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On singular integral equations with variable limits of integration

The wide range of problems of mathematical physics is reduced to a special Volterra integral equation
of the second kind or to integral equations with variable limits of integration. Among such problems we
can include: boundary value problems for spectrally loaded differential equations [1-4], inverse problems
[5, 6], nonlocal problems [7], boundary value problems for domains with moving boundaries as the domain
degenerates at the time [8, 9] and others. In the study of integral equations with a variable lower limit of
integration, the operational method can not be used directly, since in this case the convolution theorem
is not applicable. However, the Laplace transform can be used to study this kind of integral equation by
applying the method of model solutions.

Keywords: model solution, integrals operator, specter, resolvent, characteristic numbers, eigenfunctions.

1 Method of model solutions

Consider the operator equation
My(z)] = f(z), (1)

where M — some linear (integral) operator; y(x) — sought; f(x) — predetermined function [10].
Let B — be a certain well-known integral transformation

~

B{f(x)} = f(p),

denote by v(z,p) — the inverse transformation kernel B~!, which acts as follows:

b
f@) =5 {fo)} = [ Foyote.pip. 2)

Here the limits a and b and the path of integration can lie in the complex plane.

Definition. The solution of equation (1), in which the right-hand side is the kernel of some inverse integral
transformation, will be called the model solution of this equation.

Supposably y(x, p)— the model solution of the auxiliary problem for equation (1), on the right-hand side of
which there is a kernel of the inverse transformation B~! :

M [@\(xvp)} = ¢($,P)' (3)

8 Bectnuk Kaparanmauickoro yHuBepcuTera
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~

We multiply both sides of the equality (3) by f(p), and integrate with respect to the parameter p within
the same limits as in the inverse transformation (2). Since the operator M does not depend on p, using the

equality B! {f(p)} = f(x), will have
b
M3 [ F ey | = fa).

a

The last equality means that the solution of equation (1) for an arbitrary right-hand side f(x) can be written
in terms of the solution of the auxiliary equation (3) by the formula:

b
y(z) = / 3z, p) F(p)dp. (4)

We apply this method to the solution of the second-kind Volterra equation with variable lower limit of
integration

() — A / K(t — T)p(r)dr = f(1), (5)

which can not be solved by a direct Laplace transform, since the convolution theorem is not applicable here.
We consider an auxiliary equation with exponential right-hand side

o0

o(t) — )\/k:(t —7)p(T)dr = el

t

(function eP!— is the kernel of the inverse Laplace transform, Rep > 0).
We seek a solution of this equation in the form (¢, p) = A - ePt. As a result, we get

oo

et K(—p) = /k(—z) -ePdz.

0

1

o(t,p) = m

From this, using formula (4), we obtain a solution of equation (5) for an arbitrary right-hand side in the
form

c+i00 ~
1 f(p) ¢
t:f' f'@pd,
O e R

~

where f(p)— image of the function f(t) obtained by means of the Laplace transform.

2 Solution of reference equations

The main task of this paper is to investigate the following singular integral equations:

t

K = (1= AK)p = ult) = X [ Kt~ ru(rydr = F(0), € Ry (6)
0
w={T - 2K )w=v(t) - X/’C(T —tyw(r)dr = g(t), t € Ry, (7)

t

K(z) = WLE,’/Q exp (—412) . (8)

where

Cepust «Maremarukas. Ne 1(93)/2019 9
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It should be noted that the kernel of the adjoint integral equation (7) — the function K(7 — ¢) has the

following property:
/ K(r —t)dr = 1. )
t

Equation (9) means that the norm of the integral operator acting in the space of summable functions and
defined by the kernel K*(7 — t) is equal to one. This essentially distinguishes equation (7) from the Volterra
equations of the second kind, for which the solution exists and is unique.

It is obvious that equation (7) is the union integral equation for (6).

We will solve these equations by the operational method [11]. First we investigate equation (7). As noted
earlier, the Laplace transform is not directly applicable to this equation. Using the method of model solutions,
we obtain

7(p) - |1 = Aexp(—v=p)| =9(p),  Rep<0, (10)
where 7(p), g(p) — the Laplace transform, or the functions v(¢) and g¢(¢). Function

A*(p,X) =1 =X exp(—v/=p).

We extend analytically to the whole complex plane with a cut along the positive real semiaxis.
We show that the homogeneous integral equation

w={T - XK= /ICT—t )dr =0, (11)
t

for some values A € C C has nonzero solutions. In order to find These non-trivial solutions and determine the
corresponding values of A, it is necessary clarify the picture of the zeros of the function A*(p, \).
Assuming the parameter A € C to be given, we find the roots of equation

U(p) =1 — Xexp(—+/—p) = 0, p=s+io,

which for [A| > 1 have the form:
pr = sk +iop = — |In? |\ — (arg X + 2k7)?| — i2(arg X + 2kn) - In ||, ke Z. (12)

All the roots (12) are simple and are located on a parabola

1

=—— .2 —1?|). 13
PRIy Al (13)

It is clear that the branches of the parabola are facing to the right, and the vertex of the parabola is located
at the point p = —In? |\| on the real axis, and depending on the values |\| is shifted left or right along the real
axis of the complex plane of the variable p.

For |A| < 1 it is obvious that the function A*(p, \) is not zero at any point of the complexed plane p = s+ic
with a cut along the real positive semiaxis, since |exp(—/—p)| > 1.

But if [A| = 1, then the equation |\| = |exp(—+/—p)| with respect to the complex variable A has a unique
solution A = 1, which corresponds to the value p = 0.

The lines described by the equation |A\| = exp(|arg A + 2k7|), divide the complex plane of the parameter A
into disjoint domains D,,, m = 0,1, 2, ..., as follows:

2n—1 2n

Dy = {DO DI\ | Dis Dot =6, Dania = { DV |JDP kL:JO Dy, (14)

k=—1
where

DY = {X: A < exp|[(2n+ )7 —arg N}, DP = {X: [\ <exp[2nm +argA]}, n=0,1,2,...

10 Bectnuk Kaparanmauickoro yHuBepcuTeTa
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The outer parts of the boundaries 9D,,, m = 0,1,2, ..., of the domains D,,, m = 0,1,2, ..., respectively are
denoted by I';,, m =0,1,2,.... (see Picture 1).

Remark 1. Note that in addition to the domain Dy (see Picture 2) which has only the outer boundary
'y = 0Dy, each of the domains D,, has the boundary 0D,,, consisting of the outer I';,, and the inner I';,, _1:

0Dy =T 1 U, and Ty T, = (1) exp{mn},

i.e. the outer I';,, and the inner I',,,_; part of the boundary dD,, of the domain D,, have one common point
lying on the real axis of the complex plane of the parameter .

10 ,/\ —
L \ D, -
st \ 7 ™~ B
D, N\ g D,
\\\ (] )
o /\ (/
VERVAN )
. /// E) \, /1
L / - //_ 4
/ ~
/
10 // -
= o 25 2o s o = ° 5

Picture 2. Plane of the spectral parameter A (increased scale)

_ Thus, we get that A eTl,,, m=01,2.. if and only if there exists at least one point pg, for which
A*(pf)) )‘)) = 0. R

Suppose that [A| > 1. Then, according to (13) the function A*(p,)) in the left half-plane can have only a
finite number of zeros of the form (12), where

(15)

In |\ + arg X In |\ —arg X
—N; <k <Ny, N1:[||27Tg}7N2:[||27Tg}7

(here the symbol [a] denotes the integer part of the number a, whereby the integer part of the negative number is

set equal to zero). Indeed, the relations (15) follow from the condition that the real parts of the roots (12) must

take negative values, that is Re {py} < 0. Hence, from the inequality (27k +arg)? < In® || follows assertion (15).
Thus, for |A| > 1 the homogeneous equation (11) has a general solution of the form

Na
pt)y= > op-e™,

k=—N,

where ¢;, — are arbitrary constants, the numbers Ny and N are determined from the relations (15) (for given ).

Cepust «Maremarukas. Ne 1(93)/2019 11
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We now find a particular solution of the inhomogeneous equation (7). Suppose that the Laplace transform
of ¢g(t) is analytic in the —e < Rep < e. Then from equation (10) for VA ¢ T',,, (m =0,1,2,...) we obtain

exp(—v/)
I~ Rexp(—v/D)

Passing in this relation to the originals we shall have

v(p) =g + A -9(p)-

o(t) = glt) + X / ra(t = 7)g(r)dr,

where

“+100
— 1 / exp(—v/=p) exp(yp)dp. (16)

2mi ) 1—Xexp(—y/=p)

—100
If the roots of equation
1—Xexp(—v/—p) =0
lie on the imaginary axis, then we will make the integration along the contour, bypassing these points on the

left. The integral must be understood in the sense of Cauchy’s principal value.
Since y < 0, we find the residue of the integrand in (16) along the right cut half-plane

—(N1+1)
)=2 > V=pr exp(pi-y)+2 Z V=D - exp(pr. - y)+
k=—oc0 k=N3+1
1 = m m?
-y —mexp|— |, Repy > 0, Al > 1, eR_, 17
T % p( 4y) P W y (17)

the numbers N1, Ny and the roots py are determined from formulas (15) and (12), respectively.
But if |A] < 1, then

1 = m m?
T)\f(y)—WTnz::lmA + exXp (42/), yERf (].8)

Consequently, the general solution of the integral equation (7) for |A| > 1 has the form

N3

)+ )\/ _(t—=T7)g(r)dr + Z ¢k - exp(pit), (19)

k=—N,

where 7)_(0) — is determined from the equality (17), and if |A] < 1, then the integral equation (7) has a unique
solution

t) + X/ ra—(t — 7)g(T)dT, (20)

where rj_(0) is now found from equation (18), the numbers Nj, No,p;  are determined from equalities (15)
and (12).
In order for the solution v(t), defined by (19), (20), to be summable, it is sufficient that the function

A—(t — 7) be bounded for any 0 < 7 < t < 00, so 5 as a function g1 (t) + Z crexp(pit) is an integrable

function of ¢. The function ry_(t — 7) will be bounded, since rx_(6) (17) sat1sﬁes the estimate:

eA— ()] < C16] 71/ exp(—do|6]) + Cal0] /% exp(—dol6] "), VO € R_, (21)

12 Bectnuk Kaparanmauickoro yHuBepcuTeTa
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where

dp = min {1/4; [27(Ny 4+ 1) + arg A]> — In? |A|; 2n(No + 1) + arg A]> — In? |)\|} . (22)

The validity of the estimate (21) follows from the relations below. For the second we obtain from (17):

> Vprexppef)| < Al D Jexp(pid)] <
k=N3+1 k=N3+1
> y = 2km + arg A
<Al Y expf [(2k7r+ arg \)? — In? |)\|} 0} <
k= Nyl a=2m(Ny+ 1)+ In|A|

(o) oo
<t [ exp((s? ~ 1n* N)6)dy = |\ exp{-01a% [} [ exp{oy}dy =
=|lz=vy —a| = |In \| exp{—6 In* \)\|}/exp{0(a2 + 22 4 2a2)}dz =

= |In Al exp{—61n® || + 90,2}/6Xp{922 + 02az}dz <

< I A|(—0)7Y2 - exp{f(a® — In? |)|) }/exp{ (V—=02)*}d(vV=0z) = |In )| \\/fiexp{éﬁ}

where 65 = [2m(Ny + 1) + arg A]> — In? |A| > 0.
Similarly for the first term we have the inequality:

_(N1+1) ﬁ
k;m V=pr exp(pid)| < IlnAIN_—H exp{6,0},

where 0; = [27(Ny + 1) + arg A —In? || > 0.
The third term in (17) is estimated as follows:

oo 2 2 1
g|—3/2 m M g3 _m -2 <
9] mzzl o P\ g ) =101 exp 4|9| Z am 410]

m=1

1
< 9|~ 3/Qexp{ 4|0|}

For the representation from (18) for |A| = 1 we obtain the estimate:

i 3/227”6"‘)( 4|0> ﬁ/ ( 4|e>d<_zﬁzl):2|9|exp(_4|le>;

and for |A\| < 1 we have the estimate:
3/2 § 3/2 1
6 A™ C|o
o 3 e (~ i) <o e (7).

It is easy to verify that (19) is a solution of equation (7) for arbitrary coefficients cg.ck.
We state our results in the form of the following theorems.
Theorem 1. The values A € Dy in (14) are regular numbers of the operator (16).

Cepusi «Maremaruka». Ne 1(93)/2019 13



D.M. Akhmanova, K.E. Kervenev, A.M. Baltabayeva

Theorem 2. The set C\ Dy consists of the characteristic numbers of the operator K* (7). Moreover, if
A€ DL, U1 \{(-1)™e™"}, m =1,2,..., then dimKer (K*) = m; and the corresponding eigenfunctions
have the form

vak(t) = exp(pxt), k=1,..,m= Ny + Na+1,

where the numbers pg, N;, N are determined from the equalities (12), (15).

Now consider the integral equation (6), which is usually called the recovery equation [12|. This name is
explained by the fact that such equations arise in the theory of recovery — the section of probability theory,
which describes a wide range of phenomena associated with the failure and restoration of the elements of a
system. The reconstruction equation is of great importance also in the study of both applied and theoretical
problems in reliability theory, queuing theory, in reserve theory, in the theory of branching processes, and so on.

Applying the Laplace transform to (6) and using the convolution theorem in this case, we obtain

—~ ~ Aefx/p ~ ) R O
- - . = ) = 3 = > .
wp) =f)+ =5, p=stio ep=s
Using the inverse Laplace transform, we have:

t

1(p) = F(8) + A / rag(t = 7)f(7)dr, (23)

0
where the resolvent rx;(6) is defined in terms of the kernel of the original equation (6) by the formula

1 e /\67\/5 0 .
rar(0) = i / —————~=dp, p=s+z, (24)
YiNA e

c—100

the path of integration is parallel to the imaginary axis of the complex plane to the right of all the singular
points of the integrand, that is, to the right of all zeros of the function

~

A(p,\) =1—X-exp(—v/D).
The zeros of the function A\(p, A) have the form:
DPn = Sp +i0, = [ln2 Al = (arg A + 2nm)?] + i2(arg A + 2nm) - In A, n € Z; (25)

they are all simple and arranged on a parabola

2
g 2 Y
§s=— — + In” |},
41n? |A| A

the branches of which are turned to the left, and the vertex is on the real axis at the point
So = ln2 |X|
We note that the function ;&(p, A) in the right half-plane can have only a finite the number of zeros of p,

In|A] + &urg)\]7 Ny — [ln|)\| — arg )\}

26
2 2T ( )

—Ni <n < Ny, N1={

(here again the square bracket denotes the integer part of the number). Moreover, their number increases with
increasing |A|, if A € D,, (14), then their number is m = N; 4+ N3 + 1. Note that if A € Dy, then the function
K(p7 A) does not have zeros at all in the complex plane.

Let us calculate the integral (24). We continue the integrand analytically on the whole complex plane with
a cut along the negative real axis. Then, according to the theory of residues, we get:

+oo 00 5
1 m m
Pe0=2 2 Vp”'eXp@”'e”zﬁewZA'eXp<‘49);
m=1""T

n=—oo

14 Bectnuk Kaparanmauickoro yHuBepcuTera
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Rep, >0, |A>1, 6€Ry;

1 = m m?
ra+(0) = ENCEE Z mA™ - exp < 49), A< 1, 0cRy, (27)
m=1

where the numbers p,, are found from (25).
In order that the function pu(t) defined by (23) be essentially bounded, it is necessary and sufficient that the
following conditions are satisfied:

[0 expl-ptyit =0, Ny <<, (28)
0

where the numbers N1, N2N;, Ny are determined from the equalities (26), px from the equality (25).
Indeed, in this case the resolvent of the integral equation (6) for |A| > 1 will have the form (6) and at it will
have the form |[A| > 1

—(N1+1)

T+ (9) =2 Z vV Pn - eXp(pn : ‘9) + 2 Z VPn - eXp(pn : 0)+
n=-—oo n=Ns+1
+;§:ﬂex “™) Repy>0. 6cR (29)
2 /2 4\ P T g ) PR -

and will be a summable function, since it has the estimate
|ra]| < C-10]7% - exp(—80/0]) + Co - 6] % - exp(—00l6] ') V8 € R,

in which the constant dy determines their equalities (22).

Thus it is fair

Theorem 3. If A € Dg, then the inhomogeneous equation (6) is unconditionally uniquely solvable;
if A\ € C\ Dy, A\ € D,,, then for the unique solvability of (6) it is necessary and sufficient that m —
solvability conditions (28) be satisfied. The conditions (28) mean that the free term of the integral equation (6)
must be orthogonal to the solutions of the homogeneous conjugate integral equation (7).

The validity of these statements, as well as of conditions (28), can also be shown in the following way. The
image of the solution of the integral equation (6) is defined by

Ap) = 1

- B _ (30)

The following options are possible.

1. The function A(p,A\) =1 — X-exp(—,/p) does not have zeros in the right half-plane (this means that
|[A| <1 and A € Dy (14). In this case, the equation for any right-hand member f(t) has a unique solution that
is expressed in terms of the resolvent 7y, (6), defined by formula (27)

t

mwsz+A/%Hu—ﬂﬂﬂm,teR+ (31)
0

2. The function j?(p) vanishes at the points p,,, N; < n < Ns from (25), that is, in the zeros of the function
A(p, \) located in the right half-plane. In this case, the function (30) again will not have poles in the region
Re p > 0, so equation (6) also has a unique solution of the form (31), but the resolvent () is now determined

from (29). The condition f(p,) =0, N; < n < Na, on the inversion of the function f(p) to zero at the points
p = py, is equivalent to the following conditions

o0
/f(t) ce Prtdt =0; Ny <n< Na.
0
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So we have proved the following statement.

Lemma. On the complex plane C there are no characteristic numbers of the operator K (9).

Thus, it follows from the results obtained that the solutions of the integral equations (10) and (9) are
determined by expressions

[e'e] No
va(t) = g(t) +X/m_(t —7)g(r)dr + Y cr-exp(pit), t€ Ry,
f k=—N;

where the numbers py, N1, Ny are determined from the equalities (12), (15),

t

ia(t) = F(1) + A / rag(t—1)f(r)dr,  tER,.
0

and satisfy the conditions
) € LRy, palt) € Lo(Ry),
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JI.M. Axmanosa, K.E. Keprener, A.M. Basirabaera

AjinbIMaJIbl HIEKTI MHTErpaJiabl epeKIlie
WHTErpaJIJIblK TeHJEeYJIEP >KAlJIbl

MaremarukaJblk, pusuka ecenrepiniy KeH aymarbl BosibreppaHblH eKiHII TeKTi apHaibl HHTEIPAJIIbIK, TEH-
neyine, HeMece affHBIMAJIBI IIEKTI MHTErpaJIAbl WHTETPAJIBIK TeHJeysaepre, KeaTipiigi. MyHmait ecerrrep-
il immHIe Kesieci ecenTepi aTam eTyre 0OJIaIbl: CIIEKTPAJIIbl XKYKTeAreH muddepeHnaiblK, TeHIeyIep
yiuiH mekapadusik ecenrep [1-4], xepi ecenrrep [5, 6], sokasupl emec ecenrep 7], JKBUKBIMAJIBL IIEKAPAJIBI
06JIBICTAp YIIIH MIEKAapasbIK, ecenrep [8, 9] T.6. ToMenri aifHbIMAIBI MEKTI HHTErPAITAHATHIH HHTETPAJIIBIK,
TeHJIeyJIep/l OKBII-YHpPeHy Ke3iHJe »KYMBIC 9JIici, CBepTKa TeopeMachlH MaiiajaHyra O60IMalThIHIBIKTAH,
6ip/ieH KOJaHbIIMaiabl. Ajaiiia MyH/Iail HHTErPasIblK TeHIEYJIEPIl OKbII-YIPEHy YIIiH MOJEJIbIIK Iy
9JIiCiH KOJIZaHA OTBHIPHII, Jlammac TypaeHipyiH Koaganyra 601a/Ibl.

Kiam ceadep: Mozebi ey, HHTETPAJIABIK OIIEPATOD, CIEKTD, PE30JIbBEHTA, CUIIATTAMAJIBIK, CAHIaP, MEH-
ik Ti QyHKIHAIAP.

JI.M. Axmanosa, K.E. Keppener, A.M. Basrabaera

O06 0cobOBIX MHTErPAJIbHBIX yYPABHEHUSAX C IIEPEeMEHHbIMU
npejejiaMu MHTErPUPOBaHUSA

IITupokwuii crieKTp 3a7a9 MATeMATHIECKON (DUBUKK CBOJNTCA K CIIENUATHLHOMY WHTErPAIBLHOMY yYPABHEHUIO
BonbTeppa BTOporo pofa WM K MHTErpaJbHLIM yPABHEHHUAM C IEPEMEHHBIMU TIPe/IelaMi WHTCIPUPOBAHMUS.
Cpeny Takux 3a7a9 MOYKHO BBIIEUTD: KPAEBbIe 3aa91 VI CIIEKTPAJIBHO HATPYKEHHBIX IuddepeHITnab-
HBIX ypasHeHuil [1-4], obpaTuble 3anaun [5, 6], HesokanbHBIE 330aun [7], KpaeBble 3aaun Jyist obsacTei
¢ JIBIDKYIIMMACST I'PAHULAMHE, KOTJia 00J1acTh BBIpOXKaercs (8, 9] n ap. IIpu usyvyeHun nHTErpaibHbIX ypaB-
HEHWI ¢ TIepEMEHHBIM HUXKHUM TIPEJIEIOM WHTEPUPOBAHUS PAbOYMii METOJ He MOXKET ObITh UCIIOIb30BaH
HETIOCPEJICTBEHHO, TaK KaK B 9TOM CJlydae HENPUMEHUMa Teopema cBepTKh. OJIHAKO JJIsi U3YYEeHUs] TaKO-
IO MHTErpaJibHOTO ypaBHEHHUsI MOYKHO HCIOJL30BaTh ITpeobpazoBanue Jlammaca myTeM TPUMEHEHUs] MeTOoa
MOJIECJIbHBIX PEIIeHUN.

Karoueswie car06a: MOJEIBHOE PElleHNe, NHTEIPAJILHBIN OIEPATOD, CIEKTD, PEe30JbBEHTA, XapaKTEePUCTHIe-
CKHe YHUCJ1a, COOCTBEHHBIE (DYHKITUU.
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To the solution of one pseudo-Volterra integral equation

In this paper, we study a homogeneous singular integral Volterra equation of the second kind (pseudo-
Volterra integral equation). The singularity of the integral equation is shown. Properties of its kernel are
proved. The characteristic equation is constructed. It is shown that it really is a characteristic equation
for the studied integral equation. The kernel estimates of its integral operator are established. Solvability
issues of the corresponding non-homogeneous integral equation are also researched. The weight class of
the uniqueness for its solution is determined. A weight class is also established for the right side of the
nonhomogeneous equation under study. The weight class of the uniqueness for its solution is defined on the
basis of estimates for the kernel of the integral operator of the equation.

Keywords: characteristic equation, kernel, integral operator, class of essentially bounded functions.

Introduction

We study the solvability of a pseudo-Volterra integral equation:

o(t) + / K (t, 7)p(r)dr = 0,

where the kernel K, (¢, 7) is representable as a sum:

4
K(t,m) =Y K(t,7),
=1
and ( 2
1 tY + 7% tY 4+ 7
KO — . . A S I O
“ 2a\/m (t—T1)3/2 P { 4a?(t — 1) } ’
1 v W (tw _ ,Tw)2
K® — _ . . S,
w 2avm (t—732 TP\ a2t —1) [’
K® 1 1+wt! . (t +7)?
- : wpd - TT)
© ayr (-2 P\ 2t - 1) [’

1 14 wtw L (tv —7v)?2
K& — . =7 L
© T udm (- )2 eXp{ 4a2(t — 1)

This kind of integral equations arise in solving the following boundary value problem:
ou(z,t) o 0%u(z,t)
—a
ot 0x?

du B du(t) | Ou
Orle=0 dt 0z | z=tw

=0, {(z,t)|0<z<t’ t>0};

:07

where @(t) = u(t“,t),w > 1.
We will search for the solution of the integral equation (1) in the class of functions

379 (t) € Loo(0, 00);
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ie.
@(t) € Log(0,00;t27%).
The equation (1) can be written as:

o(t) + /Ot (t> o Ko (t, 7)p(r)dr = 0. )

T

Volterra integral equations of this kind were considered in papers [1-3].
1 About properties of the kernel K, (t, )

We note that the kernel K, (¢, 7) has the properties:
1)K, (t,7) > 0 and is continuous when 0 < 7 < ¢ < o0;
2) limyy, [} Ko(t,7)dr =0, to > £ > 0;
3) lim; 04 fo w(t,T)dT = 1.
The singularity of the integral equation (1) is property 3 of kernel K, (¢, 7). We prove this property.
Lemma 1. If w > %, then

lim K(1>(t T)dr = 1.
t—0+

t oW (tw+7w)2
(1) — _ —
/ Koo (tr)dr = Zaf / t—73/2 p{ 4a2(t7)}dT
¢ w4 T w-re ! (t¥ 4+ 1¢)
— . ) B G AR O S
ﬁ /0 [4a(t — 7)3/2 + 2a+/t — 7':| exp{ da2(t — 1) } T

1 bl (t° + 7¢)2
Tadr o Vier p{_4a2(t—7)}d7_‘]1_]2'

In the integral J; we make a replacement

Proof. We have:

tY + v

2a(t — 7)1/2
2 [ =3
J1 = 7 [21 exp(—2?)dr =1 — erf{ 2; }
We estimate the second integral Js:

1 R (t° + 7¢)2
T = . . —— 7 Ydr <
*TavE Jy VieT ‘”‘p{ a >}T

_1 t
w-TY?2 dr w AT 1
< . = ft‘“_f.

w1

= 2.

