ( 51 H™(a?,b%).

Proof. The assertion follows from Corollary 3 for m =1 applied to the (s, m)-convex function f(z)= %,
r € RT.
Proposition 4. Let a,b € RT, a < b and n € Z\{—1}. Then, we have

N2
A", b") — A"(a,0)] < & 8“) n(n — 1) A(a"2,5"~2).

Proof. The assertion follows from Corollary 5 applied to the (s, m)-convex function f(z) = z", € R.
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b. Baiipakrap, B.Y. Kymaes

(S, m)-nenHec xkoHe (o, m)-meHec PYHKIHUIAIAP YIITiH
Kelibip >KaHa MHTerpaJiablK TeHCI3aiKTep

Maxkamana (s, m)-nenec xkoHe (o, m)-meHec GyHKIUAIAD YIIIH GipHeIe YKaHa WHTETPAJIBIK, TEHCI3IIKTeD
YCBIHBLUIFaH. ByJl HoTMKesep Kakcbl Oesrisii dpMur-Ajiamap THUITI MHTErpasiiblk TeHcizikien, Cumi-
COH THIITI MHTErPAJIJIbIK, TEHCI3IIKIIEH YKOHE Mencen TuntTi TeHci3aiKIeH GailiaHblcTsl. Backaiia aTKaH/IA,
neHec (OYHKIUSIIAPIBIH, KOPCETUITeH KJacTap apKBIIbI OChI TEHCI3IIKTEp YIMH KOFapbIIaH KaHa Oara-
Jap ajblHabpl. Makasaja KeJTipiireH HoTHXKeJep JoHeC (byHKIUAIAP/IbIH aHbIKTaMAJIaPhIH TiKeJIeil maii-
Jajganybl MeH ['esibjiep THITI »KoHe J9PeKeJIK OpTalla THITI KJIACCUKAJIBIK, MHTErDAJIIBIK, TeHCI3MIKTep i
KOJIZIAHY apKBLIbI ajablHabl. 2KaHa HoTmKeJgepMeH 6ipre aBTOpJiap ofeOmerTeri MHTErpasblK, TEHCI3TiK-
Tepre apHaJIFaH KOFapbl IIeKapa OarajapblH PACTANTBIH HOTHKeIepre KOJDKeTkizai (nepbec xarmaiina
M.Z. Sarikaya »xone N. Aktan [35] xxonme U. Kirmaci [7] anbiaran onebuerrepseri »kakcol Gesrisni HoTH-
xesep). MakaslaHbIH COHFBI GOTIMIHIE apHANBI €CenTey KypasIapbl YIIH aJIbIHFAH Garasapipl Keibip Ko-
CBIMINIAJIAPHI KeJITIPIJIeH, SIFHU 9PTYPJIi IaMaJjap YIIiH apudMeTUKaJIbK, JOrapudMIiK, *KaJIMbIIaAHFAH
JiorapudMIiK OpTalla KoHEe TapMOHUKAJIBIK, OPTAIIIA.

Kinm ceadep: nerec dbyuxius, (s, m)-nesec, (o, m)-nenec, dpmut-Anamap rercizmiri, Mencen Tencizmiri,
T'énbep TeHcizmiri, opraima goperxesi I TeHCI3IiK.
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bB. Baitpakrap, B.Y. Kymaes

HekoTopble HOBbIe MHTErpaJibHbIe HEPABEHCTBA JIJIsI
(s, m)-BBINYKJIBIX U (v, M)-BBINYKJIBIX DYHKIAI

B crarbe mpeicTaBieHO HECKOIBKO HOBBIX MHTETDAJIBHBIX HEPABEHCTB i (S, M)-BBIMYKIBIX U (&, m)-
BBIYKJIBIX (DYyHKIWA. DTU Pe3y/IbTaThl CBA3AHbI C XOPOIIO U3BECTHBIM MHTETPAJbHBIM HEPABEHCTBOM THIIA
Spmura-AaMapa, THTErPATbLHBIM HepaBeHcTBOM Tuia, CHMIICOHA 1 ¢ HepaseHcTBOM Tria Mencena. JIpyru-
MU CJIOBaMH, TOJTydeHbl HOBBIE OIIEHKHU CBEPXY JIJIst 3TUX HEPABEHCTB C MCIOJIb30BaHUEM YKa3aHHBIX KJIACCOB
BBIMYKJIbIX pyHKimii. IIpejcrasienible pe3yabTaThl Oy YeHbI ¢ TIOMOIIBIO HEIIOCPEICTBEHHO ONPEIeIeHUSs
BBIIYKJIBIX (DYHKIHI, 8 TAKXKe KJIACCHIECKUX WHTETPATHHBIX HEPABEHCTB THIA [ eJibJiepa U TUIa CTEIEHHO-
ro cpeanero. Hapsly ¢ HOBbIME pe3y/IbTaTaMé aBTOPAMU TOJIy9eHbl Pe3yJIbTaThl, TIOITBEPK AAI0NIHe CyIIle-
CTBYIOIME B JIATEPATYPE OLEHKN BEPXHUX IPAHMI] J[JIsi MHTEIPAJIbHBIX HEPABEHCTB (B YACTHOCTH, XOPOIIO
u3BecTHBIE B juTeparype pesysibrarel M.Z. Sarikaya u N. Aktan B [35] u U. Kirmac1 B [7]). B nocsiennem
paszjiesie CTaThby IPUBEIeHbI HEKOTOPbIE TPUJIOYKEHH MOy YeHHBIX OLEHOK JIJIst CIIeIAAIbHBIX BHIYUCIATE b=
HBIX CPEJICTB, & UMEHHO: apudMeTHIecKoe, JorapudMuiaeckoe, 0600IIeHHOe JJorapudMUIECKoe, CpelHee 1
CpeJIHEE TADMOHMYIECKOE JIJIS PA3JIUIHBIX BEJTMIUH.

Kmouesvie crosa: Boimyknas GyHKms, (S, m)-Boimykiasd, (o, m)-BbIIyKJasi, HEDABEHCTBO DpMuTa-Anamapa,
HepaBeHCTBO VleHcena, HepaBeHCTBO [€/1b/1epa, HEPABEHCTBO M1JIsI CPEITHECTEIIEHHOTO.
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Best trigonometric approximation and modulus of smoothness
of functions in weighted grand Lebesgue spaces

In this work, first of all, Lf?’e (T) weighted grand Lebesgue spaces and Muckenhoupt weights is defined.
The information about properties of these spaces is given. Let T}, be the trigonometric polynomial of best
approximation. The approximation of the functions in grand Lebesgue spaces have been investigated by
many authors. In this work the relation between fractional derivatives of a T, trigomimetric polynomial and
the best approximation of the function is investigated in weighted grand Lebesgue spaces. In that regard,
the neccessary and sufficient condition is expressed in Theorem 1. In addition, in this work in weighted
grand Lebesgue spaces a specific operator is defined. Later on, with the help of this operator the fractional
modules of smoothness of order 7 of function f is defined. Also, in this work, using the properties of modulus
of smoothness of function, the relationship between the fractional modulus of smoothness of the function
and n—th partial and de la Vallée-Poussin sums of its Fourier series in subspace of weighted grand Lebesgue
spaces are studied. These results are expressed in Theorem 2.

Keywords: heneralized grand Lebesgue spaces, fractional derivative, fractional moduli of smoothness,
n — th partial sums, de la Vallée-Poussin sums, best approximation by trigonometric polynomials.

Introduction and the main results

Let T denote the interval [—m,7]. We denote by LP(T), 1 < p < oo, the Lebesgue space of all measurable
functions f on T, that is, the space of all such functions for which
1/p

1£1, = / F@)Pdr| < oo
T

A function w is called a weight on T if w : T — [0, c0] is measurable and w=!({0, 00}) has measure zero
(with respect to Lebesgue measure).

Let w be a 27 periodic weight function. We denote by LP(T), 1 < p < oo, the weighted Lebesgue space of
all measurable functions on T for which the norm

1/p

1£1, = / F@)Pwdz| < ool
T

We define a class LZ)’G(T), 0 > 0 of 27 periodic measurable functions on T satisfying the condition
1/(p—¢)
eb -
sup —/|f(:c)|p “w(z)dw < 0.
0<e<p—1 27
T

The class L‘Zf,)’g('l[‘), 6 > 0, is a Banach space with respect to the norm

1/(p—e)

1 —€
oy =, w3 (1@ wopdey )
T

0<e<p—1
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The class Lf,)’e(ﬂl‘) with the norm (1) is called as the weighted generalized grand Lebesgue space. Note that
non- weighted grand Lebesgue space LP)(T) was introduced by Iwaniec and Sbordone [1]. Information about
properties of these spaces can be found in [2—4]. The embeddings

LP(T) ¢ LP)(T) C LP~,

hold. According to [2] LP(T) is not dense in LP)(T). Also, if §; < 65 and 1 < p < oo, for weighted generalized
grand Lebesgue space, the following relations hold:
LP(T) CLE)*(T) cL?)*2(T) CLE = (T).

The closure of the space LP(T) by the norm of Lg)’e(']l‘), 0 > 0, we denote by L (T).
Let 1 < p < oo and let A,(T) be the collection of all weights on T satisfying the condition

-1

op (G fora) (G ) <

where the supremum is taken over all intervals I with length |I| < 27. The condition (2) is called the
Muckenhoupt -A,, condition [5] and the weight functions which belong to A,(T), (1 < p < o0), are called
as the Muckenhoupt weights.

Suppose that f € Lfi)’e. We define the operator by

.’L’-‘r%
Ahf(x)::%/f(t)dt, xeT 0<h<1.

T—3

Note that 0 < p < 0o, 8 >0 and w € A, then the operator A is bounded in Lﬁ)’e. For f € LZ)’Q, we define

Uﬁf(x): (I = Ap)" f(x) =

T(r+1) &
A heT, 0<
Zr k:+1 r—k—i—l)( ) a, heT, 0<r,

where I is the identity operator and I' is gamma function.
Let we A, and f € Lﬁ)’e. If 0 <r we can define the fractional modules of smoothness of order r of f as

[7]

QT'(f? 5)1)),0,0.7 = sup H (I - Ahi) Ufr}f 5 0 > 07
0<hs, t<6 |[37
p),0,w
where [ ] denotes the integer part of the real number r and {r} := r—[r].— Note that Qo (f,9),) 9., == [ fl),

and H (I — Ap,) o7 f := o] for 0 <r < 1. The modulus of smoothness Q,.(f, )9, 7 € R, is a nondecreasing,

nonnegatlve function of 9, and

Qr(f+975)p),9,w < (fa ) ,0,w + Q4 ( 5)p),9,wa
;1_1% Qr(f7 5)1)),9,0.) =0
for f,g € LP)"’.
Let -
% + Z Ap(f,x), Ap(f, ) = ar(f) coskx + by (f) sinkx (3)
k=1
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be the Fourier series of the function f € L(T), where ay(f) and by (f) are Fourier coefficients of the function f.
The nth partial sums and de la Vallée-Poussin sums of the series (3) are defined, respectively, as:

Su(fio) = T Y Alfa),
k=1

2n—1

Valf) =23 St

We denote by E,,(f)y(), (n=0,1,2,...) the best approximation of f € Lg;) by trigomonetric polynomials
of degree not exceeding n, i.e.

Eu(Dpoo = 0 {If = Tallyy g T € T},

where II,, denotes the class of trigonometric polynomials of degree at most n.

We use the relation «,, = O(8,), n = 1,2, ..., that is, there exists a constant C' > 0 such as «,, < Cf,,
n=12,...

The approximation problems of the functions by trigonometric polynomials in grand Lebesgue spaces have
been investigated by several authors [6-13].

In the present paper, in weighted generalized grand Lebesgue spaces we investigate the relation between
derivatives of a polynomial of best approximation and the best approximation of the function. In addition,
relationship between fractional modulus of smoothness of the function and nth partial and de la Vallée-Poussin
sums of its Fourier series in subspace of weighted grand Lebesgue spaces are studied. Simillar results in different
spaces have been investigated in [14-34], and [5]. Note that, in the proof of the main results we use the method
as in the proof of [27, 28|.

Our main results are the following:

Theorem 1. Let T,,(f) € II,, be the polynomial of best approximation to f, let r, o« € R*. In order that

LD, =00 > a>0

it is necessary and sufficient that

En(f)p)ﬁ,w = O(nia)'

Theorem 2. Let 1 <p<oc, § >0,r € RT and we A,. If f € E’:;“’ (T), then

1.
1 —ar T
e (f, o <0 VDG 1) = Vil <
1
< C5Qr(fv E)p),@,w» (4)
where the constants ¢4 and c¢; are dependent on p and 7.
2.
1 — r
C6Qr(f7 E)p)ﬁ,w <n 2 Sr(LZ )(f7 ) )0, + Hf(‘r) - Sn<f7 ')Hp),@,w <
1
S C7Qr(f7 E)p),G,w» (5)

where the constants ¢ and ¢; are dependent on p and r.
Proofs of the main results

Proof of Theorem 1. Let us assume that

En(Ppow = 1f =Tl 0.0 =00, (a>0). (6)
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is satisfied. We can write

n—1
0@ =17 + 3 {1 - 10w}
v=0

Using Bernstein inequality for the spaces f‘f,)’e (T) in [35] we have

From (6), (7) and the last relation we conclude that

(r)

()

0w = & (g0

(r)

n ()

v < cgcion'n”* < cpn” .
p),0,w

Now we suppose that

Use of [9] and (8) leads to

1Ton () = Ta(Tan (D)0, < W = Ton (D) 0.0+ 1F = Tan(Ton(F)llp) 0.0 <

T:lr) (f)H <cizn” .

<cian™" ’
p),0,w

On the other hand, since T;,(T%,(f)) is a polynomial of order n the following inequality holds:

T2 (f) = To(Toen(F) )00 = I = Ta(T2n(f)) = (f = Ton ()l 0.0 =
2 f = Ta(Tan(F) ) 0.0 = I = T2n(F))p) 0.0 =
2 En(f)p)o.w — E2n(f)p)0.0 = 0.
Use of (9) and (10) gives us

0< En(f)p),@,w - E2n(f)p),9,w <epgn”

Condition E,(f)p),6.. — 0 is satisfied. Therefore, from the inequality (11) we have

> B (P — B (Do} Scis D 270
k):’I’LO k:n()

Thus,

Eayno (f)p),6.0 < €1627 0%

By (12) we conclude that E,,(f)p) 6.0 < c15(n™%).
This completes the proof Theorem 1.
Proof of Theorem 2. By [9] the inequality

1 —or r
Qr(Tn )p),O,w < Cl7(pa ’I")’I’L 2 T’I’(L2 )

,—
n

p)ow

holds, where T, € II,,. On the other hand, using the properties of modulus of smoothness Q,.(f, %)p)

we find
1
Qr <f7 )
"/ p)

< e1s (1) <||f N

1 1
S Qr (f_Tnv) +Q7 (T’ru) S
0,w "/ p)ow "/ p)ow
p),97w>.

s

Tr(LQ’I“)

Cepust «Maremarukas. Ne 2(94)/2019

(13)

0. and (13),

29



Sadulla Z. Jafarov

Now we estimate the modulus of smoothness Q.(f,-),)0,, from below. According to reference [10] the
following inequalities hold:

27
En(f)p)ﬁ,w < C19 (p7 T) QT (f7 m) ; (14)
p),0,w
w2l <en e (f) (15)
" p),0,w n+1 p),0.w

Let V,,(f,z) be de la Vallée-Poussin sums of the series (3) and let 7' € II,, be the polynomial of best
approximation to f in L5’ (T), that is ||f — Tl 0.0 = En(f)p),00- Then we get
1 = V(s Mpyo.0 S =Tally o + 170 = Valfs )l 0.0 <
< (P En(fp)ow + IValTy = f5)lp) 0.0 <

< C22(p)En(f)p),97w- (16)
Using (14), (15) and (16) we have

n—2r

VED(f,)

= Valfs )00 <

p),0,w

1
< caa ) (Vi D)o+ Bl ) <
1 1
< co4 (p7 T) Qr(f7 E)p),ﬁ,w + Qr(f - Vnu g)p),e,w + En(f)p),é‘,w <

1
< o5 (p,7) Q0 (f, ﬁ)p)ﬂ,w

which completes the estimation (4) of Theorem 2.
Let T}, be the best approximation polynomial for f, i.e.,

En(f)p)ow = 1f =Tl 0
By [9], Theorem 5; [10], Theorem 2.1 there exists a constant co5(p) such as

1 = Sn(fs)pyo.0 <N = Tallpy o+ 190 (T = £y 0.0 < c26(P)En(f)p).0.0- (17)

Using inequality (17) and the scheme of proof of the estimation (4) we have the estimate (5).
Proof of Theorem 2 is completed.
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C.3. /Ixxadapos

En >KaKbIH TPUTOHOMETPUSJIBIK >KYbIKTay koHe JlebertiH cajiMaKThIK

32

rpaHa-KeHiCcTiKTepiHaeri GyHKIIMAHBIH TericTiriHiH MOIyJIi

MakaJsrazia 6ipinmn kesekre Jlebertiy cajaMaKTBIK I'paHI-KeHicTikTepi >koHe MakeHxaynT Lf,)’g (T) caun-
MaKTapbl aHBIKTAIIbI. OChl KEHICTIKTEPIH KACHETTEP] Kalibl akmapar 6epiami. T, eH KaKblH *KYBIKTay-
JIBIH, TPUTOHOMETPHUSIBIK, TOJIMHOMBI O0JICHIH. JIleOerTiH rpaHI-KeHicTiKTepiHaeri dyHKIMSHBI ATPOKCUMa-
[UsIJIay KOIITereH aBTOPJapMeH 3epTTesiji. Byl )KyMbICTa TPUIOHOMETPHSIJIBIK, MOJIMHOMIAFBL 1), OeJinexk
TYBIHIBI MeH JIeberTiH caJMaKTBhIK IPaH/-KEeHICTIKTEDIHJIEr eH YKAKbIH XKYBIKTay apachbIHIAaFbl GailIaHbIC
KapacThIpbUIabl. Ochbiran GaliyIaHbICTBI KAXKETTI XK9He KeTKLIKTI maprrap 1-reopemana kenaTipiaai. ABrop
Jleberrin caJMaKTBIK I'PaH/-KEHICTIKTEepiH/Ie HAKThI OIlepaToOp/bl aHbIKTaraH. Keitinipek 6yJ1 oriepaTop/ibiH
koMeriMeH f MYHKIMACHIHBIH 7 peTTi Tericririniy H6esmmekTi Moayabaepi anbikrasasl. CoHbIMEH Koca OyiI
KYMBICTa QYHKIMSHBIH TETiCTITiHIH MOYTIHIH KACHETTEPIH KOIaHa OTBIPHIN, TETiCTIKTIH OoJtmeKkTi Moy
MeH Jlebertin caaMaKTBIK I'paH/I-KeHicTiriHiyg imki kenicriringeri @ypbe kaTapbiubiy je Basute-Ilyccennin
n — th mepbec KOCHIHABLIAPHI apaChIHIAFbI ©3apa OallJIaHbIC KAPACTHIPBLIIBI. By HOTIKeIep 2-TeopemMaia
KeJITipijIreH.

Kiam cesdep: Jleberrin KaJlblIaHFAH TPAHJI-KEHICTIKTEPi, GOJIIIEKT] TYBIHIbI, TEriCTiKTIH GOJIIeKTi Mo-
aynbaepi, n — th nepbec koceiHabLIapsl, e Basme-Ilyccen KOCBIHIBIIAPBI, TPUTOHOMETPUSIIBIK, [IOJIMHOM-
JIApMEH €H YKaKbIH YKYBIKTAY.

C.3. Hxadapon

Haunnydree Tpuronomerpuyeckoe ImpudInKeHne u MOILyJThb
riaJkocT PYyHKINI B BECOBBIX I'PaHA-NIpocTpaHcTBax Jlebera

B crarne, B mepByio odepenn, OIpejiesieHbI BECOBBbIE I'DaH-IpocTpaHcTBa JlebGera m Beca MakenxaynTa
o® (T). Jana nadopmanust o coiicrBax 5TuX npocrpacTs. [lycrs T), GyJer TPUIOHOMETPHYECKHUM I10-
JIMHOMOM HAWJIydIlNero npubiukenus. AnmnpokcuManusi (DYHKIUNA B MPAHI-TIPOCTPaHCTBax Jlebera mccie-
JI0BaJIaCh MHOTUMHM aBTOpaMu. B 3T0if paboTe m3ydeHa CBA3b MEXK/Ly JPOOHBIMHU ITPOU3BOJHBIMU 1), TpH-
TOHOMETPUYECKOTO MOJIMHOMA YW HAWIYJIINM TPUOIMKEHNEM (DYHKIIUA B BECOBBIX I'PAHJI-MIPOCTPAHCTBAX
Jlebera. B cBsi3u ¢ 3TMM HEOOXOIMMOE U JOCTATOYHOE YCJIOBUE BhIpazkeHo B Teopeme 1. Kpome Toro, B sT0it
paboTe B BeCOBBIX IpaHjI-IIpocTpaHcTBax Jlebera orpesesieH KOHKpeTHbIH omeparop. [lo3xke ¢ momornbio
9TOro omepaTopa OyIyT ONpee/eHbl IPOOHBIE MOy TJIAAKOCTH Topsiaka r dyHkmun f. Takxke, wc-
MOJIb3Ysl CBOMCTBA MOYJIsT TJIQIKOCTH (DYHKITUN, ABTOPOM MU3yU€HA B3ANMOCBSI3b MEXKTY APOOHBIM MOIYIEM
raaJKocTu U n — th yacruanbiMu cymmamu sie Basue-Ilyccena psima @ypbe B moampocrpalHcTBe BECOBOTO
rpasa-mpocTpancTBa Jlebera. DT pe3yabTaThl BEIPasKEHBI B TEOpeMe 2.

Kmouesvie caosa: 0bobIIEHHBIE TPaH-IpOCTpaHCTBa Jlebera, mpobHasi POM3BOIHAs, TPOOHBIE MOJLYJTH
DJIaJKoCTH, N — th dYacTuYHBIE CyMMbI, cyMMBI Je Base-Ilyccena, nHamydiinee npubInKeHUE TPUTOHO-
METPUYECKUMHY TTOJIMHOMAMM.
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Integro-differentiated singularly perturbed equations
with fast oscillating coefficients

In the study of various issues related to dynamic stability, with the properties of media with a periodic
structure, in the study of other applied problems, one has to deal with differential equations with rapidly
oscillating coefficients. Asymptotic integration of differential systems of equations with such coefficients
was carried out by the splitting method and the regularization method. In this paper, a system of integro-
differential equations is considered. The main objective of the study is to identify the influence of the
integral term on the asymptotics of the solution to the original problem. The case of the absence of
resonance is considered, i.e. the case when the integer linear combination of frequencies of the rapidly
oscillating coefficient does not coincide with the frequency of the spectrum of the limit operator.

Keywords: singularly perturbation, integro-differential equation, rapidly oscillating coefficient, regularization,
asymptotic convergence.

Introduction

Consider the following integro-differential system:
A B(t) ' _ _ 0
e— — A(t)z — eg(t) cos ?B t)z— [ K (t5s)z(s,e)ds =h(t), z(to,e)=2z", tE€l[to,T], (1)
to

where z = {z1,22}, h (t) = {h1 (t) ,h2 ()}, B/ (1) > 0, w (¢
B (t) are (2 x 2) — matrices, with A (t) = ( 2 (t(; (1)
(00
A1 0
In the present work, ideas of the regularization method [3-6] are generated on singularly perturbed systems
of integro-differential equations with rapidly oscillating coefficients. The study of singularly perturbed integro-
differential problems by the regularization method of S.A. Lomov [3, 4] with unstable values of the kernel
of an integral operator is reflected in [7-12]. It should also be noted that it is the merit of V.F. Safonov
and A.A. Bobodzhanov in the development of the theory of singularly perturbed integro-differential
equations [13-16]. In their studies, various problems for integro-differential systems were considered: with
diagonal kernel degenerations, with inverse time, with rapidly changing kernels, with rapidly varying kernels,
with partial derivatives, etc. [17-21].

In the system the limiting operator A (¢) has a spectrum Ay (t) = —iw (), A2 (t) = +iw (t), B’ (t) isa
frequency of rapidly oscillating cosine. In the following, functions Ag (t) = —if8’ (t), A4 (t) = +if’ () will be
called the spectrum of a rapidly oscillating coefficient.

We assume that the following conditions are fulfilled:

Dw(t),B(8),g(t) € C ([to, T], CY), h(t) € C= ([to, T], C?) ,

B(t) € C= ([to,T], C**?) , K (t,s) € C* ([to, T], C**?),

2) for Vt € [to,T] and ng # n4 inequalities

n3Az (t) +nada (t) # A (1),
Ak (t) +ngA3 (t) + nadg (t) 74‘ )\j (t) ok # JikJg=1,2,

for all multi-indices n = (ng3, n4) with |n| = ng +ny4 > 1 (n3 and ny are non-negative integers) are holds.
We will develop an algorithm for constructing a regularized [3] asymptotic solution of problem (1). Condition
2) is called the absence of resonance condition.

) > 0(Vt € [to,T]),g(t) is a scalar function, A (t) and

, 29 = {z?, 28}7 € > 0 is a small parameter. Such a

system in the case S (t) = 2y (t), B (t) of the absence of an integral term was considered in [1-6].
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1. Regularization of problem (1)
Denote by o; = 0; (¢), independent of ¢ magnitudes o1 = e t8(t0) g = et 2Bt0) and rewrite system (1) as

d t it ’ i [t /
€£ —A(t)z — 5% (e =i P (9)(1001 tetedof (9)d902) B(t)z -

— [i K (t,5) 2(s,£)ds = h(t), 2(to,e) = 2°, t € [to, T]. (2)

We introduce regularizing variables [3, 4]

I :
Tj:g/t Y (9)d95¢]€(t),j:1,4 (3)

and instead of problem (2), consider the problem

9z 24 9z g(t)
] Y s ~I\Y T3 Ta 5
6815 +j:1 A (1) oT; Az —e 2 (%o +emo2) B (8) 2

— JL K (t.5)2(s, X2 e)ds = h(t),  Z(t,7.8)|i=tg.r=0 = 2°, t € [to, T], (4)

for the function zZ = % (¢, 7,¢), where is indicated (by (3)): 7 = (11,72, 73,74), ¥ = (¥1,¥2,%3,%4). It is clear
that if Z = Z (¢, 7,¢) is a solution to problem (4), then the vector function z = 2 (t, @, 5) is an exact solution

to problem (2), therefore, problem (4) is extended with respect to problem (2). However, it cannot be considered
fully regularized, since it does not regularize the integral term JZ = f:o K (t,s) (s, ¢is) ,€)ds. To regularize the
integral operator, we introduce a class M, that is asymptotically invariant with respect to the operator JZ [3; 62].
Recall the corresponding concept.

Definition 1. A class M, is said to be asymptotically invariant (with e — 40) with respect to an operator
Py if the following conditions are fulfilled:

1) M. C D(P,) with each fixed € > 0;

2) the image Pyg(t,e) of any element g(t,e) € M. decomposes in a power series

Pog(t,e) = Zs”gn(t,s)(s — 40, gn(t,e) € Mc,n=0,1,...),

n=0

convergent asymptotically for e — 40 (uniformly with ¢ € [to,T]).
From this definition it can be seen that the class M. depends on the space U, in which the operator Py is
defined. In our case Py = J. For the space U we take the space of vector functions z (¢, 7) , represented by sums

4 * 2 *
)=o)t Y Aot Y )1 3T (g g) e,
i=1 2<|m|<N, J=11<|m|<N,

m = (0,0,m3,my), z; (t,0), 2™ (t,0), 2%1T™ (t,0) € O ([tO,T], CQ), (5)
1<|m|=mg+my <N,,i=1,45=1,2,

where is denoted: A (t) = (A1, A2, A3, A1), (M, A(F)) = maAs () + mara (T), (e +m, A (F)) = A; (t) +msAs (t) +
+mgAy (t); an asterisk * above the sum sign indicates that the summation for |m| > 1 it occurs only over
multi-indices m = (0,0, mg, m4) with ms # my, e; = (1,0,0,0), e3 = (0,1,0,0), o = (01,02) .

Note that here the degree N, of the polynomial z (¢, 7, 0) relative to the exponentials €™ depends on the
element z. In addition, the elements of space U depend on bounded in € > 0 terms of constants o1 = o (¢)
and oy = o9 (€), and which do not affect the development of the algorithm described below, therefore, in the
record of element (5) of this space U, we omit the dependence on o = (01,03) for brevity. We show that the
class M. = Ul —y)/e is asymptotically invariant with respect to the operator J. The image of the operator on
the element (5) of the space U has the form
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4
JZ(ﬂT):f:OK(t,s)zo(s ds—i—tht K (t,8) 2 (s) e% Jo 2O g

+ Z ft (S) eé ftbo (m,)\(a))dad8+
2<|m|<N,
+ :2 * f sejtm (S) 6% ftSU(Ejer’)\(e))deds.
J=11<|m|<N, to

Integrating in parts, we will have
Ji(t,e) = [ K (t5) 7 () e T MOV s = ¢ [ KE220) gt Jo MO®

K(t,s)zl(s f’o i (0)dO | s—

_ t o K(t,s)zi(s) %f: i (0)do o
=¢ Ai(s) s= t() - Ef;f() (& i ) € 0 dS -

i(s)

— o [ Ktz 2 [i A(0)do _ K(tto)zi(to) ) K(t 8)zi(s) ) o5 [i, Ai(0)do
_5[ pw ) 0 Oto)o} Efto(s S)s) 0 ds.

Continuing this process further, we obtain the decomposition

Ji (t,e) = f (=) e IV (K (t,5) 2 (5))) et S MO _ (v (¢ (15 2 (5))) 5o

Applying the integration operation in parts to integrals

¢ 1 m, ¢ 1 s (e.4m
I (te) = | K(t,s)(s)e ™ as gt = [ K (t,5) 20t (5) €7 oA g

to to
we note that for all multi-indices m = (0,0, ms3,my) ,m3 # my, inequalities
(m, A (t)) = msAg (t) + mady () # OVt € [to, T], m3 +myg > 2
are satisfied. In addition, for the same multi-indices we have

(ej +m, A (t)) # OVt € [to,T],j = 1,2, mg # ma, |m| = mg +mq > 1.

Indeed, if (e; +m, A (t)) = 0 for some t € [to,T]| and mg # mq,m3 + my > 1, then mgAs (t) +mars (t) =
= —)\1 (t) = A2 (t),m3 + my > 1, which contradicts condition 2). And likewise, if (62 +m, A(t)) = 0 with some
t € [to,T] and mg # myg,mz + my > 1, then mgAz (t) + mary (t) = —=A1 (£) = A2 (t), mg + my > 1, which also
contradicts condition 2). Therefore, integration by parts in integrals J,,, (¢, €) , Je, 1m (t, ) is possible. Performing
it, we will have:

T (8,6) = [1 K (8,8) 2 (s) €= o "NV g — g [l KT () g S, (mAON0

(m,A(s))
N [K(t t)z’"(t)eg ft (m,A(0))do K(t,tU)z"”(to)} _ o[t O KMs)z"(s) F ft (m,X(0))do ds —
TmAD) T T (moAGe) to s (m,A(s)) © =

_ Zio(*l)ygwl[(jzm (K (t, s) Lm (s)))s:t eé ftto(m,A(G))dH . (L,;l (K (t, S) Lm (s)))s=t0]5

IO_

m = (m,i(s))wfffi = L 8@1 Yv>1,|m| > 2);

(m;A(s))

¢ L5 (e;+m
Je;+m (t,€) = / K (t,5) 259+ (5) 7 Jro CoTmAY g

t )

K t e;j+m L% (¢:dm

= £ ( ,S) G (8) deE fto ( it ,/\(0))d0 =
(€5 +m,A(s))
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e’ — —

. [K(t,t) 26T (L) Lrs (e;4mn0)de K (L to) 25T™ (to)
(ej +m,A(t)) (ej +m, A(to))

O K (t,s)zt™ (s) 1s

< Jiy (ej+m,X(0))do
1 05 (ej +m,A(s))

ds =

_ Z 1/ u+1 (K (t, S) Leitm (S)))s:teé ftto (ej+m,\(0))do
v=0

—(I]’-fm (K (t,8) z%F™ (s)))

S:to] ’

1 1 0
P =—- o= = ly>1|ml>1,j=12
e (ej+myA(s) P™ (e +myA(s)) Os I (v=1,|m[>1, 2),

Therefore, the image of the operator J on the element (5) of the space U is represented as a series

T (07) = [ K (69) 20 (5)ds + 32 55 (<11 (I (K (t,3) 3 (5), e o O

1=1v=

o0

— IV (K (t,5) 2 () gy, | + Z:jo(—l)ugwl[([; (K (t,s) 2™ (s))),_, oL L (mn©))de

— (I, (K (t,8) 2™ (8))) o=y, ) + Xi:

1<|m|<N- v

1t ej+m,\(0 v )
Xee fto ( ) _ (Ij,m (K (t7 S) zejtm (s)))szto].,_:w(t)/g.
It is easy to show [22; 291-294] that this series converges asymptotically for ¢ — +0 (uniformly in ¢ € [to, T]).
This means that the class M, is asymptotically invariant (for ¢ — +0) with respect to the operator J.
We introduce operators R, : U — U, acting on each element z (t,7) € U of the form (5) according to the

law:
t

Roz (t,7) = K (t,8) 2o (s) ds, (60)

to
4

Rz (t,7) = Z[(I? (K (t,5) 2i () ,_p €™ = (I (K (8, 8) 21 () .y, [+

+Y . (I (K (ts) 2™ (5) o 7 = (I, (K (8,8) 2™ (), +

1<|m|<N,
T I (0 ), (1, (K @) L (o)
Rz (67) = S (1P (K (65) 2 (50),cy 7 = (IF (K (05) 2 (5), i+

i=1

+ io(—nvswl[(m (K (t,5) 2™ () ey €7 = (I (K (8,8) 2™ (8))) g, 1
FY S 0 (B () 2957 (5))_, ) (1Y, (K (t5) 25 (5))_, v > L.

(6u+1)
Now let Z (¢, 7, €) be an arbitrary continuous function on (¢,7) € [to, T]x {7 : Rer; <0,j = 1,4} with asymptotic
expansion

Z(t,T,¢€) Zszktr7zk(t7) evl, (7)
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converging as € — +0 (uniformly in (,7) € [to, T] x {7 : Rer; < 0,j = 1,4}). Then the image JZ (t,7,¢) of this
function is decomposed into an asymptotic series

Z(t,T,¢€) ZEkJZktT Z ZRT s2s (6 7) lr=y(t) /e

This equality is the basis for introducing an extension of an operator J on series of the form (7):

JZ(t,7€) (Ze 2k tr)éie’”i:RT_szs(t,T). (8)
r=0 s=0

Although the operator (8) is formally defined, its utility is obvious, since in practice it is usual to construct the
N-th approximation of the asymptotic solution of the problem (2), in which impose only N-th partial sums of
the series (7), which have not a formal, but a true meaning. Now you can write a problem that is completely
regularized with respect to the original problem (2):

0z 0z -9t T4 L
gE+;AJ (t)a—Tj—A(t)z—ET(e o1+ eMog) B — JZ = h(t),
é(thv 6)|t=t0,‘r=0 - ZO) t S [t()aT] (9)

2. Iterative problems and their solvability in space solution
of the first iterative problem

Substituting the series (7) into (9) and equating the coefficients with the same degrees, we obtain the
following iterative problems:

4
az
Lz (t,7) = ;AJ aTj — A(t)zo — Rozo = h (1), 2o (to,0) = 2°; (100)
a g(t) T3 T4 — .
Lz (t T) 87 T(e o1 +e O'Q)B(t) 20+ Riz9, 21 (t(),O) = 0; (101)
_ 821 g(t) T3 T4 =0
Lz (t,T) = at —l—T(e o1+ e UQ)B(t) 214+ R1z1 4+ Razg, 20 (ﬁo,O) = 0; (102)
L _ azk*l g<t) T3 T4 _
Zk (t,T) = — ot +7(€ o1 +e JQ)B(t) Zk71+RkZO+...+R12k,1, Zk (to,O) —O,kZ 1. (1Ok)

Each of the iterative problems (10x) can be written as

4
EZ)\] ——A( )z — Roz = H (t,7), 2 (tp,0) = 27, (10)
= oT;
where
4 * 2 *
H(t,r)=Ho(t)+ > Hi(t)e™ + > H™@®)e™D+> " > H&™ (t)elestmn)
i=1 2<|m|<N. J=11<|Im|<Ny

is the known vector function of space U, z* is the known constant vector of the complex space C?, and the
operator Ry has the form (see (6y))

4 *
Roz=Ro|z2t)+ X zt)e + 3 27 (t)elmm+
i=1 2<|m|<N.

2 *
+3 ) Leitm (t)e (ej+m, T)) ft ) 2o (8) ds.

j=10<|m[<N.
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In the future, we will need \; (t)-eigenvectors of the matrix A (t) :
1

2 0= ( i ) 0= (i )

and also \; (t)-eigenvectors of the matrix A* (t) :

0= gy ) u0=( g )

These vectors form a biorthogonal system, i.e.

r ) ={ 5T (i1

We introduce scalar (for each t € [to,T]) product in space U :

<z,w>=

4 *
=<z +y zu)e+ DY @™ 4y " 3 (g eleatmn)
=1

2<|m|<N. 7=11<|m|<N,

4 * 2 *_
wo () + D wi(B)e™ + D W (el 4y N w (el S8
=1

2<|m[<Ny, 7=11<|m|< Ny
4

2 (20 () wo (1) + > (2 (), w; (1) +

i=1
*

2 *
+ > (=™ (1), w™ (1) + Y > (297 (1), WM (1)),

2<|m|<min(N;,Ny ) J=11<|m|<min(N,Ny)
where we denote by (%, *) the usual scalar product in the complex space C2. Let us prove the following statement.
Theorem 1. Let conditions 1) and 2) be fulfilled and the right-hand side H (t,7) = Hp (t) +Z§:1 H;(t)e™ +
+ EZS\mISNz H™ (t) e™) —&—Z?Zl ZTS‘W‘SNH Heitm () eleitm™ ™) of system (10) belongs to the space U. Then
the system (10) is solvable in U, if and only if
<H(@t,71),xx @) e™ >=0,k=1,2,Vt € [ty, T]. (11)

Proof. We will determine the solution of system (10) as an element (5) of the space U :

2ty =z20(t)+ Y zW)e + D 2" (e

2<|m|<N.