As a result, we get

1 t
As from conditions w > 3 and t — 0 it follows erf { } — 0, then from here we get the required ratio.

1
Lemma 2. If w > , then

lim K()(tT)dT_O i=2,3,4.

t—0 0

1
Proof. Let be 3 < w < 1. In this case, we will have at ¢ — 0:

0</tK2(t Yar < /t R 1 4 50
,T)aT > . .
- 0 “ QGﬁ 0 \/t—T 2af
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To the solution of one pseudo-Volterra integral equation

In this case, we have used the following double inequality [4; 55] for all 0 < 7 < ¢ < o0

Tt —T) <t — Y <w -7V

Lt —1).

at 0 <w < 1.
Now let be w > 1. Then we have:

' 1 P g
K2(t,7)dr < . dr =
/O w(t:7) 7= %aym /O t— )32’

= ||’7' :t-81112Oz7 dr = 2t-sina-cosada” =
9. {w—3

2aﬁ . 0

jusy . .
2 sina(l — sin?¥

21973
2a/7
The last integral is bounded (i.e. a number C;(w) is bounded) due to the existence of a finite limit for the
integrand at a unique singular point a = 7. Indeed, calculating the next limit:

)da = C1(w)

1
COS2 «v

: s 2w s 2w

. sina(l —sin“ «) . (1 —sin* a) D g 3

lim - :11W71:4w~1m}r51n2“ Yaocos? a=0,
a—= % COS2 (¢ o=y COS2 (v a— 5

we obtain at w > 1 required limit

t

lim [ KZ2(t,7)dr = 0.
t—0 Jq
For the kernels K32 (¢, )

, K2(t,7) the proof is obvious.
Lemma 2 is proved

In the sequel, we need the following lemmas
Lemma 3. If w > %, then

K{
tf_“/ § d < C =const. 0 <t < 0.
Proof. Indeed, we have:

. tKS})(t,r) - e

(t + 7v)?2
- - —— 3 dr <
0o TV 2a\f TP (t—1)3 exp{ 4a?(t — 1) T
,,w t2w
. - 3dr <
Qa\f / o t—T% exp{ 402@_7)} T
<7 1 tv tw=3 tYdx =2 dg
T = 1= - 5
|t 2a/t — T 2a\/5 da(t —7)3 dax?
1 1 (1 _ x)w_g f2w—1
= Y2 — dr =
aﬁ/o z3 P 42z | “°
” 1 31— w—3 {201 L1 _ w—32 2w—1
: / ( a? z exp{_ i }dm+/( xs) ? eXp{_ . }dm <
a7 | Jo T2 da’x 1 T2 4a%x
Clw) [2tt 2ol 22175 ! : o
< d —x)¥Tz dx =
where
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Further, if we make the following replacement in the first integral:

=3 p tw*%d
TN i

and leave the second integral unchanged, then we will have

11

8 [> ) 23w =3 {201 (1 —g)@ 2
J:W[wféexp{—f}d:ﬁ— NG TeXp T ¢ -
av?2

w—3

1
2
1 1
=3 2471,0 tv—3 t2w71
=4 . . — < (C < 0.
erfe (aﬁ) * a(2w—1) 2a exp{ 4a? } - o
Hence the assertion of Lemma 3 follows.
Lemma 4. If w > %, then

dr < C(w) =const. 0<t< 0.
0 T

leo

t (2) t 2w L, w w w)2
KP4, 1 E\27Y - -
e (), , <) T.eXP{W}dTS
0o \T (t—7)2 4a?(t — 1)

1

w \2
1 1 — v twfl t2w71 (1 — X ) |x:l b
S - ( < )|:1::0 2 ~exp{ — - 2 / Iwi%dx#»
Tl (Q-x) 3 2a 4a (I=2)l,— 0

w—1 2w—1 _ w2 L
+ sup {xw*%} [tZa .exp{t a xi) H/ 1- ~dz} < C(w) = const.

4a? 1-Z (1-2x)2

Nl=

For the kernels K3(¢, 7), KZ2(t,7) the proof is obvious.
Lemma 4 is proved.
Remark 1. Since, according to Lemma 1, there is the singularity of the kernel Ki,l) (t,7), for that the

statement of Lemma 8 holds, then for the kernel K(* (t,7) with a weak singularity (Lemma 2), the statement
of the Lemma 4 becomes obvious. This has showed the above proof of the Lemma 4.

2 Characteristic integral equation. Estimates for the kernels of integral operators

For the integral equation (2) we will construct a characteristic equation

<p(t)+/0t (t)g_th (t,7)-@(r)dr =g (t), 3)

T

where

4
K (tr) =Y K (t,7);
=1

KW (¢, 7) 1 (2w — 1) (72071 202 o3 (2w — 1) (12071 + T2w—1)2 .
oAb T = 2a+/T (1201 — T2w—1)3/2 P 4q? (291 — 720-1) ;
1 20 — 1 3/2 . $2w—2 2w — 1) ($2w—1 _ f2w—1 2
KO r) =L _ (21 cexpd 2= ™)1,
20/ ($20-1 — y20-1)1/2 4q? (291 — 720-1)

22 Bectnuk Kaparanmauickoro yHuBepcuTeTa



To the solution of one pseudo-Volterra integral equation

w— w_1)2
K(B) (t T) = — 2 . (2w — 1>3/2 't2w_2 cexXp 4§ — (Zw _ 1) (t2 ' + 7_2 1) .
b 2a/T (t20=1 — 7—20.)71)1/2 4a? (t20—1 — 720-1) )
— w— 2
K(4) (t 7_) _ 2 ] (2w _ 1)3/2 . t2w—2 o _(2w _ 1) (tz"" 1_ 7_2 1)
b a\/T (t20=1 — 7-2w—1)1/2 42 (20— — 720-1) :

Let us show that it really is a characteristic equation for the equation (1). First, we note that the kernel
K, (t,7) also has a property similar to the property 3 of the kernel K, (¢, )

¢
: (1) —
tlgr(l) ; K,/ (t,7)dr =1.

Equation (3) with the following replacements:

1 2w1—1 1 2w171
t= ’tl y T = ‘T 5
2—-1 20—-1
1 2w171 1 2w1—1
-1 = t -1 = t
¥ (2w1 1) e1(t),9 (2w1 1> g1 (t1),

is reduced to an integral equation of the form:

®1 (t1)+/0 2 Ky (t1,m1) w1 (m)dn = g1 (1) - (4)

The kernel K (¢, 7) has the form:
4 .
T) = ZKl(Z) (t,7),
i=1

where

1 t+T1 t+ 7
Kfl) (t,7) = NG . G _—:_)3/2 - exp {—452—(; )T) } ;

1 t—7 t—1)°
KEZ) (t,7) = NG (t—7)3/2 .eXp{_4c52(t—)7)};

2 1 t+ 71
KfS) (t,7) = _a\/Tr . 4(t — Ti)l/Q - exp {_4512_(; _)T) } ;

2 1 t—1)?
K§4)(t,7):aﬁ-(t_7_)l/2~exp{—4a(2(t_>ﬂ}. (5)

We found a solution to the equation (4) with kernel (5) and it has the form [5]:

/\f R(t7)-g(t)dr +C - o (1),

where the resolvent R (¢,7) = Ry (t,7) + Ra (¢, 7) has the form:

NN SR « IV N S 1) expd (T D
Ry (t,7) VT ;)( 1)" By, { p{ a2<7_t)}+3( +1) p{ a2(7_t1)}+

M\W
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+3(n+2) -exp{—%} +(n+3) -exp{—%” :
3 1

Rolt.m) = S m =t =

oo

% Z (=1)" By - [rn (6:7) + g (8,7) = T2 (6:7) = s (8,7)]5
wo (t) = 2\0/% . Z (-1)" (2n+3)Bn.exp{_m ,t}.

For the resolvent the following estimate is valid:
T3 . t3 T +T~\ﬁ-\/1?~t~7' exp T <
a? ( T) 4a?

1
t < .
e S e =

Eofoenl a5}

(t —7)%? t—7

Returning to the old variables, i.e. making replacements
p1[(2w—1) 27 = o (1);

SC?,[

= (2w—1)- 7271
t1=02w—1)-t*"" g [Qw—-1)-t*" =g(t),

we get the solution of the characteristic equation (3):
t t %—w

2 (t) = g(t) +/ () . Rh(t,T) . g(t)dT +C- 4,00((260 _ 1) . t2w—1)’
0

T

where the resolvent Ry, (t,7) will have the following estimate

1 % twfé,rwfé,rwaQ t2w71 . 7_20.)71
(Qw—l) ’ exp{(2w1)a2 (1201 _7.2w—1)} +

Rh(t? T) < OQ(W) (th—l _ 7-20.1—1)

Sl
tvTaTYTaT

2w—2 ]

e

w1 (129—1 — r20—1)F (2201 _ 720—1)

1 )3 =3 . p3w—3 { 201, o } =3 Bw—3

. T exp + =
e s i Ul Gl B e

1

20— 1
VTt e T °
<C . —_ C T
< Ga(w) (t—r)% P a?(t—7) + 4(w)tw+%. r—
Indeed:
1 5 2w— 5
=3 . 3w—3 2
e (%) I —
(20— )} (1 7)br2e? RN

Theorem 1. The general solution to the characteristic integral equation has the form

e (t)=g(t) +/0 (t> T Ry(t,7) - gt)dr + C - po((2w — 1) - $2971).
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To the solution of one pseudo-Volterra integral equation

3 Solution of an integral equation.
Regularization method by the solution of the characteristic equation

Remark 2 [6; 183]. If the (particular) solution of the integral equation

0+ [ Ky@i=f)
s given by the formula
va) = @)+ [ R0 f @
then the (particular) solution of the integral equation (with a modified kernel)

+/3a%wﬁgmwﬁ:ﬂm

mm:fm+/mewﬁguww

The same is true for solutions of the corresponding homogeneous equations.
Using Remark 2, we consider equation (1), which we represent in the form

s given by the formula

/ Ky (t, 1) o(r)dr = /o [Kp(t,7) — K, (t,7)] - o(7)dT. (6)

Assuming the right side of the equation (6) is temporarily known, we write its solution:

o(t) = /Ot[Kh(t, ) — Kot 7)] - o(r)dr + /Ot Ro(t,7)- {/OT[Kh(T, ) = Ko(r,m)] - w(Tl)dTl} dr+

+Co - o ((2w - 1) . t2w_1) .

In the repeated integral, we change the order of integration and change roles by variables 7 and 7, we
obtain

/KtT T)dr = C - o ((2w—1) - t*71), (7)

the kernel K (t,7) has the form

K(t,7)=K(t,7)+ K(t,71), (8)

where

Rt 7) = Kn(t,r) — Ko(t,7), K(t,7) = / CRitm) - [Kn(r1.7) — Ko(my. 2)ldm.

First we estimate the function K(¢,7), that is the first term of (8). For this we introduce the following
notation: _ _ o ' ‘ o
K (t,7) = PPem s KD (4 7) = PPe %, i=1,2,3.4,

where .
1 2 — 1)2 2w—1 | t2w—2 t4“"_3
Y S R s L
Qaﬁ (t20=1 — 720-1)3
1 t“’ T T
P t,7) = ;

(1) (2w — 1)(t2°«’—1 + T2w—1)2 .
(t,7) = exp {_ 4a2(t20—1 — 720-1) )

(2 +7)? } .

QY (t,7) =exp {— 12— 1)
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The following statement is true.
Lemma 5. If w > %, then
t
lim [ K(t,7)dr =0, 0 <7 <t< o0 (9)
t—=0 /o

and the following estimate is correct

tw—l -
QT Oy (w)
t—T t—T1

‘f((t, 7)‘ < Oy (w) : (10)

where Q(t,7) = min {Qnt,7); 2QL(t,T)}.
Proof. We note that from the estimate (10) immediately follows the ratio (9). Note that the estimate (10)
obvious for summands

0900 - KO ()| =238

We prove the estimate (10) for the first summand |K}(¢,7) — K. (¢, 7)|.
We have:

D ) — KO (1) =
= [P e {-@ (0} - PO ep { -1} <
e B
POt e {0} 1 -ew {-Qt.1) - @V} <
< [ (r) = P e {01 ()} +

+PO (67 |@F (6.7 = Q) (t.7)| exp { QP (1.7}

For further calculations, we first prove the following lemma.
Lemma 6. There are relationships:

[P, 7) = PO (7)] < o)

PO Q47 (t.7) = QU (k)| exp {~QW (1 7)} <

w—1 (1) T
< Cy(w) tt_Texp{—“’Q(t’)}. (11)

Proof. We introduce the notation:

t—T
tw—1 :

Pt,7) = [PV ()~ PO (L))

Then, making a replacement 7 = tz, (0 < 2 < 1), we obtain

t4w73 + t2w727_2w71 oW ) \/ﬁ _

(t29-1 — 720-1)3 (t—7)3 -

Njw

P(t,tx) = 2@15 ((Qw —-1)

{tw—1

1 14 291 14 a“
- 2w —1)% - - Vi-z=
2a/m (( w=1) (1— a2 1) (1_x)3) ’

(S]]
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2a/T (1—2)(1—a2-1)3

_ 1 =i+ 0 -a) - (14a) 1o )

I 1+t —1-2¢ 1 (w-1)-2*!t—w.av!

-1
lim d

w21 2av/7 -2 " a7 —1 TN

Let us show the validity of the second statement (11) of Lemma 2. First of all, we note that

QY 7) = Q)| < Calw) |1 —w] 127, (12)

Indeed, we have

40,2 t2w71 _ 7—2w71 t—T1

—2w w— w— w UJ2
tl_z“’\Qh(t,T)—Qw(t,Tﬂ:tl 2 -{(zw—l)(t2 T (@) }

_ t172w . (2w B 1)(t2w71 B ,7_20.)71) B (tw _ ,rw)2 4(2w _ 1)t2w717_2w71 B 419 _
4a? t—T1 t2w—1 — 72w-1 t—71
1 1—a¥)? 42w —1)a? ! da¥
:|T:m||:42{(%-1)(1_3;%—1)_( A e }
a

1—=2 1— g2w-1 1—x

i 1 f(2w— D2~ (1 —2) — 2@ (1 — 2297 1)
1 { = 2)(1—221) }

_ 2w—1 _ w
:||1*952w71”(2wfl)(1*93)ifx%1||:%Qw DIE ]

1_x2w—1
So,
2 ‘Qh(tv’r) - Qw(th” =
2w—1 11—zl 1—w 1
2w—1 ~ .
= a? = l—le‘*’—lN a? ,§<w<1,
2w—-1 ,, 4 1—-a7¢ w—1
2 v A g vl

This directly implies the inequality (12).
We now turn to the proof of inequality (11). We have:

PO | @)1t 7) - QU (E )| exp { QW (t7)} <

< Ciw) -t%‘lMexp{_m} =
= C5(w) 't%_lﬁ(tl_ﬂ% e j—aT“ eXp{_M} =
scg(w)-(tti;;'exp{‘W}'

Lemma 6 is completely proved.

The proof of Lemma 5 is completed by applying the estimates from Lemma 6.
Lemma 7. If w > 1/2, then the following estimate is correct

o 5 9 L 1 t2w71 T twfl t2w71 T
K(t <Ot 4t . - . - -
K (7] < * +\/t777' GXp{ t—T }+\/ﬁ exp{ t—T }}
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We now turn to an estimate of the summand K (t,7) from (8).

t
K(t,7)= [ Ru(t,n) K(m,7)dr,

T

using the following inequalities:

\/,7_ . tw—% t2w—1 T T2w—%
Ry(t,7) < C5(w)—5 -expy ———— ¢ + Cs (W) ————;
h(7 )— 5( ) (t—T)% p Clz(t_'r) 6( )tw+%\/ﬁ
- tw—l B 1
(5| < O1w) e { ~QUt ) | + Cal)
The estimate is carried out in four stages:
t Tm—l tw—1/2 T t2w71
D hu=[ 7= <t—n>§g'e’(p{ W}dﬁ
1
_gwmd oo (2D (1422032 (4524797 F (1-7)2 2ot (122 47) _
=1 fo (i— f)1/2' (t—i)3/2 jEg (1+Tz2)§ exp |~ [dz =
249 % tQW 1, 1 224z w—3 1202
== eXP{ }fo (W) eXP{*m}dZS
9.42w—1 $2w—1, \/’ Vier _ ft“’_l $2w—1,
< t—1 eXp{_ tf‘rT}Tﬂ-at“’T_a\/:—ir eXp{_ tfr‘r}'
Further
@ 1/2\/.7 (2w—1 o
2) 112 f mWeXp{ m}d’rl_
w1 oo (1422)3 (1422)%/2 (124 (t—7)-22 12071 (422 47) _
=t¥ 2 0 (E=n)7Z (=172 ( lz+z27-) (I722)2 exp {—?} dz =
gw—1/2 2w—1 2w
= 2 exp{_tt#r} (zljr-;/t) exp{ %}dz<
. 2w—1, V/ 2w—1,
S%exp{ tt—TT}{ atiT:;geXp{itt—TT}'
t oot TZuH%
3) In= [ A= s t—‘rldTl =
2
T — T 2 9 tz2 + 71
=z —7=(t— z - )
_|l t—m P mor=(E-n)ehn 1+ 22
- (t—7) 22 t—r p 2(t — 7)zdz
n—717={t—7 jt—T1 = 3 dm =
! 1+ 22 P22 T T (14222
3w—3/2 )
— 1/2 14+ (t—7)-2z-dz 2 2
=ty fo (1+z;—) (t—j)z' (= R C-en
t 1 . 1o (1422 \ 277 oa 1
_ w1 o
4) Igg—f,r \/'rlf-r.twr;ﬁdﬁ_t 2f0 (tz2+_,_> T1.7 <C-t

Lemma is iproved.
4 Main result

Thus, the following statement is proved:
Theorem 2. If w > %, then the kernel of the integral equation (7) has the estimate

= 1 !
K(t, ’ <Ot el + ,
‘ 7)< { Vi—T Nt—T

which means that the integral equation (2) for any

1579 f(t) € Lo(0,00)

has a unique nonzero solution: t2~% - p(t) € Lo (0, 00).
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M.T. JIxxenanues, M.I1. Pamazanos, M.T. Kocmakosa, A.O. Tanun

IIceBao-BonbTreppaHblH MHTErPAJIABIK TEeHJIEYiHiH IHeNnryi TypaJibl

Maxkasana 6iprekTi cuHrynapsbl 2-rekTi Bosbreppa umaTerpasasl regueyi (mcesno-Bonbreppa unrerpa-
JBIK, TeHeyl) KapacTeipblirad. OHBIH sPOCHIHBIH, KACHETTED] IoIesIeHreH. XapaKTePUCTUKAJIBIK, TeHIe-
yi KYPaCTBIPBUIBII, 3€PTTE/IN OTBIPFAH MHTETPAJIIBIK, TEHJCYIIH XapaKTePUCTHKAJIBIK TEHIEYl OOJIaTHIHDI
kepceTiai. OHBIH, MHTETPAJIJIBIK OIePATOPBIHBIH SPOCHIHbIH Haraaaybl aHbIKTa A6, COHBIMEH KaTap Coli-
Kec OIpTEeKTI eMec MHTEerpasiIblK TEeHJEY/IiH IIenIiMi Typajbl CypakTap KapacTBIPBLIIBI, OHBIH IIENIMIiHIH
KAJIFBI3JBIK KJIACHI aHBIKTAJIbl. COHbIMEH Oipre 3eprTesin OThIpraH OIPTEKTI eMec TEeHJEY/iH OH KAFbl
VIIiH CAJIMAKTBIK, KJIACHI TafaibIH A Ibl. OHBIH MENIMIHIH »KaJFbI3IbIFbIHBIH, CAJIMaKTBIK KJIAChl TEHJIEY-
JIiH, MTHTErPAJIIBIK, ONIEPATOPBIHBIH, OaFaiaybl HETi31He OPHBIKTHIPBLIFAH.

Kiam cesdep: cunarraMaliblk, TEHIEY, AP0, HHTErPAJIIBIK, OIIEPATOD, eJIeyJIl meHereH hbyHKIUIIAp Kiac-
Taphbl.

M.T. JIxxenanues, M.I. Pamazanos, M.T. Kocmakora, A.O. Tanun

K pemenuio ogaoro mceBio- BosbTeppoBoro
VHTErpaJibHOro ypaBHEHUS

B cTaThe m3y9eHO OMHOPOIHOE CHHTYJISIPHOE MHTErPAJIbHOE ypaBHeHHe Bosbreppa BTOporo pona (mcesmo-
BosbreppoBo naTErpasbuoe ypasHenue). JlokazaHbl CBOHCTBa ero siapa. 110CTPOeHO XapaKTepUCTHIECKOe
ypaBHeHne. [lokazaHo, YTO OHO JEHCTBUTENIHHO SIBJISIETCS XaPAKTEPUCTHIECKUM yPaBHEHUEM HCCJIE/LyeMO-
IO MHTETrPAJbHOIO YPABHEHUSI. YCTAHOBJICHBI OLEHKU $IJPa €ro MHTEIPAJBLHOrO oleparopa. PaccMoOTpeHbr
TaK>Ke BOIIPOCHI PA3PEIIMMOCTU COOTBETCTBYIOIIET0 HEOIHOPOJIHOIO HHTErpaIbHOrO ypaBuenus. Oupemesiexn
BECOBOIl KJIACC €IMHCTBEHHOCTHU JJIsl €r0 PellleHus. Tak»kKe YCTaHOBJIEH BECOBOMH KJIACC JJIS IIPABOM YacTH
HCCJIEyeMOTO0 HEOHOPOJIHOTO ypaBHeHUs. BecoBoil KjiacC €IMHCTBEHHOCTH €O PEIIeHUsl YCTAHOBJIEH Ha
OCHOBE OIIEHOK $JIpa MHTEr'PAJBLHOIO OIIEPATOPA YPaBHEHU.

Karouesvie crosa: XxapaKTepUCTUYECKOe yYDaBHEHHE, sIIPO, MHTErPAJIbHBIN OIEPATOp, KJIACC CYIIECTBEHHO
OrpPaHUYEHHBIX (DYHKIHIA.
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On solving a linear control problem

The problem of a linear regulator is considered. There is a system of linear differential equations with a
quadratic control quality criterion. The method of dynamic programming is applied to the solution of the
considered linear problem. As is known, the main difficulty in applying this method is to integrate partial
differential equations. In this problem, the obtained optimal control function depends on the solution of
the Riccati equation. In [1], conditions were obtained under which there is a solution to such optimal
control problems with a quadratic quality criterion. These conditions were obtained along with formulas
for minimizing control and for optimal trajectory. But all these statements depended on the ability to solve
the matrix Riccati equation under certain boundary conditions given at some time point. To construct a
solution to the problem under consideration, a system of 2n adjoint differential equations is constructed.
After splitting the transition matrix of this system into block ones, it is possible to express the state of
the system at the time instant ¢ through the state variable and the adjoint variable at the final time
instant ¢1. A feature of this work is that an example is given, where the solution of the Riccati equation,
which determines the optimal solution of the problem, was obtained explicitly.

Keywords: dynamic programming, optimal control, evaluation of control quality, quadratic quality criterion,

adjoint equations.

The system of controls expressed through the linear differential equation is given
= AW)(t) + Bty alto) = o, (1)

where A(t), B(t) — continuous matrixes of dimension (n x n), (n X ¢q) [1, 2].
The functional that evaluates the quality of control is given in the form:

1= [ 0D + wTO R drt paT(0)Qetr), 2)

where D(t), @ — is a nonnegative definite symmetric matrix of size (n x n); R(t) — positive definite symmetric
matrix of size (¢ x ¢). It is required to find the optimal control function u°(¢, z) for problem (1), (2). To do
this, we make the Bellman equation [3]

T
ngn{asg;x) N <58(8txx)> [A(t)z + B(t)u] fg[xTD(t)x(t) MTRW} o

s(ty,x) = —%mTQ:U. (3)

Let’s differentiate the expression in square brackets by v and equating the result obtained to zero, we obtain
the control function.

_ 0s(t, )
O, z) = R ()BT (t) ——— .
Wt ) = R (0BT () 2L
The solution of equation (3) is found in the form
L 7
s(t,x) = 2% Kz, (4)

where K (t)— is an unknown symmetric matrix of size (n x n).
Expression (4) substituting into the relation (3) we obtain the following equation:
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K =-AT(t)K(t) — K(t)A(t) — K(t)B(t)R™' ()BT (t)K (t) + D(t);
K(th) = Q.

As shown in this paper, the existence of many problems of the theory of optimal control is obviously related
to the problem of the existence of a solution to the matrix equation of Riccati in some boundary conditions at
any given time.

Now we consider one method for solution the Riccati equation. To do this, using the variable p conjugate
to the variable z and using method of a variation

& = A(t)x(t) — Bt)R™' BT (t)p(t),
we obtain a linear differential equation
p=—AT(t)p(t) — D(t)z(t).

Boundary conditions of this problem
z(to) = wo, p(t1) = Qu(t1).

By combining these two differential equations, we make a system of (2n) equations

G )= (0 ™) (Ga))

The fundamental matrix (transfer) of this system has the form

. @(t,t) (I)(t,t)
(¢, to) = < Dart, to) st to) )

When you partition the transition matrices into block matrices it is possible to express the state system
in timepoint ¢ through the state variable and the conjugate variable at the final timepoint 2 as follows: final
timepoint ¢; as follows:

.If(f,) = (I)ll(t, t1)$(t1) + @12(t, tl)p(tl).

Further from a condition p(#1) = Qz(t1) receive
z(t) = [Pui(t, t1) + Pr2(t, 1) Qla(tr). (5)
Thus, for the conjugate variable we obtain
p(t) = o1 (t, t1)a(tr) + Poa(t, t1)p(tr) = [P21(E,£1) + Paa(t, t1)Qx(tr). (6)
Excluding x(t1) in the expressions (5) and (6) we obtain the following ratio:
pt) = [@a1(t, tr) + Po2(t,11)Q) - [@11(t 1) + Pra(t, t1)Q) 2 (8). (7)

From expression (7) it is visible that between functions p(t) and x(¢1) there is a linear relationship.

here
K(t) = [®o1(t, t1) + Paa(t, t1)Q] - [P11(L, 1) + P12(t, tl)Q]’l. (8)

So, if we consider such a problem of a linear regulator, then the optimal control function will take the form
u(t, ) = —R™'(t) BT (1) K 2(t),

where K(t) (8) — is the solution of the Riccati equation [4].
Consider an example that can be used to determine the exact solution of the Riccati equation using these
results.
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Let the following control problem be given:

1 =x9;  21(0) = z10;

. 9
Bo =u;  22(0) = @20; ©)
1, Lo, :
I=-2it)+= | (z5+u”)dt — min.
2 2/
The solution of this problem is looking for the method of variation. Equality
u(t) = p(t),

substituting into the equation (9) we obtain the following system of the equations

#1 =x9; 21(0) = z10;
o =u;  x2(0) = xa0;

p1=0;
P2 = —p1 + 2.
To find the control function that determines the optimal solution of this problem, it is necessary to find a

solution to the corresponding Riccati equation. Now consider this in practice. Let’s assume that the transition
matrix connected with a type of the solution of system (9) is defined.

1 Sh(t — tl) t— tl — Sh(t — tl) Ch(t — tl) —1
0 ch(t—t 1—ch(t—t sh(t —t

att) = | | (O 1) 5 1) (O 1)
0 Sh(t — tl) —Sh(t — tl) Ch(t — tl)

Let the matrix be divided into blocks

1 sh(t—t . [ t—ti—sh(t—t1) ch(t—t;)—1Y
‘I)“:(o chgt—ég)’q’”_( lich(t(—tl)l S(h(t_ltl) )

o ( 0 sh(to— t) ) PP ( —sh<tl—t1) ch(to—tl) )

In this case, the solution of the Riccati equation, determining the solution of this problem will take the form
(8).
K(t) = [®a1(t,t1) 4+ Po2(t, 11)Q)] - [11(t, 1) + Pra(t,£1)Q] .

Substituting the given matrices here, after simple transformations, this matrix will take the form

1 0 1 Ch(t — tl) —Sh(f — tl)
K(t) = ( —sh(t —t1) sh(t—t) ) @ ( ch(t—t))—1 1+t —t, —sh(t—t) ) -

1< ch(t —t1) —sh(t —t,) >
e\ —sh(t—t1) (L+t—t1)sh(t—t1) )°

(10)

Here designations ¢ = (14t —t1)ch(t — t1) — sh(t — t1) are entered. From this formula, the elements of the
matrix are written in the following form:

Kllzé'ch(tftl); Klgzé' (75h(t7t1)),
KQl = . (7Sh(t — tl)); K22 = % . Sh(t — tl) . (]. +t— tl).

1
©
Let’s check that the matrix K (t) (8) satisfies to Riccati equation.
01 0 10 0 0
=(00) o= (V)e=(on) o=(0 V) e
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The Riccati equation can be reduced to the form:
K =—-ATW)K(t)— K(t)A(t) — K#)B#)R™ (t)BT (t)K (t) + D(t). (11)
Let’s calculate the derivative of the function on the left side of the Riccati equation

K:1<K” Kis ) _ 1 <Sh(t_t1)sh2(tt1) sh(t —ty)cht —t1) — (1 4+t —t1) )

302 Kgl KQQ ? Cht—tl)—(l—i-t—tl) (]_+t_t1)2_sh2(t_t1)

where
Y= (1 +t— tl)Ch(t — tl) - Sh(t - tl);
().O = (1 +t— tl)Sh(t - tl).
At first we will check that the left part of the equations are equal to these values.

K =—-ATt)K(t) — K(t)A(t) — K(t)Bt)R™'(t)BT (1)K (t) + D(t) =

_ 0 0 (0 Kin ) [ Ki2Ky Ki2Ky n 0 0y _
K Ko 0 Ko Ko Koy K3, o
_ 0 K [ Ki2Ka1 Ki2Ka ) _ ( KoKy Ki1 + Ki12K9 ) _
Ky Ko+ Ko KyKsy K3, —1 K1+ KyoKa1 Kig+ Koy + K3, — 1

_1( —sh2(t —ty) sh(t—tl)ch(t—tl)—(1+t—t1))
T2 \Ush(t—ty)ch(t—t1) — (1L +t—t1) (1+t—1t1)% — sh?(t —t1) ’

where o = (1+¢ —t1)ch(t —t1) — sh(t —t1), ¢ = (L +t—t1)sh(t — t1).
After simple transformations, we obtain that the expression on the right side of the equation is equal to the
value of the derivative expression on the left. So the function (10) is the solution of the Riccati equation (11).

K =—-ATM)K(t) — K(t)A(t) — K(t)B(t) R~ (t)BT (t)K (t) + D(t);

K(t1) =-Q.

Using the solution of the obtained Riccati equation, we determine the optimal control function, which is the
solution of the considered task.
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M. Myxrapos, A.X. Kamugosaii

BackapyabiH 6ip CBIBBIKTHIK TE€HAEYIHIH MIEINyi >KaiJIbl

MaxkaJsafga ChI3BIKTBI perTerim ecebi KapacThIpbLIabl. ChIBBIKTHI AuddepeHInalablK, TeHaeyaep Kyieci
JKoHe 6acKapy CallachlH GarasiaiiThiH KBaJApaTThIK Oeiri (Kpurepwmii) Gepinren 6osicein. Ecerrriy menrivin
Taby YIIiH JUHAMUAKAJIBIK, 6araapJiay 9ici KOJIaHbLIbl. AJT OCBI 9JICTI KOJIAHYIBIH HET13T KABIHIIBLILIEBI
Jepbec TYBIHJBLIBI TeHJIey i uHTerpasgay ekeni 6eiriiai. Ocbl KapacThIPBLIBIIT OTHIPFAH €CeTe AJIbIHTAH
tuiMai 6ackapy dyHKuusicel Pukkaru Tenneyinin memimine toyesai. Konpansicrars 1] onebuerre ocbis-
Jaii KpuTepuili KBaapaTTHIK OOJATBHIH THIMII O6acKapy ecermrTepiHiH menriMaepiriy 6ap GOJybl IIapTTaphI
KeJiTipisiren. By maprrap MuHEMYMIaIaThIH 6ackapy (PyHKIUIAPbl VIIH »KoHe THIM/II TPAeKTOPUIaP-
ablH dopMysiagapbeiMeH Oipre asbiaraH. Bipak Ta Oyil TY>KBIPBIMJAp MaTPHIAJILIK PUKkaTyu Teneyiniy,
KaHgalmaa 6ip yakpIT Me3riiiHze, Oenriai 6ip mekapasblK MapTTapbl OPBIHIAJIFAHIA MIemTiMinig 6ap 60-
JIYbI MYMKIHIIJIIriMEH FaHa 0aifljIaHbICThI aJbIHFaH. KapacThIPBLIBIIT OThIPFaH €CEeITiH MIeNiMiH Kypy YIIiH
Tyitingec 2n guddepeHImMaIbIK, TeHIeyIep Kyiteci Kypblaaabl. Ocbl XKyiieHiH KOILy MaTpPUIAChIH OJIOK
MaTpHuIaIapra OeJITeHHEeH KeliH KyieHiH ¢ yaKbIT Me3TiTiHIeri KyhiH KyHeHiH afHbIMAJILICBIHBIH, Kyii
MeH TYyHiHjeC alfHBIMAJIBIHBIH {1 YaKbIT Me3TijiHgeri KyiiMeH OailjilaHbICThIpyFa 00Ja bl. Byl KyMBICTBIH
epekimesiri ecentiy TuiMal 6ackapy QyHKIMACHIH aHBIKTATHIH PUKKaTy Ten/eyinin memnrimi afikplH Type
aJBIHFAH MBICAJI KAPACTHIPBLIFAH.

Kiam cesdep: nunaMukaJIblK OarmapiaMalay, OHTaiIel 6ackapy, cama 6ackapymapl Oarajiay, CalmaHblH, KBaI-
PATTBIK, KOPCETKIIIT, KOCapJIaHFaH TeHIEYIep.

M. Myxrapos, A.X. Kamumosmait

O pentenum ojHOI JIMHETHON 3aaYUM yIIPABJIECHUS

Paccmorpena 3amaga nuneitHoro peryiasitopa. Vmeercs cucrtema nuHEHHBIX auddepeHIInaIbHBIX yYpaBHEe-
HUN C KBaJ[PATMYHBIM KPUTEPUEM KadecTBa ylpaBieHus. Jlyisi pemreHust 3aja4u MPUMEHEH METOJ, JINHA-
MHUYECKOTIO IpOorpaMMupoBaHusi. Kak M3BeCTHO, OCHOBHAsl TPY/IHOCTb IIPUMEHEHUS STOTO METOJ/Ia COCTOUT
B MHTETPUPOBAHNN YPABHEHMS C YACTHBIMU MPOU3BOAHBIMU. B maHHO# 3amade moJsiydeHHas ONTUMAJIbHAS
yupassstiomast byHKIUS 3aBUCUT OT pelleHusl ypasHeHus Puxkkaru. B [1] Obuin mosty4eHsl ycioBust, nupu
KOTOPBIX CYITIECTBYET PEIIEHNE TAKUX 3329 ONTUMAJIBLHOIO YIPABIEHUsI ¢ KBAJPATUIHBIM KPUTEPUEM Ka-
9eCcTBa. DTU YCJIOBUU OBLIU MOYyYEHBI BMeCTe ¢ (POPMYIAMH JJIsi MUHUMHUIUPYIOIETO YIIPABJICHUS U JIJIsT
onTUMaJIbLHOIN TpaekTopuu. Ho Bce 9TH yTBEpXKIEHMs 3aBUCEJIN OT BO3MOXKHOCTU PEIIUTH MATPUIHOE yPaB-
HeHnne PUKKaTW mpu ONpeie/IeHHBIX TPAHUYHBIX YCJIOBUSIX, 3aJAaHHBIX B HEKOTOPBI MOMEHT BpemeHu. JIjist
IIOCTPOEHUS PEIeHns PACCMATPUBAEMON 33/1a9M COCTABJISIETCS CHCTEMA 27 COMPS2KEHHBIX JanddepeHtin-
aJIbHBIX ypaBHenwuii. [locsie pa3buenus: epexoHoil MaTPHILl ITOW CUCTEMBI Ha BJIOYHBIE MOXKHO BBIPA3UTH
COCTOsSTHUE CHCTEMBI B MOMEHT BPEMEHU t Yepe3 MEPEMEHHYIO COCTOSHUSI W CONPSIXKEHHYIO TEPEMEHHYIO B
KOHEYHBIH MOoMeHT BpeMeHu t1. OcOBEHHOCTBIO 9TO pabOThI ABJISETCS TO, YTO IPUBOJUTCA IPUMED, TJIe
pelienre ypaBHeHus: PUKKaTH, olpeessiioniee ONTUMAJIBHOE PEeIlleHre 3a/[a49H, [T0JIyY€HO B SIBHOM BH/IE.

Karouesvie crosa: quHAMIYECKOE IPOIPDAMMUPOBAHIE, OITUMAJBbHOE YIIPABJIEHHE, OIIEHKA KA4eCTBa YIIPaB-
JIEHUsI, KBaJPAaTUIHBIII KPUTEPHUII KadeCcTBa, IPUCOeINHEHHbIE YDABHEHN.
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On the bounded invertibility of a Schrodinger operator
with a negative parameter in the space Ly(R")
The Schrodinger operator L = —A + ¢g(z), * € R", is one of the main operators of modern quantum

mechanics and theoretical physics. It is known that many fundamental results have been obtained for
the Schrodinger operator L. Among them, for example, are questions about the existence of a resolvent,
separability (coercive estimate), various weight estimates, estimates of intermediate derivatives of functions
from the domain of definition of an operator, estimates of eigenvalues and singular numbers (s-numbers). At
present, there are various generalizations of the above results for elliptic operators. For general differential
operators, the solution of such problem as a whole is far from complete. In particular, as far as we know, there
was no result until now showing the existence of the resolvent and coercivity, as well as the discreteness of
the spectrum of a hyperbolic type operator in an infinite domain with increasing and oscillating coefficients.
It is easy to see that the study of some classes of differential operators of hyperbolic type defined in the
space La(R"™), using the Fourier method, can be reduced to the study of the Schrédinger operator with
a negative parameter : Ly = —A + (—t* + itb(z) + q(z)), where t is a parameter (—oo < t < 00), i* = —1.
Hence, it is easy to see that we get —t> — —oo when [t| — oo for the operator L:. Consequently, a
completely different situation arises here compared to the Schrédinger operator L = —A + ¢(z), and in
particular, the methods worked out for the Schrédinger operator L turn out to be little adapted when
studying the Schrédinger operator L; with a negative parameter. All these questions indicate the relevance
and novelty of this work. In the paper we study the problems of the existence of the resolvent and the
coercivity of the Schrodinger operator with a negative parameter.

Keywords: Schrodinger operator, singular differential operator, hyperbolic type, negative parameter, coercive
estimates, resolvent.

1 Formulation of the main results

In the paper, the Schrédinger operator with negative parameter
Ly =—A+ (—t* +ith (2) + ¢ (z))

is studied in the space Ly (R"). Here, —oo <t < oo, i2 = —1, A is the Laplace operator,
x = (x1,22,...,2,) € R™

The operator L, as is easily seen, arises naturally in the study of singular differential operators of hyperbolic
type in the space Ly (R™1).

As is well known the existence of the resolvent (self-adjointness) of the Schrédinger operator A + ¢ (z)
for t = 0 is sufficiently well studied in research of T. Kato [1], M. Reed and B. Simon [2], B.M. Levitan,
M. Otelbaev [3], M. Otelbaev [4, 5], R.S. Ismagilov [6], F.A. Berezin, M.A. Shubin [7], K.Kh. Boymatov [§],
C.F. Yang [9], A. Zettl [10], T. Iwabuchi, T. Matsuyama, K. Tanigichi [11] and others.

The existence of the resolvent for ¢ (z) = ¢1 () +ig2 () ¢1 () >0, g2 (x) > 0 is investigated in the papers
of V.B. Lidskii [12], M. Otelbaev [5] and others.

Naturally, a similar question should be investigated for the operator L;, i.e. should be studied the question:
does there exist a bounded inverse operator L; ' for all t € (—oo; 00)? Also the question of coercive estimates
for the operator L; has been studied in the paper.

We denote by ¢, co, ¢1,... different constants (different in different places), which exact values are not
important to us; R" is n-dimensional real Euclidean space; = (21,2, ...,2,) point in R™; |||, is the norm
in Ly (R™); D (L) is a definition domain of the operator L;; C5° (R™) is a set of infinitely differentiable and
compactly supported functions. Other notation will be introduced along the course of the exposition.
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Here are the formulations of the main results.
Consider the operator

(Le + pl)u=—Au+ (—t* +ith (z) + ¢ (z) + p) u

originally defined on the set C§° (R™), where p > 0.

Further, we assume that the coefficients b (x), g (z) satisfy the conditions:

i) |b(x)] > do >0, ¢(z)>d > 0 are continuous functions in R™.

The operator L; + ul admits closure in the space Lo (R™), which is also denoted by L + pl.

Theorem 1.1. Let the condition 7) be fulfilled. Then the operator L + uE is boundedly invertible for u > 0
in the space Lo (R™).

Theorem 1.2. Let the condition ¢) be fulfilled and g > 0. Then the following estimates

@) Y || 22, + ||Va @l < e L+ unyull
b) S (22|, + || Va @l + | Vi e @], < e I+ unyul,

hold for all w € D (L) and all |¢| > 8 > 0, where ¢ > 0 is a constant.
2 Auziliary estimates and lemmas
Lemma 2.1. Let the condition ¢) be fulfilled and g > 0. Then the estimate

¢ (@) I(Le+ pl)ully = (6 +m)" [lull, (1)

holds for all w € D (L;), where ¢ (6) > 0.
Proof. Let u € C§° (R™). Then the equality

(L + pl) uyu) = / (—Au+ (—t* +ith () + ¢ (z) + p) u) - udz =

holds, where (-, -) is a scalar product in Ly (R").
Hence we have that

" du
(et nDua)| = [ 30
=1 v

2
dx + / (—t* +ith () + q (z) + p) u|® dz,
Rn

ou
(“)xi

2
dx—i—/ (q () + p) |ul? dx—/ 2 |ul? da.
n Rn

The last inequality implies the following inequalities

((Le+ )= [ 3

ou
al‘i

2
dx — / 2 |ul? da;
RTL

|<<Lt+uz>u,u>\z/

? da — 2 ul? da.
@l [ Rl 2

Using the Cauchy inequality with £ > 0, here ¢ = g, we find from (2)

1 1
sl D=5 [ @@+l o= [ 2 da, 3)
R™ R™

Further, we consider the following scalar product
n

of (3
" \i=1
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From (4) we find that
(Lo + ), —itu)| > /R 42 1b ()] uf? d. (5)
Since |b ()| > dp > 0 then we obtain from (5)
(Lt + ), —itu)| > £2 - 6 - Jul]2.

Hence , , ,
I(Le + pI) ully - > [t - 05 - fJull3 - (6)

Multiplying both sides (6) by a number ¢y > 0 we have
o l(Le + pl) ully > co - |t - 65 - [ull3 - (7)

Combining (7) and (3) and choosing the number ¢o > 0 so that |¢]* 62¢o — |t|* > 0 we obtain that

<Co " ;) IEe+nnyull = [ @@+ )l de

Hence, taking into account the condition 4), we find

Ve@) (L + ul)ully > 6+ @) ull,

where ¢(8) = (co + §). The inequality (1) is proved.
We take the collection of non-negative functions {¢;}, j > 1 from Cg° (R™) such that

Zgojz , suppyp; C Aj, UAjER”,
J

Jj=1

where A; — is open sets which intersection multiplicity is not higher than a some number & = £ (n) < co. The
existence of such coverage follows from the results of [13-15].

Continue b (z), ¢ (x) from A; on the whole R" so that their continuations b; (z) and g¢; () are bounded
and periodic functions of the same period.

By Lt j,o + I we denote the closure of the operator

(Lt jo + ) u=—Au+ (—t2 +it (b (z) + ) + g, (z) + u) cu
defined on C§° (R™), where the sign of the real number « coincides with the sign of the function b (z), i.e.

a-b(x) >0 for z € R™.
Lemma 2.2. Let the condition ¢) be fulfilled. Then for ;1 > 0 the estimate

¢(6) (Lo + 1) ul gy = (54 )2 ull 1y (8)

holds for all w € D (Ly ;) in the space Ly (R™), where ¢ () > 0.
Proof. Let u € C§° (R™). Then we have

Hence we have the following inequalities

(Lt jo + pd) u,u)| >

2
dx +/ lg; (z) + ] - |u|2 dx
RTL

- ‘/ 2 |ul? da
Rﬂ,

ou
8xi

n du 2 )
(et Tl oyl = [ 37| do = [ 2l d )
J La(R™) 2 R‘IL’L.:ZI 8151 R
1 2 1 2 2 2
1L uDul} = 5 [ gy @) P da = [P da, (10

. oy . . . _ 6
In the inequalities (10) we have used the Cauchy inequality with ¢ > 0, where ¢ = §.
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Further, we consider the following scalar product

(Lt jo + pl) u, —itu)| =

der [ 2 + g (x)+u]-|u|2d:c+/ t2 (b () + ) |ul® dz| .
Rn,

R™

—1it
o 2l
Hence, and by virtue of the condition « - b (z) > 0 we have for z € R"
(Lt ja + pl)u, —itu)| > tQ/R (165 ()| + |a]) uf® dz.
From the last inequality we find that
2 2 2 2
(Lt o+ pl) ully = (87 (G0 + [af)™ - [|ull; - (11)
Combining the inequalities (10) and (11) and choosing « so that (8 + |a|)* =1 > 0 we obtain
1 2 21 2
5 I(Ltga +ul)ully + [(Leja +pl)ull; 2 5 . g5 (x) + p] - |u]” dz. (12)
From the inequality (12) we find that
¢ (0) 1(Lt g + ) ully > /6 + poffull;

where ¢ (0) = 1/2 (3 + 1). Lemma 2.2 is proved.
Lemma 2.3. Let the condition ¢) be fulfilled. Then for x> 0 the estimates

(B i)l > ek 13
) n ou 2 2
Eagatun)uld = 32 |24 H\/qj @+ |+ /11 @+ faDu (14)
=1 L2 2
hold for all w € D (Ly ;o) and |t| > B > 0, where 8 > 0 is any positive number.
Proof. From the inequality (9), using the Cauchy inequality with € > 0, we have
Ou 2
3o WL+l el + 5l > [ Z D gt [
Now we take € = g. Then from the last inequality we obtain
1 2 i ou 2 é 2 2 2
ACESUDRCED S el I YR (15)
From (11) and (15) we find that
ou o, 2 2 2 _ 42 2
5 et kDUl + Lo+ a0 ully = 30| 2 = Sl + (17 B+ lal)” = ) - a3
Hence, choosing a so that [t|? {(50 +la])® - 1] > 0, we have
1 2 - ou 2 é 2
1) g+ Dyl = D2 9 . (16)
i=1 v
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From (16) and (12) we find that

1 1
(5+1) WZesa b unyuld + (5+1) Wasa+ u0)ul} 2

n 2

5>

i=1

ou
Bxi

) 1
Sl [ @)+ al e
R n

2

Hence

1
2 (5+1) IEuga -+ nDyul 2

)

From the last inequality we find

5 | 9 1 2
8%24mm+4ég%@wuym(M+4ég%uwurwwn

2 2
+H1/q]‘ () +pu
2

ill2

2
+ ‘\/Qj () +pu
2
where ¢ () =8 (4 + 1). The inequality (13) is proved.

Prove the inequality (14). Let u € C§° (R™). Then integrating by parts the scalar product

1
(5 +1) IEs 1) ulf >

Finally, we have
2

i

¢ (8) [|(Lejo + pl) ul3 >
=1

.Z‘i2

(Lt ja + pl) u,u)| >

/ it (b; () + ) Juf? de|

Hence, by the condition ¢) and also taking the property « - b (z) > 0 into account, we have for x € R"

1 1 1
g Cesa e ndyully = 5 [ 10 @1+ fal) o+ 5 [ 1 (b )]+ o) = 5] P o
Rm Rn

We have used here the Cauchy inequality with e > 0. Now, taking |t| > 8 > 0 into account and choosing
€ > 0 so that [t (do + |a|) — 5 > 0, we obtain the estimate

2

e+ Dyl = /15 @)1+ o

(17)
2

The estimate (14) follows from (13) and (17). Lemma 2.3 is completely proved.

Lemma 2.4. Operator L ; o + pf for g > 0 has a continuous inverse operator (L; ;o + pI)™" defined over
the whole Ly (R™).

Proof. The estimate (8) implies that for the proof of Lemma 2.4 it suffices to show that the range of values
R(Ly,jo + pI) of the operator Ly ;o + pl coincide with Lo (R™). We prove this by contradiction.

We assume that there exist an element v € Ly (R™), v # 0, such that for any u € D (L; ;o)

(Lt j,a +pl) u,v >=0.
From the last equality we obtain
(Lt +pI) v = =Av + (=t =it (bj (x) + @) + g; (x) + p) v =0 (18)

in the sense of distributions. Since b; (z) v, ¢; (x)v € Ly (R™), then (18) implies that Av € Ly (R™) for finite ¢,
i.e. v € W2 (R"™). Now, if for any v,, € C§° (R™) the inequality

[(Leja + D)™ v]], > cllvll (19)
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holds, where ¢ > 0 is a constant then it also holds for the element v € W (R™). Indeed, there exists a sequence
{v,} C C§° (R™) for v € W (R™) converging to v (z) in the norm W2 (R™). It is not difficult to prove that the
inequality (19) holds for every v,, (z). This is proved in exactly the same way as the inequality (8) in Lemma
2.2. Passing to the limit with respect to n — oo, we obtain, as is easy to see, the inequality (19) for v (z) (this
procedure is briefly called the closure of the inequality (19) in the norm W3 (R")), i.e.

|(Les + D) ol = ol
Since (Lt jo + wul)* v =0, then the last inequality implies that v = 0. Lemma 2.4 is proved.
Lemma 2.5. Let the condition ¢) be fulfilled and u > 0. Then the following inequalities
—1 c _ .
2) H(Lt’j’a 1) Hzaz = (O6+m)17?? c=c(0)>0;
b) || Da (Lo + uD) | c=c(8)>0
hold, where D,, = -2-

i

Proof. The estimate a) follows from the estimate (8). The estimate (8) also implies the inequality

< _c
92 = (6w

c(6
m(ﬂ;l/g |(Logia + ) ully = [l (20)

From the inequality (9), using the inequality (20), we find that

c(9) 2 / ol / 2
———— ||[(Lt,j,o + ) u||5 > de —1 ul|” dx. 21
S s+l 2 [ 335 Ju (21)
Multiplying both sides of the inequality (11) by the number ﬁ, we find the following inequality
1 2o [t @G0 +aD)® o
(Lt g+ pl) ully = 3 - (22)
G+ 7 ? Vo +p :

Now combining (21) and (22), we obtain

6(5)+1 2 " 8U 2 2 (50—|—|oz|)2 2
—_— L7‘,a+/,(,] u Z/ d$+t — -1 u|” dx.
T Caat bl > [ S50 doe i [ Sm =1 )l

Choosing « such that % — 1 >0, from the last inequality we find the estimate

T e+l 2 3 |G e6) = e(0) +1

The estimate b) is proved. Lemma 2.5 is completely proved.
3 Some estimates in the whole R"
We denote the closure of the differential expression
(Lia+pl)u=—Au+ (—t*+it(b(z)+a)+q(z)+p) u

in Ly (R™) by Ly o + pl, defined on the set C5° (R™).
Lemma 3.1. Let the condition ¢) be fulfilled and g > 0. Then the following inequalities

[(Lo,a + pl)ully = (0 + p) - [lully; (23)

(Lt + pD) ully = [t (G0 + |af) - [[ully, ¢ #0, (24)
hold for all w € D (L o + pl).
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The inequalities (23) and (24) are proved by means of functionals (Lo, + pl) w,u), (Lo + pd) u, ),
u € C§° (R™).