+ Z Z Z8Hm () elestmT) =

J=11<|m|<Nu

4 * *
=20+t + Y 2 () emT) £y 2 (t) (7)) (12)
i=1 2<|m|<N. k=12<|mk|<Ny

where for convenience are introduced multi-indices
ml =e +m= (1707m3vm4)7m2 =ex+m= (Oalam3!7m4)? |mk| =1+m3+my > 27

mgs and my are non-negative integer numbers. Substituting (12) into system (10), we will have

SO T—A@) 5O+ S [mA@) T — A2 (1) e+

i=1 2<|m[<N.

+y oy [(m* X (0) T~ A@0)] = (1) el™ ) — A(t) 20 (8) — [ K (t,8) 20 (s) ds =

* 2 *
=Hy(t)+ L Hi e+ Y H@)emD 4y > B (t)el)
i=1 2<|m|<N, k=12<|mk|<Np

38 Becrnuk Kaparanauickoro yHUBepcuTeTa



Integro-differentiated singularly perturbed equations...

Equating here the free terms and coefficients separately for identical exponents, we obtain the following systems
of equations:

CA() 20 (1) — / K (t,5) 20 () ds = Ho (£), (13)
N ()T —A(t)] 2 (t) = H; (t),i=1,4; (13;)
[(m, A (#) T = A(t)] 2™ (t) = H™ (t), m3 # ma, 2 < |m| < Np; (13,n)
[(mE A @) T = A@6)] 2™ () = H™ (t), mg # ma,2 < |m*| < Ny, k = 1,2. (14)
Since the matrix A (t) is reversible, the system (13) can be written as
20 (t) = /t (—A™ () K (t,5)) 20 (s) ds — A~ (8) Ho (1) (130)

Due to the smoothness of the kernel —A~! (¢) K (¢, s) and heterogeneity —A~1 (t) Hy (t), this Volterra integral
system has a unique solution zo (¢t) € C* ([to, T],C?). The systems (133) and (134) also have unique solutions

2 (0) = ()1 — A0 Hi (1) € 0 ([t, T),C2).i = 3,4,

since Ag (t), A4 (t) do not belong to the spectrum of the matrix A (¢). Systems (13;) and (132) are solvable in
space C* ([to, T],C?) if and only if there are identities

(H; (1), x: (£)) = OVt € [to, T] i = 1,2.

It is not difficult to see that these identities coincide with identities (11). Further, since (m, A (t)) = msAs (¢) +
+mada () # X (t),J = 1,2,|m| = mg + my > 2,mg # my (see condition 2) the absence of resonance), the
system (13,,) has a unique solution

() = [(m @) T =A@ H™ (t),2 < |m| < Ng € C* ([to, T],C?).

We now consider systems (14). Let us show that when ’mk ‘ > 2 the functions (m*, A (t)) are not eigenvalues of
the matrix A (¢). Indeed, let (m', A(t)) = Ay (t),|m!| > 2. Then

A (t) + msgAs (t) + mads (t) = Ao (t) , mg+my > 1,

which contradicts condition 2) the absence of resonance. And likewise, equality (m? A (t)) = A1 (t), |m?| >2
ms + my > 1 cannot be fulfilled.

Therefore, when ‘mk’ > 2 the matrix (m*, A (t)) I — A(t) is reversible, we get a unique solution of system
(14) for |m*| > 2 in the class C*° ([to,T],C?):

2 () = [(mF A0 T— A@®)] 7 H™ (1),2 < |m¥| < Ny, k= 1,2.

Thus, condition (11) is necessary and sufficient for the solvability of system (10) in the space U. The theorem
is proved.
Remark 1. If identity (11) holds, then under conditions 1) and 2), system (10) has the following solution in

the space U:
2

2(t,m) = 20 (8) + ) (8) on (8) €™ +
k=1

4
0.0 0) ) 3 o1 A 100+
1=3

(Hy (1), x2(t))

)\1 (t) — /\2 (t) ¥2 (t) eTl+

+
b [ AO) - AW E () e

2<|m|<Nu

+,§1 | E| [(en +m A (D) L= A@)] " Hem (2) elcrtm), (15)
=11<|m|<Npg

where oy, (t) € C* ([tg, T ,(Cl) are arbitrary functions, k = 1,2, 2o (¢) is the solution of an integral system(13y),
m = (0,0, ms3, my) , mg # my, |m| =mg +my > 1.
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8. The unique solvability of the general iterative problem in the space U. Residual term theorem

Let us proceed to the description of the conditions for the unique solvability of system (10) in space Along
with problem (10), we consider the system
0z
Lw (t -
where z = z(t, 7) is the solution (15) of the system (10), Q(¢,7) is the well-known function of the space U. The
right part of this system:

®) (0 + eT0) B (1) 2 +Q (£ 7), (16)

0 t
G@J)-—é—f—%(e”al +eT402)B(t)z+Q(t,7-):—— 20 ( Zzl YeTi+

* 2 *
t
+ Y AT 1Y Y et (el g(®) (€01 + e™ay) B (t) x

2<|m|<N, =1 1<|m|<N, 2
4 * 2 *
Xlzo(t)+ > zW)e+ > 2™ 4> Y ) el tm I 4 Q (8, 7),
i=1 2<|m|< N, j=1 1<|m|<N,

may not belong to space U, if z = z(¢,7) € U. Indeed, taking into account the form (15) of the function
z=z(t,7) € U, we will have
0z (t)

Z(t,7) =G, 1)+ il (e™01 4+ €e™o2) B(t) [20 (1) +

4 * 2 *
+ Z zi (t) e + Z 2™ (t) el™) Z Z zetm (¢) eleatmm)] =
i=1

2<|m|< N, j=1 1<|m|<N.

4
= LB (1) 20 (1) (€701 + e™00) + 32 LB (1) 2 (1) (€701 + €7 T Tay) +
1=3

2
+ 3 ZRB () 2 (t) (€7 H oy + i) +
k=1

+90 (e 4 eTiay) B (1) | Z zm(t)e(m’T)—i—Z ST zetm (f) eleitmin)] 4
2<|m|< j=1 1<|m|<N.

+Q (¢, 7).
Here are terms with exponents

eTatTs — 6 |m (0,0,1,1)5
e™tmT) (ifmg +1 = m4)a e ) (if my + 1 =mg), ()

emst(eritm,7) (if ms+1= m4)’ eTat(e2+m,T) (if my+1= mg)

do not belong to space U, since in multi-index m = (0,0, m3, m4) of the space U must be mg # my, mg+my > 1.
Then, according to the well-known theory [3; 234], we embed these terms in the space U according to the following
rule (see (x)):

o —

— .0 _ _
67'4+7'3 = e’ = ]_7 eTS+(myT) =

=V =1 (m3 +1=my,m3 # m4) , emat(m,7) = 0 =1 (m4 +1=m3,m3g # m4) R (**)

eTat(er+m,m) — 71 (ms + 1 = my,ms # my), eTat(e2+m,7) — T2 (my +1=m3,m3 #my).

In Z (t,7) need of embedding only the terms

4 2
M) =3 ID B (1) z; () (€7 F 301 + e T ay) + kzl DB (1) 2, (1) (™50 + e Tay),
- * - 2 *
S(t,7) =20 (eTsg; +eTon) B()[ Y 2m(t) e 4+ Y 28 m () eleitmm)),
2<|m|<N, J=11<|m|<N,
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We describe this embedding in more detail, taking into account formulas (#x):

st
2

(),
2

M

M (t,7) =

>
I

1

t)

Q
—

+

-

Il
w

N ‘

(2

K o+ e oy
(t) 21 (t) (€80 + €™ Toy) +

B(t)z (t) (7" oy + €7 oy) =

(t) [ (1) €™ B0y + 21 (8) €7 00 + 20 (1) €™ P01 + 25 (t) € T o0+

+2z3 (1) 2oy + 23 (t) €™ oy + 24 (1) €™ 0y + 24 (1) 627—402] =

o t
= M (t,'r) = %B (t) [Zl (t) 6T1+TSO'1 + 2 (t) 6T1+T4O_2 + 2 (t) 672+T3o'1+

20 (1) €™ o + 23 (t) 2™ 0y + 23 (t) 00 4 24 (1) 01 + 24 (1) €20y

(note that in M (t,7) there are no members containing e™, ™ measurement exponents |m/| = 1);

+ Z Zez-',-m (t) (e(62+m,7)+7'30,1 + e(e2+m,7—)+7—40,2)] =

g(t)

S(t,T)= "

(Mo +ema) Bt

*

2<|m|<N.

2 *
YD el =

J=1 1<|m|< N

*

2<|m|<N.

+ Z Zel+m (t) (e(el+m,7')+7'30_1 + e(el+m,‘r)+‘r40_2) +

1<|m|<N:

1<[m[<N.

>

2 <|m| < N,
mz+1=my

Cepust «Maremarukas.

Zm (t) o1 —+

>

2 <|m| < N,
my+1=mg3

Zel+m (t) o1 —+

*

S (t,T)

2™ (1) e(mT) 4

g (t) B (t) [ Z oM (t) (673+(m,‘r)0_1 + 6T4+(m,7')0_2) +

>

1< |m| <N,
m3+1=my

2.

ms+1=my

22T (t) oy +

M (t) oy + Z ,m (t) (M) +
2< |m| < N,
ms + 1 # mg,mg + 1 # mg
Z 2T () oy | €™+
1 <|m| <N,
my + 1= ms
Z 22T (H) oy | €™+

my+1=mg3

*

>

m3 + 17 mg,myg +17#m3

D)

j=1
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After embedding, the right-hand side of system (20) will look like

4

Gltr) =D+ me+ Y ey

i=1 2<|m|<N,

2 *
+ Z Z Zejer (t) e(e_,-+m,‘r)] —+ ]/\Z(t, 7') + S\(t, 7') + Q (tv 7-)’

J=1 1<|m|<N;
moreover, in S (t,7) the coefficients at ™, e™ do not depend on 2, (¢),k = 1,2. As indicated in [3], the embedding
CAJ (t,7) — G (t,7) will not affect the accuracy of the construction of asymptotic solutions of problem (2), since
Z(t,7) lr=ypt)e = Z (6, T) lr=p(t) /e
Theorem 2. Let conditions 1) and 2) be fulfilled and the right-hand side H (t,7) = Hp (t) —&—Z?Zl H;(t)e™+
+ ZZS\mISNz H™ (t) emm) 4 E?:l ZTS“’”'SNH Heitm () eleat™m) ¢ U of system (10) satisfy condition (11).
Then problem (10) under additional conditions

<G(t,7), xx(t)e™ >=0Vt € [to,T], k= 1,2, (17)
where
4 * 2 *
Qt,7) =Qo(t)+ Z Qu(t)e™ + Z Q™ (1) e(m7) 4 Z Z Qertm (t) elertm,T)
k=1 2<|m|<N. k=11<|m|<Ngq

is the known vector function of space U, is uniquely solvable in U.
Proof. Since the right-hand side of system (10) satisfies condition (11), this system has a solution in space
U in the form (15), where oy, (t) € C* ([to,T], C') are arbitrary functions so far, k = 1,2. Submit (15) to the

initial condition z (¢p,0) = z*. We get 22:1 ay, (to) ¢k (to) = z«, where denoted
2= 2"+ A7 (to) Ho (to) = Yoimg [N (f0) T = A(to)] ™" H, (to) —

L H t H®2 (t0), x1 (¢
Al(t(o;)) ))\(22(200))) 0 (to) — (Az(to;)z)\xll((too)))gol (to) —

— Ya<imi<n, 2" (to) — Yot Z;ka\gNH [(m*, X (to)) I = A(to)] e (to)-

Multiplying the equality Zi:l oy, (to) i (to) = 2z« scalarly by x; (to) and taking into account the biorthogonality
of the systems {y, ()} and {x; (¢)}, we find the values ay, (to) = 3 (2, xx (t0)), k =1,2. Now we submit the
solution (15) to the condition of orthogonality (17). Considering that under these conditions, scalar multiplication
performed by vector functions xy (t) €™, containing only exponents ™, k = 1,2, it is necessary to keep in the
expression G (t,7) only terms with exponents €™ and e™. Then condition (17) takes the form

9 : Tk (Hl (t) ; X2 (t)) . (HQ (t) , X1 (t))

e1(t) 6T2> +

1< mi<n, 20T <, 2T @0 | e

ms+1=my my +1=mg
+ +
Pl i<micn, T OaFE g <, FT o | e
ms+1=my my+1=mg

FQ1 () e + Qo () e™, xp(t)e™ >=0 Wt [to, T], k=1,2.

Performing here scalar multiplication, we obtain linear ordinary differential equations with respect
to the functions ay (¢), involved in the solution (15) of system (10). Attaching to them the initial conditions
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ag (tg) = % (24, Xk (t0)), K = 1,2, computed earlier, we find uniquely the functions «ay (t) € C*° ([to,T} , (Cl)7
k = 1,2, and, therefore, we construct solution (15) in the space in a unique way. The theorem is proved.
Applying Theorems 1 and 2 to iterative problems (10;) (in this case, the right-hand sides H*®) (¢, 7) of these
problems are embedded in the space U, i.e. H*) (t,7) we replace with H®) (t,7) € U), we find uniquely their
solutions in space U and construct series (7). Just as in [3], we prove the following statement.
Theorem 3. Suppose that conditions (1) — 2) are satisfied for system (2). Then, when € € (0,e0] (g9 > 0 is
sufficiently small), system (2) has a unique solution z(t,e) €CL([0,T],C?); in this case, the estimate

llz(t, ) = zen D)llcpo,r) < ene™ T,

holds true, where zey (t) is the restriction (for T = @) of the N- partial sum of series (9) (with
coefficients zy (t,7) € U, satisfying the iteration problems (10x)), and the constant ¢y > 0 does not depend on
e € (0,¢eq)].

4. Construction of the solution of the first iteration problem in space U.

Using Theorem 1, we will try to find a solution to the first iteration problem (10g). Since the right side h (¢)
of the system (10q) satisfies condition (11), this system has (according to (15)) a solution in space U in the form

2o (t,7) = z(()O) Za(o) Ye™™, (18)

where zéo) (t) is the solution of the integrated system

29 (1) = / (AT () K (t,5)) 20 (s)ds — A7 (¢) b (t), (19)

to

a,(co) (t) € C> ([to,T], C") are arbitrary functions. Subjecting (18) to the initial condition z (to,0) = 2°, we will
have

+Za to Pk to)—Z @Zak to)(pk@o)—z + A~ ( )h(to).
k=1
Multiplying this equality scalarly by x; (to) and taking into account the biorthogonality of the systems {¢y ()}
and {x; ()}, we find the values a(o) (to) = 2 (2°+ A7 (to) h(to), xx (to)), k = 1,2. To fully compute the

functions aéo) (t), we proceed to the next iteration problem (10;). Substituting into it the solution (16) of the
system (10q), we arrive at the following system:

t

d 2. d
Lz (t,7) = —%zéo) OB df(a,@ (t) o (£))e™+
k=1

—&-? (e™o1 +e™a2) B (t) (z(()o) (t) + ozg)) (t) ok () e”“) +

k=1

2 [(K@wnal? ;) (K tto)al” () (1)
22 No % (@) 20

(here we used the expression (61) for Ryz (¢, 7) and took into account that for z (¢,7) = 2o (¢, 7) only the terms
with €™ and e™ remain in the sum (61)). It is not difficult to see that the right side

H(t,7) =427 (1) = Xh_y (o) (t) on ()e™+

+90 (701 + emaa) B (1) (27 () + iy of) (D er () ) +

(K(t0al” ()e; (1) (K(tto)al” (to)e;(t0))

2 J T _ J
+Zj:1 [ ;@) e A;j(to) }
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of system (20) belongs to space U. System (20) is solvable in this space U if and only if conditions (11) are
satisfied, which in our case take the form

K(tt)a (t)ek(t)
(<4 o+ EEP2O ) =0 o

(0)
& 290 (UEDO) — o (1), (1)) af) (1), k= 1,2,

Attaching to this system the initial conditions a,(co) (to) = 3 (2°+ A7 (to) h(to), Xk (to)), we find uniquely

functions
o (1) = o) (to) exp {;/t (W 41 (s), (s)) ds}, k=12,

therefore, we uniquely calculate the solution (18) of the problem (10g) in the space U. Moreover, the main term
of the asymptotic of the solution to problem (2) has the form

zeo (8) = 28 () +

+ Za’(co) (to) exp {; /to (W — o (8) s Y (s)) ds} on (1) ot Iy oL

(0) (2% + A7 (to) h (to) , xk (to)) , k= 1,2, z(()o) (t) is the solution of the integra system (19).

where o, (to) =
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Cadomnos B.®. Kypc Boicmeit maremarnku. CHHTYJISIPHO BO3MYIIEHHBIE 33/Ia9M U METOJI, PErYJISpPU3aIlun

/ B.®. Cadonos, A.A. Bobomxkanos. — M.: Usnarensckuit jom MU, 2012. — 414 c.

B.T. Kanum6eror, B.®. Cadonos

KbpL1gaM ocimJIIAIUsSIaHATBIH KO3 PUIMEHTTI CUHTYJISIP
aybITKbIFAH UWHTErpo-andPepeHnnaJIbIK, TeHaeyJIep

JlnHaMUKAJIBIK, OPHBIKTBIIBIKIIEH, IEPUOTHI KYPBLIBIMFA Ue OpTaMeH OailJTaHbICThI YKoHe OacKa J1a KOJIIaH-
baJIbl MaceJIesIep/i 3epTTeysep KbLIIaM OCIUJLIAIUAIAHATHIH KO duimenTTi quddepeHnaiibiK, TeH ey -
JIepMeH afHaJBICYIbl KaxkeT eremi. MyHmai koaddumuenTTi quddepeHnaiIbK, TeHIeyIep Kyieaepiniy
ACHMIITOTHKAJIBIK, HHTErPAJIIAY OOJIIEKTEY YKOHE PEryasapu3alus dIicTepMeH KypriziareH. Ocbl 2KyMBICTA
nHTerpasibl-uddepeHnraIbK, TeHeyIep Kyieci KapacThIPbUIFaH. 3ePTTEY/iH Herisri MakcaTbl — MH-
TErpaJi/IbIK MYIIEHIH aJIFAIIKbl €CEITiH IIENIMiHIH acHMITOTUKACBbIHA 9cepiH 3eprTTey. EcenTe pe3oHanc
OoIMaraH Karaail, SFHU XKBLIIaM OCIUJLIANUSIIAHATEIH KO3MMUIMEHTTIH, OYTIH ChI3BIKTHIK, KOMOUHAIIAS-
CBIHBIH, YKHUIJIIKTEPI MIeKTi ONepaToOP/IblH, CIIEKTPIHIH KHUIIriMeH ColikeCc KeJIMENTIH Kar/iail, 3epTTeJIreH.

Kiam cesdep: cunrysisip aybITKy, WHTErpo-auddepeHIualiiblK, TeHIEY, KbLIJaM OCIULISIUIaHATBIH KO-
3bduUnmenT, peryaapu3anus, aCUMITOTHKAJIBIK KUHAKTHIJIBIK.
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B.T. Kamumb6eros, B.®. Cadonos

NnaTterpo-anddepenrmanbibie CUHTYJIIPHO BO3MYHIIEHHBIE
ypaBHEHHS C OBICTPO OCHMJLINPYIOOIMMHI KO3 dpunmenramu

IIpu mccmemoBanmy pPasIMIHBIX BOMPOCOB, CBA3AHHBIX C JUHAMHUYIECKON YCTOMIHMBOCTBIO, CO CBOWCTBAMU
cpejl C IEePUOJINYIECKO CTPYKTYPOii, IIPU HCCJIEIOBAHUM JIPYTUX NPUKJIAIHBIX 3329 IPUXOIUTCS MMETh
neno ¢ auddepeHImaJIbHBIMA YPABHEHUSIMU C OBICTPO OCIMJLIMPYIOMIMMI KOIMDMUITHEHTAMA. A CUMIITO-
THUYIECKOE MHTErPUPOBaHUe IudPEePEeHINATBHBIX CUCTEM YPABHEHUN ¢ TAKUMU KOI(DDUITHEHTAMU TTPOBO/IN-
JIOCh METOJIAMHU PACIIEIJIEHNs U peryssipudanuu. B HacTosiiel pabore pacCMOTPEeHa CHCTEMa, HHTErPaIbHO-
muddepeHmanbHbIX ypaBHeHuii. OCHOBHAS 11€J1b UCCJIEIOBAHUS] COCTOUT B BBISIBJIEHUN BJIMSTHUSI HHTETPAJIb-
HOT'O UJIeHA Ha aCUMIITOTHKY PEIeHUsT UCXOMHOHN 3ama4un. V3yduen ciaydait OTCyTCTBUS pE30HAHCA, T.€. CIIy-
4aif, KOrja IeJIOUYNC/IeHHAs JIMHeHHAsT KOMOUHAIMS YACTOT OBICTPO OCHUJIIMPYIONIEro KoddduIenTa He
COBIIAJIAET C YACTOTOM CIIEKTPA IPEIEIHLHOIO OIIEPATOpPA.

Kmouesvie cr06a: CHHTYISIPHOE BO3MYIIIEHIE, HHTETPATHHO- M MEPEHNNATBHOE YPABHEHHE, OBICTPO OCITUII-
JIApYIOIHii KO3 OUIMEHT, perysisipu3alusi, aCAMITOTHYIECKAsT CXOAUMOCTb.
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On a pseudo-Volterra nonhomogeneous integral equation

In this paper the issues of the solvability of a pseudo-Volterra nonhomogeneous integral equation of the
second kind are studied. The solution to the corresponding homogeneous equation and the classes of the
uniqueness of the solution are found in [1]. By replacing the right-hand side and the unknown function, the
integral equation is reduced to an integral equation, the kernel of which is not «compressible». Using the
Laplace transform, the obtained equation is reduced to an ordinary first-order differential equation (linear).
Its solution is found. By using the solution of the homogeneous equation the form of a particular solution of
the nonhomogeneous differential equation is defined (by the variation method of an arbitrary constant). By
using the inverse Laplace transform, a particular solution of the pseudo-Volterra nonhomogeneous integral
equation under study is obtained. The case of an nonhomogeneous integral equation with the value of
the parameter k = 1 is considered and studied. Classes for the right side and the solution of the integral
equation are indicated.

Keywords: pseudo-Volterra nonhomogeneous integral equation, class of essentially bounded functions, inverse

Laplace transformation, residue.

Introduction

We research the solvability of the following nonhomogeneous pseudo-Volterra integral equation of the second
kind

where a, k are positive constants, f(¢) is the given function.

v(t

)wva:ﬂm<w

1. Reducing the equation (1) to a differential equation in images

Following the results of work [1] after replacements:

o (g0 )0 =m0 Ve (1) 10 = A0 2)

we get the following integral equation

t-v(t vy (7)dr ~Tuv(T)dr = f1(t). (3)

)_2377/;\/%' _kalﬁ/ot\/tl;r

Applying the Laplace transform the equation (3) transforms to the following differential equation

1 N a _
[’m\/ﬁ _ 1} o (p) — 7 21(p) = fi(p). (4)

The general solution to corresponding homogeneous (4) has the form
ﬁl, hom(p) =C————

where C — const.
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Then the solution of the nonhomogeneous equation (4) is sought in the form

X e P
7 (p) = C(p) T (5)
(VP — 7a)
Substituting function (5) into equation (4), we get
+oo 1 %_1
co=- [ i vi(vi-) dee )
p

After substituting (6) into (5), we can write out the partial solution of the nonhomogeneous equation (4) as

) S LY A (e g _1)“
0, part(p) = (\/]5—,61(1)’1/17 </0 e f1(t)dt> VPV (Vi - dg.

Changing the order of integration, we obtain

. e~ P Foo Foo 1\*7!
1, part(P) = T / fi(?) / e e /g - <\/§— ka> dq dt.

(vo— )t o :
I(p,t)
This way, we get
e~ VP 400
Vl, part (p) - 1 % / fl (t)I(pa t) dta (7)
(VP—7a)" 70
where -
+oo 1 T B
o= [ va(vi- ) e ®
p

We rewrite integral (8) in the form

1.0~ [ P (gie L) ey s L / e VT e
p,—p \[lm € qkap \[lﬂa € o

J1(p, t) Ji_i(p, t)
k k
1
where
Tu-1(p, 1) :/ﬂo (ﬁ—l)nl e~ MeVidg = H S 4= H
v ka dq = 2xdz; \/p <z <+00
+00 1 n—1 +o00 1 n
= 2/ g et Re (x - ) e tettar gy — 2/ (a: - ) et taT gy 4
/P ka JP ka
An(p,t)
+oo n—1
+3/ (x - 1) et er gy =
ka /P ka
Anfl(pvt)
2
Jnfl(pv t) = 2An(p7 t) + EAnfl(pv t)? (10)
where

+o00 1 n—1
Ap-1(p,t) = / (a: - k) exp(—tz® + az)dx =
\/5 a
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L ) e e 3

VP
oo a 1 2
A — — — e N d\

2t

2. d\=dx
——<)\<+oo

VP
Bn—1(p,t)
or .2
An—l(pv t) = exp <4t> Bn—l(pa t)v (11)
where oo . .
Br(pv t) = / ()\ + E — k@) e d.
VP3¢
We find the last integral when r =n — 1:
+oo a 1 n—1 , u — e—t)\2. dv = ()\ + 4 )
B 1(p,t) = Ad —— — AT AN = ’ 2t ke n |l =
n-1(p,?) /\/;7; < 2t k(l> ‘ du = —2the N d\; v = LA+ - ﬁ)
n | A—+o00 n
1 1 2t 1
= —¢ N ()\ + ) += (/\ +=— ) Ae=™ d) =
n 2t ka rmvi-e Mg 2t ka
1 a\?2 1 2t a 1
=~ exp ( t (\f_ E) ) (\/13_ ka) +— |:Bn+1(p7 t)— (2t - ka) By (p, t)} .=
1 1 a\2 2t a 1
Brao )=+ (Vo= 1 e (<t (Vo= ) ) + 2 [Bunto 0 - (5 - 3o ) Bt 0] 12

We substitute the expression (12) into (11):

e () { =5 (=)o (- (5 5))

% [Bn+1(p, t) — (;t - ,;) Bu(p, t)] } (13)

Then
Ap(p, t) = exp (Zi) { - nil <\/17— kla) exp <—t (\f— ;5)2> +
+% {Bn+2(P7 t) + <kla - ;t) Byi1(p, t)} } (14)

Substituting the expressions (13) and (14) into (10) we get
I ) =2 a? 1 1 . ( a )2 N
AT n+1 VP ka ) P VP 2t

2t {Bmz(% t) + <1 - a) Bt (p, t)} - ﬁ (x/ﬁ - ka) exp (—t (xf— ;5)2> +
) 5ut0)

n+1 ka 2t

4t

Jn-1(p, t) = 2exp (a2> { - % (x/ﬁ— kla> exp (—t (\/— %)2> +
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+i3n+2(p,t)+2t [1(1 a)+ ! }B,,H(p, t) + 2t (1 a) B (p, t)} (15)

n+1 n+1\ka 2t nka nka \ka 2t
Then

Jn(p, t) = 2exp <‘Z> { - (&:11))]:;&123 (\/;3 - kla> exp (—t (f - ;)2> + %erg(p, t)+

ot {n i 5 (kla - ;t) + (n—i—ll)ka} Bpia(p, t) + (nfﬁ (kla - 2‘;) B (p, t)}. (16)

Substituting the expressions (15) and (16) into (9) we get:
a? (n+ Dka+n+2 nka+n+1 1 a\2
I —9 S I - - _e
(. 1) eXp(4t>{ ((n—i—l) (n+2ka | n(nt 1) (ko) (‘[ ka) eXp( ! (\[ Qt) >+

2t 1 1 a 1 1
= Buaalp, )42t | —— (— - & Byia(p, t
+n+2 +a(p 8+ {n+2 (ka Qt) * (n+1)ka+ka(n+1)} +2(p )+

+2t [ka(nil) (kla - ;) + n(kla)Q} Brii(p, t) + n(i’;)2 (;a - ;) B (p, t)}. (17)

Substituting the expression (17) into (7) we get 21, part(p):

1 part(p) = —— / L0, 0)d0 18)
Vi,part\P) = =1 1 b, )
(VP = 7a)" 70

where the function I(p, 0) is defined by formula (17).
We rewrite (18) in the form

A “+o0 efa\/;?z
Panp) == [ 100) (). (19)
o (VP
We apply the inverse Laplace transform to (19)
1 c+i00 A
vy, pa'rt(t) = % /071.00 vy, part(p) eptdpa (20)

where the integration is performed along the line Rep=c, that is parallel to the imaginary axis and is shifted so
that all singularities of function 7} pqr¢ lie on the left side of it.
Changing in (20) the order of integration 6 and ¢, we get by virtue of the Cauchy residue theorem:

+oo 67(1\/5
o) == [ 510) 3 res § — 10y, 0)c" b, (21)
0 pr (VP — 72)
where p,. is a singular point of a function
efa\/frkpt
G(p, 0) = 11 0), (22)
(VP = 7a)

because by virtue of the formula
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and formula (17) we have
e~ P

lirf o I(p, 0)e?' 3 =0,
—+00 T

: (VP 7a)"

where oo is a removable singularity.
1
Obviously, the singular point of the function (22) (as a function of p) is the point p = e We will find
a
the residue of the function G(p, #) at this point.
We consider the case when k£ = 1.
When k =1 from (8) we have:
+o0 00 2 2 o0 a2 5
I(p, 9) — \/a e—q0+a\/adq _ 2/ 22t 0tar g, — 2exp (49) / ()\ + %> e N d\ =
p VP VP~ 13y
+o0 +o0 2 +o0
/ Nem dx + % Ae PN+ %02 / erA] -
VP—35 P—35 VP35
a\? a® a
)i 5)
))+( +29>erc NG 50 } =

<o)

2) erfe (\f— ;;)} . (23)

1 a? a
g P (49) [(\/1“ Tk (" (Vi-5
1, 0) = Lexp (4 (Vp+ oz )exp (-0 ( _7)2 +(1+2
PO =gexe| g ) (VP T o) exp VP 5 20
1
Then at p = — we obtain from (23):
1 a 1 0 a? a? 1 a
I=:0)=(2 4+~ 1- = 1+ 2 S Verfe (= - 2. 2
<a2’ 9) <292+a9> eXp< a2>+< +29> exp (49) e”(a 29) (24)
When k=1 (p = o) is a simple pole) for the function (22) we have in view of (24)
1 .
pv;e;G(p, H)Zaexp E_l I pek 0) =
1+1 t—90 n 2+a +a2 1) erf 1 a
==+ — ) ex —+-]exp|5+—=— rfc [ = — —
02 " a20) TP\ a2 a9) P\ )" 20
Then from (21) we get
oo 12 t—0
nopert) == [ 1O | (4 g) e (0 ) +
2 a t a? 1 a
-+ - — 4+ —=—1)efc|=-—— ]| dob. 2
+(a+9>exp(a2+40 )erc(a 20)] (25)
By virtue of replacements (2) from (25) we obtain a particular solution of the initial equation (1)
Y e 0 1 2
Vpart(t) = —V't exp VPE ) f(0) EJFTQ\/@ exp T +
2v/0 a a? 0 1 a
VT4 I o = ) 2
+< . +\/§>exp<49+4a2>erc<a 29)] (26)
Thus, the following theorem is proved.
Theorem. The integral equation
a ¢ 1 t—r1 1 t \ﬁ t— T
- T u(n)dr — - u(r)dr = f(t
)= 5z | e o (<) vt = [ e exp (=1F ) v(r)ar = 100
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in the weight class of functions

exp (_422> V() € Lo(0, +00)

at
exp (_422> (1) € Loo(0, +00)

has a solution defined by the formula (26).

Remark. Singular homogeneous integral equations were considered in works [2—4]. Their kernels were also
«incompressibles, but kernels had an another form. In this connection, the weight classes of the solution existence
differ from the class of the solution existence for the equation considered in this work. We also note that boundary
value problems for a spectrally loaded parabolic equation reduce to this kind of singular integral equations,
when the load line moves according to the law « = ¢ [5-10] and problems for essentially loaded equation of heat
conduction [11-15].

In works [16, 17] it is shown that the homogeneous Volterra integral equation of the second kind, to which
the homogeneous boundary value problem of heat conduction in the degenerating domain is reduced, has a
nonzero solution.

In works [18, 19] boundary value problems for heat equation in angular domains with special boundary
conditions are studied. The problems are reduced to singular integral equations of Volterra type of the second
kind, similar to the equation (1).

A similar kind of integral equation arises in solving the boundary value problems of heat conduction with
heat generation, which describe the development of the one-dimensional unsteady heat processes with axial
symmetry. More complex equations arise from the model that is based on the system of spherical heat equations
in a domain with moving boundary and when studying the Stefan problem [20-23].

To find analytical solutions for classes of transfer problems, special methods or modification of known
approaches are needed. Summary of the results accumulated in this area of the analytic theory of the thermal
conductivity of solids is given in reviews [24, 25].
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M.T. Kocmaxkosa, JI.M. Axmanosa, 2K.M. Tyneyraesa, JI.2K. Kacbimosa

BiprekTi emec nceBao-BoJsbTeppa
MHTErpaJIAbIK TEHAEeYi TypaJibl

Maxkasana exinmi TexTi 6ipTekTi emec nceBno-Bosbreppa TeHeyiniy memnrimi 60IaabI Ma JIeTe€H CypaKTap
KapacThIpbLLIbl. TeHgeyre colikec GipTeKTI TeHJEY/IIH MemiMi KoHe MIeIIMiHIH XKaJFbI3(bIFbIHBIH KJachl [1]
JKYMBICTa, TaObLIFaH. BepiireH MHTerpasablK TEeHJEYIiH OH Kafbl MEH 13MeJHl (DYHKIUSHBI aybICTHIPY
apKbUIbI, SAPOCHI «KBICBLIFAH» OOJIMANTBHIH WHTEIPAJIIBLIK, TeHEY TypiHe Kesmi. Asjbpiaran tenjey Jlamiac
TypJleHAIpYiHiH KeMmeriMeH OipiHnn perTi KapamaibiM (ChI3BIKTBI) JuddepeHIanIblK TeHIeyTe aJbll Ke-
sneni. OubIH mmemiMi TabbLTabl. BipTekTi TeHmeymiH IenriMiHie KeMeriMen 6ipTekTi eMec muddepeHmasi-
JIBIK TeHAEYAIH Jepbec merntiMinig Typi aHbIKTamAbl (TYPAKThIHBI BapHausiiay ojiciMen ). JlamiacTeiy kepi
TYPJIEHIIPYiH KOJIJIAHbIII, 3€PTTEI OThIpFaH OipTeKTi eMec rceB/10-Bosbreppa MHTErpaJiIblK, TeHIEYiHiH
nepbec mmermimi aabHABI. BipTeKTi eMec MHTErpasiIbIK, TeHIeyiHIH mapaMeTpiniy MoHi k = 1 Gonran Kar-
maibl 3epTresi. HTerpasablk TeHaeymais OH »Karbl MEeH IIeMTiMi YIIH K/IacTapbl KOPCETLIIi.

Kiam coesdep: 6iprekTi emec ncesno-Bonbreppa WHTErpaaablK, TEHIEY1, MAHBI3IBI IIEKTEATeH (DYyHKIUIIAD
KJachkl, JlammacTeig Kepi TypseHaipyi, erepim.

M.T. Kocmaxkosa, JI.M. Axmanosa, 2K.M. Tyneyraesa, JI.2K. Kacbimosa

06 oanom nceBao-BosbreppoBoM HEOJHOPOIHOM
MHTErpajJbHOM ypaBHEHUN

B crarpe mccimemoBanbl BOIPOCH! Pa3permMOCTH MICEBA0-BobTeppOBOro HEOMHOPOIHOTO MHTErPATHLHOTO
ypaBHEHUs BTOPOro poja. PelreHne COOTBETCTBYIOIIETO OJHOPOIHOIO YPABHEHUS M KJIACCHI €JUHCTBEHHO-
CTH peleHust HaiineHbl B pabore [1]. C nomompio 3aMeH IpaBoii 4acTu U UCKOMO# (byHKIME HHTErPAIBHOE
yPaBHEHUE CBEJIEHO K MHTErPabHOMY YPABHEHUIO, AJIPO KOTOPOIO HE sBJIAETCH «CxKUMaeMbiMy». C 1oMo-
b0 IpeobpazoBanus Jlamaca mosyyeHHOe ypaBHEHNE CBEJIEHO K OOBIKHOBEHHOMY JuddepeHnaIbHOMYy
yPaBHeHHIO epBoro nopsiaka (nuseitnomy). Haiineno ero pemenue. C MOMONIBIO PelIeHUs! OZHOPOJHOIO
yDaBHEHMsI ONPEEIeH BUJ, YACTHOIO DEIIeHUs] HEOMHOPOAHOro auddepeHnuaabLHoro ypapHeaus (MeTo-
JIOM BapHaly IIPOU3BOJILHON IocTostHHOM ). IIpnmenennem obparHoro npeobpasosanust Jlamiaca 1moJry4eHo
YaCTHOE PEIIeHHE UCCJIEIYyeMOro IceBao-BoabTeppoBOro HEOJHOPOIHOTO MHTETPAJILHOIO ypaBHeHus. Pac-
CMOTPEH U UCCJIEIOBAH CIydail HEOTHOPOAHOTO MHTEIPAJILHOTO yPAaBHEHNUs IPU 3HAaYeHnn nmapamerpa k = 1.
VKa3aHbI KJIACCHI JJIs IIPABOY YaCTU U PEIIeHUs NHTErPAJIbHOIO YPABHEHNUS.

Karoueswie caosa: iceBno-BosbreppoBo HEOTHOPOIHOE HHTErPAJILHOE YPAaBHEHKE, KJIACC CYIIIECTBEHHO Orpa-
HUYEeHHBIX DYHKIW, 0bpaTHOe mpeobpazoBanue Jlamraca, BbIIeT.
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Conditions of coercive solvability of third-order differential
equation with unbounded intermediate coefficients

a

In this paper we study the following equation —y"’ + r(x)y” + q(x)y’ + s(z)y = f(x), where the
intermediate coefficients r and ¢ do not depend on s. We give the conditions of the coercive solvability
for f € Ly (—00, +00) of this equation. For the solution y, we obtained the following maximal regularity
estimate: 5", + 179" ll; + lay'lly + lsyll < C1fll3» where [-|l, is the norm of Ly (—oo, +oc). This
estimate is important for study of the gwasilinear third-order differential equation in (—oo, +o00). We
investigate some binomial degenerate differential equations and we prove that they are coercive solvable.
Here we apply the method of the separability theory for differential operators in a Hilbert space, wich was
developed by M. Otelbaev. Using these auxillary statements and some well-known Hardy type weighted
integral inequalities, we obtain the desired result. In contrast to the preliminary results, we do not assume
that the coefficient s is strict positive, the results are also valid in the case that s = 0.

Keywords: differential equation, unbounded coefficients, maximal regularity, separability.

1 Introduction and Main Theorems

We consider the following linear differential equation:
Loy=—y"+r@)y" +q@)y +s@)y=f(2) (1.1)
where € R = (—o00,+00) and f € Ls := Ly (R). By c) (R) (=0,1, 2, ...) we denote the set of the j-times

loc

continuously differentiable functions in the every compact, Cl((?c) (R) = Cloc (R) is the set of the continuous
functions. We assume that r € C'2) (R), q € c (R), s € Cioc (R) in (1.1) are real functions, in general,

loc loc

they are unbounded. We denote by L the closure in Lo of the operator Ly defined on the set of three times
continuously differentiable functions with compact support C(()?’) (R).

Definition 1.1. The function y € Lo is called a solution of the equation (1.1), if y € D(L) and Ly = f.

In future, by C, C1, Cs and etc. we will denote the positive constants, which, generally speaking, are different
in the different places.

Definition 1.2. The solution y of the equation (1.1) is called a maximally Lo-regular, if the following estimate
holds:

1y 2 + iy lla + llay'llz + llsylly < C ISl (1.2)

where || - ||, is a norm in L. The inequality (1.2) is called the maximal Lo-regularity estimate. If (1.2) holds,
then the operator L is said to be separable in L.

The purpose of this work is to find the sufficient conditions for correct solvability of the equation (1.1) and
the fullfilment of the estimate (1.2) for a solution of the equation (1.1). The important examples of the equation
(1.1) are the Korteweg-de Vries equation (linearized) and its modifications that describe the wave propagation
and are used in the problems of a gas dynamics (see [1] and the references therein), as well as the composite type
equations that are used in the hydrodynamics and hydromechanics [2]. Furthermore, the equation (1.1) appear
in the case that we apply the Fourier method to the partial differential equations of mathematical physics. The
other applications of the third-order differential equations can be seen in [3-6].

The smoothness problems for solutions of the equation (1.1) are of a great interest. The case of the
bounded domains and smooth scalar coeflicients are well understood and sufficiently well described in the known
literature. In the case that the domain is unbounded, although the solution of the odd-order equation (1.1) is
local smooth, but it may not belong to the Sobolev spaces. This fact causes some difficulties for study of (1.1).
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The estimate (1.2) is very important for the study of singular nonlinear differential equations [7]. The maximal
regularity problem for the second-order partial differential equations were investigated by P.C. Kunstmann,
W. Arendt, M. Duelli, G. Metafune, D. Pallara, J. Priiss, R. Schnaubelt, A. Rhandi [7-10] in the case that
their intermediate coefficients are unbounded, although they were controlled by the potential. This problem for
a degenerate second-order differential operator was studied in [11].

The maximal regularity (separability) problem for a singular third-order equation has been investigated,
mainly, for the following two-terms equation (see [12-19] and the references therein)

Ky=—y" +s(a)y = F() (z € (—o0, +00)). (1.3)

In [12-19] were obtained conditions for the continuous invertibility and separability of the operator K in L,(R)
(1 < p < +00). However, we can not use their results to investigate of the equation (1.1) with unbounded
intermediate coefficients. In general, in the case that the intermediate coefficients have more faster growth, the
equations (1.1) and (1.3) are different. For example, the solution of (1.1) belongs to Ls in the case only that
the functions r and ¢ satisfy some additional conditions. The question of maximum regularity for other elliptic
and parabolic equations defined in infinite domains has been investigated in many papers [20-35].

In the present paper, we consider the following two cases for the intermediate coefficients r and ¢ of (1.1):
a) the growth of the function r does not depend on ¢ and s;
b) the growth of the function ¢ does not depend on r and s.

For continuous functions p and v # 0, we denote
1
—+oo . 2
. </ t2972 (1) dt> x>0,
T

aps@) = ([ oor o)
Bpw,i (1) = (/TO Ip (1) dt)% : (/_; #2972 (1) dt) %,r <0,

%mzmMGw%wﬂ@ﬂm%mUOUzam
x>0 <0

[N

Theorem 1.1. Assume that the functions 7, ¢ and s satisfy the following conditions:

reC2(R), Ir| 21, g€ CL(R), s € Croe (R), (1.4)

< 00 C’_1<T(x)<C Ve,meR:|x—n| <1, Cy>1 (1.5)
’yl,\/m,l Y0 —T(n)_ 0 » 1 . m=4 Go s .

Vg, 7,0 < 00, Vs, r,1 < O0. (16)

Then for any right-hand side f € Ly there exists a unique solution y of the equation (1.1). Moreover, for y the
estimate (1.2) holds.

In the theorem the growth of coefficients ¢ and s are controlled by r.

Remark 1.1. The condition |r| > 1 in (1.4) can be replaced by the inequality |r| > ¢ > 0. To show this
statement it is enough to put z = /6t in (1.1), where t € R.

The following equation:

—y" + (72? + 3)4y” + (22° = 32> + 1)y + 2’y = f1, f1 € Lo, (L.7)

satisfies (see Example 2.1 below) the conditions of Theorem 1.1, consequently, the equation (1.7) is uniquely
solvable, and for its solution y the following estimate holds:

Hy///”2+ H(7$2+3)4y//

, H1(22° =32* + 1) y/[], + |2, < CllAll,- (18)

In the following theorem the growth of r and s are controlled by coeflicient q.

Theorem 1.2. Assume that the functions r € Cl(fc) (R), q € Cl(olc) (R) and s € Cloc (R) satisfy the following
conditions:

qu, ’}/17\[70<OO, Cl_lgggigCl, VJ?,T}ER:|ZL‘77]|§1, (Cl>1); (19)
Vs, q,0 < 00; (1.10)
2(r*+2r") <q. (1.11)
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Then for any f € Lo there exists a unique solution y of the equation (1.1). Moreover, for y the estimate
(1.2) holds.

Remark 1.2. In Theorem 1.2 the condition ¢ > 1 can be replaced by ¢ > § > 0. To show this statement it is
enough to put = dt in the equation (1.1).

The conditions of Theorem 1.2 satisfy the coeflicients of the following equation:

"

—y" + 2% cos® 2y + [18(1 4+ 2%)] i/ + 32y = fo (2) (1.12)
(see Example 3.1 below).
2 The case that the coefficient r is growing independently

In this section we investigate the equation (1.1) in the case that the growth of the function r does not
depend on g and s. First, we consider the following linear two term differential equation:

loy=—y" +r(x)y" =h(z), (2.1)

where x € R, h € Lo, and r € c® (R). We denote by [ the closure in L of the operator Iy defined on the set

loc
of three times continuously differentiable functions with compact support C(()g) (R).
Definition 2.1. The function y € Lo is called a solution of the equation (2.1), if y € D(I) and ly = h.
The following statement is proved in [36].
Lemma 2.1. Let the function r be a twice continuously differentiable function and it satisfies the following
conditions:
r>0>0, 7,51 <00

r(z)
7 (n)

Then for any right — hand side h € Lo there exists a unique solution y of the equation (2.1). Moreover, for y
the following estimate holds (i.e. y is maximally Lo- regular):

ct<

<CVz,neR:|z—n <1, C>1.

15" 1y + 1y lly < ColiRll, -
Proof of Theorem 1.1. We put x = at (0 > 0, ¢ is new variable) in the equation (1.1). Then (1.1) become

the following form: .
=" +ai ()7 +a*G(t)§ +a’5(t) 7= [ (1), (2.2)

ag - =
where y (at) = §(t), r (at) = 7 (t), q(at) = G(t), s(at) = 5(t), a®f (at) = f(t) and a®Lay = L,j. First, we
consider the following equation:

V23

—~

loal = =" +ar ()" = h (). (2.3)

We denote by I, a closure in Ly of the operator lo, defined in C’éB) (R). We have a='7 (t) > § > 0. By Remark 1.1
and Lemma 2.1, for any function h € Ly there exists a unique solution § of the equation (2.3) and for g the
following estimate holds:

||:‘7m||2 + ||a7:gu||2 < C, laglly V5 € D (la). (2.4)

Using (2.4), by Theorem 2.1 in [37] and Lemma 2.1 [11], we have
|a*q7 ||, < 2075, 7,0Ch, [Ladll, (2.5)

and
16531, < 2a%7s, 5 1C1, el (26)

If we choose
-1
a=1[2(v4#0+avs71)Cr, +1] 7,

then, by (2.5) and (2.6), the following estimate holds:

|a*qg'||, + |53, < 6 1Ll , (2.7)
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where

2 (vg.7,0 +75.7.1) Cu,
< 1.
2 (vg,70 +75,71) Ci, +1
Then by Lemma 2.1 and the well-known perturbation theorem [38; 196], there exists a unique solution of the
equation (2.2).
Now, we show the maximal Lo-regularity estimate for a solution of the equation (2.2). By (2.7),

0<f=

Maily < |lai + 0235’ + a*53l, + |23 + a*53], < || L], + 0 Nail
(0 < a < 1). Consequently
1 -
la~ <— La~‘ . 2.
By the estimates (2.4), (2.7) and (2.8),
- o o o Ci,+0 >
15"l + 07" ll, + |a®33 [, + [la*531l, < =5~ | Zadl| (2.9)

(2.9) is the desired estimate for a solution § of the equation (2.2). By replacing ¢t = £, we get that there exists
a unique solution y of the equation (1.1), moreover, for it the estimate (1.7) holds.
FEzample 2.1. We consider the following equation

—y" + (T +3)" " + (20° = 32° + 1) ¢/ + 2%y = fi (a),

where z € R, fi(z) € Lo. Here, r = (72 + 3)4, g = 22% — 322 4+ 1 and s = 3. The intermediate coefficients

r and ¢ satisfy conditions (1.4), (1.5), and (1.6) of Theorem 1.1. In fact, since the function (722 + 3)4 is even,
for any x > 0

1 1
+o0 dt 2 NG oot 2
al,ﬁ,l(x):BLﬁJ(_I) Sﬁ(/x (7t2+3)4> = (7I2+3)3 </a: 7t2+3> =

Analogously, we obtain

ol

Qg r,0 (1‘) = Bq,r,o (—I) < </13 (4t6 +9t4 + 1) dt)

0

/+°° dt §<
«  (2+3)°) ~

<(172x7+%x5+x) (/“’O dt >2<OO
- (722 +3)" . Tt2+3

I 3 +o0 s 3
asml(x)—ﬂs,r,l(x)§</ 1 dt) ( / 2 (762 1 3) dt) <.
0 x

For any =, n € R such that |z —n| <1

Nl

and

(1> +3)" _ [6 (1 +3)]'

< o = 1296.
(7% +3) (7% +3)

So, by Theorem 1.1, for any f; € Lo there exists a unique solution y of the equation (1.7) and for it the estimate
(1.8) holds.
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8 The case that the coefficient q is growing independently

In this section we consider the equation (1.1) in the case that the function ¢ is fast growing function. First,
we consider the following differential equation:

loy=—y"4+q@)y =u(x), r€R, ue L. (3.1)

We denote by [ a closure in Ly of the operator loy = —y"" + ¢ (x)y’ defined in C’éS)(R). The element y € D(1)
such as ly = u, is called a solution of the equation (3.1).
Lemma 3.1. If q (z) is continuously differentiable function such as

q Z 1771,f,0 < 00, (32)

then for any u € Lo there exists a unique solution y of the equation (3.1). Moreover, for y the following estimate
holds:

Ivay'll, + lylly < € iy - (3.3)

Proof. Let y € C’(()3)(R). Integrating by parts, we have

7 2 2
(low ') =1y l3 + Ivay'll- (3.4)

Taking into account the condition (3.2), by the Holder inequality, we obtain

lOy7

Hloy

Then by (3.2) and (3.4),

1 -
lylly < 271, vg.0 IVay'll, < 271,50 %loy ;
and R ,
Iylle + V@ ll; < 2v1.va0 +1] |floy] » v € ¢V (R). (3.5)

Further, we show that the estimate (3.5) holds for any y € D(I). Let {y,} —, C C(gg)(R) such sequence that

—lyH2 50 (n— 00). (3.6)

[yn = yllz = 0,

By (3.5), for any yn, ym € 053)(1%)

lynllo + 1v@ala < [21,vz0 +1] |ovn ||, (3.7)

and
Iy = ymlla + IV Wo = ¥o)lla < 291,470 +1] [fogn = Togm]| - (3.8)

We denote by W, ./a(R) the completion of C’(?’) (R) with respect to the norm [ly|ly, = ||v/@¥' ||, +lylly- According

o (3.8), {yn}o—, is a Cauchy sequence in W, f(R) W21 ﬁ(R) is a Banach space, therefore there exists an
element z such as ||y, — 2|y, = 0 (n — 00). Then by (3.6), z € D(I), furthermore, z is a solution of (3.1).
Passing to the limit at n — oo in (3.7), we obtain the inequality (3.3) for z with C' = 2v; 70 + 1.

By (3.3) and Definition 2.1, there exists the inverse 1 to the operator l. So, a solution of the equation
(3.1) is unique.

We show, that for any u € Ly there exists a solution of the equation (3.1). By Definition 2.1, it is
sufficient to prove that R(I) = L. Assume the contrary, let R(I) # Lo. Then there exists the non-zero element

z(x) € R()*: (Zy, z) =0 for any y € CO (R). On the other hand

(iv. =) :/Ry<2/”— la(2)2) ) de, ¥y € C§ (R).
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C’ég) (R) is dense in La, so we have
2" —qz=Ch. (3.9)

From (3.9), taking into account that ¢ () € Cl(olg (R), we have that z (z) € Cl(sg (R). We consider two cases with
respect to Cf.
1. C7 # 0. Then, we can assume, that C; = 1:

2" —q(x)z =1,z € R. (3.10)

The general solution z of this equation belongs to Cl(fc) (R) and is represented in the following form:
+oo
z(v) = Caz1 () + Cs2 () + G (z,t) dt,
— o0

where 27 () and z2 (z) are two linearly independent solutions of the homogeneous equation 2" — ¢(z)z = 0 and

(@) z®), <t
G(z,t){ z;(x)zi(t), T >t

is the Green function of the Sturm-Liouville operator. It is known that z; () > 0 and z2 (z) > 0. By well-known
comparison theorem and maximum principle, for any z € R the following estimates hold:

21 () > Kt 0 < 29 < Ke®, x> 0,
2o () > K~ te®, 0< 2y < Ke®, 2 <0,
21 (z) >0, 25 (z) <0,

hence 0 < G (z,t) < Cye~ 1=t By condition z € Ls, we obtain Cy = 0 and C5 = 0. So,
“+o0
z(m):/ G (z,t)dt > 0.
By (3.10), 2" =1+ ¢(z)2 > 1. Let a € R such as z (a) = k > 0 and 2’ (a) = m > 0. By (3.2) and (3.10),

z(x)—kzm(:r—a)—f—(:v;a)z—f—/j (/{ltqz(s)ds>dt>(x_2a)2 Vo > a.

SO, z ¢ LQ.
2. Let C; = 0. Then the solution z of the equation (3.9) is represented as follows:

z(z) = Cyz1 () + Cs22 (z), = € R.

As mentioned above, z; () = +00, 22 () = 0 (x = 400), and 25 () = +00, 21 () = 0 (x = —o0). We have
Cy,=0and C5=0.S0 z(x) =0, z € R.

We have obtained contradictions, which show that R(I) = L.

Lemma 3.2. Assume that the function ¢ satisfies conditions of Lemma 3.1 and

o5t < qg‘f]; <Cp Vo,ne€R:|z—n<1(Co>1). (3.11)

Then for the solution y of the equation (3.1) the following estimate holds:

Q

Iyl + llay'll, < € |y - (3.12)

Proof. Let y be a solution of the equation (3.1). By (3.3), ¥’ € Lo. Assume, that y’ = z, then we obtain the
following Sturm-Liouville equation:
Sz=—2"+q(x)z=1a(x).

By conditions of Lemma, the solution z of the last equation satisfies the following estimate [39; 199]:

12”1l + llgzll, < Clall, -
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Then for the solution y of (3.1), we obtain the estimate (3.12).
Next, we will consider the following equation

1

Y 4 q(x)y + s(x)y = uo(x). (3.13)

Lemma 3.5. Let ¢ (x) be a continuously differentiable function, and s (x) be a continuous function. Assume
that the conditions (3.2) and (3.11) and the following condition

¥s,q,0 < OO (314)
hold. Then for any ug € Lo there exists the unique solution y of the equation (3.14). Moreover, y satisfies the

following estimate:
"

lv"ll, + ||qy’||2 + [[sylly < C'lull, - (3.15)
Proof. In (3.13) we put x = at, where a > 0 and ¢ € R. Then
aly = —y}, (at) + a’q (at) y, (at) + a®s (at) y (at) = a®u (at).
If we introduce the notations
y(at) =5 (1), qlat) =G (1), s(at) =3 (1), a*ulat) = @ () ’ly = I

then (3.13) become the following form:
Ij =" + a%Gj + a®5j = . (3.16)

We denote by I, a closure in Ly of the differential expression lpe§ = —3"” + a2Gy’ defined on C’és) (R). Since

a’G(t) > 6 > 0, by Lemma 3.1 and Remark 1.1, the operator I, is continuously invertible and the following
estimate holds: .

 VjeD (la) . (3.17)

15"l + (0237 ||, < ;. ||ia

Taking into account the condition (3.14) and Lemma 3.1, we have

HaggleQ < a_l’Yg,q,oC;a l:aﬂ

’2'

By (3.16), = ia + a®3E. Choosing the number a such as a = 20 (1+73,4,0), we obtain

. (3.18)

DN =

,0<a<L

L)
2

53], < o

Then, by the well-known perturbation theorem (for example, see Theorem 1.16 [38; 196]), there exists the inverse

z -1 z
operator (la + a3§E) and the equality R (la + a3§E) = Lo is true. By estimates (3.17) and (3.18),

_ . . 1\ 7 -
191+ a2l + sl < (5, + 3 ) [fud] (319
On the other hand, by (3.18),
= = 1=
< 32 ~H 15 .
lay‘z - H(la—&—a sE)y 2+ 2 lay 2’
i.e. ~ =
I ‘2 <2 H (za v a3§E> yH2 (3.20)

The estimates (3.19) and (3.20) imply
. - . _ 1
15"1l> + la*ag/|l, + llo*s3], < Clally, € =2 (Czl * 2>'

1

By replacing t = a~ ', we obtain the estimate (3.15).
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Proof of Theorem 1.2. If the conditions (1.9) and (1.10) hold, then by Lemma 3.3, the operator
ly=—y" +q(@)y +s(2)y

is continuously invertible, and for any y € D(I) the following estimate holds:
Iyl + lay/ Il + sl < Cx ] (3.21)

Taking into account the condition (1.11), for any y € C’éS) (R) we obtain

2 2 2 1 2
Iy |15 < 1 ||y"/H2 + |75 + 1127y 1l + 1 lry"II5 -

Then, by (3.15),

—_

1= 2
Iry"lls < 5 (05 + 12 02+ 2) /113 + lswll3) < 5|1 -

S0,

— iyl . 3.22
lry" |l < 75 11, (3.22)

It is clear that this inequality holds for any y € D(l:) Then by Theorem 1.16 [38; 196] the operator Ly = l:y—i—ry”
is closed and invertible, and its inverse L~! is defined in all of Lo. By (3.22), for any y € C(()‘S) (R)

Ji], <

Then, by (3.21) and (3.22), for any y € C(gg) (R) holds the estimate (1.2), where Cj, = 1":}3[73? Taking
into account that the operator L is closed, we obtain that the last estimate holds for a solution of the
equation (1.1).

Ezxample 3.1. We consider the following equation

—y"" 4 23 cos? 2%y + [18(1 + x6)} y + 32y = fo(x), x €R, fo(z) € Ly.

The coefficients r = 2% cos? 22, ¢ = 18(1 + 2°%) and s = 3x? of this equation satisfy all of the conditions of

Theorem 1.2. In fact,

Nl

oo gt
o1, g0 () = B1, g0 (=) < Vo (/ 18(1564'1)> < 00, x> 0.

For any z, n € R such that |z — n| < 1 we obtain

18(1 + 2°) - 1+ (1+n)°
18(L+mn8) = 1+4nb

< 00.

Further,

9 +oo dt 5
045,(1,0 (:L‘) - ﬂs,q,O (_J/‘) S T2 (/:; 182(156_’_1)2) < OO7 X > O

2(r2 +2r") = 2(a® + 8| +1) < 18(z% + 1) = ¢.

So, by Theorem 1.2, for any fo € Lo there exists the unique solution y of the equation (1.12), and for y the
following estimate holds:

1=yl + ll2® cos® 2y [l + || [18(1 + 2°)] /|l + [[B2*y 2 < C foll2.
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K.H. Ocnanos, 2K.B. Eckabbuiosa

Apanblk k03 punmeHTTEPI IMeHeJIMEereH YHTiHII peTTi
anddepeHInaJIAbIK, TeHAeYAiH KO3PIUTUBTI HIENIiIy HIapTTapbl
Makasana kejeci Temgyiey Kapactoippiiran: —y" + r(z)y” + q(x)y + s(z)y = f(x), myHmars r >ksHe
q — apaJiblk, Koaddununentrep, s-ka barbmbaiinbl. Ocbl Tenueyain f € Lo (—oo, +00) yuIH KOIpIUTHBTI
ey mapTrapbl Kearipiaren. 2Kone y memrim yimiHi Kesteci MaKCHMAJIIBI PETYJSPILIK, Oara ajIbIHFaH:
1”1, + Iyl + llay/ll, + llsylly < C lIfll,- symaarss |-, — La (—oo, +00)-reri Hopva. By Garanay
(—00, +00) apaJbIFBIHAAFB! YIIIHIL PETTi KBA3UCHI3bIKTHL JuddepeHIna bk, TeHIey/l 3epTTeyIe MaHbI3-
Il peJt aTkapasbl. Keitbip eximyrmesni Hykcaunabl uddepeHnnasabK TeHAEYIep KapaCTHIPBUIBII, OJIAP/IbIH,
KO3PUUTUBTI memminyi momenmenai. Bya xepae M. Orenbaes x)acaran ['mianbepT Kenicriringeri mudde-
PEHIMAJIIBIK OMEPATOP/IBIH, OOJIIKTEHY TEOPHUSICHI OTiCi KOMAAHBLIIBI. OChl KOMEKII TYKBIPBIMIaP/Ibl KOHE
Keiibip Genriyi Xapay TUNTI CAJIMaKThl MHTEIPAJIILIK, TEHCI3IIKTEp apKbLIbl KAXKETTI HOTHUXKEre KOJIZKEeT-
kizinai. Ocbiran feiiiH aJbIHFaH HOTVXKEJIEPMEH CAJIBICTBIPFAH/a aBTOPJAp S IIOTEHIMAJbI KATaH OH, eIl

yitrapsin, HoTHKeaepi s = 0 XKarmailbl YITiH JIe OPBIHIBI eI KOPBITHIH/IBI YKACaIbl.

Kiam cesdep: nuddepeHITnaNIbIK TEH LY, eHeIMereH Ko OUIMeHTTEeD, MAKCUMAJIIBI PETYJIISIPJIbI, 6OTiK-
TeHy.

K.H. Ocnanos, 2K.B. EckabbLioBa

YcaoBus KO3PIUTUBHON pazpemimMocTtu AudpepeHnnaIbHOTro
YpPaBHEHUs TPEThero IMopsgKa ¢ HeOrpaHMIEeHHBIMU
MPOMEXKYTOUYHBIMI KO3 durnmeHTamu

B crarbe paccmorpeno ypasrenue: —y'' + r(z)y” + q(z)y + s(z)y = f(x), B KOTOPOM IPOMEXKyTOU-

Hble KO3(MDQUIMEHTH T U ¢ HE 3aBUCAT OT S. IIpUBEIEHBI YCJIOBUsI KOSPIUTUBHOM Da3PENIUMOCTH 3TOrO
ypasHenusi jisi f € Lo (—o00, +00). st perieHus: y mojydeHa CJIeLyomasi OLeHKa MaKCUMAJbHON pery-
sapriocri: [ly” |1, + 1y I, + gy’ Il + lsyll, < C Ifll,, ve |-, — nopwa B La (~o0, +0c). Dra onenxa
BaykKHa U1l U3YUEHUs KBa3UINHEHHOro muddbepeHnuaibHOro ypaBHeHHs TPETHEro Mopsaka B (—oo, +00).
WccnenoBanbl HEKOTOPBIE JBYYJIEHHBIE BBIPOXKIEHHBIE audbepeHnaabHble YpaBHEHUS U JTOKA3aHbBI, UTO
OHU SIBJITFOTCSI KOSPIUTUBHO PA3PEIUMBIMU. 371€Ch TPUMEHEH METO]T TEOPUU Pa3JAeIuMOCTh auddepen-
IMAJIBHBIX OIIEPATOPOB B I'MJILOEPTOBOM IIPOCTPaHCTBe, paspaboranublii M. OresnbaesbiM. C OMOIIBIO 3TUX
BCIIOMOTaTE/IbHBIX YTBEPK/IEHNI 1 HEKOTOPBIX U3BECTHBIX BECOBBIX MHTEIPAJILHBIX HEPABEHCTB TUIA XapIu
MOJTy 9€H YKeJIaeMblil Pe3yIbTaT. B oTiindne oT mpeaBapuTeIbHBIX PE3Y/IbTATOB, ABTOPHI IMPEIIIOIAraloT, ITO
IIOTEHIINAJI S SIBJISIETCS CTPOrO IOJIOXKUTEIBHBIM, PE3Y/IbTAThI TaKXKe CIIPAaBeJINBLI B caydae, koraa s = 0.

Karouesvie crosa: nuddepeHInaibHoe ypaBHEHIE, HEOTPAHUYEeHHbIE KOI(DMUINEHTHI, MAKCUMAJIbHAA Pe-
IYJASPHOCTD, Pa3/IeIMMOCTb.
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On multi-periodic solutions of quasilinear autonomous systems with
an operator of differentiation on the Lyapunov’s vector field

A quasilinear autonomous system with an operator of differentiation with respect to the characteristic
directions of time and space variables associated with a Lyapunov’s vector field is considered. The question
of the existence of multi-periodic solutions on time variables is investigated, when the matrix of a linear
system along characteristics has the property of exponential stability. And the non-linear part of the system
is sufficiently smooth. In the note, on the basis of Lyapunov’s method, the necessary properties of the
characteristics of the system with the specified differentiation operator were substantiated; theorems on the
existence and uniqueness of multi-periodic solutions of linear homogeneous and nonhomogeneous systems
were proved; sufficient conditions for the existence of a unique multi-periodic solution of a quasilinear
system were established. In the study of a nonlinear system, the method of contraction mapping was used.

Key words: multi-periodic solutions, autonomous system, operator of differentiation, Lyapunov’s vector
field.

Introduction

It is known that many phenomena connected by a continuous medium are described by systems of partial
differential equations. In many cases, these systems are quasilinear, and these phenomena (sound, light, electro-
magnetic, gas and hydromechanical) are oscillatory-wave in nature. Consequently, the study of solutions of such
systems with oscillatory properties over both time and space variables belong to an important part of the theory
of equations in ordinary and partial derivatives. The foundations of this theory were laid in the classical works
of A.M. Lyapunov, H.Poincaré and the fundamental research of Andronov-Witt-Khaykin, Krylov-Bogoliubov-
Mitropolsky-Samoilenko, Kolmogorov-Arnold-Moser, etc.

A peculiar approach to the problems of the theory of oscillations was proposed in the works of V. Kharasakhal
and D.U. Umbetzhanov [1-8|, based on a deep connection between an almost periodic function of one variable
and a periodic function of many variables, called a multi-periodic function, where the problems are quasi-periodic
solutions of ordinary differential equations, are studied on the basis of multi-periodic solutions of systems of
the partial differential equations of the first order. In this connection, we note that many quite serious results,
known from oscillatory solutions of ordinary differential equations, they are extended to the case of multi-periodic
solutions of partial differential equations [9-20], which were further developed in the articles [21-23].

We note, that some information on multi-periodic solutions of systems of the partial differential equations
is contained in the literature review of the fundamental work [24]|, where the number of papers by one of the
authors is presented.

We also note, that many theoretical questions of physics and technology are based on oscillatory processes.
In particular, we pay attention to the works [25, 26], where an interesting research was conducted of problems
from hydromechanics and control theory related to oscillatory processes described by the differential and integro-
differential equations. These equations are attractive because it is possible for them to consider the problem of
multi-periodic solutions and use the methods outlined in this article.

Of particular interest is the work [27], where the equations with a differentiation operator along the directions
of a vector field on a torus are considered and conditions for the existence of their periodic solutions are
established. Note that the differential operator under consideration is similar to the differentiation operator,
which given in this note.

The methods of Poincaré-Lyapunov and Hamilton-Jacobi for integrating and researching of the periodic
solutions are the basis of the methodology for studying the problem of this work. It is obvious, that the sources
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of multi-periodic solutions of the differential equations are their periodic solutions with different rationally
incommensurable frequencies. In this regard, our attention is drawn to the problems studied in the articles [28, 29]
and some commonality of their study methods with the methods of this work.

One of the common ways to investigate the periodic solutions is to use the methods of boundary value
problems for the differential equations. In the works [30-35] for investigating the oscillatory solutions of some
equations of various types of mathematical physics was used, a technique calling the method of parameterization.
We note that the equations under consideration are representable as systems of equations of first-order derivatives.

In this article, we consider the quasilinear system of equations with a differentiation operator along the
directions of the vector fields, where the characteristic directions of the differentiation operator along the time
and space variables are independent, with the space variables being differentiated along the directions defined
by the Lyapunov’s system.

In the case of a non-autonomous system, the frequencies of the desired multi-periodic oscillations are mainly
determined by the system itself. Consequently, the frequencies and their number are known in advance.

In this autonomous case, the main difficulty of the considering problem is related to the uncertainty of the
frequency of periodic oscillations, which are components of the desired multi-periodic oscillations. This difficulty
was surmountable that the characteristic vector field satisfies the conditions of the Lyapunov’s system. Although,
systems of the partial differential equations that do not contain time variables are often found in the scientific
literature, but the problem of this note on the formulation is new and is being investigated for the first time.

We consider the autonomous system

Dz = P(Q)x + f(¢, ), (1)
with differentiation operator
D—£+ e2 + J§+w(§)2 (2)
- or T Ot Toc /)’
where © = (z1,...,z,) € R"™ are unknown vector-functions with respect to the time 7 € R,
— 0
7= (11,...,7m) € R™ and space ¢ = (Co,...,Ck), ¢G = (§;,m;) € R%, j = 0,k, variables; <e,8> is the
T
scalar product of m-vectors e = (1,...,1) and i = i, cee 9 ; J is a (2k + 2)-dimensional constant
15} on OTm
matrix; ¢(¢) is a (2k 4 2)-vector-function given in a §-neighborhood R§k+2 of a point ¢ = 0 in Euclidean space
0 0 0 0 o 0 —
RZk+2, — — (, o ) , — = <, ), i =0, k, is a vector operator.
oc ~\ae v aa) o, \og oy )Y
The matrix P(¢) = [pi;(¢)]] is holomorphic in the R2"*2 neighborhood of the point ¢ = 0:
+oo 1 9 j
PO =3 5 (¢ 50) PO e R, )
=07

where ¢ > 0 is some constant and § = §(g) > 0 is sufficiently small.
The vector-function f({,x) has the following properties of continuity and smoothness

F(¢ x) € CFF (R*H2 x RY) (4)
with bounded matrix of Jacobi 5
‘f(ai’ ?) <e¢ (C2) e B"P <Ry, (5)

where ¢ > 0 is a constant, Eikw x Ry is the closure of the region R¥+2 % RR.
Thus, set the problem to clarify the conditions the (6, 6)-periodicity of solutions of the system (1) when
conditions (3), (4), and (5) are performed.
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The differentiation operator along the directions of the diagonal of time and
space variables on the Lyapunov’s vector field

Differentiation by the operator D is conducted along directions of vector fields of time variables

dT
B 6
ar © (6)
and space variables
dg¢
=J ) 7
& s @
associated with the time variable 7 € R.
The characteristic of the vector equation (6), outgoing from the point 7o = (77,...,7%) when 7 = 75 is

determined by the relation 7 = 7 + e(7 — 79). For our purpose, it’s useful to take as the initial point 7o = erp.
Therefore, we have
T =erT. (8)

It should also be noted here that the dimension m of the time vector 7 is related to the dimension of the common
frequency basis of the family periodic solutions of the autonomous system (7), which cannot be specified in
advance. In our case, we note that m = k.

The vector field (7) can be characterized by the following properties:

a) The matrix J can be represented in the form

J = dia‘g[VOIQa .. -,VkIQL <Q7V> 7é 07 q S Zk+1a q # 0) (9)
0 -1
1 0
q¢=(qo,...,qx) € ZF1 is an integer vector, v = (v, ...,v) is vector, Z is the set of integers.

b) The vector function ({) is formed by a given scalar holomorphic function W¥({) in some
d-neighborhood ngﬁ of the point ¢ = 0 in Euclidean space R?**2 by applying an operator Ia% with (2k + 2)-

where I, = ( ) is a two-dimensional symplectic unit, v;,j = 0,k, are incommensurable frequencies,

matrix I = diag[ls, ..., Is], whose decomposition of the function of which ¥(¢) begins with a homogeneous form
of at least the third degree:

D(¢) = T& (), ¢ € R3*2,

0= 3 (6. 4) 90)

It is obvious, that the vector field (7) under the conditions (9) and (10) belongs to the class of Lyapunov’s
systems.
By conditions (9) and (10) can be represented system (7) to the scalar form

d&; _ 0¥

dr AL on;

(11)

with the first integral

k
H(C) = Y- (& +n)) + ¥(C). (12)

(13)
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According to the Lyapunov’s method [1, 2|, the variables (&, m;),! # 7,0 <1 < k as functions (&;,7;) with
a fixed number j can be determined from the system of the partial differential equations

OH 83)[ OH 6%‘1 OH

9&; On; - Oy afﬂ aTh',

o o _0How_OH L
8§j 8nj 8’17]' 853 8@
where H = H(() is the Hamiltonian (12) of the systems (13).

System (14) with the initial condition (&,n;) = (0,0) for (§;,7n,;) = 0, under conditions (9) and (10) allows
an unique holomorphic solution (& (&;,7;),m;(&5,n5)) = ¢ (&5, m;) in the sufficiently small neighborhood R2 of
the point ¢; = 0 in the plane R? for fixed values [ # j.

We obtain the function

Hj(&j?”j) = H(<g(€j7nj)7~~7 jfl(éhjunj)7Cj7C;+1(§j777j)7~~‘7C;(§j777j))' (15)

by substituting found solutions (5 (&5,7;), -, CG1(§5m5)5 1 (€G> m5)s - - -5 Gi(€5, my) of the systems (14) to the
Hamiltonian H((). Also, we set up a function

(14)

0,(&m) = 1+;( ) o o) S8 o) ) ), (16)

On the basis of functions (15) and (16), we consider the system of ordinary differential equations

dé - OH,(€;,1;
gj(éjaﬁj)dfj = —jéf;jm)7
(17)
d OH;(&:,n;
(E]anj)dnj jéijj 77])7

which is a Lyapunov’s system corresponding to the frequency v;. Therefore, system (17) defines a two-parameter
family of periodic solutions
gj = h](T] — 70, 55)7 T]?)v
(18)
n; = h] (Tj - T07§]O'777?)

with arbitrary initial values (¢;,7;)| = (£9,79) from a sufficiently small neighborhood Rj, and a period

Tj=T0
2m (1) 2 0 012
5= (1 e (€ 08) + 7 [ ()] + ). (19)
2
which the coefficients cgl), ;2 ,...didn’t depend on the initial data, and they are §; = 177T when ( ?, 77?) = (0,0).

J

Thus, by changing j from 0 to k and using the Lyapunov’s method, we obtain all 1 + k& periodic solutions
(18) of the system (17). These solutions are components of a multi-periodic solution ¢ of the system (7) in the
form

C = (h;)(’r _T07£8777(0)>7h'/0/ (T _Tﬂvggan(o))a"'vh;g(Tk _7—075277’2)7}2’;@/ (Tk: - 7_075277’2)) =

= h(T —T0,T1 —T0y---, Tk — 7-0758a778v R 75](37772) (20)
with initial condition
C|T=7'1=...=7'k=7'0 = (58’7787’527172) = CO (21)
and vector-period 6 = (6,01, ...,0;) with components (19) on a vector variable 7 = (7, 71,..., 7).
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We are passing to the vector notation from (20)—(21), and then the solution ¢ of the system (7) is represented

in the form

Cih(TfTo,?feTo,Co), (22)
where (0,0, (o) = (. Equation (22) together with equation (8), represent the characteristics of the operator (2).
Thus, the following assertion is substantiated.