To prove the main theorems, in addition to the auxiliary lemmas given in sections 2 and 3, we use the
following assertion [13-15].

Lemma 3.2. There exist a covering that has the following properties

a) Xy i=1, 9 €C5(4y), Uy &5 = R,
where Aj is a cube by an edge equal to 1 and center at the point x; = (xgj),xéj), . argf)> ;

. la|
b) D ¢; (2)llo(r) < ¢, ¢ > 01s a constant, D = EWI?W’ a = (a1,02,....,ap), o] = a1 +ag+ ...+ ap;

c) each set A; can intersect with not more than & (n) sets from the family {A;}, where £ (n) is some constant.
Assume
Ku,af = Z Pj (Lt,j,a + Ml)il (pjf7
{1}
where f € Ly (R™), {®;} is a set of functions from Lemma 3.2, L; ; o + ul is the operator from Lemma 2.2.
It is easy to see that

(Lt’a + MI> Ku,af = f - B/L,afa (25)
where
_ - _ 0
Bu7af: ZAL)OJ (Lt,j7a+/le) 1f+QZZD$1@]D$1 (Lt,j,a'i',U/I) l(pjf7D$i = 87
{5} {5} =1 T

Lemma 3.3. Let the condition ¢) be fulfilled. Then there find a number po > 0 such that

1Binall Ly (rmy o Lormy <1

for all u > pg.
Proof. Let f € C§° (R™). Now, taking the multiplicity of the covering {A;} into account, we have

1 2 n -1 ?
||B/l/7af||L2(Rn) <2 (Hz{j} Ap;j (Lt ja + pl) @ijQ + HQZ{]-} 2im1 Dai0jDa; (Leja + pl) 90ij2 =
2 2
<o (Z{j} A (Lo + 1) 1s0ij2 X0 gy |[DeosDe, (Lt g+ i) 19””6”2) =

2 2
<ec - supHAst (Ltj,o + pI) 1H Sy lei fll + sup supHDxi@ij (Lt jo + 1) 1@ij -
i} 2 1<i<n {j} 2

From this and from Lemma 2.5, taking || D2 ¢, <ec a=0,12 3, e f1I> = [I£]l5 into account,

oy
we obtain

?(9) c? (9)
O+u) (54 p)'?

From the last inequality it follows that one can find a number po > 0 such that ||B, o/, ,, < 1 for g > po.
Lemma 3.3 is proved.

Lemma 8.4. Let the condition ) be fulfilled. Then the operator L;, + pl is boundedly invertible for
> po > 0, and the equality

2
||B,U7O<f||2*>2 <c-c

] ATy

(Lt,a + ,U/I)il = K,u,a (E - Bu,af)il (26)

holds for the inverse operator (L o + ul )_1 .

The proof of the lemma follows from the representation (25) using Lemmas 3.1 and 3.3.
Now we consider the solvability of the original operator L; 4+ . To do this, consider the following equation

(Le + pl)u = —Au+ (—2 +ith (z) + ¢ (z) + p)u = f (z), (27)
where f (z) € Ly (R™).
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Definition. The function u € Lo (R™) is called a solution of the equation (27) if there exists a sequence
{un}o, C C§° (R™) such that

[tn — UHLQ(Rn) =0, [[(Le + pd) up — f||L2(Rn) -0,

as n — 00.
This shows that the inverse operator (L; + ul )71 coincides with the closure of the operator L; + ul in
Ly (R™) defined on C§° (R™).
Lemma 3.5. Let the condition 4) be fulfilled. Then the operator L;+uI is boundedly invertible for p > pg > 0
and the equality
(Lt + UI)_I f=Lea+ MI)_l (B - Au,a)_l f

holds for the inverse operator (L; + ,uI)_l, where f € Ly (R™), HAM,QHLQ(RH)_)LQ(RH) < 1.
Proof. Let t # 0. The equation
(Li+plu=f (28)

can be rewritten as
v—A,v=f

where v = (L¢.o + pl)u, Ayo =ita (Lo + uI)_l, where i> = —1. Lemma 3.1 implies that

2] - la]
A, o < .
[ A, UHLZ(R )= 1t (S0 + |a])

Hence ||AM,OCHL2(RH)HL2(R7Q) <1
(28), (29) implies that

w=(Li+pl) " f=Lpa+upl) " (I—A,.) " f

for t #£ 0.
As is known, if ¢ = 0 then the operator is essentially self-adjoint [2] and the estimate

(Lo + pI) ull ,gny = (8 + 1) - [l gm)

holds for all u € D (Lo + pI). This implies that the operator Lo+ ] has a bounded inverse operator (Lg + ;J)f1
defined over the whole Ly (R™). Lemma 3.5 is completely proved.
Lemma 3.6. Let the condition ¢) be fulfilled and g > 0. Then the estimates

(Lo + pl) ull ygmy = 0 M|l Ly (gny -

(Lt + pd)ull gy = [t - 00 - llullp,gny» T #0,

hold for all w € D (L;).
Proof. Lemma 3.6 is proved in exactly the same way as Lemma 3.1.
The following Lemma is well-known [16].
Lemma 3.7. Let the operator Ly + pol (g > 0) is boundedly invertible in Lo (R™) and the estimate

(Lt + D) ull gy = € [lull £,y gy

holds for all w € D (L; + pI) when p € [0, o], where ¢ > 0 is a constant. Then the operator L; : Lo (R™) —
— Lo (R") is also boundedly invertible.

Proof of Theorem 1.1. The proof follows from Lemmas 2.1, 3.5 and 3.7.

Lemma 8.8. Let the condition 7) be fulfilled and p > pg. Then the following estimates

3 |[Va@ T r],, L S e et )l

2

b) Do ullp,ype < ¢ (Lt + pd) ull ) gos

hold for all w € D (L), where Dy, = % (t=1,2,...,n), ¢ > 0 is a constant.
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Proof. Let f € C§° (R™). Then, taking the properties of the functions ¢; (j € Z) into account, from the
representation of (26) we have

Va5 La + 107 1] = [Va@T 0 S ) 05 B+ 0D 5 (B = Buo) ™ 1| =
= [y VaET T 65 L+ D) (B = B | < (30)
< Sy V& @ F i (Bsa +uD) ™y (B Bua) ™ 1

Here it was taken into account that the functions \/q (z) + 1 - ¢; and \/g¢; (x) + p coincide on the set A;.
Taking the finite multiplicity of the covering {A;} and the inequality (13) into account, we obtain from (30)

H\/m([/t,a +MI)_1 sz < C'Z{j} H\/W(Lt,j,a +MI)_1 i (B — Bu,a)_l sz <
< c~{??p“\/m(Lt,j,a +M1)71H2 S ‘@j (E_B#’a)flsz

2—2

From this and Lemmas 2.3 and 3.3 we finally have

Va@ +a e+ a0 1] < e 1512

Whence )

|Va@+n|  <ell(LiatuDul,

Ly (R™)

where (L o + pf) u = f. The item a) of Lemma 3.8 is proved.
Let us prove the item b) of Lemma 3.8.

2
| Dz, (Lt,a + pl) f||2 = Hqu Zj ©j (Lt,j,o + pl) ' ¢ (E — Bu,a) ' sz =
= Hz{j} (Dmpj (Lt jo + 1)~ 0 (B = Bua) ™' f+9;Da, (Lija+p) ™ 05 (E = Bua)™' f) H
2

2
+2 05 ’ i Dz (Lt + D) ¢ (B = Bua) ™ fH2> '

2

IN

2

Here we took the finite multiplicity of the covering {A;} into account.
From the last inequality we have

2 2
1Dz, (Lo + 1) fI1} e < € <s{q1}o |Pess (Bt + D)™ S |05 (B = Bua) 7 1| +
J

5 2
+ S{u%) Hgoj Dy, (Lt j,o + p1) ' ‘2 : Z{j} “Pj (E'— Bu,a) ! f ‘2> <
J
i -1)? -1 4|7
= Cl{sfl}lpH(Ltvm +nul) ’2 Ty e (B Bua)™ ] 2 T
J

2 2
+¢o =up HDmi (Lt ja + Mf)fl‘ , 2 ‘ #1(E = Ba) " f‘ 2) ’
J

where ¢; = sup | max |¢| |, ¢y = sup | max |p;]| ].
= (e ). 0= ()

From this and from Lemma 2.5 we find that

1D, Lo+ D) f1P o < (220 (B = Buo) | 1A o +
w; (Lo + pl) L)R" =€\ T5p o) 9 o Ly(R™)

2
~ c(6) . _ -1 . 2
0 G H(E By.a) H2—>2 171122 sy
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Lemma 3.3 implies that the operator (E — B,Wl)_1 is bounded in Ly (R™). Consequently, from the last
inequality we finally have

2 2
1Dz ullz, e < € (Lo + pI) w7, gny

where (Ly o +pl)u=f, i =1,2,3,...,n. Lemma 3.8 is proved.
Proof of Theorem 1.2. The proof of Theorem 1.2 follows from Lemmas 2.3, 3.5 and 3.8.
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M.B. Mypar6ekos, M.M. Myparbekon

Lo(R"™) kenicriringe Tepic mapamerpii IHIpéaunrep omeparop yiiix
IIEKTeYJIi Kepi onepaTopbIHBbIH 0ap 00J/IybI >KaiJIbI

L =—-A+q(z), z € R", Ulpénunrep oneparopbl Ka3ipri KBAHTTHIK MEXaHUKAHBIH, 2KOHE TEOPUSIBIK, (hu3u-
KaHbIH HEri3ri oneparopJjapbIHblH O6ipi 60kl Tadbltaabl. L IIpéaunrep onepaTops! VIIiH KOIITEreH ipreJi
HoTrKesiep anblHAbl. Ouap/piy iminge, Mbicassl, menrityi, Gesrimriri (kospuuTueri Garasnaysiap), opTyp-
JIi cCaJIMAKTBIK Oarajiap, OMepPaTOPBIH, aHBIKTAIY OOJIBICHI OONBIHINA APAJIBIK, TYBIHIBIIADILIH Oaraaaybl,
MEHIIIKTI MOHJIED KOHE CHHIYIIAPJILIK caniap (s-cangap) TypaJisl Macesesep 6ap. Kasipri kesne smmmunTu-
KaJIBIK, OIl€paTOpJap YIIiH YKOFapblIa KEITIPIJINeH HOTIKEIEPAiH OPTYPJl KOPBITEIHABLIAPE! 6ap. 2Kasmst
nuddepeHnmanIbl oepaTopsIap yiniH 6yJ1 MoCceJIeHIH, eIyl ToJIbIK asKTaJMaran. Aran aiTkana, Oi3iy,
Oisiymi3 OoiibIHINIA, PE30JIbBEHTACHIHBIH, Oap OOIybl MEH KOIPIUTHUBTIr, COHJAN-aK IIEeKCi3 ODJIbICTa OcIe-
JIi 2KoHe TepbenicTi KoadpuimeHTTEpIMEH THIEPOOIANBIK, TUIITI OMEPATOP/BIH, CIEKTPIHIH JAUCKPETIIiriH
kepcererin moTIKE GoaMabl. Opuue, La(R™ ') xenicriringe ampikramran rumepbosaibik THITI gudde-
PEHIMAJIIBIK OIIEPATOPJIAPBIH Keiibip KjacTapbIHbIH 3epTTeyiHn Pypbe omici apKpLIBI Tepic mapaMmeTplii
IIpéauurep onepaTOpLIH 3eprTeyre aibin Keiyre Gonampr: L = —A+ (—t* 4 ith(z) + q(x)), MmyHxarsl
t— (—oo <t < 00), i = —1 mapamerpi. demex, L; omeparopsisga |t| — oo 6oica, omma —t? — —oo exeHin
Kepy KublH eMec. emex, myna, L = —A+q(z) [Ipénunrep oneparopblHa KaparaHia, MyJLIeM 0acKa »Kar-
JHait maiiaa 6osassl, conbH, imminge L [1Ipénunarep onepaTops! yimiH o3ipienren oicrep Ly Tepic mapameTpJi
[Ipénuarep onepaTopblHa >KapaMChi3 OOJIBIIT KAJIaIbl. Bapiblk Oy Moceseaep OChl KYMBICTBIH, ©3€KTiJIir
MeH 2KaHaJbIFbIH KepcerTi. Ochl Makasitaga Tepic napamerpsti IIIpéauarep onepaTropbiHbIH Pe30JIbBEHTACHI-
HBIH, 6ap 6OJIyBI KOHE KOIPIUTUBTILIIT YKAH-KAKTHI 3€PTTEIII.

Kiam cesdep: 1lIpénunarep onmepaTopbl, CAHTYASPIbl A PPEHIUAIIBIK, OEPATOP, TUNEPOOIABIK, Ollepa-
TOp, Tepic napamerp, KOIPIUTHUBTI Garasaysiap, pe30IbBEHTA.

M.B. Mypar6exkos, M.M. Myparbekon

O6 orpanmdenHoit ooparumoctu oneparopa IlIpémuarepa
C OTPUIATEJILHBIM TapaMeTpoM B mpocTtpancTBe Lio(R")

Oneparop IIpéaunrepa L = —A 4 g(x), x € R™, aBseTCs OAHAM U3 OCHOBHBIX OIIEPATOPOB COBPEMEHHO
KBAHTOBOI MEXaHWKH M TeOpeTHIecKoil dusuku. MsBecTHO, uTo mist oneparopa I1Ipémauurepa L mosydeHo
HEMAJIO (DYyHIAMEHTAJIBHBIX Pe3ysibraroB. Cpeinu HUX, HAIPUMED, BOIIPOCHL O CYIIECTBOBAHUYU PE30JIbBEHTHI,
pasueanMocTy (KOIPIUTUBHAS OIECHKA), PA3IMIHbIE BECOBBIE OIEHKH, OIEHKU IIPOMEXKYTOUHBIX IIPOU3BOI-
HBIX (DYHKIMI 13 00JIACTH OIPEJIeJIeHNs] OIIEPATOPA, OLEHKH COOCTBEHHBIX M CHHIYIISIDHBIX YHCed (S-duced).
B macrosiiee Bpems uMeroTcs pasimdnbie 0600IIeHNs] YKA3AHHBIX BBIIIE PE3YJIbTATOB JJIsl SJUIAITAIECKUX
omneparopoB. st obmux guddepeHInaabHbIX OIEPATOPOB pEIIeHUEe TAKON 3aJladu B IIEJIOM JIAJIEKO OT
3aBepIeHusi. B 9acTHOCTH, HACKOJBKO HAM WM3BECTHO, M0 CUX IOp He ObLIO pe3yJibTara, MOKa3bIBAIOIIETO
CyIIIECTBOBAHMUE PE30JIbBEHTHI U KOIPIUTUBHOCTH, & TAKXKE JMCKPETHOCTH CIIEKTPa OIEpaTropa rumnepbo-
JIMIECKOTO THUIA B OECKOHEYHON 00JIACTH C PACTYIIUMHU U KoJieOJonmuMucs Kodddumuenramu. Herpymaao
3aMETUTh, YTO M3yUEeHHEe HEKOTOPBIX KJIACCOB Nud@epeHINaIbHBIX OMepPaTOPOB IMIEPOOTUIECKOrO THIIA,
ompeeneHnbx B npocrpancrse Lo (R™!), moxnO cBectn ¢ momormpio Meroma Pyphe K H3YUEHHIO Omepa-

topa IlIpéaunrepa ¢ orpuuaTebHLIM mapamerpom: Ly = —A + (—t2 + itb(z) + q(:v)), rae t — nmapamerp
(=00 < t < 00), i2 = —1. Orciona scHo, uTo B orneparope L mpu |t| — co — —t* — —oco. CieoBaTensio,
3JI€Ch BO3HMKAET COBEPINEHHO WHAsl CHTYyalusi 0O cpaBHeHuIo ¢ oneparopoM Ipémuurepa L = —A + g(z),

¥, B YaCTHOCTHU, METO/Ibl, oTpaboranubie /i orneparopa IIpénunrepa L, oKa3bIBaIOTCs MAJO IPUCIIOCOD-
JIEHHBIMHU Tpu ulydeHuu omneparopa IlIpémuurepa L; ¢ oTpuiaTeJbHBIM MapaMeTpoM. Bce 3Tu BOIpPOCHI
CBHETEIbCTBYIOT 00 aKTyaJIbHOCTH M HOBU3HE JAHHON paboThl. B HacTosIeil craTrbe m3y<deHbl BOMPOCHI
CyIIIeCTBOBAaHUS PE30JIbBEHTHI U KOIpIuTUBHOCTH oneparopa IIIpénunrepa ¢ orpunaTebHBIM IapaMeTPOM.

Kmouesvie caosa: oneparop lIpénunarepa, cuurysisipaslii quddepeHnaabHbIi OepaTop, TUnepOoTMIecK it
oIIepaTop, OTPUIATEILHBIA TapaMeTp, KOIPIUTUBHBIE OIIEHKHU, PE30JIbBEHTA.
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Some results on a special type of real quadratic fields

In this paper, we determine the real quadratic fields Q(\/E) coincide with positive square-free integers d

including the continued fraction expansion form of wq = | a0;7,7,...,7,a¢|. Furthermore, we deal with
-1

determining fundamental units and Yokoi’s d-invariants ng and mg in the relation to continued fraction

expansion of wy where £ (d) is a period length of w, for the such type of real quadratic number fields Q(+v/d).

The present paper improve the theory of fundamental unit which generates the unit group of real quadratic

fields and also determine the special form of continued fraction expansion of integral basis element in real

quadratic fields.

Keywords: continued fraction, real quadratic fields, fundamental unit, Yokoi’s invariants, integer sequences,
integer basic element.

1 Introduction

Some relations among i-th approachment of quadratic irrationals were proved by ElezoviA’c in [1] . Jeongho
obtained lower bound for regulator of real quadratic fields by considering quadratic integers with fixed norm
in [2]. In [3], Benamar et al. described polynomials and also gave lower bound of the number of some types
of polynomials. Badziahin and Shallit confirmed the conjecture of Hanna and Wilson by considering specific
type of continued fraction of real numbers and got some results on transcendental numbers in [4]. Zhang and
Yue [5] described some congruences relations between the coffecients of fundamental unit of real quadratic
fields and odd class number. Also, Tomita [6] gave some results on fundamental unit by use of the continued
fraction expansion of integral basis element where period length is equal to 3. Clemens and his co-authors
[7] explored some relationship between continued fraction expansion and infinite series representation for real
numbers. Louboutin [8] obtained significant results on principal or non principal real quadratic fields as well
as significant conditions for principality of continued fraction expansion. Tomita and Kawamoto [9] showed a
relation between real quadratic fields of class number one and minimal type of the simple continued fraction
expansion of certain quadratic irrationals. Both Sasaki [10] and Mollin [11] achieved many useful results on lower
bound of fundamental unit for real quadratic number fields. Williams and Buck [12] got comparision between

period length of v/d and 1+T‘/3. Besides, first author in this paper obtained some special results for different
forms of continued fraction expansion of wy in [13] and [14] where d = 2, 3(mod4) is square-free positive integer.
Also, in [15] she got significant results for varied types of continued fraction expansion of wg where d = 1(mod4)
or d = 2,3(mod4) Yokoi defined ng and mg invariants important for class number problem [16-19]. Readers
unfamiliar fundamental unit and continued fraction expansions are referred to books [11, 20-23].

Throughout this paper, I(d) is the set of all quadratic irrational numbers in Q(v/d) , we say that « in I(d)
is reduced if « > 1 and —1 < o’ < 1 where o/ is the conjugate of @ and denoted by R(d) is the set includes of
all reduced quadratic irrational numbers in I(d). Then, it is well known that any number « in R(d) is purely
periodic in the continued fraction expansion and the denominator of its modular automorphism is equal to

2
t
fundamental unit e; of Q(v/d). Yokoi’s invariants are expressed by mg = H % ” and ng = H —dQ H . it is
d Uy
also well known [[ z ]| represents the floor of z for any number z.
In this paper, we deal with the problem for demonstrating the continued fraction expansions which have
got partial constant elements equal each others and written as 7s (except the last digit of the period) according

to period length for d square-free integer (for d = 1(mod4) or d = 2, 3(mod4)).
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Moreover, we demonstrate the general parametrization of d square-free positive integer and fundamental
unit €4 as well as ty, ug the coefficents of fundamental unit. Additionally, we get fix on Yokoi’s invariants for
such types of real quadratic fields. Then,we give some results on fundamental units, continued fraction expansion
and Yokoi’s invariants with numerical Tables.

2 Preliminaries and Basic Results

In this section, readers can find some basic and important definitions and theorems for using our new results.
Definition 2.1. {7;} is a sequence defined by the following recurrence relation

Ti = TTi—1 + Ti—2
for i > 2 where 7o =0 and 71 = 1.

1
Lemma 2.2. [6]. For a square-free positive integer d congruent to 1 modulo 4, let wy = +

)

ag = [[omegaq ||, wr =ao—1+wq. Then wy ¢ R(d), but wpr € R(d) holds. Moreover for the period

s

I = £(d) of wg, we get wr = [2a0 — 1,a1, ....... sai—1] and wg = [ag, a1, ... ,a;—1,2ag — 1]. Furthermore, let
P, P_
WR = M = [2a0 — 1,a1,....... ,a;—1,wr] be a modular automorphism of wg, then the fundamental
(Qiwr + Qi-1)

unit €4 of @ (\/&) is given by the following formula

td+ud\/g
="y

and
ta = (2a0 — 1).Quay +2Qe(a)—1, ud = Qua)»
where Q; is determined by Qo =0, @1 =1 and Q41 = 0;Q; + Qi—1 (2 > 1).

Lemma 2.3. For a square-free positive integer d congruent to 2,3 modulo 4, let wy = Vd, ag = [[ wq ]|,

wr = ag + wg. Then wy ¢ R(d), but wgr € R(d) holds. Moreover for the period [ = I(d) of wg, we
Pwgr+ P
get wr = [2a9,a1, ... yai—1] and wg = [ag, a1, ... ,ai—1,2ag]. Furthermore, let wr = W =
= [2a9, a1, -...... ,a;—1,wr] be a modular automorphism of wg, then the fundamental unit €4 of @ (\/&) is given
by the following formula:
tq + ud\/g
=7 = (a0 + Vd)Qu(ay + Quay—1)1

and
ta = 2a0.Qua) + 2Qe(a)-1, Ud = 2Qu(a),

where Q; is determined by Qo =0, Q1 =1 and Q1 = a;Q; + Qi—1, (i > 1).
Remark 2.4. Let {1,} be a sequence defined as in Definition 2.1. Then, we state that:

(mod4), n =0 (mod6);
(mod4), mn=1,4,5(mod6);
(mod4), n =2 (mod6);
(mod4), n = 3(mods6),

where n > 0.
8 Main Theorems and Results

In this section, we present our results as follows:
Theorem 3.1. Let d be the square-free positive integer and ¢ be a positive integer holding that ¢ is different
from 0(mod3) and ¢ > 1. We assume that parametrization of d is

(74 (2t +1)7,)?
4

for t > 0 positive integer. In this case, we get following:

d:

+ (2t + Drq) + 1
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(1) If £ = 1(mod6) and t = 1(mod2) positive integer then d = 2(mod4) holds.
(2) If £ = 2(mod6) and t = 0(mod2) positive integer then d = 3(mod4) holds.
(3) If £ = 4(mod6) and t = 0(mod2) positive integer then d = 3(mod4) holds.
(4) If £ = 5(mod6) and t = 0(mod2) positive integer then d = 2(mod4) holds.
In this case, we obtain

% + 1) +7
M;?,?,...,?,(Zt—&-l)n—i—?
2 ———
/—1

Wq =

and ¢ = £(d). Moreover, we have following equations:

2+ 1)1 T
€4 = <( +2 )TZ +;—E—|—Tz_1> + m/&;

tg = (2t + 1)7'42 + 770+ 2701 and ug =27

for €4, tq and ug.
Remark 3.2. Note that d is not integer for £ = 0(mod3). That’s why we assume that ¢ different from 0(mod3).
Proof. We assume that ¢ = 1(mod6) positive odd integer, £ > 1 and t = 1(mod2) positive integer. So, we
can get d = 2(mod4) by substituting the equivalents into the parametrization of d. We can easily obtain the
other cases in a similar way. By using Lemma 2.3 , we put

2t+ D7+ 7 i (2t+1)7‘g+7.

Wr = 9 B 70 T2+ D)+ 7,
-1
so we get
wr = (2t + )70 +7) + 11 (@D s 1
T+ T 7 4+ wp
+ 7+1w1R

By induction, we get
T¢—1WR + Ty—2

wr=(2t+ D1, +7)+ .
= 7 ) TYWR + Te—1

If we rearrange and use the Definition 2.1 into the above equality, we have
wh — (2t + 1)1+ 7)wr — (1 + (2t + 1)74_1) = 0.

This requires that wg = W + V/d since wg > 0. If we consider Lemma 2.3, we get

%+ 1) +7
wy=va= | BV e T T
2 —_———
-1

and ¢ = ¢ (d). This shows that the first part of proof is completed.
Now, we should determine ¢4, t; and ug using Lemma 2.3, we get

Qi=1=1, Q2=0a1.Q1+ Qo= Q2=7T7=y;
Qs=0Qs+ Q1 =T +1="7+1=50="13, Qs="4,...