19. Under conditions (9) and (10), operator (2) is the operator of differentiation with respect to 7 of the
functions z(7,7,() of the along direction of the main diagonal (8) of the time variables and along multi-
periodically closed curves (22) with respect to space variables.

Therefore, the function Dz along the characteristic, given by relation (22), determines the rate of change of
the function z = z(¢) with respect to 7:

dz(h)
D.I"C:h = ?

The statement 1° allows us to go from the differential equations with operator D to the integral equations,
defined along the characteristics.
By the uniqueness property the solutions of the system (7), from the equation of characteristics (22) we
have the expression
CO = h(TO —T,eT0 — T, C)v (23)

which is the first integral of the operator D : Dh = 0.
In addition, based on the same property, we obtain the group property of the characteristic in the form

h (T — s, T —es, h(S — To, €S — €70, CO)) =h (T — 7o, T — €To, CO) (24)

with s € R.

Then we have the following statement.

20, Under the conditions of paragraph 19 the function x (s — 79,7 — e7g, h(s — 79, €s — €79, (o)) taking into
account property (24), is proceed to the function z (s — 7,es — 7, h(s — 7,es — 7, ()) with parameter s € R, and
variables (7,7, (), where the given function defined along the characteristic

T =58 —To,
T = €S — €Ty,

¢ = h(s — 10, es — e1p, o)
with a parameter s based on the first integrals of the systems (6) and (7) in the form
T0 =T,
et =T,
o =h(ro — 7,70 — 7, (),
obtained by relations (8) and (23).
Paragraph 2° allows leaving expressions defined along the characteristics of the operator D to the space of
variables (7,7, ().

Further, by the periodicity the characteristics (18) of the operator D in the period (19), the property of
multi-periodicity of the vector-function (22) can be represented as

h(T + 0,7+ q0,¢) = h(7,7, (), (25)

where the vector-period (6,0) = (6y,01,...,0;) with the components 6 = 69,0 = (6;,...,0) is defined by
the relation (19), and the periods 6;,j = 0,k depend on the initial data ( = (o of the characteristics of the
operator (2), ¢ € Z™.

We note, that when the question of multi-periodicity, we consider periods (#,6) in the space of variables
(1,7,¢) € Rx RF x R’g“, by replacing the initial data (p to the corresponding value (23), and we get functions
with respect to variables (7,7, (), and parameter 7y € R:

9 - 9(7-077—7?7 C),

(26)

0= 5(7-077—7?7 C)
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Since expressions (23) represent the first integral, that is, we have identity
Dh(rg — 1,em9g — 7,¢) =0, (27)
then periods (26) are also first integrals, and therefore, we have identity relations

DH(TOaTa T, C) = 05

_ (28)
DY(ry,1,7,() = 0.
Thus, as a consequence of the identities (27) and (28), we can formulate the following statement.
3°. Under the conditions of the preceding paragraphs, any smooth function f(h) has the properties
Df(h(s—r,es—?,())zo, (29)
f(h (s — 740, es —?—i—q@,()) = f(h(s —T,€es —?,C)), (30)

where s € R is the parameter, and g € Z™, h(s — 7,es — 7, () is the integral function (23).
In deducing relation (29) it was taken into account that if h is the first integral, and then the smooth
function f(h) is also an integral. Identity (30) follows from identity (25).

Homogeneous linear system

We consider a linear system
Da = P(()z, (31)

with respect to the unknown vector-function @ = (21, ..., z,), where the operator D is defined by the formula (2)
with properties (9) and (10); P(¢) = [p;;(¢)]7 is holomorphic matrix in the R2"*2? neighborhood of the
point ¢ = 0, and satisfies condition (3).

The system (31) along the characteristics (22) represents a system of the ordinary differential equations
with the multi-periodic matrix P(h(7 — 5,7 — es,(y)) with respect to (7,7) with period (6, ).

Then it is possible to determine the matrix X of the linear system (31)on the basis of the integral equation

X(TOaTa?a C) =F + /P(h(s —T,€5 — ?a C))X(T(),S,QS,C) dsa (32)

7o

where F is the unit n-matrix, 7o € R, 7 € R, 7 € R*, (e R§k+2 for sufficiently small e > 0, X (9, 79, e70,() = E.
Obviously, the matriciant X (7g, 7,7, ¢) is holomorphic with respect to ¢ by virtue of (3) and (6, 8, §)-periodic

by (70,7,7)
X(ro+0,7+6,7+¢€6,() =X (70,7, 7, (). (33)

Further, suppose that the matrix P(¢) provides the property of the exponential stability of system (31) in
the form
X (10, 7,7, )| < ae™ ") 7 > 7 (34)

with constants a > 1, > 0, where 79 € R. If we take into account the solution x = z(719,7,T,() of the
system (31) with an initial condition that turns into the initial smooth function u(¢), when 7 = 79 in the form

$|T:m =u(() € Cél) (R?H'Q)

expressed by
.I'(T(), T, ?a C) = X(T()a T, ?’ C)u(h(TO — T,€Tp — ?7 C))7 (35)

then from the condition (34) implies the absence of the multi-periodic solution of the system (31), that is
different from zero.

Lemma 1. Let conditions (3), (9), (10), and (34) be satisfied. Then the homogeneous linear system (31) has
no multi-periodic solution, except for the trivial one.

Proof. Indeed, from the representation of solutions (35) and condition (34) follows that for fixed values ¢
any solution with nonzero initial data u # 0 is unbounded.

Therefore, such a solution cannot be multi-periodicity. It only follows that v = 0 is the only multi-periodic
solution of the system (31).
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Nonhomogeneous linear system

Now we consider the system in the form

Dz = P(¢)z + f() (36)

with free term f(¢) of holomorphic in R2k+2:

— 1 2\’ 242
7(0) =Zj,<<,3<> F(0), ¢ € B2, (37)
j=0""

where € > 0 is some constant.
Theorem 1. Let conditions (3), (9), (10), (34), and (37) be satisfied. Then the system (36) has the unique

(6,0)-periodic solution holomorphic with respect to ¢ € R3* 2 for sufficiently small § = §(¢) > 0
(1,7, () = / X(s,7,7,0)f(h(s — T,es = T,()) ds, (38)
— 00

where § = d(¢g) is chosen such that, for ¢ € R§k+2 the inequality |h(7,7,()| < € is satisfied.

Proof. Indeed, by a direct verification, we see, that function (38), which is determined by condition (34), in
the form of an improper integral is the solution of the system (36). In this case, it is necessary to take into account
that the matriciant X satisfies the matrix equation (32), and the integral h has the properties (22) and (23). The
periodicity of the solution (37) with respect to 7 with a period 6 is checked on the basis of the property (33),
and the f-periodicity with respect to 7 follows from the property (25). The property of holomorphy follows from
the holomorphy of the integral h of the matrix P, and the function f given in conditions (3), (10), and (37).

In conclusion, we note that if conditions (3) and (37) about the holomorphy of the matrix P(¢) and vector-
function f(¢) are replaced by the conditions of their continuous differentiability, then generalizing Theorem 1, we
can get the result about the existence of the multi-periodic solution (38), without the property of holomorphy.

Therefore, we have the following theorem.

Theorem 2. Let the matrix function P(¢) be continuously differentiable in R2¥+2:

P(() € O (R2H2), (39)
and the free term f(() of the system also has the same property:

1(0) € ¢ (RZ), (40)
where Cée) (R2+2) is the class of smooth functions of order e = (1,...,1) in R2*+2, If satisfied conditions (9),

(10) and (34), then relation (38) represents the unique (6, §)-periodic solution of the system (36) for sufficiently
small § = §(g) > 0, when ¢ € R2**2.

The proof of the Theorem 2 is similar to the proof of the Theorem 1, with the difference, that the smoothness
of the solutions is everywhere provided by the conditions (39), (40).

Now, additionally we consider the case when the free term f, except ¢ € R?”z, depends on (7,7) € R x RF.

Then we have a non-autonomous system of equations

Dz = P(Q)x + f(7,7,0), (41)
where the vector-function f(7,7, () has the property
Fr+0,7+40,¢) = f(7,7,¢) € CL5 (R x R* x R2+2), (42)

g€ ZkF, e=(1,...,1) is k-vector, e = (1,...,1) is (2k + 2)-vector, & = const > 0.
_Theorem 8. Let conditions (9), (10), (34), (39), and (42) be satisfied. Then system (41) allows the unique
(0, 0)-periodic solution in the form

(1, 7,¢) = / X(s,7,7,0) f(s,es,h(s — T,es = 7,()) ds, (43)

where (7,7,¢) € R x RF x R2*™2 § = §(¢) is a sufficiently small positive number.
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The proof is conducted similarly to the proof of the Theorems 1 and 2, and therefore we will not prove that
theorem.

Here, since the free term f is periodically with respect to (7,7) with the same periods (6, 0) as the integral
h(r,7, (), then the oscillations described by the system (41), and doesn’t undergo any other changes. We will
need this case when studying a nonlinear autonomous system.

Nonlinear system

Let us consider the question of the existence of the multi-periodic solution of the system (1) satisfying
conditions (3), (4), and (5). From conditions (4) and (5) follows that

1f(¢ ) = f(Cy)] < clz—yl, (44)

(¢ @) < b+ cla, (45)

—=2k+2

where (¢,2) € R X EZ. Let the constants «, a, b, c and A be related by

a(b+ cA) < aA. (46)

The value § = §(e) > 0 is chosen such that, R3*t? ¢ R2++2,
We consider the space Sg”z of vector-functions x(7,7,(), which continuous for each
(1,7,() € R x R* x R§k+2, (6, 0)-periodic for (7,7) and bounded by number A > 0 on the norm

lzll=" sup  mazlz;(T,7,¢)] < A
RXRFXRY

We define the operator in this space
(FI’)(T,?, C) = / X(57 T7?7 C)f (h(S —T,€8 — ?7 <)7 I(Sv €s, h(S —T,€8 — ?7 g))) ds. (47)

Lemma 2. Let conditions (4), (5), (9), (10), (34), (39) and (46) be satisfied. Then the operator F' in the

space Sg’g has the unique fixed point for sufficiently small § > 0.

By virtue the conditions (34) and (45) the improper integral (47) converges uniformly. Consequently, by
virtue property (4) the function (Fx)(7,7, () is continuous for all arguments.

After shifting 7 to period 6, by virtue periodicity z(7,7, ) with respect to 7, and the property (33) of the
matriciant X, by replacing 7 with 7 + 6, we are convinced that function (47) is also 6-periodic with respect
to 7. The periodicity of Fz with respect to 7 with the period 8 directly follows from the A-periodicity of the
matriciant X, given in (33), and the integral h by 7 according to property (25).

Using the estimates (34), (45), and (46) from expression (47), we obtain

(Fa)(r, 7,0 < Z(b+cd) < A.
Consequently, the function Fz bounded by the number A > 0. Thus, we were convinced that the operator F

reflects into itself of the space Sg’g.
Further, on the basis of (44), from the representation (47) of the operator F' we have the inequality

_ _ ac
|(F2)(r,7,0) = (Fy) (1.7, Q) < —llz —y].
Consequently, by virtue of condition (46) d = e - 1, the estimate
«

|Fz — Fy| < df|lz - y]|

shows that the operator F' is a contraction operator.
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Obviously, the space Sg’g is complete, and then the operator F' has the unique fixed point in this space
" (7,7,¢) = (Fz")(7,7,¢) € S5 (48)

Theorem 4. Under the conditions of the Lemma 2, the system (1) has the unique (6, #)-periodic solution for
sufficiently small § > 0.

For the proof, we show, that the (6, #)-periodic by (7,7) solution z. (7,7, ) of the system (1) satisfies to the
integral equation

(1,7, ¢) = (Fz)(7,7, (). (49)
Indeed, using this solution z. (7,7, (), we consider a linear system

by the form (41).
_Therefore, in accordance with the Theorem 3, system (50), according to formula (43), has the unique
(8, 0)-periodic solution = of the operator expression

x = (Fa,) (1,7, (), (51)

for sufficiently small 6 > 0.
Since the solution . (7,7, () satisfies the system (1), it is also solution of the equation (50).
Consequently, by virtue of the uniqueness of (6, #)-periodic solutions from (51), we have

(1,7, C) = (Fay) (7,7, (). (52)

i.e. showed that z.(7,7, () is solution of the integral equation (49).
But as shown in the Lemma 2, it has the unique multi-periodic solution. Consequently, from the identities (48)
and (52) we have

.’E*(’T7 Fa C) = LC*(’7'7 Fa C)

Thus, the solution x*(7,7,() has the smoothness property for all arguments and is determined by the
integral equation (49). The theorem is completely proved.
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KA. Caprabanos, B.2K. Omapora

JIsaImyHOB BeKTOPJIBIK epici boiibiHIIA AuddepeHInaagay ornepaTopibl
KBa3WCBHI3bIKThl AaBTOHOM/IBIK, >KYIi€HIH, KOIIIIepUOoAThI MIEHIiMi TypaJibl

80

JISmyHOB BEKTODJIBIK ©piciMeH 6ailJTaHBICTHI YAKBIT KOHE KEHICTIK alHBIMAJIBLIBI CUIIATTAMAa OAFBITHI OOWBIH-
ma auddepeHuangay onepaTopbl KBa3UChI3bIKTHI aBTOHOMIBIK, YKyiie KapacThIPbLIAbl. CHI3BIKTHI XKYi-
€HIH MaTPUIAHTHI CUITaTTaMa GOMBIH A SKCIIOHEHIINAIIBI OPHBIKTHIIBIK, KACHETKE Me OOJIFAH A YAKbIT aifHbI-
MaJIbIChl OOMBIHINA KOIIIEPUOTH MIENIMHIH, 6ap 60JIybl Typasbl Cypak 3epTresi. Al XKyHeHIH ChbI3bIKTHI
eMmec 6eJiiri »KeTKigikTi KaTblK, 60saabl. Makanaga JIamyHoB ojici Herizinge kepcetijiren auddepeHim-
aJay OrmepaTopJIbl XKYMeHIH CUIIaTTaMaChIHBIH KaXKeTTI KacHeTTepl Herizmesiji; GipTeKTi KoHe GipTekci3
CBIBBIKTHI YKYHEHIH KOTEPUOTHI MEImMiHIH 6ap OOTybI XKoHE YKAJFBI3/IBIFBI TYPAJIbl TEOPEMA IOJIETICHI;
KBa3UCBHI3BIKTHI KYHEHIH »KaJIFbI3 KOIIIIEPUO/ITHI MIeNiMiHiH 6ap OOy bIHBIH KETKLIIKTI IIapThl AHBIKTAJIIBI.
CBI3BIKTBI €MeC XKYiieHi 3epTTey GapbIChIHIA CBHIFYIIBLI OeifHesey o/1ici KO TaHbLIIb.

Kiam ce3dep: KoNepuoATHI MIENTIM, aBTOHOM/IBIK, XKYyite, muddepeHnnaiay oneparopsl, JIsSmyHoB BeKTOp-
JIBIK, ©pici.
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KA. Caprabanos, B.2K. Omaposa

O MHOTONEPUOINIECKUX PENICHUSAX KBA3UJINHENHBIX
aBTOHOMHBIX CHCTEM C omepaTropom JauddepeHImpoBaHU
110 BEKTOPHOMY moJiio JIsdamyHoBa

Paccmorpena kBaswimHeiiHas aBTOHOMHAsI CHCTeEMa C OIepaTopoM muddepeHInpPOBAHNS 10 XapaKTepu-
CTUYECKNM HallPaBJIEHUSIM BPEMEHHBIX U IIPOCTPAHCTBEHHBIX IIEPEMEHHBIX, CBA3aHHBIX C BEKTOPHBIM IT0JIEM
JIsanynoBa. UccitetoBas BOIpOC O CyIIeCTBOBAHUI MHOTOTIEPUOINIECKUX IO BDEMEHHBIM IIEPEMEHHBIM Pellre-
HUI, KOTJa MATPUIAHT JIMHEHHON CUCTEMBI BJOJIb XapaKTEPUCTUK 00JIa1aeT CBOHCTBOM SKCIIOHEHIINAIBLHOMN
ycToymBOoCTH. A HeJMHENHAST 9acTh CUCTEMBI SIBJISIETCSI JIOCTATOYHO TUIaKoi. B crarhe Ha OCHOBE METO/A
JIsanyHoBa 060CHOBAHBI HEOOXOAMMBIE CBONCTBA XapaKTEPUCTUK CHCTEMBI C YKA3aHHBIM OIEPATOPOM Tud-
depeHIMPOBaHNS; TOKA3aHbl TEOPEMBI O CYIIECTBOBAHUHM U €IUHCTBEHHOCTU MHOT'OIEPHOINYECKUX Dellle-
HUI JTUHEWHBIX OTHOPOIHBIX U HEOTHOPOJIHBIX CHCTEM; YCTAHOBJIEHBI JJOCTATOYHbBIE YCJIOBUS CyIIIeCTBOBAHM I
€/IMHCTBEHHOT'O MHOTOIIEPUOINIECKOTO PEIIeHNsT KBA3WINHEIHON cucTeMbl. [1pu uccienoBannm HeJTMHEHHOMN
CHCTEMBI UCIIOJIb30BAH METOJ, C2KATBIX OTOOPAXKEHMUIA.

Kmouesvie ca06a: MHOTOTIEPUOINTECKOE PEIIEHNE, ABTOHOMHAS CHCTEMa, OmepaTop auddepeHInpOBaAHNS,
BEKTOpPHOe I1oJie JIsmyHoBa.
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The atomic definable subsets of semantic model

In this paper some properties of small models, generally speaking, not necessarily complete theories and their
relationship with each other were considered. Under small models we will understand some modifications of
the concepts of countable atomic and prime models. These models were defined in the study of countable
models of complete theories. Studies were conducted by analogy with the classic result of R. Vaught on
countable-prime models of complete theories, but by other technical means. This work is oriented on the
syntactic properties of special subsets of the semantic model of some Jonsson theory. A new concept was
also introduced, as a model-theoretic «rheostats, in order to obtain results related to the refinement of
concept of atomicity within the framework of Jonsson theories. Thus, the main purpose of this article is to
formally define this «rheostat» and to obtain on the basis of this concept the results having a relation to
the refinement of the concept of atomicity in the frame of Jonsson theories.

Keywords: Jonsson theory, semantic model, existentially prime model, atomic model, convexity.

The study of properties of the so-called small models for various subclasses of inductive theories is connecting
with given work. Each time the difference in these subclasses always depends on the special conditions imposed
on some inductive theory. These conditions are of the following type: the joint embedding property, the amalgam
property, convexity, an existential primeness, a certain type of completeness, perfectness in the sense of Jonsson
theory, if the considered inductive theory is such. All of these conditions are connected with considered theory,
but are not purely syntactic, since the above mentioned definitions of conditions relate to the class of models
of considered theory, for example, convexity and an existential primeness. On the other hand, the main accent
of this work is oriented on the syntactic properties of special subsets of the semantic model of some Jonsson
theory.

We consider small models which are some modifications of the concepts of countable atomic and prime
models defined in the study of countable models of complete theories. This subject was originally defined after
R. Vaught’s classical work [1] where it was proved that a model is atomic if and only if it is countable and
prime. In [2] D. Baldwin and D. Kueker considered a more general situation in the sense of theory and in the
sense of small models.

Namely, the theory was assumed only complete for some type of sentences, i.e. generally speaking, not
the complete and the concepts of atomicity and primeness of model, in contrast to the concept of atomicity
and primeness of the model from [1], were also more general because the atoms of a theory were considered
within the formulas lattice and not the Boolean algebra of the Lindenbaum-Tarsky. Also, instead of elementary
embeddings, isomorphic embeddings were considered. Further, we give these definitions and consider in detail
their differences.

As the results of [2] showed, unfortunately, it was not possible to obtain, analogue of the above mentioned,
the result describing a small models from [1]. Thus, the study of the behavior of the small models in the class
of incomplete theories is an actual problem and in general it has not been solved yet. Moreover, due to the
examples in [2], there is a confidence that this problem will not be solved in the formulated framework of [2]. In
this regard, one of the authors of this article in [3-6] formulated the problem of characterization of countable
atomic and prime models in the study of Jonsson theories, its class, first of all, is a natural subclass of inductive
theories, secondly, there are a lot of classical natural examples from algebra which satisfy the conditions of
Jonsson theories. Thus, it seems to us it is possible to narrow down the scope of the above mentioned problem,
both in the syntactic and semantic sense in fairly wide subclass of inductive theories to advance a search for
a positive solution of this problem. It is necessary to find acceptable conditions that connect corresponding
concepts of atomicity and algebraic primeness of models in the framework of studying the data restrictions on
the theory.
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In this introduction we would like to announce the main idea of our approach to the study of the description
of small models within the above-mentioned. Since, by virtue of the above concepts of the atomic model, in
senses of [1] and [2], there are essentially different, we propose to consider in a certain sense a «continuous»
transition from the notion of model atomicity in the sense of [1] to the notion of model atomicity in the sense
of [2]. Thus, we tried gradually to isolate the metamorphosis of the transition of these concepts into each other
in stages. That is, to construct conditionally in a certain sense a model-theoretic «rheostat»> by moving, we
get the concepts of atomicity for complete and Jonsson theories, gradually. Thus, the main purpose of this
article is formally to define this «rheostat» and to obtain, on the basis of this concept, results concerning to the
refinement of the concept of atomicity within of Jonsson theories.

We give the following definitions of concepts and related results from that part of model theory that are
necessary for the study of Jonsson theories.

Definition 1. A theory T is a Jonsson if:

1) theory T has infinite models;

2) theory T is inductive;

3) theory T has the joint embedding property (JEP);

4) theory T has the property of amalgam (AP).

Examples of Jonsson theories are:

1) the group Theory,

2) the theory of Abelian groups,

3) the theory of fields of fixed characteristic,

4) the theory of Boolean algebras,

5) the theory of polygons over a fixed monoid,

6) the theory of modules over a fixed ring,

7) the theory of linear order.

The following definition of the universality and homogeneity of model allocates semantic invariant of any
Jonsson theory, namely its semantic model. Moreover, it turned out that the saturation or non-saturation of this
model significantly changes the structural properties of both the Jonsson theory itself and its class of models.

Definition 2. Let kK > w. Model M of theory T is said to be k-universal for 7', if each model T" with the
power strictly less x isomorphically imbedded in M; k-homogeneous for T, if for any two models A and A; of
theory 7', which are submodels of M with the power strictly less then x and for isomorphism f : A — A; for
each extension B of model A, which is a submodel of M and is model of T" with the power strictly less then k
there exists the extension B; of model Ay, which is a submodel of M and an isomorphism ¢ : B — B; which
extends f.

Definition 3. Model C of Jonsson theory T is said to be semantic model, if it is w- homogeneous-universal.

As can be seen from the definition of the Jonsson theory, this theory is not complete. But nevertheless,
with the help of its semantic invariant (semantic model) we can always determine the center of Jonsson theory,
which is a complete theory.

Definition 4. The center of Jonsson theory T is said to be an elementary theory of its semantic model. And
denoted through T i.e. T* = Th(C).

The following two facts speak about the «good» exclusivity of the semantic model.

Fact 1. Each Jonsson theory T has k*- homogeneous-universal model of power 2¥. Conversely, if a theory
T is inductive and has infinite model and w™- homogeneous-universal model then the theory T is a Jonsson
theory.

Fact 2. Let T be a Jonsson theory. Two k-homogeneous-universal models M and M; of T are elementary
equivalent.

It is well known from the course of model theory that a saturated model is always a homogeneous-universal
model, the reverse is also true. But this definition of homogeneous-universal model [7; 299] is considered as a
rule in the framework in the study of complete theory. In the framework of the study of Jonsson theory, we are
dealing with a particular case of the definition of a homogeneous-universal model belonging to B. Jonsson [8]. The
concept of a saturated model is the same in both cases. By virtue of a more general situation of homogeneous-
universality in the case of Jonsson theory, we do not have a saturation criterion in terms of homogeneous-
universal as in [7; 299]. Therefore, those Jonsson theories, the semantic model of which is saturated, allocate in
a special subclass of class of all Jonsson theories, and such theories are called perfect. We give a definition of
perfectness of Jonsson theory.
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Definition 5. Jonsson theory T is said to be a perfect theory, if each semantic model of theory T is saturated
model of T*.

The first author of this article obtained a result describing the perfect Jonsson theory.

Theorem 1 [9]. Let T be a Jonsson theory. Then the following conditions are equivalent:

1) Theory T is perfect;

2) Theory T* is a model companion of theory T

From the above list of Jonsson theories, the following examples 2)-4), 6),7) are examples of a perfect Jonsson
theory. But, for example, group theory is not such, due to the fact that it does not have a model companion.

Let Er be a class of all existentially closed models of Jonsson theory T'.

This class of models in general case for an arbitrary theory can be empty. But the following result [10; 367]
is well known, who says that any inductive theory has a nonempty class of existentially closed models. Since
the Jonsson theory is a subclass of the class of inductive theories, we can say that Er is a non-empty class.

In the case of a perfect Jonsson theory, the class of models of center of this theory coincides with Ep. This
follows from the following theorem.

Theorem 2 [9]. If T is a perfect Jonsson theory then Er = ModT™*.

Let L be a countable language of first order. Let T" be Jonsson theory in the language L and its semantic
model is C'.

Let us turn to the definition of central concept of this article. Namely, the concept of a (V1, V3) — ¢l atomic
set.

Let T be some Jonsson theory in a fixed language and C' — its semantic model.

Definition 6. Model A of a theory T is said to be existentially closed if for any model B and any existential
formula ¢(Z) with constants of A we have A |= 3T (T) provided that A is a submodel of B and B = 3Tp(T).

Definition 7. A is an algebraically prime model of theory T, if A is a model of T'and A may be isomorphically
embedded in each model of the theory T

Definition 8. The inductive theory T is said to be the existentially prime if: 1) it has an algebraically prime
model, the class of its AP (algebraically prime models) denote by APr; 2) class Er non trivial intersects with
class AI:)T7 i.e. APT ﬂET 7& 0.

Definition 9. The theory T is said to be convex if for any its model A and for any family {B; | i € I} of
substructures of A, which are models of the theory T, the intersection (1,.; B; is a model of T, provided it is
non-empty. If in addition such an intersection is never empty, then 7T is said to be strongly convex.

Definition 10. A model is said to be atomic if every tuple of its elements satisfies some complete formula.

Definition 11. A formula ¢(Z) is a A-formula, if exist existential formulas (from X) v (%) and 2 (Z) such
as

ThE@ey) n T (op < ).

Definition 12.

(i) (A,a0,...an—1) =1 (B,bo, ...,b,—1) means that for every formula ¢(x1,...,x,-1) of T', if A |= ¢(a), then
B = ¢(b). i i i

(ii) (A,a) =r (B,b) means that (A,a) =r (B,b) and (B,b) =1 (A,a).

As classes I" we consider A or X.

The following definition of an atomic model refers to [1].

Consider a complete theory T in L. A formula ¢(x;...z,) is said to be complete (in T) if and only if for
every formula ¢ (z...x,) exactly one of

TEe—=¢, TEe—

holds. A formula 6(z;...z,,) is said to be completable (in 7T") if and only if there is a complete formula p(z1...2},)
with T' = ¢ — 6. If 8(x;...x,) is not completable it is said to be incompleatable.

A theory T is said to be atomic if and only if every formula of L which is consistent with T' is completable
in T. A model A is said to be an atomic model if and only if every n- tuple aj...a,, € A satisfies a complete
formula in Th(A).

Definition 13. A model is said to be atomic if every tuple of its elements satisfies some complete formula. In
connection with the new concept of atomicity from [2], the following concept will be analogous to the definition
of a complete formula.
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Definition 14. A formula ¢(x1,...,x,) is complete for I-formulas if ¢ is consistent with T" and for every
formula (1, ...,x,) in T, having no more free variables than ¢, or

T E=VZ(p — ).

Equivalently, a consistent ¢(Z) is complete for I'-formulas provided whenever as ¢(Z) is a I'- formula and
(¢ A1) is consistent with T, then T |= (¢ — ).

And the concept of the atomic model from [1] is transformed into the following concept from [2].

Definition 15. B is a (I'1,I'y,) — atomic model of T', if B is a model of T' and for every n every n-tuple of
elements of A satisfies some formula from B in I'y, which is complete for I's-formulas.

The following notion of a weakly atomic model from [2] is a generalization of above definition.

Definition 16. B is a weak (I'y, ') — atomic model of T', if B is a model of T and for every n every n-tuple
aa of elements of A satisfies in B some formula ¢(Z) of T'; such as T |= (¢ — 1) as soon as ¥(T) of I'y and
B = ¢(a).

In this paper we will not give examples of the (I';,I's) — atomic model and the weak (I'1,'2) atomic model,
leaving the reader to do this on their own, referring to a sufficient, the number of examples of these concepts
given in [2].

Before discussing the obtained results, concerning to (V1, Va) — ¢l atomic models, we note that we fix some
Jonsson theory T and its semantic model C' in the countable language L and V1,Vs C L : (V1,V3) actually
those sets consist of 3,V, V3 — formulas which are consistent with T, that is, any finite subset of formulas from
V1, V3 are consistent with T". Let A C C.

Let cl is some closure operator defining a pregeometry over C' (for example ¢l = acl or ¢l = dcl). It is clear
that such operator is a special case of the closure operator and its example is a closure operator defined on any
linear space as a linear shell.

We also assume that the pregeometry given by the ¢l operator is modular [8].

Definition 17. A set A is said to be (V1, V3) — ¢l atomic in the theory T, if

1) Va € A,Jp € V1 such as for any formula ¢ € V5 follows that ¢ is complete formula for ¢ and C' = ¢(a);

2) cl(A) = M, M € Er, and obtained model M is said to be (V1, V) — ¢l atomic model of theory T'.

Definition 18. A set A is said to be weakly (V1,V3) — ¢l is atomic in T, if

1) Ya € A,3p € V; such as in C = ¢(a) for any formula ¢ € V3, follows that T = (¢ — ) whenever ¢ (z)
of Vg and C = ¢(a);

2) cl(A) = M, M € Er, and obtained model M is said to be weakly (V1, V3) — ¢l atomic model of theory T

It is easy to understand that definitions 17 and 18 are naturally generalized the notion of atomicity and
weak atomicity to be Vi-atom and weak Vi-atom for any tuple of finite length from set A.

Let i € {1,2}, M; = cl(4;), where A; = (V1,V2) is a cl— atomic set . ag, ..., an—1 € A1, bg, ..., b—1 € As.

Definition 19.

(i) (M1, a0, ..., an—1) =v (Ma,bg, ..., by—1) means that for every formula ¢(z1,...,2,—-1) of V, if My = (@),
then My = ¢(b).

(ii) (My,a) =y (Mz,b) means that (M;,@) =v (Ma,b) and (My,b) =v (M, a).

Definition 20. A set A is said to be (V1, Vs) — cl-algebraically prime in the theory T, if

1) If Ais (V1,V3) — cl-atomic set in T

2) cl(A) = M, M € APr, and obtained model M is said to be (V1,Va) — ¢l algebraically prime model of
theory T'.

From the definition of an algebraically prime set in the theory T follows that the Jonsson theory T which
has an algebraically prime set is automatically existentially prime. It is easy to understand that an example of
such a theory is the theory of linear spaces.

Definition 21. The set A is said to be (V1, Va) — cl-core in the theory T, if

1) Ais (V1,Va) a ¢l - atomic set in the theory T}

2) cl(A) = M, and obtained model M is said to be (V1, Vs) — ¢l core model of theory T.

Definition 22. (a) A - (V1,V3) — cl-atomic set in theory T is said to be A - (V1,Va) — cl-X-nice-set in
theory T, VA’ : A’ - (V1,V3) — cl-atomic set in theory T, if

1) cl(A) = M € Er N APrp, and obtained model M is said to be (V1, V3) — cl-E-nice model of theory T

2) for all aQ, ..., Apn—1 € AA7 b()7 ceey bn—l € A/, if (M, AQy eeey an_l) =3 (]\4'/7 bo, ceey bn—l)a then Van € A, E'bn € A
such as (M, ag, ..., an) =3 (M, by, ..., by ), where M’ = cl(A").
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(b) A - (V1,V3)— cl — X*- nice-set in theory T if the condition in (a) holds with ’=-3” replaced both places
it occurs by ‘=75’

and obtained model M is said to be (V1, Va) — ¢l-X*- nice model of theory T.

(¢) A-(V1,V3a) —cl — A- nice-set in theory T if the condition in (a) holds with >=A’ replaced both places
it occurs by '=a’, where A C L, A =VN3.

and obtained model M is said to be (V1, Va) — ¢l — A-nice model of theory T.

Principle of «rheostat».

Let two countable models A;, A, of some Jonsson theory T' be given. Moreover, A; is an atomic model in
the sense of [1], and X is (Vy, Vo) —cl -algebraically prime set of theory T and ¢l(X) = As. Since V; = Vy = L
then A; & A,.

By the definition of (Vy,V5) - algebraic primeness of the set X, the model A is both existentially closed
and algebraically prime. Thus, the model As is isomorphically embedded in the model A;. If by condition the
model A; is countably atomic, then according to the Vaught’s theorem, A; is prime, i.e. it is elementarily
embedded in the model As. Thus, the models A1, Ay differ from each other only by the interior of the set X.
This follows from the fact that any element of a € A3\ X implements some principal type, since a € cl(X).
That is, all countable atomic models in the sense of [1] are isomorphic to each other, then by increasing X we
find more elements that do not realize the principal type and, accordingly, ¢/(X) is not an atomic model in the
sense of [1]. Thus, the principle of rheostat is that, by increasing the power of the set X, we move away from
the notion of atomicity in the sense of [1] and on the contrary, decreasing the power of the set X we move away
from the notion of atomicity in the sense of [2].

Let APC € {atomic, algebraically prime, core}. Thus, by specifying the set X as(Vy,Va)—

— APC, (where APC is a semantic property), we can also specify atomicity in the sense [2] in relation to
atomicity in the sense of [1]. And according to the usage using of the principle of «rheostat» after the APC
property is defined, we obtain the corresponding concepts of atomic models, the role of which is played by A,
from the principle of «rheostat».

Two authors of this article have got the following result which connected with this topic and this result will
publish in near future.

Theorem 1. Let T be complete for J-sentences, a strongly convex Jonsson perfect theory and let A is
(V1,V3) — cl-atomic set in T

Then (i) = (i1) = (iti) = (iv) A (vi), (1) = (9)* = (v) = (vi), (i7) = (it)* = (vi), ())* = (#9)* and
(iv)* = (iv), where:

1) Ais (A,X) — cl-atomic set in theory T,

)* A is weakly (A, II) — cl-atomic set in theory T,
i) Ais (£,%) — cl-atomic set in theory T,

11)* A is weakly (2,1II) — cl-atomic set in theory T
1i1) A is weakly (X, X) — cl-atomic set in theory T,
iv) cl(A) € APy,

1w)* A is core set in theory T,

v) A is weakly (A, A) — cl-atomic set in theory T,

(vi) A is weakly (X, A) — cl-atomic set in theory T

In according to the above mentioned notions, we have the following theorems. Those results are very close to
investigation around atomicity and algebraically primeness in the frame of [2]. Nevertheless even if algebraically
primeness is the same, but the combinations of APC-atomicity differ from atomicity from [2].

Theorem 2. Let T be complete for 3-sentences, a strongly convex Jonsson perfect theory and let M is
(V1,V2) — cl-atomic model in T

(a) Then (i) = (i1) = (i4i) = (iv) = (vi), () = (O)* = (v) = (vi), (#7) = (#)* = (vi), and (4)* = (i9)*
and (iv)* = (iv), where:

) M is (A, X)) — cl-atomic model in theory T,

1)* M is a weakly (A,II) — cl-atomic model in theory T

1) M is a (X,X) — cl-atomic model in theory T,

11)* M is a weakly (X,II) — cl-atomic model in theory T,
1i1) M is a weakly (X,X) — cl-atomic model in theory T,
iw) M € APr,

i)* M is core model in theory T,

v) M is (A, A) — cl-atomic model in theory T,

(i
(i
(i
(
(
(
(
(

(i
(
(i
(
(
(
(
(
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(vi) M is (2, A) — cl-atomic model in theory T,

(b) If T is complete for V3 sentences, then (i) < (4)* and (i7) < (49)*.

Proof. We have to note that for us sufficiently work with the (X, X) — cl-atomic set, i.e. the elements from
outside of this set in any type of atomic model of this theory will realize the principal type and this fact allowed
say for us that such element belongs to any type of atomic model. It is sufficient to get that existence of any
kind of atomic model in our meaning following from fact that a given theory has countable atomic models
of any type of it. Therefore, all parts of this Theorem are immediate from Theorem 1 and the existence of
such sets admit for us corresponding type of atomicity. We have only one exception: that is the implication
(iv) = (vi). So, assume that T has an algebraically prime model B. Let b, € B and let {1;(%) : i € w} list all
the A-formulas satisfied by b in B. Since B is a.p. we know there is no model of T satisfying VZ \,; —;. Since
—); is existential we can apply above pointed Theorem 1 to get an existential formula (%) consistent with T'
such as T = (¢ — ;) for all ¢ € w. This ¢ is hence complete for A-formulas, and also implies any open formula
satisfied by @ in A. Every open formula consistent with 7' is satisfied by some ay, ..., a, € A, and therefore is
implied by some existential formula complete for A-formulas. In the connections with the fact that we obtained
(X3, %) — cl-algebraically prime model in theory T we can apply Theorem 2.2 from [2] (iii) in order to show that
T has a (¥, A) — cl-atomic model.

Lemma 1 [11]. Let T be complete for existential sentences perfect Jonsson theory.

1) If A is weakly (V,A) — cl-atomic set in the theory T, then A is (V,A) — cl-atomic set,

2) If A is weak (V,A) — cl-atomic set in the theory T', then A is (V,A) — cl-atomic set.