So, this implies that ¢); = 7; by using mathematical induction for every ¢ > 0. If we substitute these values of
sequence into the e; = W = (ap + \/E)Ql(d) + Qi(a)—1)1 and rearrange, we have

20+ )77 T
€4 = <( +2 )TZ +;+Tz_1> + m/&;
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tg= (2t + 1)1} + 770+ 271 and wuy =27

for €4, tq and ug.So, we complete the proof of Theorem 3.1.
Corollary 3.3. Let d be a square-free positive integer and ¢ be a positive integer holding that £ > 1 different
from 0(mod3). We assume that parametrization of d is

(7—|—Tg)2

d= 1

+ 71 +1

then we obtain d = 2, 3(mod4) and

v
wWq = %;7,7,...,7,Tg+7
———

=1
and ¢ = ¢(d). Besides, we get following equalities

;T
€d = <T2Z + g —|—Te_1> + 70Vd;

ta =77 +Tre+271; and  ug = 27;

1, ife=2;
Md=1 3 if¢>4

for €4, tq, ug and Yokoi’s invariant mg.

Furthermore, we prepare Table 1 where fundamental unit is €4, integral basis element is wy and Yokoi’s
invariant is mq for 2 < £(d) < 11. (In this Table, we will rule out ¢(d) = 4,8, 10 since d is not a square-free
positive integer with these periods. Besides, d is not congruent to 2 or 3 (modulo 4) for £(d) = 7).

Tablel

Square-free positive integers d with 2 <[(d) <11

d E(d) md wq €d
51 2 1 [7;7,14] 504751
1633642 5 3 [1278;7,7,7,7, 2550 3257979+ 25491/1633642
[168868704; 57033277246500097+
28516639237941410 11 3
7,7,7,7,7,7,7,7,7,7,337737408] | +3377374011/28516639237941410

Proof. This corollary is gotten if we substitute ¢ = 0 in Theorem 3.1. Now, we have to prove that

[, ife=2;
Md=9 3 ife>4.

If we put t4 and wug into the my and rearrange, then we obtain

) B e

By using the above equality, we have mg = 1 for ¢ = 2. From the assumption since 7 is increasing we get,

7 20\

4>4.(1++ 21) > 3,988
Te Ty

1, ife=2;

3 iff> 4 which completes the proof

for ¢ > 4. Therefore, we obtain mg = 3 for £ > 4 and we have mq = {

of Corollary 3.3.
Furthermore, Table 1 is gotten as a numerical results of the corollary.
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Corollary 3.4. Let d be the square-free positive integer and ¢ be a positive integer such that ¢ is not congruent
to 0 as for (mod3), ¢ > 1. We suppose that parametrization of d is

(7 + 37’@)2

d= 1

+ 311+ 1

then, we obtain d = 2(mod4) and

T T3+ T
————

£—1

and ¢ = ¢(d). Moreover, we have following equalities:

32 T
€q = (22 + 72 + 7@1) + 7Vd;

ta=37; +Tr¢+270—1 and wug =27

mg = 1 for £ > 7 for ¢4, ty, uq and Yokoi’s invariant my. Besides, we state the following Table 2, where
fundamental unit is €4, integral basis element is wy and Yokoi’s invariant is mg for 2 < £(d) < 13.

Table 2
Square-free positive integers d with {(d) =7 or [(d) = 13
d £(d) | mq wq €d
37996589930 7 1 [194927;7,7,7,7,7,7,389854] 25330586923+-129949+/37996589930
[25826973905; 444688387335182490505+
667032581096785339826 13 1 7,7,...,7,51653947810] +172179826011/667032581096785339826

Proof. Corollary is obtained if we substitute £ = 1 in Theorem 3.1. We should prove that mg =1 for £ > 7.
If we put t4 and wug into the my and rearrange, then we obtain

7 2T -1
2>4.(3++ ‘21) > 1,333
Ty TZ

for ¢ > 7 since 74 is increasing sequence.By using the above equality, we have my = 1 for £ > 7. Also, Table 2 is
given as an illustration of this corollary.

Corollary 3.5. We assume that d and ¢ are defined as in Theorem 3.1. If we choose the parametrization of
d as
(7 + 57‘@)2

d=
4

+ 5711 +1

then d = 2,3(mod4) and

57y +7.

Wy = B N

(AN A TR
—_——

-1
with ¢ = £(d). Also, we have the following equalities:

5t T
o= (T + T )+ eV

tqg =517 + 710+ 2741 and wy =27,
ng =1

for ¢ > 2.
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Additionally, we prepare the Table 3 where fundamental unit is ¢4, integral basis element is wy and and
Yokoi’s invariant is ng for 2 < ¢(d) < 11. (In this table, we rule out both ¢(d) = 10 since d is not a square-free
positive integer in this period and also d is not congruent to 2 or 3 (modulo4) for ¢(d) = 7).

Table 3
Square-free positive integers d with 2 <[(d) <11
d f(d) nd wd €d
447 2 | 1 21,7, 42] 148+7+/447
803067 4 1 [896;7,7,7,1792] 319922+357+/803067
40655162 5 1 [6376;7,7,7,7,12752] 16252781-+2549+/40655162
5380595841067 8 1 [2319611;7,7,7,7,7,7,7,4639222] 2152234959022+927843+/5380595841067
[844343506; | 285166381314969699+
1291 1002 11 1
71291595636088100 7,7, 7,7,7,7,7,7,7,77,1688687012] +3377374011/712915956360881002

Proof. Tt is gotten if we substitute ¢ = 2 in Theorem 3.1. Let’s prove that Yokoi’s d- invariant is ng = 1
for ¢ > 2.
t
We know from H. Yokoi’s references [16-19] that ng = H —‘;
g

" — ti . 57’%4—77’44—27’5_1 1
N I 472 7
d 4

since 7y is increasing and 1 < % + ﬁ + 7'2’5;21 < 1,510 for ¢ > 2. Therefore, we obtain ng = 1 for £ > 2. As
2

H If we substitute t; and ug into ng, then

we get

illustration, we give Table 3.
Theorem 3.6. Let d be a square-free positive integer and £ > 1 be a positive integer.
(i) We suppose
d= (2try +7)? + 8trp_1 +4

for t > 0 positive integer. In this case, we obtain that d = 1(mod4) and

wg = |trg +4;7,7,...,7, 2ty + 7
———

-1
and ¢ = ¢(d). Moreover, in this case it holds
tg = QtTez + 77,4+ 2791 and ug =Ty

tg +ugVd
—
(ii) If £ = 0(mod3) and

for ¢4 =

d=(trg +7)2 +4tr_1 +4
for t > 0 positive odd integer then d = 1(mod4) and

t
Wg= |=Te+47,7,....,7,tT0 + 7
2 ———

-1
and ¢ = {(d). Furthermore, in this case
tg =t} + 710+ 2701 and wg =1y

tq +ugVd

hold for ¢4 = 5
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Remark 3.7. For the case (ii) in Theorem 3.6, it is clear that 74 is odd number if £ is not divided by 3. For
the case (i1), assume that ¢ is not divided by 3. Then we get d is not integer if we put ¢ positive odd integer
into the parametrization of d. Besides, if we consider ¢ is positive even integer, then the parametrization of d
will be the case (i). So, we approve that £ = 0(mod3) and ¢ is positive odd integer in the case (ii).

Proof. (1) 1t is clear that d = 1(mod4) holds since (2t7, +7)? is odd integer for any ¢ > 0 and £ > 1 positive
1+d

2 )

integers. We prove the theorem in a similar to Theorem 3.1. From Lemma 2.2, we know that wy =

ap = [[wa |}, wr = ao — 1 + wa.
Considering above equations, we have

wp =t +3+ [tre +47,7,...,7, 2ty + 7
—_——
-1

so we get

1
wr = (210 +7) + T = 2n+7+ -, —.
T+ = : 7

Rearranging and using Lemma 2.2 with Definition 2.1 into the above equality, we obtain

wh — (2try + T)wr — (1 + 2tm_1) = 0.

1
This requires that wg = (t7p +4) — 1+ + since wg > 0. If we consider Lemma 2.1, we get

wg = |trg +4;7,7,...,7, 2ty + 7
—_——
-1
and ¢ = {(d).
We obtained that QQ;=7; by using mathematical induction for all ¢ > 0 in Theorem 3.1. Now, we get t4 and

ugq using Lemma 2.2 as follows
tg = 215752 +T1p+ 27917 and ug =1y

ta +ugVd

for 5 = . This shows that the first part of proof is completed.

(2) If we assume that ¢ = 0(mod3) and the parametrization of
d= (trg+7)* +4try_1 + 4

for t > 0, then we have d = 1(mod4) since 74 is even integer. By taking £ instead of ¢ into the case (1), we get

t
Wg= |=Te+47,7,....7,tTs +7
2 —

-1
and ¢ = ¢(d) for £ = 0(mod3). Furthermore,
tg = tng + 71+ 27917 and wug=1y

hold for ¢4 = M

Corollary 3.8. Let d be the square-free positive integer and ¢ > 1 is a positive integer. We assume that
parametrization of d is

which completes the proof.

d= (21 +7)2 + 8711 +4
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then we obtain d = 1(mod4) and

wg= |T¢+47,7,....7,217,+7
——
-1

and ¢ = {(d). Moreover, we have
tg =217 + 710 +2701 and wug =1y

tqg + ud\/E

for €4 = and, Yokoi’s invariant ng is determined as follows:

3, ifl=2
"= 9 ife> o

Also, we give Table 4 where fundamental unit is €4, integral basis element is w, and Yokoi’s invariant is ng
for 2 < ¢(d) < 11. (In this table, we rule out ¢(d) = 4, 5,10 since d is not a square-free positive integer with
these periods).

Table 4
Square-free positive integers d with 2 <i(d) <11
d é(d) ng wq €4
453 2 | 3 11,7, 21] (1491 7v/153)/2
11509 3 | 2 [54;7, 7, 107] (5364 -+ 501/11509) /2
1325490045 6 2 [18204;7,7,...7,36407] (662612498+18200 1/1325490045) /2
67550754629 7 2 [129953;7,7, ...,7,259905] (33774431245+129949+/67550754629) /2
3443597549845 8 2 [927847;7,7, ...,7,1855693] (1721792020097-+927843+/3443597549845) /2
175554743008597 9 2 | [6624854;7,7,...,7,13249707] | (87777323274636-+6624850+/175554743008597) /2
[337737405; (228133106527234995+

456266217972000829 | 11 2 7,7,...,7,675474809] 3377374011/456266217972000829) /2

Proof. The corollary is had if we substitute ¢ = 1 into the case (1) in Theorem 3.6. Let’s show that

(3, ife=2;
T2, it 0> 2.

If we put t4 and wg into the ng and rearrange, then we obtain

[ - [P )

By using the above equality, we have ngy = 3 for £ = 2. From the assumption since 7, is increasing sequence,
we get,

7 21,
2714562<2++ ”21>>2
Ty TZ
3, ifl=2;

for £ > 2. Therefore, we obtain ng = 9 ifl>2

Then Corollary 3.8 is proved. To give numerical examples

for Corollary 3.8, we prepare Table 4.
Corollary 3.9. Let d be the square-free positive integer and ¢ > 1 is a positive integer holding that ¢ =
0(mod3). We assume that parametrization of d is

d= (10 +7) +4m_1 +4
then we have d = 1(mod4) and

wa= |2 4T, T T
2 ——

£—1
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and ¢ = ¢(d). Moreover, we have
tg =T +TTe+2701 and ug=1y

tq +ugVd

for ¢4 = and, Yokoi’s invariant ng = 1.

Besides, we prepare Table 5 where fundamental unit is €4, integral basis element is wy and Yokoi’s invariant
is ng for 3 < ¢(d) < 12 (in this Table, we rule out ¢(d) = 9 since d is not a square-free positive integer with
these periods).

Table s

Square-free positive integers d with 3 <I(d) <12

d g(d) nd Wy €4
3281 3 [ 1 [29;7,7,57] (2864+50+/3281) /2
331505049 6 1 [9104;7,7,...,7,18207] (331372498+18200+/331505049) /2
[1205731804; ] (5815156711680680002+
58151567292136400057 12 1 7,7,...7,2411463607] +2411463600 +/58151567292136400057) /2

Proof. If we substitute ¢ = 1 into the case (2) in Theorem 3.6, we have the Corollary 3.9. Let’s prove that
ng = 1. If we put ty and wug into the ny and rearrange, then we obtain

ol 1 (el |}

From the assumption since 7y is increasing sequence, we get

T 27,
1,1416 > <1++ T";) > 1
Ty TZ

for £ > 3 which completes the proof of the Corollary 3.9. We prepare Table 5 as an numerical illustrations of
Corollary 3.9.

Corollary 3.10. Let d be a square-free positive integer congruent to modulo 4. If we suppose that d is holding
the conditions of Theorem 3.6, then always satisfy that Yokoi’s invariant ng is different from zero. It means that
mq = 0.

Proof. It can be proven as similar of Corollary 3.2 in [15].

Remark 3.11. We should say that the present paper has got the most general theorems for given type real
quadratic fields. Also, we can obtain infinitely many values of d which corresponds to Q(v/d) and determine the
structures of such fields by using our results.

References

1 ElezoviA, “c. (1997). A note on continued fractions of quadratic irrationals. Math. Commun., 2, 27-33.

2 Jeongho, P. (2015). Notes on Quadratic Integers And Real Quadratic Number Fields,
arXiv.1208.5353V5[math. NT].

3 Benamar, H., Chandoul, A., & Mkaouar, M. (2015). On The Continued Fraction Expansion of Fixed
Period in Finite Fields, Canad. Math. Bull, 704-712.

4 Badziahin, D., & Shallit, J. (2016). An unusual continued fraction, Proc. Amer. Math. Soc., 144, 1887—
1896.

5 Zhang, Z., & Yue, Q. (2014). Fundamental units of real quadratic of odd class number. Journal of Number
Theory, 137, 122-129.

6 Tomita, K. (1995). Explicit representation of fundamental units of some quadratic fields. Proc. Japan
Acad., 71, Ser. A, 2, 41-43.

56 Bectnuk Kaparanmuickoro yuuBepcurera



Some results on a special type of real quadratic fields

10

11
12

13

14

15

16

17

18

19

20
21
22
23

Clemens, L.E., Merill, K.D., & Roeder, D.W. (1995). Continues fractions and series. Journal of Number
Theory 54, 309-317.

Louboutin, S. (1988). Continued Fraction and Real Quadratic Fields. Journal Number Theory, 30, 167—
176.

Kawamoto, F., & Tomita, K. (2008). Continued fraction and certain real quadratic fields of minimal type.
Journal Math. Soc. Japan, 60, 865-903.

Sasaki, R. (1986). A characterization of certain real quadratic fields. Proc. Japan Acad., 62, Ser. A, 3,
97-100.

Mollin R.A. (1996). Quadratics, CRC Press, Boca Rato, FL.
Williams, K.S., & Buck, N. (1994). Comparison of the lengths of the continued fractions of

VD and % (1—|—\/ﬁ), Proc. Amer. Math. Soc., 12(4), 995-1002.

Ozer, O. (2016). On Real Quadratic Number Fields Related With Specific Type of Continued Fractions.
Journal of Analysis and Number Theory, 4(2), 85-90.

Ozer, O. (2016). Notes On Especial Continued Fraction Expansions and Real Quadratic Number Fields.
Kirklareli University Journal of Engineering and Science, 2(1), 74-89.

Ozer, O. (2018). A Study on the Fundamental Unit of Certain Real Quadratic Number Fields. Turkish
Journal of Analysis and Number Theory, 6(1), 1-8.

Yokoi, H. (1990). The fundamental unit and class number one problem of real quadratic fields with prime
discriminant. Nagoya Math. J., 120, 51-59.

Yokoi, H. (1993). A note on class number one problem for real quadratic fields. Proc. Japan Acad., 69,
Ser. A, 22-26.

Yokoi, H. (1991). The fundamental unit and bounds for class numbers of real quadratic fields. Nagoya
Math. J., 124, 181-197.

Yokoi, H. (1993). New invariants and class number problem in real quadratic fields. Nagoya Math. J.,
182, 175-197.

Olds, C.D. (1963). Continued Functions, New York: Random House.
Perron, O. (1950). Die Lehre von den Kettenbriichen. New York: Chelsea, Reprint from Teubner, Leipzig.
Sierpinski, W. (1964). Elementary Theory of Numbers. Warsaw: Monografi Matematyczne.

Tomita, K., & Yamamuro, K. (2002). Lower bounds for fundamental units of real quadratic fields. Nagoya
Math. J., 166, 29-37.

0. Oszep, L. Bennayap

HakTbl KBaJpaTThIK ©PICTiH apHAYJIbI TYPi OONBIHINA
Keiiblp HoTm»KeJiep

Maxkasaia HAKTBI KBaJPATTHIK ©picTep OYTiH €pKiH OH wq = | ao;7,7,...,7,a¢ | Ti30eKTi GOIIMIEKTIH XKiK-
|

0—1
TesTy TypiMeH Koca, d KBaJpaTTapbIMeH coiikec KesteTini anbikTas sl Conaii-ak Herisri Gipaik »xone Mokoit
GipJyiKTEpl AaHBIKTAJIBII, N g YKOHE My d-MHBAPUAHTTAPBI Wq OOJIIIEriH Y3/1iKCi3 XKiKTeyre KOJIIaHbLIIbI, MYH-
marer £ (d) wg — Ke3eH y3uEmbEsl Q(v/d) HAKTHI KBaIPATTEIK CaHZap epici Typi yimH. ABTOpIap HAKTEL
KBaJIpaTTBHIK 6picTiH OipJ/ik rpymnmnachl TYbIHAANTHIH ipresi 6ipJik TeopUsIChbIH YKaHAPTHII, HAKTHI KBaJIpaT-
TBIK, ©picTe OYTIiHCAHIBI 6A3UCTIK JIEMEHTTIH Y3IiKCi3 OOJIIIEKTI KIKTETyiHIH epeKIlle TyPiH aHBIKTAFaH.

Kiam ce3dep: Tizbekri Geuiiek, KBaApaTTHIK epic, Herisri 6ipiik, Vokoit mHBapmaHTTaphl, OyTiHCAHIHI
6a3HUCTIK JIEMEHT.
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0. Ozep, 1. Besutayap

HGKOTOpI)Ie pe3yJibTaThbl 110 ClIEMNAJIbHOMY THUILY
BelmeCTBEHHbIX KBaJAPaTUIHbIX noJieii

B crarbe onpeneneno, 9To JieicTBUTEbHBIE KBAaJAPATHYHBIE TOJIsSI COBHAIAIOT C IEJIBIMUA CBOOOIHBIMU I10-

JIOXKUTEJbHBIMI KBaJpaTtaMu d, BKJIIOYasi (POPMY PA3JIOXKEHUs MEMHON Apoou wq = | ao; 7, 7,..., 7, ap
—_———

-1
KpoMe TOro, OIpe/Ie/IecHbI OCHOBHBIC CIUHUIBI ¥ ¢INHUILI VIOKO#, d-MHBAPHAHTEL 14 U Mg TPEMCHHTETIHHO
K HENPEPLIBHOMY PA3JIOKEHHIO 1pobu wq, tae £ (d) — JAynHa Imepuofa wq JJist TAKOTO THIA IIOJIS JIeHCTBHU-
TeIBHBIX KBaAPATHIHEX unceT Q(v/d). ABTOpaMu cTaThbi yiIydrmena Teopus dbyHIAMEHTAILHON €IUHIIIEL,
KOTOpasl HOPOXKAAET eIUHUYHYIO IPYIILY BEIIECTBEHHBIX KBAAPATUIHBIX IOJIEH, & TaKXKe ONPEESIEHa 0CO-
6asi popMa HENPEPLIBHOIO APOOGHOIO PA3JIOMKEHUS I[EJIOUUCICHHOIO DA3UCHOIO JIEMEHTA B BEIIECTBEHHBIX
KBaJIDATHYHBIX IOJISAX.

Karouesvie caosa: nemnHast 1podb, KBaJpaTUIHOE 110JIe, OCHOBHAs €JIMHUIA, WHBApUaHThI Vokoii, memounc-
JIEHHBIN OA3UCHBINA 3JIEMEHT.
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On the solvability of the duo-periodic problem for the hyperbolic
equation system with a mixed derivative

One of the main and most studied problems in the theory of second order hyperbolic equations is a
periodic boundary value problem. To solve such problems apply Fourier method, method of successive
approximations, methods of functional analysis, variational method, etc. The development of information
technologies imposes new requirements on the developed methods, paying special attention to their cons-
tructibility. One of such constructive methods is the method of a parametrization proposed in the works
of D. S.Dzhumabaev for solving two-point boundary-value problems for ordinary differential equations. In
this paper, we consider a boundary value problem for both variables for a system of hyperbolic equations
with a mixed derivative. To solve this problem, the notation is introduced and the periodic boundary value
problem is reduced to an equivalent problem consisting of a family of periodic boundary value problems for
an ordinary differential equation and an integral relation. To solve the problem obtained, the method of a
parametrization is used. The application of this method allowed us to construct an algorithm for finding
an approximate solution of the periodic boundary value problem for a system of hyperbolic equations with
a mixed derivative. In addition, the coefficient conditions of convergence and feasibility of the proposed
algorithm are obtained.

Keywords: the duo-periodic boundary value problem, the method of a parametrization, the hyperbolic
equation system, mixed derivatives.

Introduction

One of the main and most studied problems of the theory of the hyperbolic equations of the second
order is a periodic boundary value problem. A systematic study of periodic boundary value problems for
hyperbolic equations with mixed partial derivatives started in 60s with the work of L. Cesari [1]. J.K. Hale [2],
G. Hecquet [3], AK. Aziz [4], V. Lakshmikantham [5], S.V. Zhestkov, A.M. Samoylenko, T.I. Kiguradze,
B.I. Ptashnik, Yu.A. Mitropolskiy, G.P. Homa, M.I. Gromyak and others dealt with further investigations of
the solvability of periodic boundary value problems. To solve periodic boundary value problems of second order
hyperbolic equations, were applied the Fourier method, the method of successive approximations, the methods of
functional analysis, the variational method, etc. Despite the presence of numerous methods for study of periodic
boundary value problems, interest in them continues to this day. The application of different approaches, ideas
and methods leads to results formulated in different terms. The development of information technologies and its
comprehensive application in applied problems imposes new requirements of the developed methods. Particular
attention got to be paid to the methods that are different from others in their constructiveness at the stage of
approximate construction of solutions and in the study of such qualitative issues as the establishment of the
existence of a solution, the rationale for the convergence of approximate solutions to the exact one, an estimate
of the inaccuracy of the approximate solution.

One of such constructive methods is the method of a parametrization [6, 7], proposed for solving two-point
boundary value problems of ordinary differential equations. The point of using this method is to enter additional
parameters and bring the original problem to multipoint boundary value problem with a parameter. It allows in
terms of initial data to set conditions for the solvability of the boundary value problem for ordinary differential
equations and to propose a family of algorithms for finding its approximate solution.

A modification of the method of a parametrization is the method of introducing functional parameters,
devised in the works [8-16], which finds its application in the study of nonlocal boundary value problems
with data on characteristics for a system of hyperbolic equations with a mixed derivative with two independent
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variables. There were constructed two-parameter families of algorithms for finding solutions to nonlocal boundary-
value problems, at each step of which the Goursat problems are solved. On the basis of this algorithm was
established the solvability of the boundary value problem with data on the characteristics for the system
of hyperbolic equations with mixed derivative. However, the problems related to solvability of duo-periodic
boundary value problems for the system of hyperbolic equations with mixed derivative remain relevant.