Before we will prove the theorem 2 let us note the following Remark.

Remark 1 [11]. By the perfectness of T', we can apply Lemma 1 and then, by Lemma 1, we can replace V;
on A, where ¢ € {1,2}. Due to the strongly convexity of the theory, the theory T has a unique core model. This
follows from the fact that if the theory satisfies the property of joint embedding and is additionally strongly
convex, then its core model in the theory T" is unique up to isomorphism [7]. Based on this fact, we can conclude
that under the conditions of this theorem we have a unique core model, since its existence follows from strongly
convexity, and its uniqueness follows from the combination with Jonssonness.

Theorem 3. Let T be complete for J-sentences a strongly convex Jonsson perfect theory and let M is
(V1,V2) — cl-atomic model in T

(a) Then (i) = (i7) = (i) and (i7) = (i7)* where:

(1) M is (£,%) — cl-atomic model in theory T,

(#9) M is (V1,Va) — cl-¥*-nice-model in theory T,

(#)* M is e.c. and (V1,Va) — cl-X-nice-model in theory T,

(i4i) M is weak (X, II) — cl-atomic model in theory T,

(b) If T is complete for V3 sentences, then (), (ii), (i1)* and (i) are all equivalent.

Proof. Fasy to note that proof of this theorem follows from Theorem 1, Theorem 2, Remark 1 and
Theorem 3.2 from [2].

From above results of Theorem 2 and Theorem 3 we can conclude that the mechanism of «rheostat» for
atomicity behave regard itself very predictable: if more of elements from (V;,Vs) — cl-atomic set inside in an
atomic model by meaning of [1] we obtain more far property of atomicity from [1] and more close to atomicity
from [2].

All concepts, that are not defined here, can be extracted from [9, 11].
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A.P. Emkeen, A.K. Ucaesa, H. M. Mycuna

CeMaHTHKAJIBIK MOJEJbAIH, ATOM/IBbIK aHBIKTAJFAH IIIKi Y>KWBIHIaPbI

Maxkasaza kimmiripim Mozebaep/iin Keitbip KacueTTepi, KaJnbl alTKAHA, 0JIap TOJBIK OOy MIHIETTI emec
JKoHE OJIapJIbIH ©3apa KapbIM-KATbIHACHI KapacThIpblLiraH. KimriripiM Mojiesibiiep el TOJIBIK, TeopusiIap-
JIBIH CaHAJIBIMJIBI MOJIEJIBJIEPIH 3ePTTEY Ke3iH/E aHBIKTAJFAH CAHAJIBIM/IbI ATOM/IBIK KOHE 2Kail MOJIe/IbJiep
YFBIMIAPBIHBIH Keiibip Momudukanusaapeia aitrambrd. 3eprreynep P. BooTTsiH caHambiMIp 2Kail Mo/1€/1b-
JEePIiH TOJIBIK TEOPUsIAPhl TYPaJIbl KJIACCUKAJIBIK HOTHKeCI OOMBIHIIA, Oipak 6acKa TeXHUKAJBIK Kypaiaap
KOJIJI@HYBIMEH Kypriziiai. by makana keitbip HOHCOHIBIK TEOPUSIHBIH CEMAHTUKAJIBIK, MOJEIHIH apHANbI
K] >KUBIHIAPBIHBIH, CHHTAKCUCTIK KACHETTEpiHe OarbITTAJIFAH. HNoucon TEOPUSICHIHBIH, IEHOEPIHIE aTOM-
JBIK TY2KBIPBIMJIAMaHbl HAKTBIJIAYyFa OalIaHBICTBI HOTHXKEJIEP aJIy YIIH MOJIE/TbIIK-TEOPUIBIK, «PEOCTAT
peTine XKaHa TYKBIPBIM eHri3iaai. Oceuiaiinia, 6yJ1 MaKaJIaHbIH HETI3T1 MAaKCATBI — OChI «PEOCTATThI» (POp-
MaJIIbl TYP/I€ AHBIKTAY *K9HE OChI YFBIMHBIH HETi3iH7e HOHCOHIBIK, TEOPUSIAD AsICHIH/IA ATOM/IBIK VFBIM/IbI
HaKTbLIayFa TYCiHIKTeMeci 6ap HOTUXKEJIEPIl aJy.

Kiam cosdep: HOHCOHIBIK, TEOPUsT, CEMAHTUKAJIBIK, MOJIE/Ib, 9K3UCTEHITUAJIIBI 2Kail MOJIE/Ib, ATOMIIBIK MOJIE/Ib,
JTOHECTLIIK.

A.P. Emkees, A.K. Hcaesa, H.M. Mycuna

ATomHBIE orpeaeJjinMbie IIOAMHO2KECTBaA ceMaHTUYeCKOIl MoaeJin

B crarbe 6b111 paccMOTPEHBI HEKOTOPBIE CBONCTBA MAJIBIX MOJIEJIel, BOOOIIE TOBOPsi, HEOOSI3aTEIBHO TIOJTHBIX
Teopuii U UX CBsA3b MexK Iy coboit. [Tox MmambiMu Mozesisimu Oy1eM TOHUMATEH HEKOTOPBIE MOIU(MDUKAIINN TTOHSI-
THUil CYETHBIX ATOMHBIX U IIPOCTBIX MOJeJIell, OpeleJIeHHBIX IIPU U3YYEeHUM CUETHBIX MOJeJIell TOJTHBIX Teo-
puit. UccnemoBanus MpoBOIMINCH IO AHAJOTUY C KJIACCUIECKUM pe3yibraTroMm P. BooTta o cueTHO-TIpOCTBIX
MOJEJISX TOJIHBIX TEOpWil, HO APYTUMU TEeXHUYIECKUMHU cpeacrBamu. JlamHasi paboTa OpHMEHTHpPOBaHA HA
CUHTAKCHUYECKHE CBOMCTBa CIIEIIMAaJIbHBIX IIOJMHOXKECTB CEMaHTUYECKON MO/Ie/I1 HEKOTOPOI MOHCOHOBCKON
Teopun. Takzke OBLTIO BBEJIEHO HOBOE MOHSITAE — KaK TEOPETUKO-MOJIE/IBHBIN «PEOCTAT», C IEJIbIO MOy IUTh
Pe3yJIbTAThI, UMEIOIE OTHOIIEHNE K YTOTHEHUIO TOHSITHsI ATOMHOCTH B PAMKaX HOHCOHOBCKHUX Teopwil. Ta-
KHM 00pa30M, OCHOBHA IeJIb JJAHHOM CTaThbu — (POPMAJIBLHO OIPEIEIUTD JIAHHBIN «peocTaTy U MOJIyIUTh Ha
OCHOBE JAaHHOI'O NOHATHSA Pe3yJIbTAaThl, UMeIOIe OTHOIIEHNEe K YTOYHEHUIO MOHATUA aTOMHOCTUA B PaMKaX
MNOHCOHOBCKMX TEOPUIi.

Karouesvie caosa: HOHCOHOBCKAST Teopusd, CeMaHTUYIECKasd MO/IEJIb, IKSUCTEHIINAJIBHO IIPOCTad MOJEJIb, aTOM-
Has MOJIEJIb, BBIITYKJIOCTb.
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Our attention in given article will be paid to the study of model-theoretic properties of hereditary Jonsson
theories, while we consider Jonsson theories that retain jonsonness under any admissible enrichment. In
given paper new concepts of «essential type», «essential geometric base» are introduced, the orbital types
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It is well known that any first-order theory can be transformed in easy way to Jonsson theory. Thus, if we
consider some model of an arbitrary signature, then the choice of all Jonsson theories of this model in the special
class is a natural admissibility, and the study of the model-theoretic properties of such class is undoubtedly
actual problem. This is due to the fact that in the classical model theory there are historically established two
approaches to the study of theories and their classes of models. In the first case, a class of complete theories
is usually considered and, correspondingly, their models are studied. In the second case, we consider a class of
theories, generally speaking incomplete theories, but with some additional properties, while naturally there are
limitations and under study to the classes of models of such theories. Today, more research in model theory
is associated with the study of model-theoretic properties of a class of theories of the first kind, i.e. complete
theories, as well and the study of their classes of models.

An essential example of the theory from the second case is the class of inductive theories of a fixed signature,
and this class has a subclass of Jonsson theories that define natural algebraic conditions, this subclass was so
named after a well-known expert in the field of universal algebra and model theory of B. Jonsson. Among
the theories of Jonsson, perfect theories of Jonsson are best studied [1]. Since Jonsson theories as a rule, are
incomplete, and isomorphic embedding and various kinds of homomorphisms are considered as morphisms [2],
the technical apparatus of the study of such theories is less developed than the apparatus of studying complete
theories, in connection with the transfer of ideas, concepts and, correspondingly, results from the field of complete
theories [3, 4] in the field of Jonsson theories, of course, is an interesting challenge. Model-theoretic properties
of this class are good enough studied both from the standpoint of model theory and from the side of universal
algebra, and many classical examples of classes of algebra satisfy the requirements of this subclass, namely,
Jonsson conditions. Our attention in this article will be paid specifically to the study of model-theoretic
properties of theories for this class and the corresponding classes of models. As it turned out, in the case
of perfect Jonsson theories, it is enough to study the classes of existentially closed models of these theories.
In arbitrary case, Jonsson theory always has some semantic invariant — the semantic model of this theory.
Correspondingly, there is a syntactic invariant — the elementary theory of given semantic model. The natural
interest is the study of special formula subsets of this semantic model. In the case when the pregeometry given
on the set of all subsets of the considered semantic model is modular, and the enrichment of the language saves
the properties of jonssonnes and some other important model-theoretic properties (for example, the definability
of the type for the considered type of stability), we will deal with admissible and hereditary types of enrichments
of Jonsson theory.

In this article, given problem is considered with respect to special kinds of enrichments of the signature and
wherein the received central types.

Since our main goal in this article is to consider special properties of central types, we will work with some
enrichments of signatures in which some fixed Jonsson theory is given. As it turned out, not all enrichments
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preserve the property of the jonssonnes of the theory. In this regard, we will consider only those Jonsson theories
that retain their jonssonnes with any enrichment of the signature. We shall call such Jonsson theories hereditary.
In some cases, the requirement of modularity for the Jonsson theory is sufficient to keep it conserved.

We give the basic necessary definitions of concepts and associated with them the obtained previously results.

Let T be a some Jonsson theory, C' be its semantic model.

Definition 1 [5; 289]. Let C be as above and let cl: P(C) — P(C) be an operator on the power set of C.
We say that (C,cl) is a pregeometry if the following conditions are satisfied.

i) If AC C, then A C cl(A) and cl(cl(A)) = cl(A).

ii) If AC B C C, then cl(A) C cl(B).

iii) (exchange) if A C C, a,b € C and a € cl(AU {b}), then a € cl(A), b € cl(AU{a}).

iv) (finite character) if A C C and a € cl(A), then there is a finite Ay C A such that a € cl(Ap).

We say that A C C is closed if cl(A) = A.

If D is strongly minimal, we can associate a pregeometry by defining cl(A) = acl(A) N D for A C D.

We can generalize basic ideas about independence and dimension from strongly minimal sets to arbitrary
pregeometries for any subset of fix semantic model of some Jonsson theory.

Let as call (X, cl) — Jonsson pregeometry (further J-pregeometry) if X C C' and C and T as above.

Definition 2. If (X, cl) is a Jonsson pregeometry, we say that A is Jonsson independent if a ¢ cl(A\ {a})
for all @ € A and that B is a J-basis for Y if B C Y is J-independent and Y C acl(B).

Definition 3. We say that a J-pregeometry (X, cl) is J-geometry if cl(0) = 0 and cl({z}) = {x} for any
zeX.

If (X,cl) is a J-pregeometry, then we can naturally define a J-geometry. Let X = X \ cl(0). Consider the
relation ~ on Xq given by a ~ b iff cl({a}) = cl({b}). By exchange, ~ is an equivalence relation. Let X be
Xo/ ~. Define clon X by gl(A/ ~)={b/ ~:becl(A)}.

Definition 4. Let (X, cl) be J-pregeometry. We say that (X, ¢l) is trivial if cl(A) = Yyeacl{a} for any A C X.
We say that (X, cl) is modular if for any finite-dimensional closed Jdim(A U B) = Jdim(A) + Jdim(B) —
—Jdim(AN B).

We say that (X, cl) is locally modular if (X, cl,) is modular for some a € X.

Definition 5. We say that (X, ¢l) is modular if for any finite-dimensional closed A, B C X

dim(AU B) = dimA + dimB — dim(AN B).

Definition 6. If X = C and (X, cl) is a modular, then Jonsson theory T is called modular.

We work actually with the following types of sets.

Definition 7. Let X C C. We will say that a set X is V — cl-Jonsson subset of C, if X satisfies the following
conditions:

1) X is V — definable set (this means that there is a formula from V, the solution of which in the C is the
set X, where V C L, that is, V is a view of formula, for example 3,V,V3 and so on);

2) cl(X) = M, M € Er, where cl is some closure operator defining a pregeometry over C' (for example
cl = acl or ¢l = del).

Definition 8. An enrichment T of the Jonsson theory T is said to be permissible if any V-type (it means
that V subset of language L, and any formula from this type belongs to V) in this enrichment is definable in
the framework of Tp-stability.

Definition 9. Jonsson theory is said to be hereditary, if in any of its permissible enrichment, any expansion
of it in this enrichment will be Jonsson theory.

Let S(Vl) (X) be the set of all complete 1-types over the set X, formulas which belong to V. Let X C M, M €
Er.

Definition 10. Type p € S(vl)(X) is called essential if for any set Y, Y C N, N € Ep, such that X CY in
T exists only unique type q € S(V1 )(Y) and the type ¢ is a J-nonforking extension of type p.

Let p,q € S(Vl)(X), 2 € Ep and X C A. The relation p <4 ¢ is means that for any model B € Ep, such that
B D A, from the realizability of ¢ in B\ A implies the realizability of p in B\ A. The relation p = ¢ means that
for any model 2 € Er, X C A, has p <4 ¢ and g <4 p. We denote the set {q|q € S(vl)(X),p = ¢} by [p], and the
set {[p]lp € S(vl)(X)} denote by S(vl)[X]. We write [p] <4 [q], if p <4 g. The types p, g are called independent if
for any 21 € Er, X C A, don’t have a place neither p <4 ¢, nor g <4 p. If p and ¢ are independent, then we
say that [p] and [q] are independent.
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The following definition gives the concept of a basis among the above types.
Definition 11. The set B = {[p;] € S(vl)[X]/i € I} is called base for S(vl)[X} if:
(1) [pi] and [g;] independent for i # j;

(2) for any [q] € S(vl)[X] and 2 € Ep, X C A, exists ¢ € I such that [p;] <4 [q]

Definition 12. The base of the theory T is the base for S(vl) [@] (if it exists). The base B of theory T is called
essential if for any [p] € B exists an essential type g € [p].

Definition 13. We will call the essential base of the types of Jonsson theory T geometric if the following
conditions are satisfied:

1) Vpe S(vl)(X), where X C C, C as above and (C, ¢l) — J-geometry;

2) the concept of independence in the sense of geometry generated by a strongly minimal central type will
coincide with the concept of independence (C, ¢l) — J-geometry (coincidence of the concept of a base in terms of
strong minimality, pregeometry and central types that form an essential base, wherein the orbits of the central
types that are their solutions in the semantic model).

It is necessary to take into account the condition of completeness of the considered theories order to after
enrichment they can be associated with their central types (they are complete). In [6] the class of existentially
closed models and the properties of a forking on a subset of these models are considered. The types considered
in this paper were complete existential types. In this connection, we will notice, that we need 3-completeness for
the theories under consideration, and the fact, that independence in the sense of forking in [6] for existentially
closed models is consistent with independence in the sense of geometry mentioned above.

In [7], the notion of Jonsson spectrum for abelian groups was considered. We want to define the concept of
Jonsson spectrum for an arbitrary case.

Let 2 be an arbitrary model of some fixed signature o.

Then the JSp(A) = {T| A € ModT, T — Jonsson theory of the signature o} is the Jonsson spectrum
of the model 2. We will say that two models 2, B are cosemantic among themselves if they have the same
semantic model. Symbolically 2 < 8. It is easy to understand that this relation > is the equivalence relation
between models, which generalizes the concept of elementary equivalence [2]. Therefore we consider the factor
set JSp(A) /s for the model 2.

Further we will work only with permissible enrichments and we will consider such enrichments for the
Jonsson spectrums, which consist only of hereditary Jonsson theories.

Consider some enrichment of the signature o and consider the central type of this enrichment for all Jonsson
theories T' € JSp(2).

Let C be the semantic model of the theory T, A C C. Let or = o|JT', where ' = {P}{J{c}. Let T =
Thys (C,ca)gec UThya(Er) J{P (c)} U{"P C "}, where {"P C "} is an infinite set of sentences expressing
the this fact that the interpretation of the symbol P is an existentially closed submodel in the language of the
signature or. Le. the interpretation of the symbol P is the solution of the following equation P(C) = M € Er
in the language or. By virtue of the hereditary of the theory T the theory T will be a Jonsson theory. Consider
all the completions of the theory T in the signature language op. Since T is a Jonsson theory, it has its center,
and we denote it by T and this center is one of the above completions of the theory T. At restriction of the
signature o to o U P, due to the laws of first-order logic, since the constant ¢ already does not belong to this
signature, we can replace this constant on a symbol of variable, for example x. And then the theory T becomes
a complete 1-type for the variable x. This type we will call the central type of the theory T in this enrichment.
This enrichment is denoted by ©.

Next, we will be back to JSp()/ < for the model 2 of an arbitrary signature and consider the admissible
enrichment of this signature with the help of a predicate and a constant and consider the central type for each
theory A from JSp(2).

For the V-complete Jonsson theory, we will define the concept of J—strongly minimality [8].

Definition 14. Let 9% be an existentially closed model of T and ¢(T) be a non-algebraic V-formula.

1. The set (M) is called J-minimal in 9N if for all V-formulas 1(Z) the intersection o (M) A (M) is either
finite or cofinite in @(9M).

2. The formula () is J-strongly minimal if ¢(Z) defines a J-minimal set in all existentially closed extensions
of 90t. In this case, we also call the definable set ¢(9N) is J-strongly minimal.

3. A non-algebraic type in S(V1 )(T) containing a J-strongly minimal formula is called J-strongly minimal.
4. A Jonsson theory T is J-strongly minimal if any its existentially closed model is J-strongly minimal.
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Clearly, J-strongly minimality is preserved under definable bijections; i.e. if A and B are definable subsets
of ME, M™ defined by ¢, 1) € A, correspondingly, such as there is a definable bijection between A and B, then
if ¢ is J-strongly minimal so is ).

We note another useful fact in the case of a perfect Jonsson theory, if f is an automorphism of the structure
C, leaving all elements of the set A, f € Aut,(C), then f obviously translates into itself each A-definable
subset and therefore translates into itself all full types over A, due to the saturation of the semantic model C.
The reverse is also true: if A,d € C", then tp (¢/A) = tp (d/A), if there exists such f € Auta (C), that f (¢) = d.

In a saturated model the complete n-types over A correspond exactly to the orbits of the n elements under
automorphisms fixing A elementwise. And correspondingly, when the theory is complete for existential sentences
in the language L, then this is also true for existential types.

Further, it is convenient to work inside the semantic model C' of Jonsson theory C, containing all the others.

Further, any set of parameters A is considered a subset in C. The model M is a subset of C' that is the
carrier of an existentially closed substructure. This means that any L(M) — existential formula ¢(x), satisfable
in C, also holds on some element from M. The parameters of formulas further always belong to C, and we write
Feif C ke

The following fact is well known.

Lemma. A definable set D is definable over the set A, if it is invariant with respect to all automorphisms of
the model C, leaving in place each element from A. (Let’s call them automorphisms over A)

It follows that the definable closure dcl(A) of the set A, i.e. the set of all elements definable over A, coincides
with the set of elements invariant with respect to all automorphisms over A.

The element b, contained in a finite A-definable set, is called algebraic over A. It follows that an element b
is algebraic over A, if it has only a finite number of conjugates over A.

The set acl(A), consisting of all elements algebraic over A, is called the algebraic closure of the set A.

Next, we will consider in the language of concepts of a pure pair [9] the concept of the above-mentioned
central type and, correspondingly, model-theoretic concepts (for example, stability and nonforking type
extensions) with this connection.

The approach to types through automorphisms of a saturated model has been known for a long time, but
this was determined, firstly, for complete types and for complete theories.

In our case, after the above enrichment, we are dealing with the central types (they are complete) of Jonsson
theories and Jonsson theories, which are complete for the V— sentences.

Instead of a monster model, we turn to the semantic model of some Jonsson theory and then consider its
automorphism group.

We give definition of some important model-theoretic concepts in the language pure pair (4, G), where A
is some subsets of the semantic model and G is automorphism group of semantic model.

Let (A, G) be an arbitrary pure pair X C A.

1.G, S5 {g€G:Vx e X(g(x) = x)}. It is obvious that G, C G.

22IfY C Athen G,(Y) = {g9(Y):g € G,}. f Y = {a} then we will use the record G;(a). G4(Y) is called
G, orbit Y.

3. If 0 < n < w then O"(X) = {Gx(@:ae A™)}.

4. acl(X) = {a € A:|Gy(a)] <w}.

5. The sequence E = (g; : i < A) finite sequences (tuples) the same length is called indistinguishable over X if:

a) e #e;foralli<j<a

b) for any sequence (ix : k < m < w) indices such as iy < iy < k < s for all k,s < m exist g € G, such as
gl{eg : k <m)), (e, : k < m).

6. If (I;<) is linearly ordered set of indices, then the sequence E = (€; : i € I) is called indistinguishable
over X if for all Iy C I such as ord(ly = w), E = (e; : i € I) is indistinguishable over X sequence.

7. The set E = (¢; : i € I) sequences of the same length are said to be indistinguishable over X if:

a) €; # €; herewith i # j;

b) for any F, D C E such as |F| = |D| < w and any bijection ¢ : F' — D exist g € G, such as ¢ € g

8.If X CY,pe O™Y) then p is called:

a) splitting over X if there exist such @,b € Y that G, (@) = G, (b), but for any ¢ € pG,ue(@) N Guuz(b) =
=c e p(9);

b) strictly splitting over X if there exist such an indistinguishable over X infinite sequence E = (@; : i < w)
in A that @p,a; € Y and for any ¢ € p occurs G,uz(@) N Gpuz(b) = ¢ € p(¢);
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¢) branching over X (p A X) if there is such Z D Y that |Z\Y| < w and for any ¢ € O"(Z) from the fact
that ¢ < p follows that q is strictly splitting over X.

9. Subset X C A is called A — saturated if VY C X,Vp € OL(Y) < A= X Np # (¢)

10. Pure pair (A, G) is called A — stable if VX C A(|X| < A= |OY(X)] < \).

11. Let O(A) = U{ U O™(X) : | X| < |A]|}.

nw

By induction, we define the rank function L : O(A) — Ord U {oo}:

a) L(p) > 0 for all p € O(A);

b) if « is the limit ordinal then L(p)

c)ifa=pF+1,pe O"(X) then L(p)
qCp, L(g) > B and ¢ A X;

d) L(p) =a <+ L(p) > aV L(p) 2 a+1;

e) L(p) = 0o < L(p) > « for all ordinals «.

12. If @,b € A® then ¥ (a,X) = ¥ (b,X) means that there exists such Y,p € O"(Y) that X C Y,
YwX CY is saturated p A X, @,b € p.

13. VX)) = {7V (@X; ac A"}, V(X) =, ., V"(X) If p€ O"(X) then V, = {¥a, X) : @ € p}.

4.1 X CY,d e V™(X),d € V*(Y) then

T <d=Vahe AT =T (a, X))V =T0Y)= 7(@X) =7 0,X)AG, (D) L X).

15. The sequence (a@; : i < a) is called the Morley sequence over X, generated @ from V™(X) if
W<V (a@, XU, a;) forall i < a.

16. Let’s call 7, W € V(X) almost orthogonal (we denote by @ 1°w if Va,b € A(W = ¥ (@, X) AN & =
=V (5, X)) = Gy 3@ 1 X.

17. Let’s call p, ¢ € O(X) almost orthogonal (we denote by pL%q if W L for all ¥ € Vi, We Va).

18. Let’s call @ € V(X), < € V(Y) orthogonal (we denote by 7 L°w) if VZVW,wy € V(Z)(X UY
- Z/\7 < 71 Nw < wp = 71Lawl).

19. Let’s call p € O(X), ¢ € O(Y) orthogonal (we denote by pLq) if ¢ C VpVﬁ € ‘/;1(71_3)

20. Let’s call p € O(X) regular if VYVg e OY)(X € Y AqCpAg A X = plg).

All concepts introduced in this way related to nonforking extensions of types of Jonsson theory naturally
give Jonsson analogs of theorems for complete theories.

Let the above permissible enrichment of Jonsson spectrum JSp(A)/ >t of an arbitrary model 2l of some fixed
signature o be given. Moreover, PJSp(A)/ >=<C JSp(A)/ < is a perfect Jonsson spectrum, i.e. those Jonsson
theories of the 20 model are perfect. Also among the theories from JSp(A)/ bxi we choose those theories that are
V— complete, V— is the type of formulas of the type V,3,V3. Thus, we will work with both perfect and not
perfect Jonsson theories, but only theories from the class V—complete and hereditary.

When working with existentially closed models by fixed Jonsson theory, the following well-known fact is
important.

Theorem 1 [10; 185]. Let L be a first-order language and T be a theory in L. Suppose that T has JEP, and
let A, B be e.c. models of T'. Then every Vs sentence of L which is true in A is true in B too.

Consider the class [T] € JSp(A)/s and Thys(Ea) = Ty (an analog of the Kaiser hull), where A € [T7]. It
is clear that this theory is Jonsson and also belongs to [T]. Let Ty be the enrichment of Tj in the enrichment
of ®. Then its center is T; and P is its central type. Correspondingly, all Jonsson theories A € [T] have their
corresponding types, which we will denote by p%. Let Th(C) (where C is a semantic model of class [T]) denote
by T and correspondingly T is the enrichment of T and T is the center of T, PY is its center type. Thus, we
can consider the class of central types for each Jonsson theory A € [T], and we denote this class by IP’[CT], and

a if L(p) > B for all 8 < «;

>
> a if L(p) > B and there exists such Y C A, ¢ € O™(Y) that X C Y,

N

moreover PY € ]P’[CT]. Note that for perfect Jonsson theories A € [T] their central types are equal to each other.

Consider an essential geometric base consisting of central types for the case when the orbits of these central
types distinguish J — strongly minimal subsets of the semantic model C. And let the orbital central types form
a base in the sense of C' — ¢l geometry, where ¢l = acl, ¢l = dcl on J — strongly minimal subsets of the semantic
model C.

Within the above sets of types, we get the following result:

Let T be a A — complete hereditary Jonsson theory in the above enrichment ®, C' — its semantic model.

Theorem 2. For any A € [T], V =3, if ¢(x) € V is a formula of L, then the following is equivalent.

(a) ¥(A) is J-strongly minimal, A € Ex;

(b) for every existentially closed model B € Ea, ¥(B) is J-minimal in B;
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(¢) ¥(C) is J-minimal in C.

Proof. (b) implies (a) by the definitions, and (a) implies (¢) since one can note that A as existentially closed
submodel of C'. To complete the proof it suffices to show that if C' is w— V-saturated (it means that saturateness
regarding V-types) and ¢(C) is J-minimal in C, then ¢(C) is J-strongly minimal in C. (When T is perfect, we
know that C is w — V-saturated) if 7 not perfect then T not perfect, but (C) J-minimal in C' which means
that it has no more than a countable number V-type. Then model has w — V — saturated model. Suppose to
the contrary that B is an elementary extension of C' and there is a formula ¢(x,b) with parameters b in B,
such as 9(B) N ¢(B,b) and ¥(B)\¢(B,b) are both infinite. (Here we are temporarily dropping the assumption
that every model is an elementary substructure of C.) Let @ be the parameters of ¢. By virtue of Theorem 1,
(C,a) = (B, a). Then since C is w— V-saturated, there is a tuple ¢ in C such as (C, @, ¢) = (B, @,b). This implies

that both ¢(C) N ¢(C,¢) and ¥(C)\¢(C,¢) are infinite, contradicting the assumption that ¢(C) is J-minimal
in C.

Theorem 3. For every A € [T], PS € IP’EF] if PS¢ is J-strongly minimal non-algebraic type, thenp will be
J-minimal non-algebraic type.

Proof. The proof follows from Theorem 2.

All concepts that are not defined in this article can be extracted from [1].
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A.P. Emkees, M.T. Omaposa, [.E. 2Kymabekosa

Mypaabl TeopusjiapJarbl J-MUHUMAaJJIAbI >KUBIHIAP

Makasazia 6acTbl Ha3ap MypaJibl HOHCOHBIK, TEOPHUSIAP/IbIH, COHBIMEH KAaTap Ke3 KeJireH OalbITy/a foH-
COHBIKTBI CAKTAWTHIH HOHCOHIBIK TEOPUSIIAPIbIH, MOJIE/IbIi-TEOPUSLIIBIK, KACHETTEPIH 3epTTeyre GOJIiHreH.
ABTOpJIap «eseyiii TUI», «eJieyJli TeOMEeTPUIIBIK, 0a3a» CUSIKTHI XKaHA YFbIMJIAPhI €HTi3iM, apHalbl HOHCOH-
JIBIK, TEOMETPUSHBI aHBIKTAMTHIH TYHBIKTAIY OIEPATOPHI OEPiIreH CeMaHTUKAJIBIK, MOJIEIbIIH apHaibl i1mKi
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JKUBIHJIAP/IbI asICBIHAA OPOUTAJIIALIK TUIITEP MEH KATTHl MUHUMAJIBIK KUBIHIAAPILI KapacThipibl. 2KoHe
OCBI KUBIHIAP HOHCOHIBIK, MYpPaJIbl TEOPUIHBIH, OPTAJIBIK TUITIHIH OPOUTACBIHAH AJILIHFAH YKaF1aiiia ceMaH-
TUKAJIBIK MOJEJIbJIEr J-KaTThl MUHUMAJIIBIK TUIITEPre KATHICTHI HOTHXKEJIEP AJIbIH/IbI.

Kiam ceadep: NOHCOHIBIK TEOpHsl, CEMAHTUKAJBIK MOJE/b, MYpaJjbl Teopusi, J-MUHUMAJILI >KUBIH,
J-KaTTbl MUHUMAJIIBI JKUBIH, PYKCAT €TiJIreH OalbITY, EHTPAJIBI THI, OPOUTAJIBIK, THII, €€yl THUII.

A.P. Emikees, M.T. Omaposa, I'.E. ZKymabekona

J-MUHHNMAaJIbHbIE MHO>KECTBa B HaCJIeACTBEHHbBIX TeOopudax

B cratbe ymemeno BHMMaHWE M3YyYUE€HUIO TEOPETUKO-MOMEIHHBIX CBONCTB HACJEICTBEHHBIX WOHCOHOBCKUX
TeopHuii, IIPH 3TOM PACCMOTDPEHBI MOHCOHOBCKHE TEOPUM, KOTOPBIE COXPAHSAIOT HOHCOHOBOCTBH IIPU JIFOOOM
JIOIYCTUMOM O0OraIieHnu. ABTOpaMu BBE/IEHbI HOBbIE MOHATHUS «CYIIECTBEHHBINA TUII», «CYIIECTBEHHAS T'e0-
MeTpuyeckas 6a3a», pACCMOTPEHBI OPOUTAIBHBIE TUIBI M CHJILHO MUHUMAJIbHbIE MHOXKECTBA B PAMKAaX CIIe-
IUAJIBHBIX ITOAMHOXKECTB CEMAaHTHUYECKOI MOJIe/IN, Ha KOTOPBIX 33/IaH OIepaTOP 3aMbIKaHUSsI, OIPeIesIsio-
MU CIeNUAJIbHYIO HIOHCOHOBCKYIO FeOMeTpHIO. TaK Ke MOJIyYeHbl Pe3yJIbTaThI s J-CUIBHO MUHUMAJILHBIX
TUIIOB CEMAHTUYIECKOW MOJIENN B CJIydae, KOTJa 9TU MHOXKECTBA BbIJIEJEHBI U3 OPOUT IEHTPAIbHBIX TUIIOB
MOHCOHOBCKHX HACJIE/ICTBEHHBIX TEOPUil.

Kmouesvie crosa: HOHCOHOBCKAs TeOPUsl, CEMaHTHYECKAsI MOJE/b, HAC/IEICTBEHHAs Teopusl, J-MIHIMAJIbHOE
MHOYKECTBO, J-CHJIbHO MUHUMAJIbHOE MHOXKECTBO, JIOMyCTUMOE ODOraIleHne, IeHTPAIbHbBIM TUIl, OpOUTAIb-
HBIJ THUI, CyIIEeCTBEHHbII THII.
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Justification of the dependencies for calculating gripping forces
of multifaceted unresharpenable plates in the holder
of a cutoff tool at their lateral installation

In the article mathematical dependencies to determine the gripping force of the cutting plate in the
socket of assembled cutoff tools with the lateral installation of multifaceted unresharpenable plates (MUP)
are proposed for the first time, which makes it impossible to move the plate in any direction while the
cutting forces acting on it. Moreover, the expressions are obtained to determine the minimum height of the
intersection of the cutoff tool socket head, which is important at the stage of creating a methodology for
designing this type of tool.

Keywords: assembled cutoff tool, multifaceted unresharpenable plate, mechanical mounting.

Introduction

In modern machining of metals by cutting the most progressive are assembled tools with mechanical
mounting of multifaceted unresharpenable plates. One of the main advantages of this type of tools is that
when one cutting edge is worn, a cutting plate rotates around its own axis to enable the operation of another,
which significantly reduces the time of tool adjustment, since in this case there is no need to remove it from
the tool holder, which is very relevant for modern machine tools with numerical control and automated lines.
Application in industry of assembled metal cutting tools with mechanical mounting of plates allows increasing
productivity of processing, since the cutting speed of these tools is 1,5 — 2 times higher than that of brazed
ones [1-5]. Therefore, the widespread use of assembled metal cutting tools is important for modern machine
building.

However, for modern cutoff tools with mechanical mounting, predominately, single- or double-blade cutting
plates of a specific non-technological complex shape are used. Cutoff tools equipped with multifaceted plates
of three-, four- or five-faced shape [6-8] are used mainly for cutting rods with a diameter of up to 12 mm due
to lateral installation of cutting plates on the tool case (Fig. 1), which significantly restricts the overhang of a
cutting part and, as a result, the scope of their application.

In order to eliminate the disadvantages of listed above, the authors [9-14] for the first time proposed a
new design of assembled cutoff tool with lateral installation of multifaceted unresharpenable plates (Fig. 2),
consisting of a holder 1, hook 2, screw 3, and multifaceted unresharpenable plate 4. In this design of the cutting
tool, locating and fixing of MUP is carried out only on the thrust surfaces, which makes it possible to perform
cutting of rods with a diameter of up to 30 mm.
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Figure 1. Groove cutters with lateral Figure 2. Design of assembled cutoff tool with
mounting of multifaceted plates lateral installation of multifaceted plates

Relevance. The main factors influencing the reliability of assembled metal cutting tools are the installation
scheme, mounting and fixing of multifaceted unresharpenable plates. The provision of the necessary gripping
force is a crucial task, which depends on the performance of the cutting tool under the action of the resulting
cutting force.

Given kind of plate installation is proposed for the first time, in order to ensure the efficiency of this tool, it is
necessary to obtain mathematical dependencies that will enable to determine the required strength of attaching
the plate in the socket, which makes it impossible to move the plate in any direction while cutting forces acting
on it, and to determine minimum height of the intersection of the cutter head socket.

Research results

The clamping of a plate should exclude the movement of MUP under the action of the forces that occur
during cutting. Primarily, their action is determined by the physical and chemical properties of the material
being processed (hardness, chemical composition), on the basis of which the cutting modes are specified, and
by the heterogeneity of the distribution in it of the constituent elements, as well as the structural and geometric
parameters of the cutting part and the conditions of the plate installation.

The cutting plate during the cutting process is exposed to active forces: the resulting cutting force P,
and the force of gripping Fg,. the cutting plate, which are balanced by the reactions R, and R of supporting
surfaces of the plate socket (Fig. 3, Fig. 4). Since the forces acting on the plate form, a balanced plane system,
the algebraic sums of the projections of these forces on the coordinate axis are equal to zero. The plate is under
the action of a system of arbitrarily located forces, for the equilibrium of which the fulfillment of the three
following conditions is required [15-18]:

Z

P

Figure 3. Scheme of active forces acting on the cutting plate Figure 4. Scheme to determine the moments

ZFZ-Z:0;—PZ—Fgr_.cosw+R2~sinx+R1~sinu:0; (1)
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ZFiy:0;Py—Fgr,-sinz/)—Rg-cosx—FRl~c0su=0; (2)

Z(F):O§_Fgr.'h1+R1'h2:0. (3)

From the equation (1) we derive the gripping force Fy, :

7 _Rl-sinu—FRQ-sinx—Pz )
g cos ’

From the equation (2) we determine the reaction Ra:

Ry -cosp+ Py— Fy - sing

R, 5
2 CoS X (5)
From the equation (3) we determine the reaction Rj:
F r. " hl
Ry = —8&- " 6
1 I (6)
We apply the equation (6) to the equation (5)
. Fgﬁ;hl cos i+ Py — Fy -sinyy  py -Fygr. - cosp+ hy - Py — hy - Fyy - sing "
2 = = ’

COS X ha - cos x

The obtained equations (6) and (7) we apply to the equation (4) to determine the gripping force of a cutting

plate:
sinx(h -Fg, -cospu+ha-Py—hy-Fg, -sint) + Fg;;hl . Sil’lﬂ o Pz

ha-cos x
F. =
s cos '
tgx(hl-Fgr_-cosp+£L§-Py—llz-Fgr_-sind;) + Fg;l;hl . sinu -y
Fgr. = 5
cos Y
h, -F hy - F Fo -h
Fyp. - cosy = tgxﬁ -cosp + Py - tgx — tgxﬁsinw 4oL sinpu — Py
ho hy ha
h; -F hy - F Fy -h
Fyp. - cosp = tgxﬁ - COSpL — tgxgsim/} — e 1, sinp = Py -tgx — P;;
hg h2 h2
_ hy-cosyp —tgx -hy-cosy—tgx-sing) —hy-sinp

Fgr. -

=P, - tgx — P;;
h2 y gx

hy - (Py - tgx — P:)
hy - cosy) — tgx - hy - cospu — tgx -sinyy —hy -sinp’

Fgr. =
We determine the arms of forces according to Figure 4:

b
h1:a~cosz/+§;

hgzb-COST—i—g.

We apply the determined values of the arms of forces to the equation and obtain the mathematical dependency
that allows determining the necessary gripping force of a plate at the given type of its installation (8):

(b-cosT+3)- (Py-tgx — P.)
(b-cosT+ 2) - cosp — tgx - cosp(a - cosv + %) —tgy - sing —sinp - (a-cosv + &)

Fgr. =

However, the disadvantage of this plate mounting scheme (Fig. 4) is the action of the plate gripping force
Fy, upon the front wall of the tool socket [19-22|. In order to eliminate this drawback, the following scheme of
three-faceted plate (Fig. 5) was proposed. According to this scheme, the front socket wall is made at an angle
1 = 40°, and the back one — at an angle x = 20°, which, under the chosen scheme of hook installation removes
the action of the gripping force Fj, on the front socket wall. Thus, the components of the cutting forces P,, P,
and the resulting cutting force P, are fully compensated by the reactions of the supports of the front Ry, R,
Ry, and back R, Rs., Ra, socket walls [23-25].
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1 — hook; 2 — cutter case

Figure 5. Scheme for calculating stresses and the minimum intersection of the cutter head

The equations of interaction of these forces are as follows:
P, =Ry -sinu+ Ry -siny; (9)
P,=—R;-cosp+ Ry -cosx. (10)
From the equation (10) we determine the support reaction Ry of the back socket wall:

B P, + Rycosp
N cos Y '

Ry

Applying it to the equation (9), after performing transformations we obtain:

_ . Py+Rycosp
P, =Ry -sinpy+ eosx

P, cosx = Ry sinpcosy + Py siny + Ry cosusin y =

P, cosx — P, sinx = Ry sinpcos x + Ry cos psin y = (11)
P, cosx — Pysinx = Ri(sin pcos x + cospusiny) =

P, cosx — Pysiny = Rysin (p+ x) -

siny =

From the equation (11) we determine the support reaction R; of the front socket wall:

_ P,cosx — Pysiny

R
' sin (12 + x)

The most dangerous is the bending stress o35 in the minimum intersection of the cutter head on the bottom
of the socket, from the action of the reaction force Ry on its front wall, which we consider to be applied in the
middle of this wall, having a length {; = 14 mm:

Risinp - %ll sin g

Ops — Wg; 5 (12)

where W, — the moment of resistance to the bend of the minimum intersection on the head of the cutter, which
has a height h; and a thickness b; = 2.5 mm:
_ bih?

W, =2 (13)

After applying the equation (13) to the equation (12), we obtain the following:

6 sin y - %ll sing  3-Ri-l sin2u
g = =
bs by h2 by b2

(14)
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From the equation (14) we obtain the minimum height of the intersection hy:

3~R1-llsin2,u

h =
! bl [Ubs]

where [ops] — maximum allowable bending stresses, MPa.

Conclusions

As a result of the performed researches, mathematical dependencies to determine the gripping force of the
cutting plate in the socket of assembled cutoff tools with the lateral installation of multifaceted unresharpenable
plates, are proposed for the first time which makes it impossible to move the plate in any direction while the
cutting forces acting on it. Moreover, the expressions are obtained to determine the minimum height of the
intersection of the cutoff tool socket head, which is important at the stage of creating a methodology for
designing this type of tool.
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M.B. Babwuii, B.O. Hacracenko, B.O. Ilponenko, /I.A. 3unyerko

Keckimeri Keckini ycTarblIbIHAAFBI OYIipJIiK OopHATY/Ia

KOITKBIPJIbI KAlTa >KOHBIJIMAUTHIH MJIACTUHAJIAPALI OeKiTy KYIIIiH

104

ecernreyre apHaJFaH TOYEJAIIKTEpAl HeTi3aey

Makasaza agramt peT Kecy KyIIiHIH dcepiHeH OO0JaThIH IJIACTHHAHBIH K€3 KeJTeH OAFbITTarbl KO3FAJIBICHIH
OOJIIBIpDMAMTBIH, OYHIpJIK OpHATY/Ia KOIKBIPJIbI KaiTa YKOHBIIMANUTBHIH IIJIACTUHAJIAP/IBI KECKieri KecKir-
Tep KUBIHTHIFBIHBIH, OPHBIHA KECKII IJIACTUHAHBI OEKITyre KaXKeTTi KYIITI AaHBIKTay VIIMTH MaTeMATHKAJIBIK
Toyes K YehIHBLIALL. CoHbIMEH Gipre MyH /1Al Ky PBIIFBIHBIH, 2K00aJIay d/1icTeMeciH Kypy Ke3iH e MaHbI3/Ibl
00JIaTBIH, KECKIll 6achbl OPHBIHBIH KUMACBIHBIH MUHUMAJIbI TYpJie OWIKTINiH aHBbIKTayFa Ka’KeTTi epHeK
AJIBIH]THI.

Kiam cesdep: KeCKiHHIH KECKIII XKUBIHTBIFBI, KOIIKBIPJIbI KAWTa KECKIIII IJIACTUHA, MEXAHUKAJIBIK, KOHJIBIPFHI.
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M.B. Babwuit, B.O. Hacracenko, B.O. Ilpomnenko, /I.A. 3unuerko

ObBocHoBaHME 3aBUCUMOCTEIl /JisI pacvueTa CUJI 3aKpernJjeHus
MHOT'OT'PAHHBIX HellepeTaunBaeMbIX IJIACTUH B JIep>KaBKe
OTPE3HOro pe3lia Ipu UX ODOKOBOII yCTaHOBKE

B crarbe BIIEPBbIE IIPEIJIO?KEHBI MaTeMaTUIE€CKUE 3aBUCUMOCTU [IJIgd OIIPEAeJICHUA HeO6XO,HPIMOfI CHUJIBI 3a-
KpelieHust pe)Kymeﬁ IIJIaCTUHBI B I'HE3/1e C60prIX OTPE3HBIX PE3IOB C OOKOBOI yCTaHOBKOfI MHOT'OI'PaHHBIX
HerepeTadYuBaeMbIX IIJIACTUH, KOTOPpad caejiacT HEBO3MOXKHBIM JIBU2KEHUE IIJIACTUHBI B J000M HalIpaBJICHUNA
npu BO3IENCTBUN Ha Hee CHUJI pe3anusd. Takxke IIOJIYY€HDBI BbIpazK€HUA JJIgd OIIpeJe/IeHUA MUHUMAJIbHOU
BBICOTHI C€YCHUA I'He3/1a I'OJIOBKU Pe3la, YTO AdBJIAeTCAd BazKHBIM Ha 3Talle CO3JaHud METOAUKU ITPOEKTUPO-
BaHUAd JaHHOTO BUJIAa MHCTPYMEHTA.

Karouesvie crosa: cOOpHBII OTPE3HOI pe3er], MHOTOrpaHHas HellepeTauynBaeMast PeKyIasi IIaCTHHA, MeXa-
HUYECKO€e KpeIlJIEHUE.
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Two-dimensional thermo-viscoelastic waves in layered media

Dynamic problems of deformation of solids have been the subject of numerous studies in the CIS and abroad.
The rejection of a number of simplifying assumptions made in the cited and other published works leads to
the need for further refinement and improvement of mechanical and mathematical models describing the
kinematics and stress state of both the drummer and the barrier. Further, the axisymmetric collision of a
cylindrical indenter with an obstacle in the form of a package of isotropic plates containing free cavities
and rigid inclusions is numerically investigated within the framework of the coupled theory of thermo-
viscoelasticity. Various formulations of the problems of the theory of elasticity and thermo-viscoelasticity
are possible. However, the used formulation in velocities and stresses is one of the most universal, since
it allows solving the main boundary value problems (including mixed ones) by a uniform way. The paper
gives a grid-characteristic scheme and its convergence. In accordance with the theory of A.A. Samarskii,
the stability in the energy norm of the grid problem is proved.

Keywords: two-dimensional thermo-viscoelastic waves, stability of a difference scheme, convergence of a
solution of a difference problem, indenter, deformation, tensor, stresses.

Introduction

Let a deformable continuous (or hollow) cylinder of finite length hg as ¢ < 0 simultaneously performs
translational (with velocity V) and rotational (with angular velocity wg) motion. At the initial moment of time
t = 0, the rotating indenter with its flat base normally collides with the surface of a multilayer plate (barrier)
weakened by cylindrical cavities and inclusions.

To describe the dynamic behavior of an isotropic medium, we use the relations

o+2 = 3K(E+3aT); S;; +E = 2u ey,

61 0
where 0 — is the sum of normal voltages; ¢ — volumetric deformation; S;;,e;; — components of deviators of
symmetric stress and strain tensors; T — temperature increment; K = )\—|—%u — elastic modulus of bulk expansion
— compression (A, 4 — Lame parameters); o — linear thermal expansion coefficient; 6,602 — relaxation times
for ball and deviatoric stresses; a dot above the letters means time differentiation.

Under the conditions of axial symmetry, the written system, which is supplemented by three equations of
motion and the equation of heat conduction, is equivalent to the following dependencies, containing, as unknown
displacement velocities, stresses and temperatures:

o _ do,  Ory,  0p— 0y
PY= 5, 0z ro
5= do,, Or, 4 O
PY= "5 0z r’
o Oopp, Ori, 204,
= N 1
pw or 0z + r o’ (1)

o, +no, — fo = )\§+2/¢5.T fp”_.E; S
U.w +no, — Bo = )\z;+2u6:0 —pT;

a.z +no, — fo = )\5+2p s.z —p "_.F;
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Tro HN10rp = 203 0o H1)02p = 21625 Ors +1)0rs = 241872 (2)
. 0*T 10T 09°T .
K (Lo + 2+ ) —pT oW 3
et (8r2 r Or 822) preiv (3)
where
. 7“750_7“’2_ 2 © z’rtp_2 or r ’ZLP_ZaZ’
. 1 /00 ou 1 1/1 1
E ==\ = r N =73P=35\ 75 ) =3K )
b 2(87’ B )’” or ot o =g p 3(02 91> pooe
.. - o? Csiysi = 2452+ 52+ 2(02, + 02, +02) s, =0 O —g 2.
2/192 132 9K¢91’ 13°t] s %) z TP zZp rz)»°r s 37 ® ® 37
o
S, =0, — —.
3

Here u, ¢, w are the components of the velocity vector in the direction of the coordinate axes:
T, 2, @, 045 are the stress components; p is density; K is coeflicient of thermal conductivity; c is specific volumetric
heat capacity with constant strain tensor; p is parameter of connectivity of deformation fields and temperature;
W* is the energy dissipation function [1], which takes a zero value for a perfectly elastic medium (n = 5 = 0).

The connectivity equation is nonlinear due to the presence of a member pTE in it. It should also be pointed
out that the third, seventh and eighth equations form an independent system with respect to the quantities
W, Orep, Ozp-

Various formulations of the problems of the theory of elasticity and thermo-viscoelasticity are possible [2, 3].
However, the formulation used in velocities and voltages is one of the most universal, since it allows one to solve
the main boundary problems (including mixed ones) in a uniform way. Among the first publications, where a
similar form was proposed for writing the defining equations for a linearly elastic medium under plane strain
conditions, the work [4] should be noted.

With a small thermal perturbation, the thermo-viscouselastic properties of the material can be considered
being independent of temperature [5, 6]. In [5], for example, it was shown that when T < 390K the value of
the viscosity coefficient n* = 2ufs for pure aluminum remains unchanged.

The boundary conditions for the considered contact problem are formulated as follows. The outer boundaries
of the deformable mechanical system, as well as the walls of the internal cavities, are free from external forces:
0, =0r, =05, =0 and 0, = 0,, = 0, = 0 (for boundaries that are parallel to the axis  and z, respectively).
If the region 1 < r < 719,21 < 2 < 29 is a rigid inclusion with density p., then at the points of its boundaries

u = 0;
° 2 2 22
=1 {/ log (1, 22) — 0 (1, 21)] rdr + / [ro0ys (12, 2) — 710y (r1, 2)] dz};
Rl N 2gr [ [2 > P O
U= U, e () mose nalrtdr s | (ko (e, 2) = riorp (r2) [ dz gy (4)

M,=m (r% — r%) (22 — 21) s

It is easy to notice that with a sufficiently large inclusion density, located in the initially quiescent medium,
U= w=0.

On a circular platform, collisions rg < r < R, z = 0 can be performed as conditions for rigid coupling of
the end face of the striker with the surface of the obstacle

[u] = [J] = [w] = [02] = [o02] = [024] = 0; (5)
{ [u] =limu(z —0) — limu (2 + 0)},

and the boundary conditions that simulate the absence of friction forces between interacting bodies (smooth
impact). In this case, the first and fifth equations in (5) are replaced by

ory = 0. (6)
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If, in the course of a smooth stroke, the voltage o, or o, vanishes at any point of the contact zone, then
the type of boundary conditions will change and thereafter, for this point, respectively, it is assumed o, = 0 or
0., =0.

On the flat boundaries of the compound of dissimilar materials that make up the layered package, the
conditions of rigid adhesion are carried out (5).

It is assumed that the heat exchange of the mechanical system with the environment, the temperature
of which is considered constant (T¢ = const), is carried out according to Newton’s law with the nonlinear
dependence of the heat transfer coefficient on temperature:

aT,
_Kn = Qg Tn_T y 7
2 — (T~ To) @
where 3 1
To+T T, +To\* BB
_ 10— 40T In n 0 )
as=0,23-10 g( : ) +1,4( e ) <m2K>.

Here T is the surface temperature (n is the direction of the normal to the surface at the boundary points);
£ is the degree of blackness of the body. The temperature dependence of the total heat transfer coefficient,
which reflects the processes of heat transfer by convection and radiation, is borrowed from [6]. Accounting for
nonlinearity in the boundary conditions is due to the fact that, unlike other thermophysical parameters, the
coefficient is most sensitive to temperature changes and its value can vary within very wide limits [7].

At the collision site and at the interfaces between the layers there is an ideal thermal contact location:

oT

[T] = {Kaz} =0. (8)

At the moment of time ¢ = 0 the colliding bodies are free from stresses, and for the impactor the initial
velocities of the translational and rotational motions are given:

G (r,z) =Vo, w(r,z) =wer (ro <r <R, —hg<2z<0).

The initial temperatures of the striker and the obstacle are respectively equal to T* and T,

Note that in the contact interaction of solids, where the fast wave process is usually considered up to
107 — 1073C, the temperature field initiated only by dynamic mechanical effects, can be calculated in the
adiabatic approximation. Boundary and initial conditions for temperature are necessary only in the cooling
problem, when the heated cylinder comes in contact with the surface of the plate and the calculation of their
thermal state is carried out over rather long time intervals.

For the numerical solution of the mixed boundary-value problem (1)—(8), we construct an explicit difference
scheme based on the grid-characteristic approach and the principle of the electrothermal analogy. The expediency
of using an explicit scheme is due to the fact that implicit schemes have a lower resolution when calculating
transient processes in deformable media. Implicit counting, as a rule, does not impose restrictions on the
size of the time step, since in the overwhelming majority they are absolutely stable. However, the region of
dependence of difference equations for them is greatly expanded, as a result of which the profiles of wave
fronts are substantially smoothed out and the whole picture of unsteady wave motion turns out to be blurred.
Moreover, the algorithms of implicit schemes are much more complicated and their implementation requires
much more computational resources.

The domain of applicability of implicit schemes seems to be limited to the class of steady motions, when
time plays a purely auxiliary role in the calculations. In addition, in some problems, some countable regions can
be calculated using implicit schemes, while others can be calculated using explicit ones.

The construction of a difference scheme begins with the construction of a difference grid, according to
which the calculation will be carried out. For this, the area of change of continuous arguments r is divided
into rectangular cells with sides h,; and h,; (i=1,2,..,I;j=1,2,....,J), each cell is assigned a number
(i - %, Jj— %) The calculation is carried out by successive steps in time. The values of the desired functions on
the time layer (n + 1) 7 are determined at fixed grid nodes corresponding to the geometric center of the cells,
but by known solution on the previous layer nr.

Using the central differences for the approximation of the first derivatives but spatial variables, we replace
the hyperbolic equations of the system (1) with their finite-difference analogues:
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In the two-layer difference scheme (9), the auxiliary «large» quantities U, V, W, Z, defined at the points of the
boundaries of the rectangular cells, are calculated using coordinate wise splitting of the spatial two-dimensional
equations (1) and using one-dimensional relations on the characteristics [8].

After obvious transformations, the difference scheme for the heat equation takes the form

Cz—l i1 Tn+11 1 Tn
J7 3 i—5,0—% i-3.J-3%
T
nt1 nti n+s _ ynti n
Uty —utte Ve -y ut o )
n hi— 3 i—li—3 i—3.] i-d,5-1 i=5.0-3
= _Tl—* ]—7 -pszd h + h + + d X
; .
T zj rl—% i-%,j—3%
Xla . 4 T s L 4al I+
ri—5,j—5 t=5,J—% ri—35,] i+35,J—3
+a” 4 T, a4at TP =y, T +w ;
2i—5,j—5 3,73 2i—5,j—5 %—3,J+3 i—5,0=3 i—%.0-% i-1,5-1
- - +
=« . +a 4 ta ., t+al ) ) 10
PR LS TS LR S (10)

Here ~,

1o is the total thermal conductivity of the cell.
-3

In provmg the stability of the difference scheme from the initial data, we first consider the uncoupled

viscoelastic problem without taking into account temperature additions pgt in the relationship between normal
stresses and strains.

A two-layer difference scheme (9) corresponds to a transition operator H, that translates a solution vector
Fona temporary layer ¢, = n7 into a vector F1 on a layer t,y1 =t, +7

Fy = HF. (11)
The scheme is stable on the initial data, if the condition is met

[H[| < 1. (12)

The operator norm is determined by the energy norm of the vector F:

HﬁH2 —K()+P (1),

7= 1)

where

I J
2 2 .. L.
ZZ oy (g oy oyl oy ) e by

5 — 3> 20 2
P(t) = % (¢,8) = % (Orer + 0pep + 0262 + Orperp + 02pzp + Ora6pz) =
= % Zle ijl {aof +2qo,0, + ac? + % [afw + 03@ + afz] + % oy, — v (or + O'Z)]Q}_ o, X
=377 32
thi . hzj;
a? 20% — a? a—2q q

= N = M = V= .

4pb? (a2 — b2)’ a 4pb? (a2 — b2)’ (¢—a)* q—«

Here K (t) and P (¢) up to a constant factor corresponds to a discrete analogue of kinetic and potential energy.
Equality (13) can be written in matrix form:

N2
F
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where the scalar product is defined as follows:

and a positive definite matrix A has the form

p 0
)
o
1 _v _v
E E E
_rv 1 _r
A= E B B
_v _v 1
E E E 1
o
0 "o
w

From (11), (12) we have

<

<[

IN

], =

< |H Hﬁtn
|, < Il | &)

slFen], s <[Fe], <[Fol,

A
which means the stability of the scheme according to the initial data.
The operator H can be represented as

T T T T T T
H=I+7(H,+H,+Hg) = <1 ————— ) I+ —{I+7H)+— T+ 7.H,)+ — (I+Hp).
Tr Tz B Tr Tz B
Here I is the identity operator; H,., H, are operators containing differential derivatives only with respect to
spatial variables r and z, respectively; 7,., T, are time steps of «one-dimensional» schemes, corresponding to the

operator I +7,.H, and I +7,H, (7. > 0, 7, > 0); the matrix of coefficients, taking into account viscous properties
of the medium,

0 0
0
0
-n+p B p
Hp = p -n+p B
g B -n+pB
n
n
0 n
As by defining the norm
T T T T T T
H][, < -7 % ”I”A"_;HI""TTHTHA—'_;”I"_TZHZHA"’_%||I+TBHB||A7

then for the stability of the scheme specified by the operator H, it is enough to choose a step 7 based on the
condition

1l—-——=—- — >0, (14)
if at the same time the steps 7., 7., T8 ensure the implementation of inequalities
I+ 7 Helly <1, [T+ 7H.|ly <1, [[I+7sHs[l, <1. (15)

Let’s consider the last inequality in (15), in which the matrix I + 7sHp defines the difference scheme
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It is known from the properties of the norm of the matrix that
11+ 78HE[[5, < Am,

where A,,,— the maximum modulo eigenvalue of the matrix I 4+ 7gHg. Therefore, to satisfy the inequality in
question, it suffices to require meeting conditions

1+7n <1; 1+ (8—n) <1,

< .{2 2 }
T Sming —, — ..
n B-n

Since the parameters 7, 5 depend on the indices i, j and n > > 0, then, denoting 7,,, = max M-l j—1,We
%,J ’

of which we have

< 2
get T3 < .

Then, based on the constraint (14) for the stability of a two-dimensional scheme with respect to the initial
data, it suffices that the size of the time step satisfies the inequality

1 1
=+ = +1) <, (16)
T,  Ta 2
where
. T . hzj
Tr = mMin ——, 7, = min .
Wiy -4 B iy i-4

Thus, the stability of the proposed difference scheme (9), further in accordance with the theory of
A.A. Samarskii [9], the convergence of the solution of the difference scheme (9) to the solution of the differential
problem (1), (2) is obtained.
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M.M. Bykenos, A.A. Anamos, E.M. Myxameros

KabarThl opTagarbl eKieJrmeMTi
TEePMOTYTKbIPCEPHIM/II TOJKBIHIAPD

KarTbr nenenin medopMalisiCbIHBIH, JUHAMUKAJBIK, Macesiesiepi TM/] »koHe 1reresiiep/ie KOTEreH 3ePTTey-
JIEPJIiH, TaKbIPBIOLI GOJIIbI. ATasral »KoHe 6acKa YKapHUsJIaHFaH *KyMbICTap/1a KabbUIJaHFaH XKOPaMaJIap/ibl
JKEHIJIJIeTY, COKTBIFY MEH KeJIePIi CUSIKTHI, KHHEMATHKa MEeH KEPHEY KafJallblH CUIIATTANThIH MEXaHUKAJIBIK,
JKOHE MaTeMAaTUKAJIBIK MOJEIbIEP/ Il OaH opi KETUIAIPY MeH YKAKCapTy KarkeTTimirine okesesi. CoHbIMEH
KaTap TepMOTYTKBIPCEPIIM/Ii TEOPUACHIHBIH IIEHOEPiHJIe epKiH KybICTap MeH KATaH KipMeJep/a KaMTUTBIH
M30TPONTHIK, INIACTUHAJIAD TYPiHIe Kezepri 6ap MUINHAPJIK UHIETAHTTBHIH OCHTIK CUMMETPUSIBIK, COKTHI-
FBI CaHIBIK TypAe 3eprresai. CepniMIaiaik TEOPUSCHIHBIH, KOHE KBICBIMHBIH, UKEM/ILIITT TYPAJIbI TEOPUSIIBIK,
€CeNTeP/IiH, 9PTYPJIi TYKBIPbIM/IaAMAIAPBI 00JIybl MYMKIiH. JlereHMeH, KbUIIaM/IBIK IIeH KepHeyJepae maii-
JasaHbLIATEIH dopMynanap oMoebar 6oJibi TabbLIabl, cebebl 01 Herisri mekapaJblK mapTTapapl (apaiac
mIapTTapAbl Koca) GIpKeJKi Typ/e Mmenryre MyMKIHIK TyFbI3abl. Byl KyMBICTa TOP-CHIIATTAMAJIBIK, CXE-
Ma »K9HEe OHBIH KOHBepreuuusicbl 6episirer. A.A. CamapckuiijiiH TeOpHsChIHA CofiKec, TOp ecebi apKbLIbI
SHEPreTUKAJIBIK, HOPMAJIAFbl OPHBIKTBIIBIFBI JI9JIeJIIEHIeH.

Kiam cesdep: exiomeMmi TepMOTYTKBIPCEPITIMII TOJKBIHIAD, ARBIPBIM/IBIK, CXeMAHBIH, OPHBIKTHLIBIFDI, afibl-
PBIMJIBIK, €CEIITiH MIeNIiMiHiH *KUHAKTBIIBIFBI, UHJIEHTOD, JledOopMalins, TEH30D, KEPHEY.

M.M. Bykenos, A.A. Axamos, E.M. Myxameros

JIBymMmepHbIe TEPMOBA3KOYNPYTH€ BOJHbBI
B CJIOUCTBIX CpeJiax

Hunamudeckne 3a1a9u O J1eOPMUPOBAHUN TBEPIBIX TEJI SBUJINCH TPEIMETOM MHOTOYHMCIEHHBIX MCCJIEI0-
Banuii B CHI' u 3a py6exxom. OTka3 OT psifia yHIPOIIAIOMINX [IPEJIION0KEHNI, IPUHATHIX B IATUPYEMBIX
¥ JpYTUX OMyOJUKOBAHHBIX paboTaxX, MPUBOIUT K HEOOXOAMMOCTHU MaJbHEHINEero yTOYHEHUsI U COBEPIIEH-
CTBOBAHUS MEXaHHKO-MATEMATHIECKAX MOJIEJIEN, OMMCHIBAIOMNX KUHEMATHKY U HAIPSKEHHOE COCTOSIHUE
KakK yJapHUKa, Tak ¥ nperpajbl. Jlajee B paMKax CBI3aHHONW TEOPUN TEPMOBSI3KOYIIPYTOCTH YHUCJIEHHO HC-
CJIEJTOBAHO OCECUMMETPHUYHOE COyJApEeHMe MUJINHIPUIECKOrO WHIEHTOPA C MPENsSITCTBUEM B BHJIE MTaKeTa
M30TPOIHBIX IIJIACTUH, COMIEPKAIIEr0 CBOOOIHDBIE MTOJIOCTH U YKECTKWE BKJIIOYEHUSA. BO3MOXKHBI pa3IndHbIE
GbOpPMyYIJIMPOBKY 33129 TEOPUM YIPYTOCTUA U TepMOBA3KOoynpyrocru. OJHAKO MCIIOIb3yeMasi IOCTAaHOBKA B
CKOPOCTSIX U HAIPSIKEHUSIX SIBJISIETCST OJHOU M3 HamboJiee YHUBEPCAJBHBIX, TaK KaK IO3BOJISIET PEINaTh
OCHOBHBIE 'DAHUIHBIE 38J1a9U (B TOM HYHCJIE M CMEIIAHHBIE) €IMHOOOPA3HBIM CrocoboM. B pabore maHbl
CETOYHO-XapPAKTEPUCTUYIECKAsl CXeMa U ee CXOAMMOCTb. B coorBercrBun ¢ teopueit A.A. Camapckoro, J10-
Ka3aHa yCTOWYIMBOCTH B SHEPreTHIECKON HOPME CETOYHOM 3a/Ia9u.

! : IByMepHBbIC T€PMOBA3KOYIIPYTHE BOJIHBI, yCTOMINBOCTD HOCTHOH CXEMBI, CXOJIMMOCTb
Karoweswie caosa e € TePMOBS3KO € BO , ycTO oc a3HOCTHOMI CXEMBI, CXO, oc
pellleHnsT Pa3HOCTHOM 3a/1a4u, UHJIEHTOD, JedopMaliisi, TeH30D, HAIIPSI?KEHNUSI.
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On the calculation of rectangular plates
by the trigonometric series

The article is devoted to the question of applying the method of single trigonometric series to solving the
plate bending problems. In this article the structure of this method is described, its main components are
highlighted, the classical approach of calculating rectangular plates hinged supported on two parallel sides
and with arbitrary boundary conditions on each of the other two sides is characterized. The mathematical
apparatus of the method of single trigonometric series is presented in the volume necessary for calculating
the plates. The detailed example of calculating a rectangular plate by the stated method is given. The
article is focused mainly on students and undergraduates engaged in research work in the field of mechanics
and applied mathematics.

Keywords: bending of a rectangular plate, plate deflection function, boundary conditions of plate, trigonometric
series method, the solution of Levi.

Plate bending problems play an important role in construction, engineering, aviation, shipbuilding, etc.
Construction and technics are the branches of activity of the industrial complex which always were, are and will
remain in demand by the country’s economy; therefore, issues related to the theoretical studies of such problems
remain relevant and have important practical value [1].

Many analytical and numerical calculation methods are used to study the problems of plate bending [2, 3].
An exact solution in analytical form for such problems is possible only in some particular cases of the geometrical
type of the plate, the load and the conditions for its fixation on the supports, therefore, for engineering practice,
approximate, but sufficiently accurate methods for solving the considered boundary value problem are of special
importance.

When considering the plate bending problems, the methods of double and single trigonometric series are
the most interesting because of connection with their possible numerical implementation in the Maple software
package [4].

The solution in double trigonometric series (Navier’s solution) is typically used for rectangular plates, freely
or hinged supported around the entire contour. The solution in single trigonometric series (Levi’s solution)
allows to perform the calculation of a plate hinged supported on two parallel sides and with arbitrary boundary
conditions on each of the other two sides.

We consider the case of a plate 0 < x < a, 0 < y < b, in which only two opposite edges have a hinge support
(for example, © = 0 and x = a) and the other two edges have arbitrary boundary conditions.

We present the desired function of plate deflections W (z,y) in the form of a single trigonometric series

W(z,y) = Z Y, sinw,, (1)
n=1

where w, = %, Y, = Y, (y) is an unknown function, which is chosen so that expression (1) satisfies the resolving
equation of S. Germain
DAAW = q(z,y), (2)

and the conditions of fixing on the edges y = 0 and y = b. Here D is the cylindrical rigidity of the plate, ¢ is
the intensity of the external distributed load, AA W is a biharmonic operator.

The deflection and the bending moment along the hinged supported edges must be equal to zero, so the
boundary conditions have the following form when 2 = 0 and 2 = a [5]
*w o*w B

+v =0; (3)

w=0 Ox2 Oy?
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where v is Poisson’s coefficient. It is obvious that expression (1) satisfies the boundary conditions (3), which are
given on the sides = 0, x = a of the plate.
We present the load function ¢(x,y) in a form of a trigonometric series

(o)
o) = 3 anly) simenr, @
n=1
where 5 o
w0 =2 [ al.y) - sinw,ads o)

Substituting formulas (1) and (4) into the basic differential equation (2), we obtain

M8

1 o0
(WY, — 2W2Y” + V!V sinw,z = b Z qn SIN W, T. (6)
n=1

n=1

Obviously, the relation (6) will be satisfied if
VIV 22V + Wty = %". (7)

The ordinary differential equation (7) allows us to determine an unknown function ¥, for any number n of
expansion. Its general solution can be written as

Yo(y) = A, - chwpy + By, - shwpy + Gy -y - chwpy + Dy, -y - shwny + o0 (v), (8)

where A,,, By, C,, D, are arbitrary integration constants, and ¢,, is a partial integral depending on the type
¢n and, therefore, on a given external load ¢.

To determine the four integration constants A,,, By, C,, D,, the boundary conditions defined at the edges
of the plate y = 0, y = b are used and this boundary conditions, of course, can be different. In the general case,
this leads to the solving a system of algebraic equations with respect to unknowns A,,, B,, C,, D,.

The order of this system will increase if the load is given in the direction of the y-axis by a discontinuous
law. For example, if the load breaks the plate in the direction of the y-axis into k sections. For each section we
will have four unknowns A,,, B,, C,, D,, and their total number will be equal to 4k. Thus, to determine the
integration constants, it is necessary to create a system of 4k algebraic equations here, four of which will reflect
the boundary conditions at the edges of the plate, and 4k-4 other equations will be the conjugation conditions
of the k sections. To overcome the noted inconvenience, the solution of equation (7) should not be represented
in the form of (8), but this solution should be presented in the form of the method of initial parameters. In this
case, for any law of load distribution, to find the integration constants (initial parameters), it will be necessary
to solve a system of only two algebraic equations [6].

After finding the coefficients A,,, B,, Cp, D, and determining the function Y,,(y) by the formula (8), the
plate deflections can be found by the formula (1) in the form of a series, so bending moments, torque, as well
as, transverse forces will be written as

M, (z,y)=—-D Z(VYT:/ —w?Y,)sinw,z,

n=1
M,(z,y) = —-D Z(Y,;’ — VWY, )sinw,,
n=1
My (z,y) = —D(1 —v) Z wnY, coswn,, 9)

n=1

Qu(x,y) = —D Z wn (Y — W2 Y,,) cos wy,

n=1

Qy(z,y) =—-D Z(YTZ" — WY sinwpz .

n=1
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Consider the case of a uniformly distributed load of the constant intensity ¢ = const. Using the formula (5),
we obtain

O’ ’I’l:2m7 m:l’ 2,
q”_{ffi; n=2m-1, m=1,2 . (10)
Then, taking into account (10), the partial integral of equation (7) can be written as
— O’ n:2m7 m:l’ 2, 1
T My n=2m—1, m=1,2,.. (11)

It can be seen from (11) that for even n, the homogeneous differential equation (7) has only trivial solution,
so in the case of a uniformly distributed load of constant intensity the deflection function W(x,y) takes the
form

o0
W(z,y) = Z [Aom—1chwam—1Y + Bam—15hwam—1y + y (Com—1chwam—1y + Dam—15hwam—1y) +
m=1

+ X
7D(2m — 1)ws,,

where the coefficients A,,, B,,, Cy, D, depend on the given boundary conditions of the plate edges y = 0 and
y=>0.

As an example of calculating the coefficients of the plate A,, B,, C,, D,, we consider the case when one
of the sides of the plate parallel to the z-axis is supported by an elastic contour, and the other side is rigidly
pinched. The elastic contour may be, for example, a beam, bending under the action of pressures applied to it.

Denote by EJ the rigidity of the beam, then on the elastically supported edge of the plate y = 0 the

boundary conditions take the form [5]
0*wW n VGQW
0y? Ox?

| - sinway,_17, (12)

= O’
y=0

PW PW ow
D 2—V) —— =(EJ . 13
o e, (55, )
On the rigidly pinched edge of the plate y = b, the boundary conditions are written as
w - =0 14
=0 5y (14
Note that from the relation -
Z Fn(y) sinwpr = G(ma y)7 (15)

when multiplying (15) by sinwyx, integrating with respect to z from 0 to a and replacing k by n, we receive
2 a
F,(y) = f/ G(z,y) sinw,ade. (16)
aJo

From the boundary conditions (13), (14), taking into account (15), (16) we obtain that the required function
Y. (y) must satisfy the following relations

" — )Wl Y EJ | 4. =
§Z(b§01 0(2 ) W Y10) - B Ya(0) =0, (17)
Y!(b) = 0.

From (17) and (8) we obtain a system of algebraic equations to determine the coefficients A,,, B, Cpn, Dy

(]-*V)WnAn“i’QDn :fla

%m}%~An+(171/)~wn~Bn—(1+V)'Cn:f2,

A, - chw,b+ By, - shw,b+ Cyp, - b - chwp,b+ Dy, - b+ shwpb = f3,

Ay - wy - shwb + By, - wy, - chwpb + Cp(chwpb 4+ b - wy, - shwpb) + Dy (shwpb + b - wy, - chwpb) = fy,

(18)
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where
flz_ @Z(O)"'V wn * ¢n(0),
nod LS 0) - (2= 0) - #h(0) — B a(0), 19)
= _Spn( )7
After transformations, the system (18), (19) takes the form
An+ Gy, Dn = 91
B, — (11—:;;” Cn— D(21E )2 D, = g2,
(11? sheonb + belund| Cr + | iy shunb — 25 chwnb] Dy = g3, (20)
chwanr bwn, shwny, } C, + [D(l 2ch(,un — mshwnb} D,, = gu,
where
g1 = (1 — V)wn 1
EJ 1
g2 ~Da )2f1+(1 0 nf2,
FE shw,b
g3 [D(l V)2shwnb 1= chwnb} “f1— mh + fa; (21)
EJw, chwyb
g4 [D(l—u)20hwnb — shwnb] fi— 1_Vf2+f4;
7 =2EJ +bD(1—v)?%.
From the last two equations of the system (20), (21), we find the values of the coefficients C,, and D,, :
[Twnchwnb —D(1 - VQ)Shwnb] g3 + {i—D(l — v)chwpb — 7 - shwnb} g4
Cn = B ;
(bTan + —) ch?w,b+ [Db(1 — v)2 — 7] shw,b - chw, b — {%(1 +v)2+ bTwn] sh2w,b
D(1-v) {— [2chwnb + bw,, (1 — v)shw,b] g3 + {H” shwnb 4+ b(1 — V)chwnb} }
D, = (22)

(bnun n ‘jTD) ch2wpb + [Db(1 — 1)2 — 7] shwnb - chwnb — [z(l Y24 bmn} sh2wpb

Using the first equations of the system (20)

2
An - - Dna
n (1-v)w,
1+v 2EJ
Bn = n -D’na
R Ty W > s B

and taking into account (22), we obtain the values of the coefficients A,, and B,, in the following forms

) 9 D(1-v) {f [2chw,b + bw, (1 — v)shw,b] g3 + [1+”shwnb +b(1 - V)chwnb} }
n = g1 — ’ ;
(1= V) (bm}n + j—D) ch2uwnb + [Db(1 — )2 — 7] shunb - chanb — [w%(l U)o+ bmn} sh2wnb
5 . 1+ v [Twnchwnb - D(1 - y2)shwnb] g3 + [%(1 — v)chwpb — 1 - shwnb} g4 .
n = g2 '
(1 =v)wn (brwn + %) ch2w,b + [Db(1 — v)2 — 7] shwyb - chw,b — [W%(l +v)? + bTwn] sh2w,b
2F.T — [2chw,b + bwy, (1 — v)shw,b] g3 + [tr—"”shwnb +b(1 — V)chwnb} g4

LA . @3
1+v (bTwn + %) ch2w,b + [Db(1 — v)2 — 7] shwpyb - chw,b — [w%(l +v)2+ bTwn] sh2wp,b
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Due to the bulkiness of formulas (22), (23) for the determination of the coefficients A,,, B, Cp, D, in the
general case, and, consequently, due to the inconvenience and complexity of further use of these formulas, it
is recommended that all calculations of the constants A,, B,, C,, D, are carried out for specific numerical
values of the system coefficients (20), (21) in each particular case with given numerical parameters.