Problem statement. On Q = [0,w] x [0,T] we consider a duo-periodic problem for a system of hyperbolic
equations of the form

38;;15 = A(x,t)% +z+ f(z,t), (x,t) e (1)

2(0,t) = z(w,t), te0,T]; (2)

2(x,0) = 2(z,T), z€l0,w], (3)

where (n x n) — matrix A(x,t); n — vector-function f(z,t) are continuous by €, [[z(z,t)|| = max |2 (z,t)];

i=1,n

|A(z, )| = 11_1?7542?:1 la;;j(z,t)|. Let C(Q2, R™) — be the space of functions z : @ — R™ continuous on {2,

with norm ||z||, = max |z(x,?)|. Function z(z,t) € C(2, R") having partial derivatives % e C(9, R"),
x,t
% € C(Q, R™) is called the solution of the problem (1)-(3), if it satisfies the system (1) for all (z,t) € Q2
and periodic conditions (2), (3).
We consider a periodic boundary value problem with one independent variable to find solution of this

problem

0u ou
Bog ~ A@ g tut f,1), (2,1) €y @
u(0,t) =0, te[0,T]; 5)
uw(z,0) =u(z,T), z€[0,w]. (©)

We enter new unknown function v(z, t) = and reduce the periodic boundary value problem for a sys-

tem of hyperbolic equations to a family of periodic boundary value problems for ordinary differential equations
and a functional relation. Next, we apply the method of a parametrization [7]. By step h > 0 : Nh = T
N

we produce a partition of [0,T) = U [(r=1)h,rh), N =1,2,.... The region 2 is divided into N parts.
r=1
By using v,(x,t), u,(z,t) denote respectively the restriction of the function v (x,t),u (x,t) on Q, = [0,w] x
[(r=1)h,rh),r=1,N.
Then problem (4)—(6) be equivalent to the boundary value problem

D = Al o+ g8+ f(20), (5,8) € O
vy (2,0) — t_l)l%n_OvN (x,t) =0, z€[0,w];
lim v, (x,t) =vsyy (z,sh), s=1,N—1, (7)
t—sh—0

ur(x7t):/:vr(§7t)d§, (r,t) €Q,., r=1,N,

where (7) — is the condition of gluing the functions v(z,¢) in the inner split lines. In A\,.(z) we denote the value
of v.(x,t) when t = (r — 1)h, i.e A\r(z) = v, (z, (r — 1)h) and will replace

Op(x,t) = vp(x,t) — Ap(x), r=1,N.
We obtain an equivalent boundary value problem with unknown functions A, (x):
o,
ot

= A(z,t)0, + A(z, )\-(2) + up(z, t) + f(2,t), (2,t) € Qp; (8)

O (x,(r—1)h)=0, z€[0,w], r=1,N; (9)
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A1 (.ﬁ) - )\N (l‘) - tl)iTI‘IlOﬂN (.lf,t) = 07 YIS [O7w]; (10)

As () + tli%,lfo Vs (x,t) — As31 () = 0,2 € [0,w],s =1, N — 1; (11)

up (z,1) = /GE{)T (§,t)d§+/m)\,« (&) d¢, (x,t) € Qpyr =1, N. (12)
0 0

The problem (8), (9) for fixed A.(z), u,(z,t) is a single-parameter family of Cauchy problems for systems
of ordinary differential equations, where = € [0,w] and is equal to the integral equation

t
Op (x,t) = / Az, 7)o, (z,7)dr+
(r—=1)h

t

+/( Alz,7)dr A (ac)—|—/ [, (2,7) + f (z,7)] dr- (13)

r—1)h (r=1)h

Instead of 0, (x,t) substitute the appropriate right part (13) and by repeating this process v (v = 1,2, ...) times
we will get

Up (2,t) = Dyy (z,0) N\ (2) + For (2,6, up) + Gop (2, 8,0,) , 7 =1, N, (14)
where
v—1 t T
D, (x,t) :Z/ A(x,ﬁ).../ A(z,mjq1)drjsr ... dr;
=0 (r—=1)h (r—=1)h

Fyr (z,t,uy) = /( [y (x,71) + f (z,71)] dm + z_:/( A(z,7) ...

r—1)h . r—1)h

Tj—1 T
/ A(JC,TJ‘)/ [’U,T (.T,Tj+1)+f(!L‘7Tj+1)] de+1de...dT1;
(r—1)h (r=1)h

t

Ty—2 Ty—1
Gor (2,8,0,) = / Az, 1) / Az, Tv_l)/ A(x, 1) 0 (x,7) dTodTy—1...dT1,
(r—=1)h (r=1)h (r—=1)h

70 = t,r = 1, N. Moving to the limit at ¢ — rh — 0, in (14) we find , lirl? = Op(x,t), r = 1, N, for unknown
—rh—

functions A, (z),r = 1, N, we obtain a system of functional equations:

Qu(xah))\(x) = *Fl/(xahau) 7Gu(xa haf))v (15)
where
I 0 —[I+ Dy (z,Nh)]
I+Dy (z,h) ... 0 0
Qu(x,h) = 0 0 0 ,
0 I+ Dynoy (. (N — 1)h) -1

FU (I7hau) = (7E1N (I,Nh,UN) 7E11 (Ivhaul) ’ "'7FU,N—1 (I7 (N - 1) h,UN_l)),
GU ('/1:7 h7ﬁ> = (_G’UN (.Z',Nh,ﬁN) 7G’U1 (l‘,h,i}l) ) "')G’U7N—1 (l‘, (N - 1) h7ﬁN—1)))

where I — is a unit matrix of dimension n. To find system of three functions
A (@), 8 (2.0 up (2,0}, 7 =T, N

we have a closed system consisting of equations (15), (14) and (12). Assuming the reversibility of the matrix
Q. (x,h), for all 2 € [0,w], from equation (15), where @, (x,t) = 0, u, (z,t) = 0, we find \(O) (z) : \(O) (2) =

= —[Qy (z,h)] " {F, (x,h,0) + G, (2,h,0)}. Using equation (14), for A, (z) = A0 (z) we find the functions
5\ (x,6), 1 =T,N, ie 0 (2,) = Doy (2, 8) A (2) + Fop (2,8,9) + Gor (2,1,0) .
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The functions u.” (z,t),r =1, N, are determined from the relations

O) (2,1) = " 50 t) d. IA5.0> e, (x,t) € Q,.
u (z,1) / <§>§+/0 (©)de, (a.1) €

For the initial approximation of the problem (8)-(12) we take A9 (z), 5 (z,t), ul? (z,t), r = 1,N, and
construct successive approximations by the following algorithm:

Step 1. A) Assuming that u,(x,t) = 1L5-0)(gc,t)7 r =1, N, are the first approximations in \.(z), 0, (z,t) we
found by solving the problem (8)-(11).

Taking A1) (z) = A (z), oy, b O)( t) 50 )(x, t) system of couple {)\gal)(x), 17721)(33, t)}, r =1, N, we find as
the limit of the sequence At )( ), D ~(1 ™) (z,t), determined by the following way:

Step 1.1. Assuming the revers1b1hty of the matrix @, (z,h), for all z € [0,w], from equation (15), where
b, (z,t) = 00 (2,1), we find ALY (2)

ALY (1) = — [Qy (2, h)] " {F (:v h,u<0>) G, (x h, @0’0))} .

Substituting the found ALY (z),r=1,N at (14) we find

)

137(,1’1) (z,t) = Dy (z,1) )\9’1) (z) + Fyr (m,t,u > + Gor ( x,t, (1’0)) .

Step 1.2. From equation (15), where o, (z,t) = NI (z,t), we define

A2 (1) = — [Q, (2, )] { (1: h, ul )+G (as,h,fz(l’l))}.

Using the expression (14) again, we find the functions 5ih?) (z,t), r=1,N:

1351’2)(90,15):Dvr(x,t))\gl’Q)(x)—i—Fw(xtu ) 4Gy ( ~<171>).

On the (1,m) step, we obtain a system of {)\(rl’m) (x) o™ (x,t)}, r=1,N.

Assuming that the solution of the problem (8)—(11) is the sequence of a system of couples {/\gl,m) (x),
b (x,t)} is defined, and when m — oo converges to the continuous, respectively, on x € [0,w], (z,t) € Q.
functions A (x) Lo (z,t),7r=1,N.

B) The functions N (z,t),r =1, N, are determined from the ratio

(1) _ [T "W
ur (ZL',t) /0 vr (fat)d£+A )‘r (g)dfa (x,t) EQT'

Step 2. A) Assuming that u,(x,t) = ugl)(x,t), r = 1, N, are the first approximations in A.(x), 0, (z,t) we
find by solving the problem (8)—(11).

Taking A9 (z) = A(l)(x),f)(z’o)(a: t) = NS )(x,t) system of couple {)\7(?) (z), (2)(9c t)}, r =1, N, we find as
the limit of the sequence AZm) (x), 52 m)( x,t), defined by the following way:

Step 2.1. Assuming the reversibility of the matrix Q, (z,h), for all € [0,w], from equation (15), where

by (,1) = 020 (2,1) , we find A (z)
AED (@) = — [Qu (&, )] { By (.5, 0V) + Gy (,8,529)

Substituting the found A (x),r=1,N, at (14) we find

1752’1) (z,t) = Dy (z,1) )\7{2’1) () + Fyr (x,t,u(l)) + Gy (Jc,t,ﬁ(z’o)) .

Step 2.2. From equation (15), where o, (z,t) = NS (z,t), we define

A2 (2) = —[Qy (z,h)] " {Fv (m,h,u(l)) + G, (LL‘ h, 5% 1))}
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Using expression (14) again, we find functions 522 (z,t), r=1,N,

137(,2’2) (z,t) = Dy (z,1) )\52’2) (z) + Fyr (x t, ul > + Gor ( x,t, (2’1)) .

On the (2,m) step, we obtain a system of couples {,\52’”” (z), H2m (z,t)}, r=1,N.
Assuming that the solution of the problem (8)—(11) is the sequence of a system of couples

AR (@), 52 (a,0))

is defined, and when m — oo converges to the continuous, respectively, on x € [0,w], (x,t) € Q, the functions
A2 ()82 (z,t),r =T, N.
B) The functions ul? (x,t),r =1, N, are determined from the ratio

u? (z,t) = /0 o (6,1 de + /O A (€)de, (a,1) € Q.

And so on. Conditions of the following statement provide the feasibility and convergence of the proposed
algorithm, as well as the single-valued solvability of the problem (8)—(12).

Theorem 1. Let for some h > 0: Nh=T,N =1,2,...,and v, v = 1,2,..., (nN XxnN) — the matrix
Q. (33 h) is reversible for all z € [0,w] and inequalities are satisfied:

Hquh ‘<%xh)
2) qu(@,h) = 2 (14, (2, h) Y S < g <1,

j=1 Fii
Then there is only one solution of problem (8)—(12) and valid assessment:

a) [\ (2) = A0 (@)]| + sup [[5* (2. t) — 0@ (2, 0)|| < pla,v,h) sup |[f (@, 0)];
t€[0,T) t€[0,T)

b)

() = AP © + sup
[OT]

u* (z,t) — ul® ( xtH<f0<

te[0,T]

Ch (fvt) - "7(0) (&ﬂ”) d§,

a(z)h)’
where a (z) = tre%u%] |A (x,t)||, B =const, by (z,v,h) =", (z,h) hz

by (z,v,h) = 1+%(x,h)z(a(a;!)h) h — (a () h)

(o (z) h)"

v!

1+ b3(x,v, h)

b3(33,V,h) = Yo (J),h) 1—¢q (x h)

) dl(m71/7h): b2($71/,h)+b1(.73,y7h);

1+ b3(x,v, h)

oo, vih) = 3= )

qv (.’I), h’) + bg(l‘, v, h’)7

o, v, h) = [dl(x,v,h) /0 by (6,0 1) + b (€, 1, )] dE + da, v, By (2, v, 1) |

o0

z J oz
p(xayah)dl(xay7h)z;-l!</o dl(gvyah)d§> /0 g(f,l/,h)dg +g(l’,l/,h).

Jj=1

Proof. When assumptions about the data of the problem we have the inequality

alz)h)?
1F Gl < S LMY s sup e 0l + 1 O
=0 J: r=1,N t€[(r—1)h,rh)
_ By _
1Gu (3 < LD syl
v r=1,N te[(r—1)h,rh)
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max  sup | Dyr(,t)]
r=1,N t€[(r—1)h,rh) - Z

The following estimates follow from the zero step of the algorlthm:

max ||\, (2)|| < b1 (a,v, h) max |[f(z,$)l};

r=1,N t€[0,T7]
max  sup [0z, 0)]| < ba(w, v, h) max [|f(x,t);
r=1,N te[(r—1)h,rh) t€[0,T]

x

max sup[ul@e ) < [ [b€nh) + a6 )] d max 7€ D).
(z,t)EQ

r=1,N t€[(r—1)h,rh) 5

The following estimates are valid:
max A, (@) = A0 ()| <

r=1,N
<b(z,v,h) max  sup  |[ulD(z,t)|| + bs(z, v, h) max sup [0z, b)];
r=1,N te[(r—1)h,rh) r=1,N te[(r—1)h,rh)
max  sup |0l (z,8) — 30 (2, 1) <

r=1,N te[(r—1)h,rh)

< by(z,v,h) max sup ||u(0)(33 t)]l + ¢ (x, h) max sup ||v£0)(x,t)||.
r=1,N te[(r—1)h,rh) r=L,N te[(r—1)h,rh)

Select the inequality

AGD(@) = max  sup B (2, 6) — 500 (2, ) + max A0 (@) — A0 ()| <
r=1,N t[(r—1)h,rh) r=LN

[bl(x v, h) + ba(z, v, h / bl (€ ) +ba(6 v dg max S0+
e
0

+[ba, v, B) + ) o, v h) max |1f (@)
(z,t)eQ
Thus,

max_ A, (2) = A0 (@) <
r=1,N

<ba(eh) max sup R0, 6) - T )
r=1,N te[(r—1)h,rh)

max  sup B (@) — 0 (1)) <
r=1,N te[(r—1)h,rh)

< go(w,h) max sup o™ (@, t) = o (@, 8.
r=1,N t€[(r—1)h,rh)
Due to the inequality g, (x,h) < 1 follows the uniform convergence vﬁl’mﬂ)(x,t), at (z,t) € Q,, to vf«l)(:c,t)

and the convergence of a sequence of systems of functions )\p’mﬂ)(x) to continuous z € [0,w] functions )\gl)(x)
forallr =1,N :

max  sup ol (@ t) = 00 (2, 1) <
r=1,N te[(r—1)h,rh)

m
<Slg e hf max  sup [0t 50O )
=0 r=1,N te[(r—1)h,rh)

max |4, (@) = A 40 @) <
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[0 (@, t) = o (2, 1)+

m
<b3x1/h2ql,zh max sup
=0 r=1,N te[(r—1)h,rh)

+ max_ A"V (@) — A0 (2)];
N

r=1,

LD (@, 1) — 500 (2, 6) | + max AL (@) — A0 (@) <
N

max sup 0]
r=1,

r=1,N te[(r—1)h,rh)

[1+b3xuh}2q,,xh max sup
7=0

B0 (, 1) = 58 (a2, 1)+

r=1,N te[(r—1)h,rh)

+ max ||\, (@) - 200 (@)

r=1,N
Moving to the limit at m — oo, we obtain estimates:

AV = max  sup [0 (at) — 5O )+
r=1,N te[(r—1)h,rh)

+ max [|A(2) = AP ()] < g, v, h) max |[f(z,$)l};
r=1,N te[0,7]

max sup
r=1,N t€[(r—1)h,rh)

mewﬂwmmm/Am@%
0

For difference systems A, **9(z) — X, ® (2), 5§k+1)(a:,t) — (z,1), u£k+1)(x,t) -

k=1,2,..., valid estimates:
mﬂn)‘r(}wrl’l)(m) - )\T(k+1,0)(x)|| <
r=1,N
<bi(w,v,h) max  sup [lul (e, t) —u TV (@, 0)|;
r=1,N te[(r—1)h,rh)
(k+1, 1)( ) 5£k+1’0)($,t)|| <

max sup oy
r=1,N te[(r—1)h,rh)

HUS‘k)(xat) - uv(”k_l)<w7t)“§

< ba(z,v, h) max sup
r=1,N te[(r—1)h,rh)
max ||, FFE7D (@) — A B ()| <
r=1,N

<bg(w,v,h) max  sup [TV (@) = T (2,0
r=1,N te[(r—1)h,rh)

max sup [EFLmHD (1) — LM (2, 1) <
r=1,N te[(r—1)h,rh)

< q(zh) max sup O (@, t) — R (@ 1))
r=1,N te[(r—1)h,rh)

[ (2, 8) = OO (2, 1| <

sup
r=1,N te[(r—1)h,rh)

[
7=0

¢v(, h)}’ ma sup [[o D (@, 8) — o0 (@, 1)
r=1,N te[(r—1)h,rh)

rilla)](\f”)‘ (k+1, m+1)( ) /\T(k+1,0)(x)|| <

[ (@, t) — T (@, 1)1+

m—1
<b3xuthVxh‘max sup
r=1,N te[(r—1)h,rh)

j=0

Cepust «Maremarukas. Ne 1(93)/2019

u&k)(m,t), r=1N

65



N.T. Orumbayeva, A.B. Keldibekova

+ max [|AFFED (z) — A, FFL0 ().
r=1,N

Moving to the limit at m — oo, we obtain estimates:

max sup 53¢ (2, 8) — 5 (2, 1)) <
r=1,N te[(r—1)h,rh)

ba(z,v, h) (k) (k—1)
< /" max sup ) (z,t) — uy z,t); 16)
1 —qu(z,h) v=T,N te((r—1)h,rh) g™ () Sl (

max [ A (z) = AP (@) <

r=1,N
h
< [Mw,y, B+ ba(o, v, )] max supul®) (@, 0) a7V (@) (17)
1—qu(x,h) r=LN te[(r—1)h,rh)
max sup  [ul (@) — ol (z,0)] <

r=1,N te[(r—1)h,rh)

x

< / [ max ILED©) = 4B @) + max  sup (A1) - 50 (&, 1) de.
r=1,N r=1,N te[(r—1)h,rh)

0

Summing, respectively, the left and right parts of inequalities (16), (17) we have

AFD () = max  sup 5D (@, 6) = 5P (@, )] + max [|AFV (@) = AP (@) <
r=1,N te[(r—1)h,rh) r=I1,N
<di(z,v,h) max  sup  [u (@, ) —uFD (2, 1)]; (18)

r=1,N te[(r—1)h,rh)

max swp [l (2, 8) - u® ()] < / A (6) e,
r=1,N te[(r—1)h,rh)

For function A®*+1)(z) based on (18) we obtain inequalities

AFD (z) < dy (z, v, h) / A®(©)ds;
0

A® (@) < ‘M ( / z<£)L(£>d£>k_1 / AW (€)dg

0

Set the inequalities

max [AF)(2) = XD ()| + max  sup 55 (@, 1) — 00 (2, 1)]| <
r=1,N r=1,N te[(r—1)h,rh)

< A(k-i—p)(x)+A(k+p—1)(x)_’_m_~_A(1)(x) <

x

P . XT
< dy (2,0, h) Zl</ (€ v, h) f)j/A(l)(f)dﬁJrA(”(x)g
j=1 0

jl
(z,t)eQ

< [atour h)Zjl,( / (6 h)ds)j / 9161 + g, )| ma [0

max sup [ul*P) (2, 1) — u® (2, 1)]| <
r=1,N te[(r—1)h,rh)
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x

g/pmmwm@wmm+mx sup [T 1) — 5O e, o)) | de
; r=1,N r=1,N te[(r—1)h,rh)

At p — oo, we obtain the estimates of Theorem 1. The uniqueness of the solution is proved analogously to the
uniqueness of Theorem 1 [9]. Theorem 1 is proved.

Theorem 2. Let the conditions of Theorem 1 be fulfilled. Then the problem (4)—(6) has a unique solution
u* (z,t).

Main result
Now let us return to this duo-periodic problem Denote by p () the value of the unknown function z(z,t)

for = 0 and perform the replacement u(z,t) = z(x,t) — p(t). Then the problem (1)—(3) is reduced to the
following equivalent problem with the functional parameter

Eingm¢€g+u+u@+fmﬁ,(%oeﬂ; (19)
w(0,6) =0, te0,T]; (20)

w(z,0) = u(@, T), €0, (21)

w(w,) =0, tel0,T]: (22)

u(0) = (7). (23)

By virtue of (23) the equality u(z,0) + p(0) = u(x,T) + p(T") which follows from (3) is written in the form
(21). With the found p (t) the function w(z,t) is a solution of the periodic boundary value problem (19)—(21).
To solve the problem (19)—(21) we use the method of a parametrization. Since conditions (20), (22) imply the
equality 8“(0 Y = 0, 6"(w = =0, for all ¢t € [0,7], then integrating both parts (19) by = € [0,w] we obtain a
system of dlfferentlal equatlons, not resolved with respect to the derivative, to determine the unknown function

e (t):
2 [Caen®5 a2 M na- - [ feode (21)

Thus, to determine the unknown functions v(x,t), u(x,t), i (t) we have a closed system of equations (19)—(21)
and (24).

Assuming that u(z,t) = 0, from equation (19) we find p(9) (t). Suppose that the problem (19)-(21) for
u(t) = p©(t) has a solution u® (z,t) € C (2, R™).

For the initial approximation of problem (19)-(21) we take a pair {u® (t), u(®(z,t)} and construct
successive approximations using the following algorithm:

Step 1. Assuming that u(x,t) = u(® (x,t) from equation (24) we find p(Y(t):

1 o 1o 1
u0 ) =~ [ aen® a2 [uoende - 2 [ sienae

w

The function u(!) (z,t) is defined as the solution of a periodic boundary value problem

9%u

_ u (1) :
arar =~ Al g Hutp () + flat), (w.t) €

0
) )%

u(0,¢) =0, tel0,1];
w(z,0) =u(z,T), x€][0,w].

To solve a periodic boundary value problem, we use the method of a parametrization.
Step 2. Assuming that u(x,t) = u(l)(x,t) from equation (24) we find p(?(t)

_ 1 fﬂ R AW L
——2 [T a5 e L [T nae- - [ rene
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The function u(® (z,t) is defined as the solution of a periodic boundary value problem

9%u

u (2) .
o tut @ () + fat), (zt) e

%
u(0,t) =0, yel0,T];
u(z,0) =u(z,T), z€[0,w].

= Az, t

To solve a periodic boundary value problem, we use the method of a parametrization. And so on.

Continuing the process, at the k step we obtain the system (u(k) (), u®(z, t))

Sufficient conditions for feasibility, convergence of the proposed algorithm establishes

Theorem 3. Let for some h > 0: Nh=T, N=1,2,...and v, v = 1,2,..., (nN x nN) — matrix Q,(z, h) is
reversible for all z € [0,w] and the inequalities hold:

D) [|i@u @ w17 < ey
2) (@, h) = SO 1 4oy (w0, 0) Y, ] < B <1y
3) 0w, v, h) = a (2) p(w, v, ) + [ 0 (€) plE, v, W) < o < 1.
Then the duo-periodic boundary value problem (1)—(3) has a unique solution.
Proof. According to Theorem 1, there are estimates

HML*) (z) — A0 (w)‘

519 (2, ¢) — (10 (x,t)H <
t€[0,T)

<pleh) swp (a0 O] +1f @ ol]; (25)

sup ‘ @) (2, 1) — O (2,0) H </ H)\(l ) (6) = ALO) (S)Hdﬁ—i-
te[0,T)

+/x sup ‘ (1) (£, 1) — p(10) ( “de’ (26)
0

te[0,T]

here A(1:0) ()

=AO(z), 510 (z,t) = 50 (2,1), uO (2,t) = u® (x,t), p0O () = p@ (£), A9 (2) = AD(z),
(L) (z,t) = ey

(z,t), u*) (x,t) = uV) (2,t), then inequalities (25), (26) are rewritten as

HA(U (z) — A© (m)H I s H@u) (z,t) — v (x,t)H <

< p(@,vh) sup || )|+ p@,vh) sup If (@, 0]
te[0,T) te[0,T]

sup |[u) (@,6) = u® (2, 1)]| <
t€[0,T]

</0xp(§,u7h)d€- sup (t)H+/Ozp(f7V7h)'tES[1(l)%} I (€. )] de.

te[0,T]

Valid assessment

|6 @) = 1@ @] < al@pte, v, h) sup || @) + al@pt,v.h) sup |1f @)+
t€[0,T] te[0,T)

o[ otenmae s [u@ 0]+ oo s el

te[0,7

At the k step we obtain a system

R U
€10,
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)

< p(x,v,h) sup Hu(k V() = u*2 (2)
t€[0,T]

sup (4 (a,6) w1 (@,0)| <
t€[0,T]

< /Ox <HA(’“) (&) —A¢=D (f)H + S o H v (¢1) H) d¢;

[6® @) = n®D @) < G v 0] sup Hw ()~ u® ()
t€[0,T]

k = 2,3, .... Due to the inequality 6(x, v, h) < 1 follows the uniform convergence of u*)(z,t), o (x,t), (x,t) € Q
to u*(x,t),v*(z,t) and the convergence of a sequence of systems of functions A*) (), u(®) (t) to the continuous,
respectively, on z € [0,w], t € [0,T] to the functions A\*(z), u*(¢).

The uniqueness of the solution is proved analogously to the uniqueness of Theorem 1 [9]. Theorem 3 is
proved.

The work was supported by grant funding of scientific research by the Committee of Science of the Ministry
of Education and Science of the Republic of Kazakhstan (project no. AR05132262 CS MES RK).
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H.T. Opymbaesa, A.B. Kebubexkosa

Apajiac TybIHABLIBI TUIIEPOOJIAJIBIK, TeHAeyJIep >Kyiieci yIrIiH
KOC II€PHUOATHI €CEeIITiH, MIEeImIMIiIir >KaiibIHaa

Exinmi perti runepboaibik TEHAEYIED TEOPUSICHIHBIH, HETI3T XKoHe HeFypJIbIM 3€PTTEJITEeH eCenTepiHiH, 6ipi
[IePUOJITHI IMIETTIK ecerr 60JbI TabbLIabl. MyHmai ecenrrepi menry yinin @ypbe oj1ici, GipTiHAE XKy BIKTAY
a1ici, (PYHKIMOHAJIBIK, TAJIAAY 91iCTEPi, BAPUAIUSIIBIK, 9/1iC *KoHe T.0. Kosganbuiaabl. OChIHIAl KOHCTPYK-
THUBTIK 9/1icTep/iiH 6ipi KapanaitbiM auddepeHnuaIblK TeHIEYIEPIIH €Ki HYKTe I MeTTIK eCenTePiH TIenry
yinin J.C. I:xyMabaeBThIH *KyMBICTAPBIHA YCHIHBIIFAH IapaMeTpJIey 9ici 60JIbII TabbLIa bl ¥ CHIHBLIBIII
OTBIPFAaH KYMBICTA apajiac TYBIHIBLIbBI TUIIEPOOIAJIbIK, TeHIeyIep »Kyieci yImiH eki aiHbIMasbl GOMBIHIIA
MEPUOJTHI MIETTIK ecen KapacThipbLiran. OChI ecemnTi menty yImH KaHa QYHKIUIAP €HI3UIIl XKoHe Tepu-
OATHI IIETTIK ecer KapamaiibiM auddepeHnnaIblK TeHAeyaep Yitipli MeH HHTerpasblK TeHAeYAeH TYPATHIH
SKBUBAJICHTTI ecerke KesITipinzi. AJbIHFaH ecenTi enty Yl napaMerpiiey 9aici Koaaanbuiasl. By oicri
maiijajany apaJiac TyBIH/IBLIBI THIIEPOOIAIBIK TEHIEY/IED XKYHWeci VITiH MeproATHl MIETTIK €CEITiH, MeITiMiH
Taby aJropuTMiH Kypyra MyMKiHIik Gep/i. COHbIMEH KATap YCHIHBUIFAH AJIPOPUTMHIH *KUHAKTHLIBIFB MEH
OPBIHJIAJTYBIHBIH, KO MUIMEHTT] MAapTTaphbl aJIbIH/IbI.

Kiam coesdep: KOC TIEPUOATHI €CEIl, TapaMeTipJIiK 9ic, rumepOoJIaIblK, TEHIEYIED Kyiieci, apagac TybIHIbI.

H.T. Opymbaesa, A.B. KenbaubexkoBa

O pa3permmMocTu JBOSKOIIEPUOANYECKON 3a/1a491 JIJisi CUCTEMBI
rurepo0InYecKnX ypaBHEHHUI CO CMEITaHHON ITPOU3BOIHOI

O/1HO#t M3 OCHOBHBIX U HanboJIee U3y UEeHHBIX 3a/1a9 TEOPUU MUIEePOOJINIEeCKUX YPABHEHN BTOPOI'O MOPSIIKa,
SIBJISIETCSI TTEpUOMYECcKasl KpaeBasl 3ajada. /[y pernenust Takux 3ajad mpuMeHsitorcst Metos, Pypbe, Me-
TOJT TIOCJIEOBATEIBHBIX MPUOIMKEHUN, METOIbI (DYHKITMOHAILHOTO aHAIN3a, BAPUAIMOHHBIA METOJ U JP.
PasBurne nudopManmoHHBIX TEXHOJIOTHI IIPEIbSIBIISET HOBble TpebOBaHUs Ha pa3pabaTbiBaeMble METOJbI,
yaesisisi 0coboe BHUMAHUE UX KOHCTPYKTUBHOCTH. OTHUM U3 TAKUX KOHCTPYKTUBHBIX METOJOB SIBJISIETCST M€-
TOJT TapaMeTpHU3aIui, mpeioxkennsiit B paborax .C. Ixxymabaea, [j1s pelreHnst ABYXTOUECIHBIX KPAEBBIX
3a/1a4 OOBIKHOBEHHBIX A depeHnnaibHbIX ypaBHenuii. B nanHoit pabore paccMoTpeHa nepuoanydecKast mo
06erM TIepeMEeHHBIM KpaeBasl 3a/1a4a, JIjisi CACTEMbI THIEPOOTNIECKUX YPABHEHUN CO CMEITaHHOM MTPOU3BO/I-
voit. /Ist pemrennst maHHOM 3371291 BBOASATCS ODO3HAYUEHUST U MEPUOAMIECKAas KpaeBas 3aa4a CBOIUTCSI K
SKBUBAJICHTHOI 3aJ[a4e, COCTOAIIEH N3 ceMeficTBa MePUOANIECKIX KPAEBBIX 3a/a4 J1J1si OObIKHOBEHHOTO Jind-
(depeHITnaTBLHOTO yPABHEHUSI U HHTETPAJIBHOTO COOTHOIIEeHUs. JIJIsT perenust oy 9eHHON 33,191 TPUMEHSI-
eTcst MeToJI mapaMerpusaruu. [IpuMenenne TaHHOrO METO/1a TO3BOJIMIIO TIOCTPOUTH AJTOPUTM HAXOXKIEHUST
NpUOJIMZKEHHOTO PEIeHuUs] IEPUOUIECKON KPAeBOil 3a/1a4M JIJIsi CUCTEMbI TMIIEPOOIMYECKUX YPABHEHUIA CO
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CcMeranHoi mpon3BoaHO. Kpome Toro, momydensr KoahOUIIMEHTHBIE YCIOBUAST CXOIUMOCTH U OCYIIECTBU-
MOCTH IIPEJIJIOZKEHHOTO aJITOPUTMA.

Karouesvie crosa: JABOAKOIIEpUOAUYIECKasd KpaeBasd 3aJavda, METO/L ITapaMeTpu3alnuu, CuCTeMa FI/IHep6O.J'II/ILI€‘-
CKUX ypaBHeHI/Iﬁ, CMeIlIaHHbIe ITPOU3BOJIHBIC.
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Solving one pseudo-Volterra integral equation

In this paper, we study the solvability of a second-kind pseudo-Volterra integral equation. By replacing the
right-hand side and the unknown function, the integral equation is reduced to an integral equation, the
kernel of which is not «compressible». Using the Laplace transform, the obtained equation is reduced to
an ordinary first-order differential equation (linear). Its solution is found. The solution of the homogeneous
integral equation corresponding to the original nonhomogeneous integral equation found in explicit form.
Special cases of a homogeneous integral equation and its solutions are written for different values of the
parameter k. Classes are indicated in which the integral equation has a solution. Singular integral equations
were considered in works [1-3]. Their kernels were also «incompressible», but kernels had an another form.
In this connection, the weight classes of the solution existence differ from the class of the solution existence
for the equation considered in this work.

Keywords: kernel, integral operator, class of essentially bounded functions, Laplace transformation.

Introduction

This paper is devoted to the research of questions of solvability of the following pseudo-Volterra integral
equation of the second kind

v

a t 1 i 1 t T 1 —i=z —
O35 ], = T i [ =, o

where a, k — are positive constants, f(¢) — is the given function.

A similar kind of integral equation arises in solving the boundary value problems of heat conduction with
heat generation, which describe the development of the one-dimensional unsteady heat processes with axial
symmetry.

1 Reducing the equation (1) to a differential equation in images

We rewrite the equation (1) in the form

V(t)eﬁ a /75 1 1 T u(r)d
R . ——eda? - u(T)dT—
NG 2T Jo tWE—T T
1 t T 1 _T_ f(t) _t_
— —e1a? - dr = “—=¢e1a?, 2
ka\/Tr/O t\/ﬁ{ﬁ“ ”(T)} VA @
After replacements:
1 1

TR = nlt), om0 = () 3)

equation (2) takes the form

a ¢ 1 1 ¢ T
nt) =572 [ = mnir = e [ nmar = i

or

1_ _ ni(r)dr () dr = faolt), (4)

a ¢ 1 to
t’”l(t)‘zﬁ/o Vi—r ‘kaﬁ/o i
where fa(t) =1t f1(t).
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We note that the integral operator acting in the class of continuous functions vy (t) € C(0; +00), of an

equation with a kernel:
a 1 1 T

KT = s | have ivies

is not bounded.
To equation (4) we apply the Laplace transform, introducing the notation

n(p) = /000 vi(t) e Pt < vi(t) = o1(p);

R = [ 80 i o 10+ ),

that is

Since

- l/w e~ dy — ﬁ;
il VP Jo VP
t- Vl(t) - 71)1(]9)3
integral equation (4) becomes a differential equation in the image space

~1(p) — 2\% \\/g 1(p) — k;\ﬁ - \\/g (=4 (p) = f2(p),

which can be rewritten as

1 " a . _
h%@—@mm—m@—ﬁ@. (5)

2 Solving a homogeneous linear differential equation

We solve a homogeneous equation that corresponds to a linear equation (5)

1 N a -
v BECEEY TR )

The solution to differential equation (6) has the form:

. Cellk e~ WP
n(p) = : (7)

VP ka
where C — const.

Since from formula No. 149 [4; 272] and from formula No. 9 [4; 259] we have

—as

e TE_I kT‘|

_— 1 eka s

(-7 I
then, taking into account formula No. 29 from [4; 261] and applying the inverse Laplace transformation to (7),
we obtain )

C Cr(r—a)r ! 2 .

v (t) = / e d e ka dT =
T (L) (ka)'/* Jo  2/mt3/2

Q
rb‘
B

’ 1 /OO 1_1q ,ﬁ+i
= T(T —a)¥ e % TRadr.
T (L) (ka)' /" 2vmt3? ],
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Introducing the notation

I(t, k) = / T(r — a)%flef%thv%dﬂ
we get
Ce 1
Vl(t) = I(t,k)
r (%) (ka)l/k 2ﬁt3/2
We calculate the integral

o 2
I(t,k):/ T(Tfa)%flefﬂJrEdT:

> % 2 T o0 %’1 2
/ (t—a) e_Tt"’WdT—i—a/ (t—a)
a a

Taking into account the formula 2.3.15 (1) from [5], we obtain

1 1
1 1) 22 t 1 a?
I(t, k) —F<k+1) (2t> exp{

74_7 — D M _|_
2k2a2 2k st TG\ ekt

vaT 1 1\ 2 . t . 1 a? D ka? — 2t
Iy (1 wl t 1 e (a2t
k) \ 2t Plorza "ok ®t “F\ ekt
1 1 t a?
F<k) eXp{Qk} (2t) eXp{Wgt} x
1 ka? — 2t ka? — 2t
x |=v2t D TR oD (222
[’f ~(1+1) ( ak/2t ) ¢ ( ak+/2t )}

Substituting I(t, k) into expression (8), we obtain the general solution of the homogeneous equation that
corresponds to the integral equation (4)

x“"‘

vi(t) = Cet (Qt)ﬁ ex t —ﬁ X
T )R 2y e TP ke T B
1

ka® — 2t ka? — 2t
% |=v2t D, L BIPAY » J (il
[k —(3+1) ( akV/2t ) “ k ( ak\/2t )}
where [6] (see formula 9.241(2))

22

D_,(2) 64/%0 5= 0Ly Rep> 0
pl2) = =—— e 2 X X, ep >
? I'(p) Jo

are Parabolic cylinder functions (Weber functions).

Using the replacement that is inverse to (3), we get

® Cet (2t)2F . t toa?)
v(t) = X - - =
(ka)t 2t \2k%a?  da? Bt

1 ka? — 2t ka? — 2t
X |=v2t D —— | +aD_1 | ———||. 10
0 () ror (i) ()
(10) is the general solution of the homogeneous integral equation that corresponds to the initial equation (1)
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3 Case k=2

From a practical point of view, the case k = 2 is interesting

o(t) = — Ve exp{_t GQ} y

V2ar(2t)5 8a2 8t

[0 (i) e (5-28))
where [7] considering formula [9)]
D_i(z)= %ZKi (f)

Nl

and K, (x) is the modified Bessel function of the second kind or the Macdonald function
Since from formula 9.247 (2) [6] we have

o200 v38.0- o (5) & (o ()

then, taking into account the formula

D

o

Ky () = 3 (Kya (&) + Koy (2)

2

z
we conclude that the expression in square brackets in (11) will be a linear combination of functions K, (4),
where

~(33h -k

K, (z) ~ ”\;( +o<x)>, z — 400

2

lim 2% = lim S i = +00
t=0; todoo t=0;totoo \ 2t a2/ ’
it follows that function (11) will be bounded when ¢ € (0, +00).

Thus, the following theorem is proved.

Theorem 1. The integral equation

From asymptotic behavior

and from limit relation

vl vy = SRRl 2a1ﬁ/ot\f

T et v(T)dr =0
in the class of functions v(t) € Lo (0, +00) has a solution defined by the formula (11).

4 Case k=1
When k£ =1 from representation (10) we get
Ce t V2t a V2t
t) = — — tD o ——=— — Dy|———— . 12
0= oo ) l\ﬁ (@ a )” (m a )1 -

From formulas 9.254 (1) and 9.254 (2) [6] we have for (12):

y(t):ai‘;t exp{; ‘;t}{\fﬁexp{ ;}x
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oG8 (-5 o)
ol s 22

S Lol ) E i ()

So, when k = 1, representation (10) has the form:

0- bt} EonlBon( D)

Thus, the following theorem is valid.
Theorem 2. The integral equation

2f/ \/\[m e V(T)dT—aLﬁ/O \ftmeié.ymmzo

in the class of functions exp {—% } v(t) € Lo (0, +00) has a solution defined by the formula (13).
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M.T. Kocmaxkosa, JI.M. Axmanosa, C.A. Nckakos, 2K.M. Tymeyraesa, JI.2K. KacsimoBa

IIceBao-BonbreppaHblH WMHTErpaJabIK TeHJEYyiHiH MIeIniIyi

MakaJstaza riceBio-BosibTeppaHbIH eKiHIN TEKTI MHTErpaJsiiblK, TeHJIEYiHIH eIy cypaKTapbl 3€pTTesIi.
WuTerpanapik TeH ey OH YKaKTaFbl XKoHe 13/1e/iHI (PYHKIUAHBI ayBICTHIPY apKbBLIBI SIIPOCHI «CHIFBLIMAJIBI»
GOJIMANTBHIH UHTErPAJIJIBIK, TeHIEyTe KeJaTipliai. Anbiaran Tengey Jlammac TypieHaipyl apKbLIbl Kapamnaii-
bIM GipiHr peTTi (CBIBBIKTHIK) auddepeHnuanblK Tegaeyre Kearipinai. By repeyniy mernryi TabbuiasL.
Bacrankbr 6ipTekTi eMec MHTErpaJIIbIK, TEHIEYTe COMKEC KeJIeTiH GIpTeKTI MHTEerpasIblK TeHJ ey H IIenryi
aflKbIH TYpZe TaOBLIALI. BipTeKTI MHTErpaJIIbIK TeHACYIIH Aepbec Karaaitapbl XKoHe OHBIH k TapaMeTpiHiH
opTYpJIl MoHAEpiHAeri mmerntysiepi ka3bpliabl. [llemntysepi 6oaTblH UHTErpaJIIbIK, TEHACYIEPIiH KJIaCTapbl
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kepcerinren. CHHTYIISPIBIK MHTErPATIBIK TeHaeyep [1-3] xxymbicrapma kapacroipbuiran. COHBIMEH KaTap
OJIAPJIBIH SIJIPOJIAPBI «CBHIFBUIMANTBIHY O0JbI, Gipak Typi e3remie. Ocbiran 6ailaHbICTEI HmIenLy i 6ap 60-
JIYBIHBIH CAJIMAKTBIK, KJIACTAPBIHBIH, ATAJIFaH *KYMBICTaFbl 3€PTTEIII OThIPFaH TEHJEYIEPIiH Iemnryiepi 6ap
GOJIYBIHBIH KJIACTAPBIHAH afbIPMAIITBLIBIFBL 6ap.

Kiam cesdep: siipo, MHTErPAJIIBIK, OMEPATOP, MIEKTENreH DYHKIUSIAp KaacTapsl, Jlammac Typaesmipyi.

M.T. Kocmaxkosa, JI.M. Axmanosa, C.A. Nckakos, 2K.M. Tyseyraesa, JI.2K. KacbimoBa

Pemenune oanoro mnceB/10-BosibTeppoBOro MHTErpaJIbHOTO YPAaBHEHUS

B crarbe ucciieoBaHbl BOIPOCH pa3permMoOCTy MCeBI0-BOIbTEPPOBOro MHTErpabHOIO yPABHEHUS BTO-
poro poza. C moMoIpio 3aMeH [PaBOil YacTW M MCKOMOM (DYHKIMU MHTErpaJibHOE YPAaBHEHHE CBEJIEHO K
WHTErPAJIbHOMY YPaBHEHMIO, SITPO KOTOPOTO He SIBJISIETCS «CKUMaeMbIMy». C MOMOIIBIO Mpeobpa3soBaHuUst
Jlammaca mosy4yeHHOE ypaBHEHWE CBEIEHO K OOBIKHOBEHHOMY mupdepeHITnaJIbHOMY YPABHEHUIO EPBOTO
nopsaxa (nuueitnomy). Haiineno ero pemenue. PereHye OJHOPOIHOIO MHTEIPAJBLHOIO YPABHEHHUS, COOT-
BETCTBYIOIIETO UCXOHOMY HEOHOPOIHOMY WHTErPAaJIbHOMY YyPaBHEHUIO, HAWIEHO B SIBHOM Buje. Boimuca-
HBI YACTHBIE CJIyYaH OJHOPOIHOIO MHTErPAJILHOIO YPABHEHUS M €r0 PEIeHHs [PU PA3JIUIHBIX 3HAYCHUIX
napamerpa k. YKa3aHbI KJIacChl, B KOTOPBIX HHTErpaJibHOE ypaBHeHne umeer pemiervie. CUHIYIISIDHbIE WH-
TerpaJjibHble ypaBHEHUsI ObLUIM paccMOTpeHbl B paforax [1-3]. Ux simpa Takske ObLIM «HECXKHMAEMbL», HO
“MeJin JpYyro#l Bui. B CBa3M ¢ 9TUM BeCOBBbIE KJIACCHI CYIIECTBOBAHUS PEIICHUS OTIMIAIOTCA OT KJIACCA
CYIIIeCTBOBAHMS PEIeHUs] yPABHEHUsI, UCCIEIYEMOro B JAHHOM pabore.

Karouesvie crosa: apo, MHTEMPAJIBHBIN OMEPATOP, KJIACC CYIIECTBEHHO OrPpAaHNYEHHBIX (DYHKIWi, mpeobpa-
soBanue Jlamraca.
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Stochastical problem of Helmholtz for Birkhoff systems

The Helmholtz problem is considered in a probabilistic formulation. By a given stochastic Langevin-It6d
equation in an indirect representation, as the equation of the Hamiltonian structure and the equation of
the Birkhoffian structure are constructed. The functional that takes a stationary value on solutions of a
given stochastic Birkhoff equation, is defined by the method of moment functions. The obtained results
are illustrated by two examples: 1) the plane motion of a symmetric satellite in a circular orbit under the
action of gravity and aerodynamic forces, and 2) the fluctuation motion of a gyroscope in a gimbal caused
by the stochastic fluctuating moment of forces along the suspension axis of the inner ring.

Keywords: stochastic Langevin-Itd equation, inverse problem, equation of the Hamiltonian (or Birkhoffian)
structure.

Introduction

The theory of inverse problems of differential systems is sufficiently fully developed in [1-6, etc.] for
deterministic systems, which are described by ordinary differential equations (ODE). Thus, the work of
N.P. Erugin [1], in which a set of ODE is constructed according to a given integral curve, subsequently turned
out to be fundamental in the formation and development of the theory of inverse problems of the dynamics
of systems described by the ODE. In [2-6], the formulation, classification of inverse problems of differential
systems and general methods for their solution in the class of ODE are presented. Also, in the ODE class,
inverse problems of the automatic control systems’ dynamics are considered [7-9]. It should be noted that one
of the general methods for solving inverse problems of dynamics in the class of ODE is the quasi-inversion method
proposed in [4, 5] and which makes it possible to obtain necessary and sufficient conditions for solvability.

A new stage in the research of inverse problems of differential systems is the increased interest in recent
years in the study of the Helmholtz problem (see, for example, the monograph [10]). In the monograph of
A.S. Galiullin [10], along with a review of works, the Hamilton systems’ generalization in the sense of the
reducibility of the non-conservative mechanical systems’ motion equations to classical equations of dynamics is
considered, and, in particular, the problem of the equations’ Hamiltonization of program motion’s systems is
solved.

The classical Helmholtz problem [11] is the problem of construction the equivalent differential equations in
the form of Lagrange on given second-order ordinary differential equations. Moreover, the equations for which
such transition is possible are called Helmholtz systems. In the works of A. Mayer [12] and G.K. Suslov [13]
independently it is shown that the classical Helmholtz conditions are not only necessary, but also sufficient
conditions for the transition from Newtonian equations to Lagrangian ones.

The solving of the Helmholtz problem [11] in this or that class of differential equations allows us to extend
to this class of equations well-developed mathematical methods of classical mechanics. It should be noted that
the two-volume monograph by R. M. Santilli [14, 15], devoted to the problem of representation of ordinary
differential equations of the second order in the form of Lagrange, Hamilton and Birkhoff, occupies a special
place in the completeness of the material and the variety of Helmholtz problem’s study aspects.

The development of methods for solving inverse problems in the class of partial differential equations is
discussed in [16-18].

In [19-21], inverse problems of dynamics are considered in a probabilistic formulation under the additional
assumption of the random perturbations’ presence, and, in particular, the follow problems: 1) the basic inverse
problem of dynamics, in which it is required to construct a set of second-order stochastic differential equations
of Ito type having a given integral manifold, 2) the problem of reconstructing the equations of motion, in which
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it is required to construct a set of control parameters that enter into a given system of second-order stochastic
differential equations of Itd type from a given integral manifold, and 3) the problem of closing the equations of
motion, in which it is required to construct a set of closed stochastic second-order differential equations of It
type with respect to a given system of equations and a given integral manifold, are solved by the quasi-inversion
method.

In this paper, we consider the Helmholtz problem in the presence of random perturbations of white noise
type for Hamilton systems and Birkhoff systems.

1 Formulation of the problem and its solving

It is required to construct an equivalent equation of the Hamiltonian (or Birkhoffian) structure by the
equation given in the Langevin-It6 form

iy = F,(x,&,t) + 0,(zx, 2, )& (1)

Here &/ = &) + [ ¢ (y) PO(t,dy), where, following [22], £) is the Wiener process, P° is the Poisson process,
PO(t,dy) is the number of process jumps P° in the interval [0,¢], falling on the set dy, where y = (27, j:T)T
We say that a function g (y,t) from the class K, g € K if g is continuous on ¢ and is Lipschitz on y in the
whole space R?" 5y and satisfies the linear growth condition with respect to y: ||g (y,t)|| < M (1 + ||y||) with
some constant M.
Suppose that a given vector-valued function F' and a matrix ¢ belong to the class K. And since the vector-
valued function F' and the (n x k) matrix ¢ are assumed from the class K, this ensures [22]| the existence

and uniqueness up to the stochastic equivalence of the solution (z7(t), a'cT(t))Tof equation (1) with the initial

T
)r ") = (w7, xg)T being a strictly Markov process with probability 1.

2 (to
This formulation of the problem in the absence of random perturbations (o,; = 0) was considered in the
works of R.M. Santilli [14, 15|, and in a probabilistic formulation the Helmholtz problem it was previously
studied in [23-25], where equations of the Lagrangian structure are constructed from the given equation (1),
and, further, from the stochastic Lagrange equation, a stochastic analogue of the Hamilton variational principle
is determined.
To solve the problem, we will introduce previously a new variable and we will rewrite the given equation

(1) in a form

{ T = Yk N @)
Uk = Fr(z,y,t) + ok (z,y,t)&.

And then, with the help of replacements

condition (x (to

an — 4 Tk 0, =12
k= Yk M = gr j=n+1,n+2,...n+m;

OTLTL Onm
G’“:{E? A:(Akj)Z( 8 % )% o= (0u),

Onxn  Onxm

we rewrite the equation (2) in a form
ar = Gr(a,t) + Axj(a, ). (3)
Further, we rewrite the stochastic equation of the Hamiltonian structure

. _ O
qkfapkv

. 0H /
pszaiqk+o—kj(‘bpat)gja (kilan)

in the form 8H
Zy — aM”aT = 0y, (5)

v

where the following notations are

Cepust «Maremarukas. Ne 1(93)/2019 79



M.I. Tleubergenov, D.T. Azhymbaev

P /2 k=1,2,...,n,
b Pk—n, k=n+l,n—|—2,...,2n,

o= (al“/) _ ( 0n><n In><n ) , o= (9,LLV) _ ( O’I’LX’IL O'rlem ) :

_Inxn 0n><n 0'r1><n Onxm

OH

do | _(, oH
oH |  \ "oz /)

Opk
Or, if we introduce a matrix (w,, ) which is the inverse to a matrix (o)

0 — 1

_ -1 __ nxn nxn
(o) = () = (G )
and 2n-dimensional vector

_p;m H = 1727 sy T
Qu-n, H=n+1n+2,..2n )’

p = W2y = (

then the equation (5) will be transformed to the equivalent equation
OH
Oa,

Construction of the Hamiltonian in the indirect representation. We consider the problem of the indirect
representation of equation (3) in the form of an equation of the Hamiltonian structure (6), that is, with the aid

w,uudu - = W,ukgkl/ﬁu' (6)

of a certain matrix I' = (y¥), we consider the relation
. . . 0H -
Yo (= Gi = Mijily) = woplyy — 5= = w0, (7)
or on
Cunar — Dy (a,t) = 1y Arjily) = ol — S~ okt (™)

where C,. =%, D,(a,t) = ~v*G,..
To satisfy the identity (7), it is required the fulfillment of conditions

O = i Dyl 1) = — o Q
vffAkj :w,,kekj7(1/,k: 1,2n,j =1,n+ m); (9)
7]5 = Wyk- (10)
From (9) and (10), it follows that the equality
or; = oy (k=Tom,j =Tm) (11)

takes place.

Hence, we have

Theorem 1. The indirect representation of the stochastic equation (3) in the form of the stochastic Hamilton
equation (6) is possible if and only if conditions (8), (10), (11) are satisfied.

Remark. To construct the Hamilton function, which determines the form of equation (6), it is necessary to
check the Helmholtz conditions for the given equation, which, following R.M. Santilli [14], represent the next
relations:

Cow 4 Cyp = 0; (12)
0C,, 0C,, 9Cy,
= . 1
oa, + da,, + Oa, 0 (13)
9C., 0D, 9D, 14)

ot da, Oay
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Construction of the Birkhoffian in an indirect representation. We consider the stochastic Helmholtz problem
in the following formulation: it is required to construct a stochastic equation of the Birkhoffian structure of the
form

OR,(a,t) OR,(a,t)] . 0B(a,t) = O0R,(a,t) .
- v =T, B 1
day, oa, | da,, AT wili (15)
by the given equation
CMVaV - DV(avt) = Aujﬁﬁ (,u,v = 13277*)7 (16)

where B = B(a,t) is called the Birkhoff function, and W = (W,,,) is the Birkhoff tensor [15] with components
OR,(a,t) OR,(a,t)
Wy = - :
Oay, Oa,

The Birkhoff system (15) is a direct generalization of Hamilton systems (6). Indeed, when a, = ¢, (v =1,n),
ay =py—n (v=n+1,2n); R, =p, (v=1,n), R, =0 (v =n+1,2n); B(a,t) = H(q,p,t) equation (15) takes
the form of the canonical equations (6).