Substitution of the found coefficients A,,, B,, Cy, D, in (8), (9), (10) gives the function of plate deflections
W (z,y), bending moments and torques, as well as transverse forces in the form of trigonometric series in the
case where one of the sides of the plate parallel to the z-axis is supported by an elastic contour, and another
side is rigidly pinched.

In the case of a uniformly distributed load of constant intensity g, the deflection function has the form (12)
with coeflicients (22), (23).

In principle, the method of single trigonometric series is more accurate than the previously considered
Navier’s method [6], since in this method the required function W(x,y) is approximated by trigonometric
functions only in one direction, and in another direction the function W(z,y) is sought precisely from the
differential equation (7). This can be seen from a comparison of the results obtained by the two methods for
the previously considered problem of bending a square plate, hinged around the entire contour, in Table [6].

It should be noted that with one term of expansion (1) in the single trigonometric series method, not only
the values of the deflection W (x,y) and bending moment M, are significantly clarified, but also the value of
bending moment of another direction M, are greatly improved. Note that in both of the considered methods,
the convergence of the series will be higher and the accuracy will be greater, than better a given load ¢(x,y)
can be represented by expansion in trigonometric functions [6].
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["'A. Ecenbaena, ®.M. Axanos, T.X. Makaxkanosa

TikOypbIITHI IIJIACTUHAJJIAPABI TPUTOHOMETPUSIJIIBIK,
KaTapJiapMeH ecenTey TyPpaJibl

Maxkasa nimacTuHAIAPIBIH Uiyl TypaJIbl €CENITeP/Ii MIENTyTe fapa TPUTOHOMETPUSIIBIK, KATAPJIAP DIICIiH KOJI-
JaHy Moacesiecine apHasFaH. OChl 9/1iC KYPBLIBIMbI KEJITIPL/IIl, OHBIH, HET13T KOMIIOHEHTTEPI KOPCETII, TiK-
OYPBINMITHI TTACTUHAIAP/IBI €CENTEYTe KIACCUKAJIBIK, 9/IICTI CUMTATTAN b, €Ki apasliesib JKaKTapbl TOTICAJIBI
OekiTinreH koHe 6aCKa €Ki yKaKTapbl Ke3 KeJITeH MeKapaJIblK yKarJaiiMeH aHbIKTaIabl. lapa Tpuronomer-
PUSUIBIK, KaTapJiap 9JiCiHIH MaTeMaTHKAJbIK allllapaThl IJIACTHHAJIAPIbI €CENTey YIIH KayKeTTi Kejem/ie
YCHIHBIIFAH. DBepiiren ojiciieH TIKOYPBIMITH TJIACTHHAHBI €CENTEY/TiH, erKei-Ter>Keiii MbICAJIbI KeJITipi-
red. Bynm makasa, HerisineH, MeXaHUKa 2KoHe KOJIIAHOAIBI MATEMATHKA CAJIACHIHIAFBl FHLIBIMU-3€PTTEY
JKYMBICTapPBIMEH afHAJIBICATHIH CTYJIEHTTED MEH MaruCTPAHTTapra OarbITTaJ/IFaH.

Kiam cesdep: TIKOYPBINITH TIJIACTUHAHBIH, UiTyl, MJIACTUHAHBIH WiTy (DYHKIIUSCHI, TIACTUHAHBIH IIIEKapa-
JIBIK, IIAPTTaPhl, TPUIOHOMETPHSIJIBIK, KaTapJap oici, Jlepu merrimi.
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["'A. EcenbaeBa, ®.M. Axanos, T.X. Makakanosa

O pacdere InpaMOYI'OJIbHbBIX ITIJIACTHUH
TPUTIOHOMETPpUYIECCKNMU pddaMn

Crarbsl MOCBAIIEHA BOIIPOCY MPUMEHEHUS METO/a OJUHAPHBIX TPUTOHOMETPUIECKUX PSAJIOB K PEIEeHUIO 3a-
Jad 06 m3rube nacTrH. ABTOpaMU IIPEJCTABJIEHA CTPYKTYpPa JIAHHOI'O METOa, BBIJIEJIEHbI €r0 OCHOBHBIE
KOMIIOHEHTBI, OXapaKTEPU30BAH KJIACCHYIECKUH TI0JIXO0, PACUETA TPAMOYTOJIbHBIX IIJIACTHH, ITAPHUPHO OIlep-
TBIX IO JIBYM HapaJsljIeJIbHbIM CTOPOHAM U C IIPOU3BOJIbHBIMUA I'DAHUYHBIMU YCJIOBUAMU Ha KaxKJIOI U3 IBYX
JAPYTUX CTOPOH. MaTeMaTHYecKuil almnapaT MeTO1a OJUHAPHBIX TPUTOHOMETPUYIECKUX DsAJIOB IIPEJICTABIJIEH
B HEOOXOIMMOM JjIsi pacdéra IiacTuH obbeme. [IpmBenen moapoOHBIN puMep pacdera MPSMOYTOJIBHOMN
IUTACTUHBI M3JI0KEHHBIM MeTo/IoM. J/laHHas cTaTbs OPUEHTHUPOBAHA, TVIABHBIM 0Opa30M, HA CTY/IEHTOB U
MAaruCTPaHTOB, 3aHUMAIOIINXCS HayIHO-UCCJIEJ0BATEIBCKON PAbOTON B 00JIACTH MEXAHUKH U IIPHUKJIATHON
MaTeMaTUKH.

Kmouesvie crosa: m3rud mpsiMOyTOJBbHON IIACTUHBI, (DYHKIUsT MPOTHOA TJIACTHHBI, TPAHUIHBIE YCJIOBUS
ITACTUHBI, METOJT TPUTOHOMETPUYIECKUX PsAIOB, peleHue JleBu.
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Digitalization of healthcare system of Kazakhstan

The article is devoted to the development of digital technologies in the field of healthcare of Kazakhstan. The
process of automation of a medical institution hospital is considered. The functionality of the developed
information system and the prospects for the implementation of this system in this area are described.
The developed information system allows it to accumulate the medical and statistical information in the
databases of the hospital and use in practice, automates the management of the hospital workflow. The
capabilities of the system consist in registering patients in a hospital, maintaining an electronic medical
history and obtaining complete statistical reports. The patient’s electronic medical history contains his
personal data, diagnoses, recommended procedures and medications. The introduction of information and
communication technologies in the health sector will improve the quality of care and significantly speed up
the work of staff.

Keywords: health digitalization, hospital automation, information system functionality.

The health of every person, as a component of the health of the entire population, becomes a factor that
determines not only the usefulness of its existence, but also the potential of its capabilities [1].

President N. Nazarbayev in his message to citizens of Kazakhstan emphasized that one of the directions
of state policy at the new stage of development of our country should be the improvement of the quality of
medical services and the development of a high-tech healthcare system. The quality of medical services is a
complex concept and depends on many reasons, among which the material and technical equipment of medical
organizations, the level of professionalism and motivation of clinical specialists to improve it, the introduction
of modern technologies to manage and organize medical care, the introduction of effective methods of paying
for medical help. Improving the management of the quality of medical services occupies an important place in
the context of the strategic development of health care in Kazakhstan until 2020 [2].

Today, digital technologies are beginning to change the most conservative sphere of human activity — health
care. As part of the «Digital Kazakhstan» program, domestic clinics face the challenge of introducing digital
health care. Already this year, the full transition to the electronic format of medical services is announced [3].

The transition to such a model will help digitization, omni-channel, the use of big data and the use of
artificial intelligence to process them. Working with data will provide an opportunity to improve the quality of
medical care, reduce treatment time, and, at the same time, increase the medical activity of citizens and lead
to an increase in the number of patients. But all these changes will not be possible as long as patient data is
not collected in digital form.

Health care is generally one of the most difficult branches. It is very conservative. The difficulty is also
associated with a large amount of accumulated data, and unstructured. At the same time, all this is connected
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with human health — the topic is very sensitive. In the coming years, we are waiting for a radical transformation
of this industry. Health care will begin to interact more and more with information technology and management
issues. It has ceased to be merely treating people. Health care will come to digitalization, it is inevitable. For
centuries, people thought about the need to go to the doctor in a negative way, when something bad happened.
This approach will change. There appears a service component — rating of doctors. The doctor ceases to be the
person from whom only knowledge is required. Convenience, good service, digitalization, big data — all this is
necessary for medicine today [4-10].

Health becomes a service. We cannot escape from this: people who are accustomed to receive this service in
other areas of life today want the same from health care too — so that they can be comfortable, understandable,
with feedback. An affiliate model will determine the future development of medicine.

Kazakhstan is just entering into the trends that will determine the development of health care in the future.
Modern medicine seeks to create ecosystem, where patients anticipate until they get sick, but visit doctors at
healthy state, just to maintain and strengthen health. In addition, the experience of other industries already
dictates increased requirements for service in medicine — people want low-cost, personalized medical services.
So far, the health care sector has remained aloof from current market changes. But this is the same service sector,
and patients, customers of these services, want convenience, proactivity, electronic services, mobility [11, 12].

E-medicine will be a huge breakthrough for the industry. All the data on patients that will be collected and
systematized will help in the future to receive better service, correct diagnosis and the appointment of effective
treatment not only in Kazakhstan, but also in any location in the world.

The government provides proper financial support and a certain «moral pressure», which is necessary now.
All people will come to digitalization. And the presence of good competition in terms of medical systems will
be only an advantage. Every Head of a medical organization will be able to choose a system that suits him.
The issue of improving the quality of medical care is relevant and most common among the problems of the
organization and healthcare institutions management. In large multidisciplinary hospitals, the need to create a
system of rapid and effective interaction between the services and departments involved in the examination and
treatment of patients is particularly vivid. So far, in the field of medical care, information systems are designed
as unique for each organization and, as a rule, are focused on statistical data processing and partial automation
of administrative and business activities [13-18].

The process of automating a hospital of a medical institution was reviewed in this article. The object of
automation is the Karaganda Regional Clinical Hospital. Analysis of the current day hospital data processing
system of this hospital showed that data processing is mainly done manually. Installed computers are mainly used
as typewriters for printing statements. Documents are stored in paper form, that complicates their processing
and storage [19].

Having analyzed the existing hospital system, began to develop own information system «Hospital» using
the high-level programming language Delphi 7.0. The developed software product is designed to automate
the activities of day hospital, allows accumulating the medical and statistical information in the databases of
the hospital and using in practice, automates the management of documents. The «Stationary» automated
information system has an easy-to-use interface, i.e. this system can be used not only by specially trained users,
but also by medical personnel [20, 21].

Figure 1. The main boot form
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The application launch is carried out by double clicking the left mouse button on the MedStacionar.exe file
shortcut. After that, the main boot form will appear on the screen (Fig. 1).

The program menu is presented in the form of a hierarchical tree, where all commands are divided into two
groups:

— Reference books;

— Medical card.

All menu commands are selected by double-clicking.

The «Directory» menu provides work with the main system directories:

— Medicines;

— Medical institutions;

— Departments;

— Medical staff;

— Diagnoses;

— Medical procedures.

The «Medication» directory contains a list of medications (Fig. 2). The window has a navigator for working
with records: navigating through the records, adding, editing and deleting records.
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Figure 2. The «Medication» directory window

The directory «Medical institutions» contains a list of medical institutions with which the hospital works.
Directory «Branchs» contains a list of departments of the hospital. The reference book «Medical personnel»
contains a list of medical personnel of the hospital with indication of the position. The «Diagnoses reference
book» contains a list of diagnoses and their symptoms. The reference book «Medical procedures» contains a
list of medical procedures that are conducted by the hospital.

The menu command «Medical card» contains three commands for working with medical cards:

— The whole list;

— Search by name of the patient;

— Search by branch.

When you select the entire list command, the patient’s medical record window will be opened (Fig. 3).
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Figure 3. The window of the medical record of the patient

The patient’s medical record consists of three sections:

— Title page;

— Diagnoses and treatment;

— Control parameters.

The «Title page» contains general information about the patient, the order of his arrival, the presence of
allergic reactions to drugs. The «Diagnoses and Treatment» section contains a list of the diagnoses that have
been made, the procedures prescribed and the medications for treating the established diagnosis assigned to the
patient. Section «Control parameters» contains daily information on the patient’s condition.

At the bottom of the «Medical Record» window there is a navigator for working with records, a card number

and a button for printing a card. When you select the print command, medical record data will be imported
into Word (Fig. 4).
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Figure 4. Medical record extract

When selecting the «Search by name of the patient» command, a window opens that asks to enter the name
of the desired patient. Then the found medical record is opened. The search by department is the same.

The developed software product is designed to automate the activities of a day hospital at the Regional
Clinical Hospital. In this institution, the information system «Hospital» was tested and is at the implementation
stage.
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The developed software product is designed to automate the activities of a hospital medical institution,
allows it to accumulate in the hospital databases and use in practical work medical and statistical information,
automates the management of hospital records.

System functionality:

1. Accounting of hospital patients.

2. Accounting of hospital patients receiving medical care in accordance with various types of payment: for
compulsory health insurance, with their own expense, on voluntary medical insurance, under contracts with
organizations, with the expense of budget funds.

3. Keeping an electronic medical record; print medical history in the required format.

4. The accumulation in the database of full information about the case of hospitalization, including:

e information about diagnoses;
information on the assigned and executed medical services and surgical interventions;
results of tests and diagnostic examinations of patients;
information about the patient’s daily condition;
information about patient transfers within the hospital;
information on the appointment and issuance of medicines;
data on sick leave.

5. The accumulation of information about outpatient services provided to hospital patients.

6. Obtaining complete and consistent statistical reporting on approved forms based on common information
resources.

The program does not require any special equipment in addition to a computer and printer, which will
simplify the implementation process.

All the necessary work on the implementation of methods of access to information stored in the database, its
modification, maintaining the database in a coherent form is hidden inside and the user does not need to know
about it in order to successfully solve the whole range of emerging tasks related to the use of information stored
in the database. Moreover, the program interface simplifies the work with the database as much as possible
(up to a choice from the proposed number of options). Even accessing the database with complex queries is
carried out in such a way that the structure of the returned data is visible even before its execution. The system
independently tests the records in the database and brings the database to a complete state, eliminating possible
errors. All routine operations of this kind are taken by the machine, which no doubt saves the efforts and time
of the end user [22-26].

The development of this information system is relevant:

e first, in the age of information breakthrough, it is impossible to imagine any serious organization without
a computer and data processing programs;

e second, it is minimization of manual labor and information processing on paper;

e third, reduction of time for searching and processing the necessary information;

e fourth, saving money.
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KazakcTaHHBIH JIEHCAYJIbIK CaKTay »KYyiieciH mudpaaHabIpy

MakaJjtajia MeIUIMHAJIBIK, MEKEME CTAIlMOHAPBIHBIH, IIPOIECIH aBTOMATTAHJBIPY YPJiCi KapaCTbIPbLIFaH.
CramuoHap KbI3METIH aBTOMATTAHIBIPATHIH aKIapPATTHIK, »Kyie o3ipieni. KypacTeIpblFan mporpaMmMa-
JIBIK, OHIMHIH (DYHKIIMOHAJIIBIK, MYMKIHIIKTEDI MEH aTaJfaH OHIM/I MEIUIMHAJIBLIK KBI3MET KODPCETY Ca-
JIacbIHA eHJIipy OoJiamarbl cunartajrad. KypacThIpblIFaH aKIapaTThIK, Kyie MeJIUIINHAJIBIK, KOHE CTATH-
CTHKAJIBIK aKIapaTThl CTAIlMOHAD Oa3aChIH/Ia KUHAKTAYFa XKoHE MPAKTUKAJBIK YKYMBICHIH/IA MaiilalaHyra
MYMKIHIK Oepefii, CTalMOHAPIbIH, KY?KaT aJIMacyblH 6aCKapy/Ibl aBTOMATTAHABIPaabl. 2KyiteHiH MyMKiH-
JIKTEpl cTanuoHap/ia HAyKAaCcTap/Abl TipKeyIeH, JIEKTPOH/IBIK aypyJiap TAPUXbIH *KYPri3y/ieH »KOHE TOJIBIK,
CTATUCTUKAJIBIK eCelTep/Ii aayaan Typabl. HayKacThIH 9JIEKTPOHIBIK aypysiap TapUXbIHIA OHBIH YKEKe Jie-
peKTepi, KOWBLIFaH JUATHO3JaPbI, YCHIHBLIFAH IIPOIE/Iy PAJIAPBI MEH J9pi-TopMeKTep TiziMi 6ap. JleHcaybik
caKTay CaJIaChlHA aKIaPaTThIK-KOMMYHUKAIUSIBIK TEXHOJIOIUsJIAP/Ibl €HIi3y MeIUIMHAJIBIK KOMEKTIH, ca-
MachlH apTTBIPYFa XKoHEe KBI3METKEPJIEP/IiH, *KYMBICBIH €JI0yip »KeJIeJIIeTyre MyMKIHIIK Gepii.

Kiam ce30ep: neHcayblK cakTayabl IUMOPIAHIBIPY, CTAIMOHAP/IBI ABTOMATTAH/IBIPY, AKIIAPATTHIK *KYHeHIH
GbYHKIIMOHAIIBI MYMKIHIIKTEDI.

M.V. Baemosa, A.M. Omaposn

IHudpoBuzarus cucrembl 3apaBooxpanenust Kazaxcrana

B craTbe paccMoTpen mporecc aBTOMATU3AIMEA CTAIMOHAPA MEIUIUHCKOrO yupexKaenns. Onucanbl pyHK-
[MOHAJIBHBIE BO3MOXKHOCTHU Pa3pab0TAHHOI'O IIPOrPAMMHOIO IPOIYKTa U IEPCIEKTUBBI BHEAPEHUS TAHHOTO
MPOIYKTa B 001aCTh MEIUIIMHCKOTO 00CayKuBanusi. Pazpaborannas mwH(GOPMAIMOHHAST CHCTEMA TTIO3BOJISIET
HaKAIUIMBATDH B 0a3aX JAHHBIX CTAIMOHAPA U MCIOJb30BATh B MPAKTHYIECKON pabOTe MEIUIINHCKYIO U CTATH-
CTHYECKYIO NH(MOPMAINIO, aBTOMATU3UPYET BeJIEHNE TOKYyMEHTO000pOTa cTanuoHapa. BoamoxkHoCTH crcTe-
MBI 3aKJIFOYAIOTCSI B yUeTe MAIMEHTOB CTAIMOHAPA, BEJIEHUN JIEKTPOHHOU MCTOpUU OOJIE3HU W MOJTYyYEHUN
MTOJTHOM CTATUCTUIECKON OTYETHOCTU. DJIEKTPOHHAS UCTOPUS OOJIE3HU HAIMEHTA COAEPXKUT €r0 JINIHBIE JaH-
Hble, IIOCTABJIEHHBIE TMArHO3bI, PEKOMEHI0BaHHbIE IIPOIIEIYPHI U JIeKapCcTBa. BHeipeHne nHMOpPMAIIIOHHO-
KOMMYHUKAIIMOHHBIX TEXHOJIOTUN B Chepy 3ApaBOOXpPAHEHUsI TTO3BOJIAT YJIyIIIUTh KAYECTBO O0CTy X KUBAHUST
¥ 3aMEeTHO YCKOPHUTH PaboOTy MepCOHAJIA.

Karouesvie caosa: mudpoBusaius 31paBoOXpaHEHUs], aBTOMATU3AIMS CTAIMOHAPa, (PYHKIIMOHAIBHBIE BO3-
MO>KHOCTU UH(MOPMAIIMOHHONW CUCTEMBI.
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Mathematical modeling of the source and environment
response for the equation of geoelectrics

In this paper an algorithm is proposed for determining the source of excitation of electromagnetic waves
emitted by the Ground-penetrating radar (GPR) device as a function of time. A mathematical model
for solving this problem was constructed and tested on model data. We have built an algorithm for
constructing a source function based on real georadar data. For this purpose, the results of experimental
studies conducted in field conditions using the Loza-V GPR. Experiments were carried out in the medium:
air-sand. The received signal of the response of the medium was processed from interference and noise. For
this purpose, we use frequency filtering, signal averaging, amplitude correction for processing radarograms.
In the future, the obtained table form of the disturbance signal will be used by us to study inhomogeneous
media, including the study of localized objects. The series of calculations for the considered problems are
given.

Keywords: inverse problems, source modeling, Maxwell equation, frequency filtering, radarogram processing,
numerical results.

1 Method for solving inverse coefficient problems

The result of the GPR survey is a set of single traces (signals) recorded by the receiving antenna at each
position of the GPR. To solve engineering problems, it is necessary to have the amplitude of the signal depending
on the depth of its reflection, while the original radarogram is the dependence of the signal amplitude on the
reflection time.

As you know, all radars can only record the time of reflection from the boundaries of objects or inhomogeneous
media. On the other hand, it is a function of time or otherwise referred to as additional information (the response
of the environment). This function is additional information for solving inverse problems, in our case determining
the geological section. We present below the research methodology, which is one of the well-known methods for
solving such problems.

The optimization method for solving inverse problems of electrical exploration is one of the most effective
and widely used methods in practice.

The main ideas of the method were proposed by A.N. Tikhonov, M.M. Lavrentiev, V.K. Ivanov, G.I. Marchuk,
A.S. Alekseev and many of their students and followers.

A. Bamberger, G. Ghavent, P. Lailly [1] used and investigated the conjugate gradient method to solve the
one-dimensional inverse seismic problem. The essence of the method is to minimize the quadratic function of
the discrepancy of observed and calculated fields. The application of the method to field data is given in the
articles of A. Bamberger, G. Chavent, Ch. Hemon, and P. Lailly [2]. The method of least squares was also used
to reverse the data obtained during the registration of seismic fields, see D.A. Cook, W.A. Schneider [3], and
W.W. Johonson, H.H. Nogami [4].

In the article of G. Chavent, M. Dupuy, P. Lemonnier [5] the optimization method was applied to the
problem of determining the distribution of magnetic permeability.

In the article by F. Santosa, W. Symes, G. Raggio [6] considered the problem of determining the acoustic
impedance of a layered medium from reflected seismograms in which low-frequency components are small or are
absent.

A wide range of inverse problems of geoelectric and numerical methods for solving these problems (including
the optimization method) are presented in the monograph of V.G. Romanov, S.I. Kabanikhin [7].
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For the numerical solution of inverse problems of geoelectric in layered and vertically inhomogeneous media,
the method of conjugate gradients is applied in the article of K.T. Iskakov, S.I. Kabanikhin [8].

The series of articles [9-12] is devoted to experimental and numerical studies of solutions of the direct and
inverse problem of non-linear diffusion associated with the process of drying of porous materials. The experiments
were conducted by a team of authors in the laboratory of magnetic and spin phenomena of the International
tomographic center SB RAS and the Institute of Catalysis SB RAS. The results of experimental and numerical
studies are published in [9, 10] and problem statements and the development of algorithms in [11, 12].

The complex includes an algorithm for calculating the concentration (direct problem) in the processes of
drying (adsorption) of various porous materials (aluminium oxide, silica gel) containing liquid (water, acetone,
etc.), adsorption of water vapor by selective water sorbents (silica gel or aluminium oxide, containing calcium
chloride).

The results of numerical calculations of the solutions of the direct and inverse problems are in satisfactory
agreement with the measurement data obtained experimentally.

The questions of the conditional stability of the inverse problem for the hyperbolic equation with Lipschitz
constant depending on the depth, on the priori given norm of the unknown coefficient and the norm of the data
of the inverse problem in space H; are reflected in [13].

The Fourier collocation method for reconstruction of the source function F(x) depending on the spatial
variable is developed and tested on model examples. The inverse problem of source identification depending
on the spatial variable F(x) in the one-dimensional wave equation is considered. The connection between this
problem and the problem of georadar data interpretation (GPR) is shown [14, 15|. Articles [16, 17| are devoted
to visualization of the obtained data for subsequent interpretation and obtaining reliable information about
underground geological environments, natural and artificial inhomo-geneities, anomalies, objects. Visualization
of the processed data of GPR and the description of the program of processing of signals of GPR for interpretation
of subsurface geological environments are given.

In [18, 19] an effective algorithm (layer-by-layer conversion method) for solving the inverse problem for the
geoelectric equation in the frequency domain for the simultaneous determination of the dielectric permittivity
and medium conductivity, as well as determining the boundaries of discontinuity is presented.

The differentiability of the discrepancy functional is shown with allowance for media interface boundaries.
With this in mind, the well-known algorithm for layer-by-layer conversion is generalized. Based on the critical
frequency, a range is set for which two functions can be defined simultaneously.

In [20] the questions of conditional stability, the solution of the inverse coefficient problem for the equation
of geoelectrics are studied. To study stability, the initial inverse problem is reduced to a system of the second
kind of Volterra integral equations. The class of correctness of solutions of the inverse problem and the class of
input data is introduced. The estimation of the conditional stability of the solution of the inverse problem from
the input data in the normal space H; is obtained.

In [21], the residual functional for the numerical solution of the inverse problem for the equations of the
theory of elasticity was investigated. The medium model is horizontally layered. The differentiability of the
function of the discrepancy by the coordinate of the point of discontinuity of the medium for the equations of
the theory of elasticity is proved. An explicit analytical expression for this derivative is obtained. This allows
the gradient method to determine the coordinates of the gaps and the thickness of the layers.

Methods of estimation of various parameters of geophysical models were considered by D.W. Marquardt [22],
Y.M. Chen, J.H. Seinfeld [23], G. Stoyan [24] and many others. Therefore, we note the review article of B. Ursin,
K.A. Berteussen [25] and the bibliography available in it.

2 Modeling the source of disturbances

At a georadar research the device registers the signals received by the receiving antenna as a set of single
routes in the form of the image — radarogramma [26, 27|. To solve engineering problems, it is necessary to
have the dependence of the signal amplitude on the depth of its reflection, and the original radarogram is the
dependence of the signal amplitude on the travel time. On an other hand, it is necessary to clear the signal from
various kinds of noise that hides the useful signal. For this purpose, we use frequency filtering, signal averaging,
amplitude correction [17] to process radarograms.

To solve the inverse problem of GPR, it is necessary to know the time dependence of the signal entering
the environment [15]. However, due to the complex interaction of the antennas with the medium, this function
depends on the medium to which the signal goes. Therefore, existing georadars do not provide this kind of
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information before the soundings. In this paper it is proposed to determine the source function on the basis of
test experiments conducted on a homogeneous medium.

We formulate a simplified mathematical model of GPR in the wave approximation [28, 29]. As it is common
in geophysics, assume that the medium fills the half-space z > 0 and the half-space z < 0 corresponds to the
air. Let the electrical permittivity ¢ of the medium depend on the coordinate z only, magnetic permittivity
1= po = const > 0 in the whole space and the conductivity is negligible. Let the current source with intensity

JET() =B (£)5(2), P (t) = 0,if t<0,

P (t) € C?[0.00],®" (+0) # 0

be placed at the boundary z = 0 and directed along the axis y. Then it follows from Maxwell’s equations [6], that
the electromagnetic field depends on (z,t) only. The field has an electric component Fs(z,t) along the axis y,
and a magnetic component Hj(z,t) along the axis x that satisfy the Cauchy problem:

8H1 o 8E2 aEQ a-H'l

02 £(2) o o 1 (z) ——, (B2, Hi), o = 0. (1)

+5(2)@ (0 S

We assume below p(z) = pg > 0. By taking first derivatives with respect to t from first equation and with
respect to z from second one in (1) and eliminating 8% H, /0t0z we get:

OE?02% = puoe (2) 95 + pod () @' (1), Bajeco = 0.

Denote by
c(2) = 1/v/ noe(z).

The purpose of GPR studies is to determine the electrical properties of the medium. Within the framework
of our model, we need to recover the specific permittivity function € (z). As shown in [15], knowledge of the
source function @ (t) allows to approximate the function ¢ (z) based on measurements of the field strength on
the surface of the medium. Further, according to the ¢ (z) distribution is easy to compute the function € (z).

Consider an environment in which the distribution of specific electrical conductivity is subject to the
following representation

—2 .
2 (z) = 002, z'f z2<0
s, if 220

cp, ¢1 = const.

Here ¢y is the speed of propagation of the signal in the air, and c;- the speed of the radio signal in a
homogeneous environment.

E,, = %@Ezz + 1o®(t)d(2), (2 € R, t>—00), (2)

E |t<0 =0. (3)

In [15] it is shown that in this case the distribution of the electric field in the medium Es(z,t) = U(z,t) is
a generalized solution of the Cauchy (2)—(3).
Then the solution of the problem is given by the formula:

_ MoCocC1 @ t‘*‘é o z2<0
Co—|—61 [0)) tfi’ z>0

co

E..(z,t) =

It can be checked directly that the function F(z,t) is continuous anywhere and twice continuously differentiable
in the half spaces ®2 = {(2,t)| 2 <0, t e R}, R% = {(2,t)| 2 >0, t € R} and its first derivatives at z = 0
are expressed as

HoC1 HoC1 -,
E,(-0,t) =————9 (t),E, (+0,t) = ————P" (¢),
(0.0 =~ 20! 1), B (+0,0) =~ 20/ 1)
i.e.
E. (+0,t) = E, (—0,t) = pno® (t). (4)
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The last formula confirms that the second derivative E,, is represented as the singular function po®’(¢)d(z) and
a regular one.

From formula (4) it follows that the field strength in the GPR problem of a homogeneous half-space is

determined by the formula Hococ
0C0C1
g(t) =E(0,1) o o

In GPR studies, readings are taken from the receiving antenna. From formula (5), it follows that the
excitation signal generates a field with intensity (5) at the boundary of the medium. This field acts on the
receiving antenna, causing alternating current in it. This means that the readings recorded by the device must
be proportional to the function ®(t).

Thus, before conducting a survey on the object under study, it is necessary to have the data obtained for a
homogeneous half-space. This will determine the type of source function and use it for further interpretation.
Next, the problem arises with approximation of a smooth function measured on a homogeneous half-space of
data. As shown in [15], a second derivative of the function ®(¢) is needed for further interpretation. Therefore, it
is desirable to approximate the table-set measured data with a smooth function of a simple form, for example,
the following:

®(t),(t>0). (5)

O(t) = Asin (wt + B) exp (—t) — Asin . (6)
When data is approximated, it is necessary to select the parameters w, 3, v in function (6).
8 The results of experimental studies

As part of the research project under contract No. 132 dated 12.03.2018, experimental studies were conducted
in accordance with clause 8 of the calendar plan. To simulate a source of radiation emitted by Loza-V georadar,
a site of a sand pit was selected, with a geoelectrical section was previously known. According to GPR data,
namely additional information, the inverse problem of source modeling will be subsequently solved. For this
purpose, experiments were conducted using different antennas. The expedition was done by Professor of ENU
named after L.N. Gumilyov K.T. Iskakov and by senior teacher of KazNPU named after AbayB.B. Sholpanbayev
on January 3, 2018. The experiments were conducted on the sandy quarry LLP «Bek», located 30 km away from
the city of Almaty in the direction towards the town of Kapchagai. Radarograms were processed by the 2nd year
doctoral candidate D.K. Tokseit The spectral analysis of the radarograms was performed by the senior teacher
S.A. Boranbayev Objectives of the study: geophysical examination of the structure of the underlying layers of
a homogeneous medium-river sand, modelling of the impulse source from the Loza-V device; determination of
the spectral characteristics of signals emitted by antennas: 0.5 m, 1 m, 1.5 m, 3 m; interpretation of a series of
radarograms obtained in result of sounding required to solve the inverse problem of source recovery. We present
the experimental data: 1.5 m antenna, 7 tracks, 49 measurements, a step of 0.20-0.2 m are used. In Figure 1, 7
tracks are marked and are denoted as: AQ-A6.

100k

Ab _

Figure 1. Measurement scheme for experiment Ne 1 (antenna 1.5 m)
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Figure 2 shows the radarogram performed by the program «Krot». The results of the studies with antenna
sweep: 1.5 m antenna, 7 tracks, 49 measurements, step 0.20-0.25 m.

Figure 2. Radarogram of the experiment

4 Radarogram processing — medium response

The graphs of the traces and spectra of the radarograms will be carried out according to the algorithms

given in [2]. Figure 3 shows the graphs of the paths and spectrum of radarograms obtained with a 1.5 m antenna
at a frequency of 100 MHz.

amplitude
I|
|
|

0 20 40 60 BO 100 120 140

modul FFT

0 200 400 600 800 1000 1200 1400 1600 1800 2000

frequency (MHz)
Figure 3. Graphs of the route and spectra of radarograms (1.5 m antenna, 100 MHz)

Radarogram is an ultra-wideband radio signal. As can be seen from the graphs, the main spectral components
of the radarogram, which influence the amplitude of the signal, are located around the center frequency of
the GPR antenna. The basic information about the subsurface environment lies in the amplitude of the signal
corresponding to the time of receiving the signal. Experimental studies were conducted on the sandy LLP «Bek»,
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located 30 km from Almaty city in the direction towards the city of Kapchagai. Experimental studies were
conducted in a sand homogeneous medium at a site of 100 m — 50 m, using the Loza-V georadar. 147 radarograms
on 7 tracks were filmed, in increments of 0.2-0.25 meters using antennas with a sweep of 0.5 m; 1 m; 1.5 m. The
length of the profiles in each case is 100. With antenna — 3 m received three profiles. Finally, as a confirmation
of the calculations, measurements were taken on a hill in which a cut of the medium is visible. Three profiles
were received. As a result of the interpretation of the radarograms, a series of responses of the media were
obtained, with the use of various antennas, which will be used to solve the inverse problem of source recovery
(Table value). A spectral analysis of the received radarograms using the software package was carried out.

5 Numerical results

By the formula (5), we determine

HocCoCl
®(t) = g(t)/xk, where Kk = —————.
(t) = o(t)/ —
Here cp is the speed of propagation of the signal in the air co = 0,37, and ¢; — the speed of the radio signal
c1 = 0,1227% — 0,15 in a homogeneous environment in the sand m/ns, magnetic permittivity in the whole
sand po = 1. Then,

0,3-0,15 Lm

0,45

We present the data of the Loza-V GPR, in the form of Table 1. Measurements were carried out with a
1.5 m antenna, frequency 100 MHz. The amplitude values of the signal are ALnl = 0 ... 32768 ... 65535, the

amplitudes of the time step are 0.5 ns.).

R =

Table 1l

Signal amplitude values

32772\ 32772\ 32772 | 32772\ 32772\ 32772 32772 | 32772| 32772| 32772\ 32772| 32772| 32772 | 32772
32772\ 32772\ 32777 | 32777 | 32777| 32777 | 32777 | 32777 | 32777 | 32777 | 32777 | 32777| 32777 | 32777
32777 | 32777 | 32777 | 32777 | 32783 | 32783 | 32783 | 32783 | 32783 | 32783 | 32783 | 32783 | 32783 | 32783
32783 | 32783 | 32783 | 32783 | 32783 | 32783 | 32795 | 32795| 32795| 32795 | 32795| 32795| 32795 | 32795
32795 32795 32795 32795| 32795 | 32795 | 32795 | 32795 | 32806 | 32806 | 32806 | 32806 | 32806 | 32806
32806 | 32806| 32806 | 32806 | 32806| 32806 | 32806 | 32806| 32806 | 32806 | 32829| 32829 | 32829 | 32829
32829 | 32829 32829 32829| 32829| 32829 | 32829 | 32829| 32829 32829 | 32829| 32829 | 32856 | 32856
32856 | 32856| 32856 | 32856 | 32856| 32856 | 32856 | 32856 | 32856 | 32856 | 32856 | 32856 | 32856 | 32856
32892 32892 32892 32892| 32892| 32892 | 32892 32892| 32892| 32892 | 32892| 32892| 32892 | 32892
32892 32892| 33100| 33100| 33100| 33100| 33100| 33100| 33100| 33100| 33100| 33100| 33100| 33100
33100 33100| 33100| 33100| 34248 | 34248 | 34248 | 34248 | 34248 | 34248 | 34248 | 34248 | 34248 | 34248
34248 | 34248 | 34248 | 34248 | 34248 | 34248 | 38848 | 38848 | 38848 | 38848 | 38848 | 38848 | 38848 | 38848
38848 | 38848 | 38848 | 38848 | 38848 | 38848 | 38848 | 38848 | 59504 | 59504 | 59504 | 59504 | 59504 | 59504
59504 | 59504 | 59504 | 59504 | 59504 | 59504 | 59504 | 59504 | 59504 | 59504 | 59504 | 59504 | 59504 | 59504
59504 | 59504 | 59504 | 59504 | 59504 | 59504 | 59504 | 59504 | 59504 | 59504 | 59504 | 59504 | 59504 | 59504
59504 | 59504 | 59504 | 59504 | 59504 | 59504 | 59504 | 59504 | 59504 | 59504 | 59504 | 59504 | 59504 | 59504
59504 | 59504 | 59504 | 59504 | 59504 | 59504 | 59504 | 59504 | 59504 | 59504 | 59504 | 59504 | 59504 | 59504
59504 | 59504 | 59504 | 59504 | 59504 | 59504 | 59504 | 59504 | 59504 | 59504 | 59504 | 59504 | 59504 | 59504
59504 | 59504 | 59504 | 59504

We carry out data normalization in the range from 0 to 1, with this purpose we will divide all the data in
Table 1 by the maximum amplitude value. The data obtained are shown in Table 2.
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Table 2

Normalized amplitude values of signals

0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50
4185 | 4185 | 4185 | 4185 | 4185 | 4185 | 4185 | 4185 | 4185 | 4185 | 4185 | 4185 | 4185 | 4185 | 4185
0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50
4185 | 4262 | 4262 | 4262 | 4262 | 4262 | 4262 | 4262 | 4262 | 4262 | 4262 | 4262 | 4262 | 4262 | 4262
0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50
4262 | 4262 | 4354 | 4354 | 4354 | 4354 | 4354 | 4354 | 4354 | 4354 | 4354 | 4354 | 4354 | 4354 | 4354
0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50
4354 | 4354 | 4354 | 4538 | 4538 | 4538 | 4538 | 4538 | 4538 | 4538 | 4538 | 4538 | 4538 | 4538 | 4538
0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50
4538 | 4538 | 4538 | 4538 | 4708 | 4708 | 4708 | 4708 | 4708 | 4708 | 4708 | 4708 | 4708 | 4708 | 4708
0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50
4708 | 4708 | 4708 | 4708 | 4708 | 5062 | 5062 | 5062 | 5062 | 5062 | 5062 | 5062 | 5062 | 5062 | 5062
0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50
5062 | 5062 | 5062 | 5062 | 5062 | 5062 | 5477 | 5477 | 5477 | 5477 | 5477 | 54TT | S4TT | S4T7 | 5477
0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50
O4TT | D4TT | 5477 | 5477 | 5477 | 5477 | 5477 | 6031 | 6031 | 6031 | 6031 | 6031 | 6031 | 6031 | 6031
0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50
6031 | 6031 | 6031 | 6031 | 6031 | 6031 | 6031 | 6031 | 9231 | 9231 | 9231 | 9231 | 9231 | 9231 | 9231
0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.52 | 0.52 | 0.52 | 0.52 | 0.52 | 0.52
9231 | 9231 | 9231 | 9231 | 9231 | 9231 | 9231 | 9231 | 9231 | 6892 | 6892 | 6892 | 6892 | 6892 | 6892
052 | 052 | 052 | 052 | 0.52 | 052 | 0.52 | 0.52 | 0.52 | 0.52 | 0.59 | 0.59 | 0.59 | 0.59 | 0.59
6892 | 6892 | 6892 | 6892 | 6892 | 6892 | 6892 | 6892 | 6892 | 6892 | 7662 | 7662 | 7662 | 7662 | 7662
059 | 0.59 | 0.59 | 059 | 0.59 | 0.59 | 0.59 | 0.59 | 0.59 | 0.59 | 0.59 | 091 | 091 | 091 | 091
7662 | 7662 | 7662 | 7662 | 7662 | 7662 | 7662 | 7662 | 7662 | 7662 | 7662 | 5446 | 5446 | 5446 | 5446
091 091| 091| 091 091 | 091 | 091 | 091 | 091| 091 | 091 | 091 | 091 | 091 | 091
5446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446
091 091] 091] 091 091 | 091 | 091 091 | 091 | 091 | 091 | 091 | 091 | 091 | 091
0446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446
091 091] 091| 091| 091 | 091 | 091 091 | 091 | 091 | 091 | 091 | 091 | 091 | 091
0446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446
091 091| 091| 091 091 | 091 091 | 091| 091| 091 | 091 | 091 091 | 091 | 091
5446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446
091 091| 091| 091 091 | 091 091 | 091 | 091 | 091 | 091 | 091 | 091 | 091 | 091
5446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446 | 5446
0.91
5446

Then the environment response schedule:
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Figure 4. The response of the environment (according to Table 2.).
Disturbance source graph. (Calculated by the formula (5))
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Below in Figure 5. the signal graph with coefficients minus k = -0.1 is shown.

—4

amplitute

0.0 0.5 10 15 2.0
time

Figure 5. Signal graph with a minus sign
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K.T. Uckakos, B.I'. Mykanosa, A.C. Bepabimes, A.C. Kemb6aii, /I.K. Tokceur

I'eossniekTpuka TeH eyl YIIIiH HETi3/iH »KoHe OpTa
peakIMsiChbIH MaTeMAaTUKAJILIK MO/IeJIbJIey

Maxkamnama GPR kypasbl mibirapaThlH JIEKTPMArHUTTIK TOJKBIHAAPIBIH KO3FAJIBIC HETi31 yakbIT pyHKIM-
CBI PETiH/Ie aHBIKTAY YIIiH &JITOPUTM YCHIHBLIFaH. BysI MocesieH] menryre apHaJIfral MaTeMaTUKAJIBIK MOJIETb
MOJEBIIK JIepeKTep GOMBIHINA KYPACTHIPBLILIN, ChIHAIIBI. HakThl reopagap JepeKkTepine Heri3eares oa-
crankpl (pyHKIMA Kypy YiliH ajaroput™ tadgaiasl. Ocel makcarra Jloza-B reopagapbia KosmaHbii, Oy
caJiajia XKYPrisiireH SKCIIEPUMEHTTIK 3epTTeyJIeP/iH HOTHUXKeJepl NaigalaHblUiabpl. «Aya — KyM» OpTara
9KCIEpUMEHT Kyprizimai. OpTaman ajgblHFaH Ja0bLT KeJEepri »KoHe IIyJaH Ta3apThLIFaH. bys yiria 6i3
PaIMOJIOKAIUAIAP/IbI OHJEY YIINH KUIIK CY3riCiH, CUIHAJ/IBIH, OPTAIAJIaHybIH, aMIIUTYIAJIbIK, TY3€TY/Ii
Ko/maHbLIbl. Bostarakra Oipkeski eMec MenuaHbI 3epTTeyre, COHBIH IITiH/E OKINAayJIaHFAH HBICAHIAP/IbI
aHBIKTAyFa AJbIHFAH OY3BLTYIapIbIH KECTETIK TOJKBIHIBIK (DOPMAaChl A a aHbLIAb. KapacThIphlaran Mo-
ceJiesiep OOMBIHIIIA €CENITEP CEPUSCHI KEJITipireH.

Kiam cesdep: kepi ecenrep, Ko37epai Mogeabey, MakcBesut TeHieyi, XKUTiKTi Cy3y, paJuorpaMMaHbl OHIEY,
CaHIBIK, HOTUZKEJTIED.

K.T. Uckakos, B.I'. Mykanosa, A.C. Bepapimes, A.C. Kewm6ait, /JI.K. Tokcent

MaTtemaTudecKoe MOAeJINPOBaHNE NCTOYHUKA U OTKJIMKA
cpe/ibl JIJisd YPABHEHUS T'e03JIeKTPUKU

B crarbe npesyioxen ajaropuTM onpejiesieHus UCTOYHUKA BO3OYKIIEHUS JIEKTPOMArHUTHBIX BOJIH, U3JLyYa-
€MBIX Te0PaTUOIOKAIMOHHBIM TPUOOPOM, KaK (DYHKIIUN BpeMeHu. MareMaTudecKasi MOJIEb JIJIsl PEITEeHUsT
9TOH 3aJ1a4n MMOCTPOEHA W AlPOOMPOBaHA Ha MOJEILHBIX JAHHBIX. ABTOpAMU IIOCTPOEH aJrOPUTM IIO I0-
crpoeHnio (bYHKIMU UCTOYHMKA HA OCHOBE DEaJIbHBIX JIAHHBIX reopajapa. B 9THX LEeJsX MCIO0JIb30BAHbI
pe3yJIbTaThl SKCIEPUMEHTAJIBHBIX UCC/IEIOBAHUIM, TPOBEIEHHBIX B IOJIEBBIX YCJIOBUSAX C IIPUMEHEHUEM Te-
opanapa Jloza-B. IlpoBemennl skcrepuMeHTBI B Cpefie «BO3AyX — MeCOK». [lomydYeHHBbIN curHa OTK/INKA
cpebl oOpaboTraH OT moMex u IryMoB. Jljist 06paboOTKHU pajgaporpaMM HCIIOJIb30BaHbl YacTOTHAS (PUIBTpa-
[Us1, YCpeIHEHNEe CUTHAJIOB, KOPPEKITHs aMILIATY. B manpHeiimemM mogyderHast TabmaHast (popMa CUTHAA
BO3MYIIEHUsI OyJIeT UCIOJIb30BAaHA JJjIs UCCIEJOBAHUS HEO[MHOPOIHBIX CPeJl, B TOM YHUCJIe U JIJIs U3yIeHUs]
JIOKQJIM30BAHHBIX 00bEeKTOB. IIpuBe/IeHbl cepun pacueToB /st PACCMATPUBAEMBIX 3a/1ad.

Karouesvie crosa: obpaTHbIe 3a1a4U, MOJEINPOBAHIE NCTOYHUKOB, ypaBHeHne MakcBeia, 94acToTHas DOUIIb-
Tpanusi, 06paboTKa pagaporpaMMbl, YHCIEHHbIE PE3Y/IbTATHI.
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Models of interaction of cryptography and chaotic dynamics

Cryptography deals with the problem of information protection by its transformation, providing the
protection of information (by means of computational techniques), i.e. a set of agreed encryptian tools.
Under the cryptosystem in the narrow sense we will understand dynamical systems with a nonlinear function
and spatial states, it is represented by a differential equation. Some conditions of the dynamic system, the
Lyapunov exponent, as a measure of sensitivity are considered. Identification of the interconnection between
objects of study in the theory of chaos and cryptography is revealed; the conclusions about the possibility
of using the trajectory of dynamical systems with the chaos for the representation and the transmission of
information.

Keywords: cryptography, information protection, encryption, nonlinear function, dynamical system, cryptosystem,
parameters, trajectory, transformation, chaotic system, measure of sensitivity.

Introduction

Cryptography deals with the protection of information data through its transformation. Cryptography solves
the problems of confidentiality, integrity, authentication, and a number of others that are associated with them.
Cryptography actually examines methods for encrypting information, generating digital signatures, and key
management certificates.

A cryptographic system, in a broader sense, is an infrastructure that guarantees the protection of information
data by means of computer technology, a set of coordinated methods of encryption, transfer and key management,
authentication and other elements. A cryptosystem is a hardware-software complex that interacts with a person.
It should be noted that scientists working on the protection of information in the conditions of deterministic
chaos, the formation of models and descriptions of software applications: E.N. Lorenz [1], M.S. Baptista [2],
A. Abel, W. Schwarz [3], K.M. Cuomo, A.V. Oppenheim, S.H. Strogatz [4], K.M. Cuomo, A.V. Oppenheim,
S.H. Strogatz [5], L. Kocarev, U. Parlitz [6], Jr.E. Rosa, S. Hayes, C. Grebogi [7], I.P. Marino, Jr.E. Rosa,
C. Grebogi [8], I.P. Marino, L. Lopez, M.A.F. Sanjuan [9], L. Kocarev, K.S. Halle, K. Eckert, L. Chua, U. [10],
A. Dmitriev, A. Panas, S. Starkov [11], L.A.B. Torres, L.A. Aguirre [12], A.Yu. Loskutov, A.I. Shishmarev [13],
A.Yu. Loskutov, V.M. Tereshko, K.A. Vasiliev [14], L. Mariot, A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca,
C. Zandron [15], L. Mariot, A. Leporati, A. Dennunzio, E. Formenti [16], A. Leporati [17], L. Mariot, S. Picek,
A. Leporati, D. Jakobovic [18].

Purpose of the study. Analyze the relationship for the transmission and presentation of information in terms
of cryptography between chaos and objects of complex dynamic systems.

Material and research methods

In the mathematical representation, the cryptosystem S = (XY, K, f) is a kind of information conversion
f: X x K =Y, set on the sets of initial states X, keys K and final states Y. The state x € X encodes some
useful information. The sets X =Y =C {0,1}x, K C {0, 1}* had been studied in computer cryptography, and
the transformation f had been studied by means of an algorithm (program) implemented on a Turing machine.

Transformation f is studied as iterations of a cryptographic algorithm (Fig. 1). In this case, the cryptosystem
implements a sequence of the set of states xq, 1, ..., i, ..., where x; = f(x_1),k) = fi(zo, k), w0 € X,k € K,
and the sequence of the set of states is called the system trajectory in Figure 1. The entire trajectory to the
same is found by the parameter k and the initial state of the system xq.
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Figure 1. Model of a cryptosystem

The successive transformation of the system states as a result of the use of a certain elementary function
of the same typef can be observed in in-line and block ciphers, one-way functions, and pseudorandom number
generators. These systems are components of a cryptosystem in a broad sense [19].

The cryptosystem, in a broader sense, is a dynamic system (f, X, k) with a non-linear function f, the state
space X and the parameter space K.

The dynamic system of continuous time and continuous state S = (X, K, f), depends on the parameters
and is given in the form of a differential equation:

%:f(x,k)7meXng7kgKngk, (1)
where f : X x K — Y is a smooth vector function, K is the space of control parameters and X is the state space.
The system (1) for a separate initial requirement xq satisfies the requirement of the presence and uniqueness
of the solution = (t,2z9) = zo, where z (0,20) = xo. The curve ¢;(¢,x¢) corresponding to this solution is a
trajectory.

The dynamic system of discrete time (continuous state) can be specified as an iterative function:

Tpy1 = f(zn, k),2n € X CRLECR® n=0,1,2.., (2)

where z; is discrete states of the system. The trajectory (i, zo) is a sequence of the set xg, z1, .... Expression (2),
you could notice that it seems with a cryptographic iteration function used in block ciphers, in cryptographic
and dynamic systems, pseudo-random generators, studied in iterative transformation of information data that
depend on the parameter [20]. Then, the parameter k is reduced in the notation of the system (X, f), and the
iteration function f(x). The result of the n-times use of f(z) is written in the form:

n = f((...(x0)...)) = f"(z0), x0, zn, € X.

Researchers identify some properties under which chaotic behavior occurs in the system. Namely, the
required criterion is made by two classical features — topological transitivity and sensitivity to the initial
requirements.

The definition of «chaotic system» has the following interpretation: a dynamic system (X, f) is considered
chaotic when the following criteria are met:

1) The function f is sensitive to the initial criteria, if there is § > 0,n > 0, that for different 2 € Xand its
neighborhood H, there is y € H, for which

fH(@) = f"(y) Vo

2) The function f: X — X on some metric set is topologically transitive X C Ry, if for different open sets
U,V C X there are n > 0, such as

(v #o.

A dynamic system, in other words, is called chaotic, if all its trajectories are the limit, but instantly diverge
at each point of the phase space (Fig. 2).

142 Bectnuk Kaparanmauickoro yHuBepcurera



Models of interaction of cryptography...

() (L]

(=)

-

a) Temporary space; (b) Phase space
Figure 2. Two-dimensional chaotic system

The results of the study and their discussion. The above examples of cryptosystems are similar to chaotic
systems: topological transitivity is necessary, firstly, to maintain the state of the cryptosystem within the limits
allowed by the information carrier, to «cover» the entire set of ciphertext states as well. The susceptibility to the
initial conditions corresponds to the susceptibility of a cryptosystem to a pseudo-random generator or plaintext.
From here, as in cryptography, and in the theory of chaos, they come into contact with systems in which even
a small change in the initial conditions leads to significant changes along the entire trajectory.

The concept of susceptibility to initial conditions is introduced into the understanding of a chaotic system.
This indicator, as a Lyapunov exponent A(xg), determined for each point z € X, becomes a measure of
susceptibility, in other words, determines the speed of the exponential divergence of trajectories, which are
located in the vicinity of point g

(w0 + &) — fM (o) V & % e™M@0)

in a one-dimensional system where ¢ is a small deviation from the initial state of the point z(, and n is a certain
number of iterations (or discrete time). For the general case, the value of A depends on the initial conditions
of the point x(, hence the definition of the averaged value is necessary. For systems that preserve measure, \ is
constant for all trajectories. Lyapunov’s indicator, in practice, can be calculated as the limit

[ (o +¢) — f"(x0)

A(zo) = lim lim —V Vi

r—oot—oo N £

n

1 ¢ 1
Azp) = lim 7210g VI (zk) \/nlggoﬁ H(wk) V.
k

n—o0o N Pl

The derivative f'(zy), for each k, sets how soon the function f will change relative to the growth of the value
of the argument from xy to xx41. The limit will be equal to the average value of the logarithm of the derivative
after n performed iterations and will show the value of the rate of divergence of the trajectories during the
discrete time period. A positive indicator (A > 0) is an indicator of the chaotic behavior of the system [21].

For a d-dimensional system, the set A = {1, ..., A\q} is formed and a more complex behavior is created that
is not qualitatively different from the one-dimensional case.

To take into account the accuracy (resolution) of observation, the Kolmogorov-Sinai-hxg entropy, given
below, becomes more necessary information.

The value of the Lyapunov indicator, from the point of view of cryptography, becomes a measure of the
cryptographic efficiency of the system. More precisely, the larger the value of A\, the smaller the number of
iterations needed to obtain a given degree of mixing or spraying information. Existing traditional cryptosystems
(pseudo-random generators, encryption schemes) should be studied as dynamic systems that transform infor-
mation (Table).
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Table

Relationship between objects of study in cryptography and chaos theory

Cryptography Chaos theory

Pseudo-chaotic system Chaotic system

-finite number of states -infinite number of states

-finite number of iterations -infinite number of iterations

-nonlinear transform -nonlinear transform

Plaintext Initial state

Key Initial conditions and parameters

Entanglement Asymptotic independence of the initial
and final states

Ciphertext Final state

Spraying Sensitivity to initial conditions and
parameters, mixing

From the side of objects and research accents between the theory of chaos and cryptography there are
fundamental differences:

1) cryptography analyzes the obtained result of a finite number of iterative transformations (n < ©0), as
chaos theory (discrete and continuous) studies the asymptotic behavior of the system (n — eco);

2) in cryptography it is advised to use all sorts of combinations for independent variables (the system is as
unpredictable as possible) and work with spaces with integer dimensions (Fig. 3). Regarding classical chaotic
systems, they are displayed in the form of some object or set of phase space, which is endowed with a fractional
dimension (in essence, is a fractal);

3) in computer cryptography, the study of a system is carried out at a certain finite number of states, and
the multiple state space of a chaotic system is formed with an infinite set of continuous or discrete values. It
follows that absolutely all the models of chaos implemented on a computer are very approximate [22].

X,
Xy

Figure 3. Phase portraits of the chaotic and cryptographic systems

Optimal security (perfect security) of an object will take place only in the situation when it is completely
unpredictable for a cryptanalyst (external observer). All of this implies that the likely outcomes (all states) are
very equiprobable and are not dependent on past states. In other words, the sequence of states is established
by a uniform law of probability distribution and it does not have patterns (correlations). The term «absolute
unpredictability» is equivalent to the concept of «true chances. Random sequence is called «white noise». The
source of this white noise can be the chaotic system itself, with a rather large number of degrees of freedom (for
example, a closed system with a so-called ideal gas).

Certain practical security in the current world is formed by cryptography systems, which, to some extent,
will be less than ideal (due to operational and economic feasibility). The definitions of unpredictability and
randomness are respectively replaced by polynomial (computational) and pseudo-randomness, unpredictability.
A pseudo-random object should not at all differ from a truly random object obtained by means of computational
facilities available to an external observer. By analogy, the behavior of a computationally unpredictable object
cannot be predicted by the computational means used by the observer. From here, you can prove that a pseudo-
random object will be computationally unpredictable.

Therefore, a truly random object will be pseudo-random and algorithmically random. The definitions of
algorithmic randomness are also different from each other: pseudo-randomness: a compact generator creates
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a pseudo-random string, but an external observer cannot predict the sequence and create this generator. The
Universe, nature and matter appear as natural chaos, possessing colossal dimensionality, lack of coverage of
the «system of iterative functions» and an infinite number of states. The entropy of these systems, thanks
to self-organization, is much less than that of the «completely random» system of a corresponding scale.
Multidimensional and chaotic systems cannot be used in encryption, since they are not reproduced. Key
generation (without the possibility of repetition), on the other hand, through «natural» chaos (for example, the
thermal noise of a computer in a system unit) is widely used today [23].

The deterministic chaos that we use in encryption is endowed with a very small dimension and an infinite
number of states. Obviously, such systems are likely to be more predictable than the variant of natural
chaos, and they can be modeled by humans in computing systems. To create a calculated estimate of the
randomness of such systems, we will make a consistent consideration of the Kolmogorov-Sinai entropy (tightly
interconnected with the Lyapunov exponent and algorithmic complexity) and find, moreover, that deterministic
chaos leads algorithmically random sequences. In the mixing system, even more so, the numerical sample
Ty Tptks Tnt2ks Tntsk... Will be asymptotically (k — oo) random, that is, with an increase in the value of
k, the members of the sample become all less dependent.

Conclusions

Thus, in our analysis, we found a close relationship between the objects of study in chaos theory and
cryptography; the conclusion is made with evidence about the apparent probability of applying the trajectory
of dynamic systems with chaos for the transmission and presentation of information:

1) the well-known and studied signs of chaotic systems (ergodicity, exponential divergence of trajectories,
mixing) can also be fully applied in cryptography for the development of new encryption schemes;

2) the choice of the value of the control parameter in cryptographic applications makes it possible to set
the unpredictability of the system, in other words, if the chaotic mapping parameter is used as the key, then
the entire space of the probable keys for the assumption of keys is required to correspond to the chaotic one.
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B.K. MTagxmerosa, T.JI. Ten, I'.JI. Koraii, I1I.E. Omapoa

Kpunrorpadusa xkoHe xaoc JUHAMUKAHBIH,
e3apabaiijlaHBIC MOJEJIbaepi

Kpunrorpadust aknapaTTsl KOpFayabl KAMTAMACHL3 eTeTiH (ecenreyill TeXHUKa KypPaJAapbl APKBLIBI) OHBL
TYPJEHIIPY *KOJIBIMEH aKIapaTThl KOPFay MoceseciMeH affHAJIBICA b, SFHNA KeJIiCiareH mudpiay Kypaaga-
PBIHBIH KUABIHTBIFBL. Tap MarbIiHa1a KPUITOXK Y€ — CBI3BIKTHI eMeC (DYHKITHSICHI XK9He KEHICTIK yKarJailapbl
bGap IUHAMUKAJBIK XKYite, omerTe o1 quddepeHInaIIbK, TEHIEYMEH YChIHbLTFaH. JIHHAMUKAJIBIK, Ky HeHIH
Keibip mapTrapsl, Ce3IMTAIBIK, OJ1IIeMi peTiHe JIAmyHOB KOpCeTKiIT KapacThIPBLIALI. Xa0C KOHE KPHUII-
Torpadusa TEOPUACHIHIAFBI 3€PTTEY HBICAHIAPHI apaChIHIAFbl ©3apa OallyIaHBIC AHBIKTAJIIBI; AKIAPATThI
YCBIHY >KoHe Gepy VIIH XaoC IMeH JIMHAMHWKAJBIK YKYHeJIep/IiH TPaeKTOPHUSIChIH Maiigalany MyMKIiHTIKTepi
TypaJbl KOPBITBIHIBI YKACAJIIbI.

Kiam cesdep: kpunrorpadusi, akaparTbl Kopray, mudpJiey, 6efch3blK, (DYHKINs, IMHAMUKAJIBIK KYiie,
KPUIITOXKYIie, mapaMeTpJiep, TPAeKTOPHs, TYPJIEH DY, XAOTUKAJIBIK, »KYiie, ce3iMTasblK MeJIepi.
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MO,Z[G.TII/I B3aNMOCBA3M1 KpI/IHTOFpa(bI/II/I 1 Xa0TUYeCKOI ANHaAMHNKN

10

11

12

13

14

15

16

17

Kpunrorpadus 3anumaercs npobseMoil 3amuTbl nHOOPMALUK [IyTeM ee IpeodpasoBaHus (cpeicTBaMu
BBIYHC/INTEIbHON TEXHUKHU), T.€. ABJSETCI COBOKYIHOCTBIO COTJIACOBAHHBIX CpeACTB mudposanus. 1o
KPHUIITOCUCTEMON B Y3KOM CMBIC/Ie OyIeM MOHWMATH AUHAMHYECKYIO CHCTEMY C HEJMHEHHOU (QpyHKImeh u
IIPOCTPAHCTBOM COCTOSIHMIA, OOBITHO OHA TIpejicTaBieHa JuddepeHInaJIbHbIM ypaBHeHneM. PaccMoTpenst
HEKOTOPBIE YCJIOBHUsI JUHAMUYECKOU CHCTEMBI, IIOKa3aTeslb JIAImyHOBa KaK Mepa 4yBCTBHTEIBHOCTH. BbI-
sIBJIEHa B3aHUMOCBSI3b MKy OObeKTaMU M3yUeHHUsI B TEOPHH XaocCa M KPUNTOrpaduu; CHeslaHbl BHIBOIBI
OTHOCHUTEJILHO BO3MOKHOCTH UCIIOJIL30BaHUS TPACKTOPUU JUHAMUICCKUX CUCTEM C XaO0COM JIjIsl IIPeJIoCTaB-
JIEHUSI 1 1epeaadu nHMOPMAIAN.

Karouesvie caosa: kpunrorpadus, 3amura nHGOpMaIuy, mudpoBaHne, HeJuHeHAs DYHKIUS, THHAM-
qecKasl CHCTEeMa, KPUIITOCUCTEMA, ITapaMeTPhbl, TPAeKTOPHsl, TPeoOPA30BaHNE, XAOTHYECKAsT CUCTEMA, Mepa
4yBCTBUTEIHLHOCTH.
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The usage of the method of mathematical statistics in the process
of optimization of the content of antifriction composite materials

The optimum content of microtalc (dispersion d = 7...10 um) and silver carbonate (dispersion d = 0,5 pm)
fillers in polymeric materials was determined by the method of mathematical statistics to form an adhesive
and functional layers of protective coatings. The mathematical models of physicomechanical and thermophysical
characteristics of composites were obtained by the method of statistical processing of the results of the
investigation materials.

Keywords: composite, mathematical statistics, modulus of elasticity, destruction, optimization.

Introduction

Statement of the problem

The formation of constructional materials, including polymer ones, with the necessary complex of improved
properties is an important problem for today [1-12]. This problem is solved by selecting a range of fillers content
in materials, which is achieved using the method of mathematical statistics. Experimental studies related to the
optimization of the composition of protective coatings are, as a rule, multifactorial (optimization of composites
properties and fillers content). Methods of mathematical statistics allow to adequately assess the content of
several fillers of different dispersion, taking into account technological factors, a complex of physicomechanical,
thermophysical properties and reliability indicators [13-19].

Analysis of recent researches and publications

The input of fillers of various nature and dispersion into the binder is one of the methods for improving
the properties of composite materials (CM) based on an epoxy matrix. Previously, we investigated the
influence of fillers of different nature and dispersion on the physic-mechanical and thermophysical properties
of CM [20-23]. The optimum content of microdispersed (7...10 pm) and nanodispersed (100...500 pm) fillers
particles of various nature was established to form coatings of different functional purpose with increased
exploitation characteristics.

The results of the experimental studies were statistically processed using the Statgraphics application
package to predict the properties and optimize the content of each filler in the PCM.

The purpose of the work is to determine the most optimal mass part of the filler, using multicriteria selection
methods for each type of filler.

FEzxperimental results and their discussion

During the experiment, the influence of two factors (the content of microtalc (MT) and silver carbonate (SC))
on physicomechanical (modulus of elasticity under bending, destructive bending stresses) and thermophysical
(heat resistance (by Martens), temperature of the start of the destruction process) properties of PCM were
studied.

Output data for statistical processing of the research results of PCM 2, consisting of the epoxy diane resin
ED-20 grade (¢ = 100 wt %), hardened by polyethylene polyamine (¢ = 10 wt %) and filled with particles of
MT and SC, are given in Table 1.
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Table 1

Output data for statistical processing of the research results of PCM properties

The level of variation Variable factors

Microtalc content, | Silver carbonate content,
g1, wt % g2, wt %
Upper 80 0,7
Lower 60 0,3

Output data and results of the implementation of the mathematical model in accordance with the study of
PCM properties are given in Table 2.

Table 2

Output data and results of the implementation of the mathematical
model in the experimental research of PCM properties

Factors Response

Number of experiment | g1 (4) | g2 (B) I oy T To
wt% | wt% | GPa | MPa | K K

1 70 0,78 72 | 32,8 | 376 | 624
2 84 05 | 68 | 226 | 370 | 618
3 55 0,5 6,6 | 32,5 | 369 | 617
4 70 05 | 63 | 27.8 | 371 | 621
5 80 0,7 6,9 | 249 | 374 | 620
6 80 0,3 6,9 26,3 | 375 620
7 70 0,22 6,4 | 29,2 | 372 | 620
8 60 03 | 59 | 274 | 361 | 617
9 60 0,7 58 | 29,8 | 362 | 618
10 70 0,3 6,4 | 281 | 372 | 620

Note. A and B denote the content of the factors ¢; and g2 (Fig. 1).

To determine the significance of the factors, we used Pareto maps (Fig. 1, a-d) and graphs of normal
probabilistic distribution (Fig. 1, e-h).

It is shown on Pareto maps (Fig. 1, a-d) that those factors and their combinations (columns corresponding to
them on Pareto maps) that cross the vertical line with 95 % confidence probability have statistically significant
effects.

Also, the analysis of the obtained graphs of diagnostic of prediction values errors (Fig. 1, e-h) shows that the
factors and their combinations, which are substantially deviating from the straight of normal distribution, are
significant in the mathematical model, in contrast to other factors located directly at the distribution straight
line. These results confirm the conclusions of the significance of the factors of mathematical model, which were
made using the Pareto map (Fig. 1, a-d).

Excluding insignificant factors and their combinations, we received surfaces of responses for physicomechani-
cal (E, op) and thermophysical (T, Tp) properties of PCM (Fig. 2, a-d), as well as contour graphs (Fig. 2, e-h).

Mathematical models of physic-mechanical (E, o, W) and thermophysical (7T, Tp) properties of PCM are
given in Table 3.
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Figure 1. Pareto maps (a-d) and graphs of diagnostic of deviation of prediction values errors
of the output parameter from the normal distribution (e-h) for the responses E, o3, Ti Ty
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Figure 2. Response surfaces (a-d) and contour graphs (e-h)
for the response FE, oy, T and T, shown in Table 4
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Figure 3. Surface of advisability (a), contour graph of advisability (b)
and contour graphs (c) for the responses F, oy, T and T}

The optimum values of indicators of physicomechanical and thermophysical properties of PCM at the
corresponding content of the fillers (microtalc — ¢; and silver carbonate — ¢3) according to the data of statistical
processing are given in Table 4.

Table 3

Mathematical models of physicomechanical and thermophysical properties of PCM

Determination | Adjusted
Regression model coefficient coefficient
R % | R, %
E=11,59— 0,153 - q1 — 4,52 - g2 +0,00126 - g5 + 0,0125 - q1 - g2 + 4,25 - ¢3 99,8 89,6
op="7,61+0,740 - q1 + 7,78 - g2 — 0,0054 - 5 — 0,475 - q1 - g2 + 29,22 - ¢5 99,8 93,1
T =275,7+2,346 - q; + 3,589 - g2 — 0,0135-¢7 — 0,25 -q1 - g2 + 16,75 - g5 99,9 90,4
To = 525,142,596 - q1 + 5,219 - g2 — 0,0176 - ¢5 — 0,25-q1 - g2 + 7,83 - ¢3 99.9 96,1
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After obtaining polynomial regression equations (Table 3), connecting dependent and independent variables,
the mathematical model was optimized with the simultaneous consideration of all response — indicators of
physicomechanical and thermophysical properties of PCM for the purpose to determine the optimum content
of fillers. The function of advisability (preferred use) was evaluated throughout the range of this model. The
results of optimization are given on Figure 3 and in Table 5.

Table 4

The optimum values of indicators of physicomechanical and thermophysical properties of PCM

Optimum values Content of fillers
q1, wt % g2, wt %
E,pt, GPa 7,49 84 0,78
O opt ;MPa 35,5 55 0,78
Topt, K 374,1 79,4 0,78
To opt, K 622,6 70,9 0,78

Note. g1 — the content of microtalc in PCM; ¢o — the content of silver carbonate in PCM.

When optimizing the combination of experimental factors was determined for all given responses by maximizing
each of them.

The maximum value of the generalized advisability of D,,; = 0,798 (corresponding to the permissible and
good quality level on the scale of advisability) was obtained as a result of the optimization performed for PCM,
at which the content of fillers in PCM is:

q1 = 72,3 wt % — the content of microtalc;

g2 = 0,78 wt % — the content of silver carbonate.

The values of responses for the specified content of the fillers in the PCM are:

E = 7,19 GPa — modulus of elasticity under bending;

op = 34,1 MPa — destructive bending stresses;

T = 373,7 K — heat resistance (by Martens);

Ty = 623 K — temperature of the start of the destruction process.

Comparing the values obtained as a result of optimization, with the values given in Table 4, it can
be argued that the relative error will be: for modulus of elasticity under bending — 4,0 %; for destructive
bending stresses — 3,9 %; for heat resistance (by Martens) — 0,2 %; for temperature of the start of the destruction
process — 0,1 %. This allows us to confirm about the adequacy of the received data and their consistency with
the results of optimization by the criterion of advisability.

Table 5
Optimization results for PCM
Simultaneous combination of responses | Partial advisability for the appropriate Generalized
to determine advisability optimization parameter advisability
Ne ij dl D=7 H?:l dz
E Op T TO dl(E) dQ(Ub) d3<T) d4(T0) -
GPa | MPa K K - - - - -
1 10,692 | 0,692 | 0,692 0,692 0,798 | 0,692 | 0,692 0,692 0,798
2 | 0,521 | 0,066 | 0,441 0,130 0,385 | 0,521 | 0,066 0,441 0,385
3 | 0,420 | 0,677 | 0,392 0,066 0,472 | 0,420 | 0,677 0,392 0,472
4 10,264 | 0,375 | 0,488 0,420 0,551 | 0,264 | 0,375 0,488 0,551
5 10,569 | 0,177 | 0,619 0,316 0,548 | 0,569 | 0,177 0,619 0,548
6 | 0,569 | 0,268 | 0,657 0,316 0,589 | 0,569 | 0,268 0,657 0,589
7 10,316 | 0,475 | 0,534 0,316 0,570 | 0,316 | 0,475 0,534 0,570
8 | 0,095 | 0,346 | 0,066 0,066 0,258 | 0,095 | 0,346 0,066 0,258
9 | 0,066 | 0,516 | 0,093 0,130 0,303 | 0,066 | 0,516 0,093 0,303
10 | 0,316 | 0,397 | 0,534 0,316 0,554 | 0,316 | 0,397 0,534 0,554
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Conclusions

The mathematical models of physicomechanical and thermophysical characteristics of composites were
obtained by the method of statistical processing of the results of the study materials. As a result of
optimization the property metrics for the material with particles of microtalc (¢ = 70...80 wt %) and silver
carbonate (¢ = 0,7...1,0 wt %) are: modulus of elasticity under bending — F = 7,2 GPa; destructive bending
stresses — o, = 34,1 MPa; heat resistance — T = 373,7 K; temperature of the start of the destruction process —
Ty = 623 K.
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JI.A. Bunuenko, A.B. Akumos, M.B. Babwuii

MaTreMaTuKaJIbIK CTAaTUCTUKA d11CIMEH KOMIIO3UTTIK
MaTepuaJgap KypaMbIH OHTaJIaHIbIPY

MaxkaJiajla MaTeMaTHKAJIbIK, CTATUCTHKA, 9J1iCTepiMeH KOPFAHbBIC YKaObIHIaPbIHbIH, 8/INe3UAIbIK, KoHe (DyHK-
MUOHAJIBLIK KabaTTapblH KAJLIITACTHIPY YIIIH MOJMMEPJIK MaTeprasgap TOATHLIPFLIITAPhl MUKPOTATLKTIH
(mucniepcusinpirer d = 7...10 pm) xoHe Kymic kKap6oHATBHIHBIH, (mucnepcusiabirbl d = 0,5 pm) TriMal Kypa-
MBI aHBIKTaJIraH. Marepuaagap/bl 3epTTey HOTHKEJIEepiH CTATUCTUKAJIBIK OHJey 9/1iCTepi apKbLIbl KOM-
MO3UTTEPIH (PU3NKA-MEXaHUKAJIBIK, KoHe YKbLTy (PU3UKAJBIK, CHIIATTaMAaJIaPBIHBIH, MAaTeMATHKAJBIK, MOIET]
AJIBIHTBL.

Kiam cesdep: KOMIIO3UT, MATEMATUKAJIBIK, CTATUCTUKA, CEPHIMILIIK MOYJI, JECTPYKIIHAs, OHTAMIAHIBIDY.

JI.A. Bunuenko, A.B. Akumos, M.B. bBabwuit

OHTI/IMI/I38J_II/I§I COCTaBa KOMIIO3UTHbBIX MaTepHuaJioB
MeTOoa0M MaTeMaTU4eCKO CTaTUCTUKU

B crarhe MeTo/10M MaTeMaTHIeCKOH CTATUCTHKY OIPEIETIEHO ONITUMAJBLHOE COIepyKaHue B MOJUMEPHBIX Ma-
TepHaJax HAIOJHUTENeH MuKpoTaabka (mucnepcroctoio d = 7...10 MxM) n kapGonara cepebpa (aucnepc-
Hocthio d = 0,5 MKM) 117151 GOPMUPOBAHHUSI 8/IP€3UOHHOIO U (bYHKIMOHAJIBHOTO CJI0EB 3aIlUTHBIX IIOKPBITHIA.
MeTomoM CTaTUCTHIECKOH 06PabOTKU Pe3yILTaTOB UCCIETOBAHUS MATEPUAJIOB IOy YeHBl MATEeMATHICCKAE
MoJien (PUBUKO-MEXAHUIECKUX U TEIIO(PUIUIECKAX XaPAKTEPUCTUK KOMIIO3UTOB.

Karoueswie carosa: KOMIIO3UT, MaTeMaTu4IeCKasd CTATUCTUKaA, MOAYJIb YIIPYTOCTU, IEeCTPYKINA, OIITUMU3AITA.
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