To solve this problem, we consider the relation

Couvity — Dy(art) — Aty = <3Ry(a,t) B aR#(a,t)> . (83(a,t) OR,(a,t)

— Ty,
da, da, da, ot ) il
which is fulfilled identically under the following conditions:

OR,(a,t) OR,(a,t).

Cl“’(a’3 t) = aa aa ) (17)
" v
0B(a,t)  OR,(a,t)
D,(a,t) = + —=£ : (18)
day, ot
AM‘ =Ty;- (19)

Consequently, we have

Theorem 2. The direct representation of the stochastic equation (16) in the form of the stochastic Birkhoff
equation (15) is possible if and only if conditions (17)—(19) are satisfied.

Indirect representation of the stochastic Hamilton equation in the form of a stochastic Birkhoff equation. We
consider the problem of indirect construction of the Birkhoff equation (15) from a given Hamiltonian equation
(6) in the presence of random perturbations.

In other words, we will define R, and B on given functions H and hj; so that the relation

. OH ;. OR,(a,t)  OR,(a,t)\ . 0B(a,t)  OR,(a,t) ;o
b (wapag — =— —TYn;| = - £ v — b —T,.1; 2

n |89 T Han "ﬂ] < day, oa, )¢ da, | ot wils - (20)
be satisfied. The relation (20) turns into an identity when the relations
OR,(a,t) OR,(a,t)

jpWar = - ; 21

fia day, da, (21)
OH  0B(a,t) 0R,(a,t)

o OH _ . 22

P Oay, day, + ot '’ (22)

hyT™ =T,,. (23)

are performed.

Consequently, we have

Theorem 3. The indirect representation of the stochastic Hamilton equation (6) in the form of a stochastic
Birkhoff equation (15)is possible if and only if there exist 4n® functions h$ such that conditions (21)-(23) are
satisfied for given functions H, R,, B, T, T .

Birkhoffian action in the stochastic Helmholtz problem. The Helmholtz problem in the class of Langevin-
Ito stochastic differential equations is divided into two interrelated problems. At the first stage, a stochastic
analog of the Lagrange, Hamilton or Birkhoff equations is constructed from the given equation. And further,
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in the second stage, the required functional (Hamiltonian or Birkhoffian action) must be constructed from the
constructed L, H or B with R.
In this section, one of the options for constructing a stochastic analog of the Birkhoff action is considered.
Let us consider the stochastic equation of the Lagrangian structure

d  OL oL s
—_— —_— = - v J e
dt(aqy) 9g, ~ 7 (¢,4, )¢, (v=1,n), (24)

which is assumed, following the works [23-25], constructed in direct or indirect representation by the given
equation (1).
Then the averaged Lagrangian M L will satisfy [23] the following equation

d ML ML _
dt* 9q, oq,

From the function ML by the Legendre transform, we define the averaged Hamiltonian H= piqi — ML,
which generates the following canonical equation

do _ 0l
dt N 8pi’
dp; OH .
= — = 1
=G =T,

or in variables a = (a1, as, ..., as,) the following canonical equation of the type of equation (6)
Wy — o— =0, (24"

Further, on the basis of Theorem 3 by the equation (24’), we construct a set (R, B) generating the Birkhoff
equation (25)

OR,(a,t)  OR,(a,t) OB(a,t)  OR,(a,t)
_ - —0, 2
Oay, day “ day, + ot 0 (25)
which is equivalent to the indirect Hamilton equation (26)
. em
h (waﬁaﬂ - 8aa> =0 (26)
under the conditions (27), (28)
o OR,(a,t) OR,(a,t)
hjway = da,, o0, (27)
OH 0B(a,t)  OR,(a,t)
@~ = . 2
it Oag, Oay, + ot (28)

Then the functional taking the stationary value on the solutions of equation (1) is constructed in the form
of an average Birkhoffian action in the form

S = /tz [Ry(a, t)a, — Bla,t)] dt.

ty

Examples. We will consider the problem of constructing the Hamiltonian and Birkhoff functions for specific
stochastic equations using the statements proved above.

Example 1. Let us consider the plane motion of a symmetric satellite along a circular orbit under the
assumption of a pitch change under the influence of gravitational forces and aerodynamic forces [26, 27]

0= f(0,0)+0(0,0)¢, (29)
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where 6 is the pitch angle and the functions f and ¢ have the form
f = Mlisin20 — M[g(0) +nf], o= Mé[g(8) + nd).

In work [23], the problem of indirect construction of the Lagrangian on the given equation (29) was considered

hlo — f(6,0) - o(6,0)§] = 0 (29)
at h = e~ 9", The required Lagrangian for (291) was constructed in the form
1. 1
L= e_Q"t[§92 - Q(élcos 20 + G)], where G = /g(é‘)dG, (30)

which provides a representation (29l) in the form of an equation of the Lagrangian structure

d OL OL ..
2 2 Qnt
& 96 g =€ a(6,0)¢. (31)

We will consider the problem of indirect construction of the Hamiltonian according to given equation (29).
Namely, using the Lagrange function (30) and the Legendre transformation, we will define the Hamilton function
in the form

H = x0— L(6,0,t) )

0=0(0,x.t)
L . .
And since Yy = —, then x = e 970, and, consequently, § = e@7y. Then the canonical equation
corresponding to equation (31) will take the form
. H
0= g—;
X (2)
(=2 50
X - 80 a 7X7 I
where & = 0/(0, 0, t) i) and the Hamilton function is defined in the form
=0(0,x,t
1
H= ieQ"tXQ — e @1 R(h). (33)

To solve the problem of the indirect representation of the Birkhoffian for a given equation (29), we
will use Theorem 3. By the equation (32) constructed above and the Hamilton function (33) from relation

(20) with (hy.) = < g 2 ), functions R, (1 = 1,2) and B are defined in the follow form R, = {x, (1 + h)6},

1
B= iheQ"tXQ — he~ @ 3(0), where h is an arbitrary constant.

Ezxample 2. Let us consider a second-order nonlinear differential equation describing the motion of the inner
ring of a gyroscope in a gimbal [2§]

B+2wp+ f(B) =&, (34)

where 3 is the angle of rotation of the inner ring. Here there is the coefficient at white noise o = 1.
In [23], the problem of indirect construction of the Lagrangian on the given equation (34)

h[B+2vB + f(B)] = € (34)

was considered at h = e?*. And the required Lagrangian for (34l) was constructed in the form

I — e2yt[%ﬁ'2 —4(B)], where %'y(ﬂ) = f(B),

providing the representation (34/) in the form of an equation of Lagrangian structure

d 0L, OL 5.
ﬁ(%)—%—e £ (35)
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Similarly to Example 1, we consider the problem of the indirect representation of the Hamiltonian and the
Birkhoffian. We will define the Hamilton function by the Legendre transformation of the Lagrange function

) ) 1
H = — L , 7t ] — *6_214 2 +62Vt ,
xB—L(B, B )B:ﬁ(ﬁ,x,w 5 b% v(B)

which generates the stochastic Hamilton equation of the form

. OH
X (36)
s _aiH + 62Vté
X = 89 i
that is equivalent to the Lagrange equation (35). Further, according to the equation (36) and the relation (20)

(67

with (hy,) = < 0 aO >, functions R, (u = 1,2) and B are defined in the follow form

1 —al 1%
Ry={x(1+a)8}, B=gac 2 4+ ae®v(B),

where « is an arbitrary constant.
In particular, the unknown functions take the form R, = {x,26}, B=H at a = 1.

This research was supported by the Committee of Science of the Ministry of Education and Science of the
Republic of Kazakhstan (Grant No. AP05131369).
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M.BI. Tiney6eprenos, 1.T. Oximbaen

Bupkrod xkyiiesep ynriH croxacTukaJbiK, 1 eJbMroJbiy ecedi

BlkTumanabik KoibLibiMaa ['eibMrodibln ecedbi KapacThIpbLIabl. Typa eMec kepcerityie 6epinren JlamxeBen-
Nro croxacTukasbik TeHeyi 6oitbiaIma ['aMuabToH KoHe BUpKrod KypbLIbIMIBI TEHJAEYIEP TYPFBI3BLIIbI.
MomenTTik DyHKIHIIAD 9/TiCi apKBLIBI GEPITeH CTOXaCTUKAJBIK, BupKrod TeHieyiHiH memnriMaepiage cra-
IMOHAPJIBIK, MOH KAOBLIAARTHIH (PYHKIIMOHA AHBIKTAJIAbBI. AJIBIHFAH HOTHXKEIED €Ki MBICAJIIA CYPETTEIeI:
1) TapTBHUIBIC KYII MEH a’pOJMHAMUKAJIBIK, KYII 9CepIMeH ajiHaIMaJIbl OpOUTa a8 CUMMETPHSIIBIK, CILy THHK-
TiH YKa3bIK, KO3FAJIBICEHI 2KOHE 2) IMIKi CAKMHAHBIH, 1Ty 0Ci GOMBIHIIA KYIITEP/H CTOXaCTHKAJBIK, (DIIyKTyasa-
TBIH COTIiHEH TYBIHJAFaH KapJaH acIalarbl THPOCKOINTHIH, (DJIYKTYAIUSJIBIK KO3FaJIbIChI.

Kiam ce3dep: croxacrukaiblk Jlam:kesen-Vtonsiy tenzeyi, kepi ecebi, I'amuibron (memece Bupkrod)
KYPBLIBIMJIbI TEHJIEYI.
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M.U. Tney6eprenos, /1. T. Axxbimbaen

CroxactnyeckKad 3ajiada l'erbMmroibiia ajist cuctreM Bupkroda

Paccmorpena 3amada 'enpMronbsia B BepoaTHOCTHOU mocTaHoBKe. 1lo 3amaHHOMY CTOXaCTHYeCKOMY ypaB-
nennio JlamxkesBena-l/ITo B HEIPSIMOM TIPE/ICTABJIEHUH CTPOUTCS KaK yPABHEHUE TAMUIBTOHOBONW CTPYKTYPHI,
TaK U ypaBHEHHE OUPKIropHaHOBOI CTPYKTYPhI. MeTo oM MOMEHTHBIX (DYHKIHI olnpenesisercsa dyHKITO-
HaJI, IPUHUMAIOIUI CTAlHOHAPHOE 3HAUEHHE Ha PEIIeHUIX 3aJaHHOI'O CTOXaCTHYIECKOrO ypaBHEHUsI Bupk-
roda. Ilosryuennbie pe3yabTaThl MIIIOCTPUPYIOTCA HA JBYX OPUMEPAx: 1) IUIOCKOE JIBUXKEHNE CHMMETPUI-
HOI'O CIIyTHHKa [10 KPyrOBO# OpOHTe IOJ| IeiCTBUEM CUJI TSATOTEHHs U a3POAMHAMHUYECKUX CUI U 2) DIIyK-
TyYaloOHHOE JBMKEHNE I'MPOCKONA B KapJAHOBOM IIO/IBECE, BLI3BAHHOE CTOXACTHIECKUM (DIIyKTYHUPYIONIM
MOMEHTOM CHJI IIO OCH IIO/IBECA BHYTPEHHET'O KOJIbIA.

Karouesvie crosa: croxactudeckoe ypaBuenune Jlamxesena-lto, obparnas 3ama4da, ypasuenne ['aMuabToHo-
Boit (mnm BupkroduaHoBoit) CTPYKTYpBHI.
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V-cl-atomic and prime sets

In this article the model-theoretic properties of special formula subsets of the semantic model of some
fixed Jonsson theory are considered. The main purpose of this paper is the study of concepts of models’
primeness and atomness in the study of inductive theories which admit the property of joint embedding
and amalgama property. For this purpose is determined special sets, each element of which realise some
type which is which is the main type in the sense of an existential formulas. Definable closures of such sets
form an existential closed model. The main result obtained in this paper describes the properties of atomic
and prime sets regarding strongly convex Jonsson theories.

Keywords: strongly convex theory, center of Jonsson theory, semantic model, atomic set, algebraically prime
set, core set.

In the well-known paper [1], R. Vaught have proved the fundamental theorem-criterion on the behavior of
countable prime and atomic models for complete theories in countable language. The essence of this criterion
is that in a complete theory any countable-prime model is at the same time an atomic model of this theory.
After some time A. Robinson in [2| have defined the concept of an algebraically prime model. This concept is a
generalization of the concept of a prime model. Further, in the well-known work [3], D. Baldwin and D. Kueker
considered the concept of new types of atomicity of a countable model. Naturally, appear the question about
an analogue of Vaught’s theorem for an algebraically prime model. We denote this problem by AAP (atomicity
& algebraically primeness).

After some time, A. Robinson in [2] defined the concept of an algebraically prime model, and this concept
is a generalization of the concept of a prime model. Further, in the well-known paper [3], J.T. Baldwin and
D.W. Kueker considered the concept of new types of atomic of a countable model. Obviously, the question
arose about the analogue of the theorem of Vaught for an algebraically prime model. We denote this problem
symbolically by AAP (atomicness & algebraically primeness). Unfortunately, in [3], the authors were unable
to obtain a criterion for an algebraically prime model in the language of new types of atomicity; moreover, a
sufficient number of examples given in this paper suggests that this issue is unlikely to be resolved positively,
i.e. a criterion or some conditions connecting the concepts of algebraic simplicity and the corresponding form
of atomicity from [3] are obtained.

In this paper, we transfer the main ideas from [3] to countable models of some fixed Jonsson theory. Interest
in the study of Jonsson theories is due to the following factors. Firstly, the class of Jonsson theories contains
a sufficient number of well-known classical examples of algebras that are widely used in various sections of
mathematics. For example, to Jonsson theories we can relate the theory of groups, Abelian groups, a large
number of different types of rings, in particular, fields of fixed characteristic, also linear orders and Boolean
algebras and such universal object as polygons over a monoid or S-actions, where S is a monoid. Secondly,
arbitrary Jonsson theory is, generally speaking, not complete, and since the technical apparatus of the modern
Model theory is adapted for the study of complete theories, the conditions that determine the jonssonness,
naturally, distinguish among all, generally speaking, incomplete theories, which more or less adapted to the
model-theoretic study of the class of theories. Nevertheless, some completeness of the considered Jonsson theory
is necessary and, as a rule, it does not exceed V, 3 or V3 completeness. Thirdly, when studying Jonsson theories,
an important role is played the types of morphisms, with the help of which the classes of models of these theories
are studied. If in the case of a complete theory, we are dealing with elementary monomorphisms (embeddings or
extensions), then in the case of a Jonsson theory we will deal with an isomorphic and homomorphic morphisms
(embeddings or extensions). When studying the Jonsson theories, we distinguish some special subclasses in
which the behavior of countable models is more predictable with respect to the AAP problem. These are the
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following classes of theory: the class of convex theories defined by A. Robinson [2] and the class of existentially
prime theories [4].

Studing the latest results of the modern model theory, it became clear, that a model-theoretic approach
to the study of formula-definable subsets of some considered model is great importance. For complete theories,
this model is associated with the monster model; in the Jonsson’s case, analog of theory is the semantic model
of considered theory. In this article, we will consider special formula subsets that, on the one hand, define
atomicity in the sense of [3], but, on the other hand, firstly, give some geometrical interpretation in the sense of
pregeometry given on the Boolean of semantic model, secondly, gives a new tool for study of the corresponding
type of atomicity. So in this paper, we continue to investigate the AAP problem within the above paper and
restrictions. We give the necessary definitions and related ones for further paper in this article.

We give the definitions [5] and related results necessary for further work in this article. Recall that

Definition 1. A theory T is Jonsson if:

1) theory T has infinite models;

2) theory T is inductive;

3) theory T has the joint embedding property (JEP);

4) theory T has the property of amalgam (AP).

Examples of Jonsson theories are:

1) group Theory;

2) theory of Abelian groups;
theory of fields of fixed characteristics;
theory of Boolean algebras;
theory of polygons over a fixed monoid;
theory of modules over a fixed ring;

7) theory of linear order.

When studying the model-theoretic properties of Jonsson theory, the semantic method plays an important
role. It consists in the following: the elementary properties of the center of Jonsson theory are in a certain sense
associated with the corresponding first-order properties of Jonsson theory itself. The center of Jonsson theory is
a syntactic invariant and its properties are well defined in the case when Jonsson theory is perfect. The following
concepts define the essence of the semantic model and the center of Jonsson theory [6].

Definition 2. Let k > w. Model M of theory T is called k-universal for T, if each model T with the power
strictly less x isomorphically imbedded in M; k- homogeneous for T, if for any two models A and A; of theory
T, which are submodels of M with the power strictly less then x and for isomorphism f : A — A; for each
extension B of model A, wich is a submodel of M and is model of T" with the power strictly less then k there is
exist the extension B; of model Ay, which is a submodel of M and an isomorphism ¢ : B — By which extends f.

Definition 3. Model C of Jonsson theory T is called semantic model, if it is w'-homogeneous-universal.

Definition 4. The center of Jonsson theory T is called an elementary theory of the its semantic model. And
denoted through T*, i.e. T* = Th(C).

The following two facts speak about the «good» exclusivity of the semantic model.

Fact 1 [6; 160]. Each Jonsson theory T has kT-homogeneous-universal model of power 2¥. Conversely, if
a theory T is inductive and has infinite model and w™-homogeneous-universal model then the theory T is a
Jonsson theory.

Fact 2 [6; 160]. Let T is a Jonsson theory. Two k-homogeneous-universal models M and M; of T are
elementary equivalent.

Definition 5. Jonsson theory T is called a perfect theory, if each a semantic model of theory T is saturated
model of T*.

The following theorem is a criterion of perfectness of Jonsson theory.

Theorem 1 [6; 158]. Let T is a Jonsson theory. Then the following conditions are equivalent:

1) Theory T is perfect;

2) Theory T* is a model companion of theory T

Theorem 2 [6; 162]. If T' is a perfect Jonsson theory then Er = ModT™*.

We will select some special subsets of the semantic model.

Definition 6. Let X C C. We will say that a set X is V — cl-Jonsson subset of C, if X satisfies the following
conditions:

1) X is V-definable set (this means that there is a formula from V, the solution of which in the C' is the
set X, where V C L, that is V is a view of formula, for example 3,V,V3 and so on.);

3)
4)
5)
6)
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2) cl(X) = M, M € Er, where cl is some closure operator defining a pregeometry over C (for example
cl = acl or ¢l = dcl).

When studying the model-theoretic properties of an inductive theory, so called existentially closed models
play an important role. Recall their definitions.

Definition 7. Model A of a theory T is called existentially closed if for any model B and any existential
formula ¢(Z) with constants of A we have A = JT(T) provided that A is a submodel of B and B = 37T¢(T).

Through Er we denote the class of all existentially closed models of the theory T

In connection with this definition in the frame of the study of inductive theories, the following two remarks
are true:

Remark 1: For any inductive theory Er is not empty.

Remark 2: Any countable model of the inductive theory is isomorphically embedded in some countable
existentially closed model of this theory.

An analogue of a prime model (in the sense of a complete theory) for an inductive model, generally speaking,
incomplete theory, is the concept of an algebraically prime model, which introduced A. Robinson [2].

Definition 8. A is an algebraically prime model of theory T', if A is a model of T" and A may be isomorphically
embedded in each model of the theory T.

Note that since the class of Jonsson theories of a fixed signature is a subclass of inductive theories of
this signature, then the above remarks 1,2 are true for Jonssons theories and, by criterion of Jonsson theory’s
perfectness, class of existentially closed models of considered Jonsson theory coincides with the class of center’s
model of this theory.

In connection with the interest to the AAP problem in the frame of the study of Jonsson theory in [7] a new
class of theories was defined, in which there is an algebraically prime model which is existentially closed.

Recall the definition of this class.

Definition 9. The inductive theory T is called the existentially prime if: 1) it has a algebraically prime
model, the class of its AP (algebraically prime models) denote by APr; 2) class Ep non trivial intersects with
class APr, i.e. APr(\ Er # 0.

The following definition of a theory’s convexity belongs to A. Robinson [2].

Definition 10. The theory is called convex if for any its model A and for any family {B; | ¢ € I} of
substructures of A, which are models of the theory T', the intersection (,.; B; is a model of T', provided it is
non-empty. If in addition such an itnersection is never empty, then 7" is called strongly convex.

The concept of a core model which introduced by A. Robinson is also an example of a particular case of an
algebraically prime model.

Definition 11. A signature model of a given theory (hereinafter structure) is called core if it is isomorphic
to the unique substructure of each model of the given theory. The core structure that is the model of the theory
of a given signature will be called the core model of the theory.

The following result from Kueker’s paper [8] gives a criterion of the existence of a core structure.

Theorem 3. For any T the following conditions are equivalent:

(1) C is a core structure for T

(2) C is a model of every universal sentence consistent with 7', and there are existential formulas ¢;(z) and
k; € w, for i € I, such that

C,T =3 gy, forall icl,

and
CEvz\/ ¢
iel

The following definitions are taken from J. Baldwin and D. Kueker’s work [3]. These definitions distinguish
a whole class of new types of atomic models, and this new type of atomic models differs significantly from the
concept of the atomic model from [1].

Definition 12. A formula ¢(7) is a A-formula, if exist existential formulas (from X) v (T) and 2 (T) such
that

TE(@ed) u TE (e« ).
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Definition 18.

(i) (A,ag,...an—1) =1 (B,bo, ...,bp—1) means that for every formula ¢(x1,...,2,-1) of T', if A |= ¢(a), then
B = ¢(b). ’ ) )

(i) (A,a@) =r (B,b) means that (4,a) =r (B,b) and (B,b) =r (4,a).

As classes I we consider A or .

The following definition of an atomic model refers to [1].

Consider a complete theory T in L. A formula ¢(z;...2,) is said to be complete (in T') iff for every formula

Y(xy...x,) exactly one of
The—=9, The—=—

holds. A formula 6(x;...z,) is said to be completable (in T) iff there is a complete formula ¢(z1...2,) with
TE¢—0.1f 0(z1...x,) is not completable it is said to be incompleatable.

A theory T is said to be atomic iff every formula of L which is consistent with T is completable in T.
A model A is said ti be an atomic model iff every n- tuple a;...a,, € A satisfies a complete formula in Th(A)

Definition 14. A model is called atomic if every tuple of its elements satisfies some complete formula. In
connection with the new conceptof atomicity from [3], the following concept will be analogous to the definition
of a complete formula

Definition 15. A formula ¢(x1,...,x,) is complete for I-formulas if ¢ is consistent with T" and for every
formula (1, ...,x,) in T', having no more free variables than ¢, or

T = V(e = ).

Equivalently, a consistent ¢(T) is complete for I' — formulas provided whenever as (%) is a I' — formula
and (p A1) is consistent with T, then T |= (p — ).

And the concept of the atomic model from [1] is transformed into the following concept from [3].

Definition 16. B is a (I'1,T'y,) — atomic model of T, if B is a model of T" and for every n every n-tuple of
elements of A satisfies some formula from B in I';, which is complete for I's-formulas.

The following notion of a weakly atomic model from [3] is a generalization of above definition.

Definition 17. B is a weak (I'y,T's) — atomic model of T', if B is a model of T and for every n every n-tuple
aa of elements of A satisfies in B some formula ¢(Z) of I'; such that T |= (¢ — ) as soon as ¥(T) of 'y and
B = v(a).

In this paper we will not give examples of the (I';,'s) — atomic model and the weak (I'1,T'2) atomic model,
leaving the reader to do this on their own, referring to a sufficient the number of examples of these concepts
given in [3].

Before discussing the results obtained, concerning to V — ¢l atomic models, we note that we fix some Jonsson
theory T and its semantic model C in the countable language L and V C L :V is consistent with 7', that is,
any finite subset of formulas from V is consistent with 7. Let A C C.

Let ¢l be, as in Definition 6, and it is true that ¢l = acl and at the same time cl = dcl. It is clear that such
the operator is a special case of the closure operator and its example is the a closure operator defined on any
linear space as a linear shell.

We also assume that the pregeometry given by the ¢l operator is modular [9].

Definition 18. The set A will be called (V1, V3) — ¢l atomic in the theory T, if

1) Va € A,Jp € V; such that for any formula ¢ € Vs follows that ¢ is complete formula for ¢ and C' = ¢(a);

2) cl(A) = M,M € Er.

Definition 19. A set A will be called weakly (V1,V3) — ¢l is atomic in T, if

1) Va € A,Jp € V7 such that in C' = ¢(a) for any formula ¢ € V5 follow that T = (¢ — ) whenever ¢(x)
of Vy and C = ¢(a);

2) cl(A)=M,M € Er.

It is easy to understand that definitions 18 and 19 are naturally generalized the notion of atomicity and
weak atomicity to be V; atomic and weak V; atomic for any tuple of finite length from set A.

Thus, we have generalized the concepts (I';,T'2) of the atomic model and weakly (I'1,T2) of the atomic
model dividing in to (V1,Vs) — ¢l atomic and weakly (Vi,Vs3) — ¢l atomic set. Also note that the concept
(V1,V2) — cl atomic and weakly (V1, Va) — cl-atomic sets are some special modifications of definition 6.

Let i € {1,2}, M; = cl(A;), where A; = (V1,V2) is a cl— atomic set . ag, ..., an—1 € A1, boy ..., bp_1 € As.
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Definition 20.

(i) (M1, a0, ..., an—1) =v (Ma,bg, ..., b,—1) means that for every formula ¢(z1,...,2,-1) of V, if My = (@),
then My = ¢(b).

(ii) (My,a) =y (Mz,b) means that (M;,@) =v (Ma,b) and (My,b) =v (M, a).

Definition 21. A set A is said to be (V1, V) — cl-algebraically prime in the theory T, if

1) If Ais (V1, Va) — cl-atomic set in T}

2) cl(A)=M,M € APr.

From the definition of an algebraically prime set in the theory T follows that the Jonsson theory T which
has an algebraically prime set is automatically existentially prime. It is easy to understand that an example of
such a theory is the theory of linear spaces.

Definition 22. The set A is said to be (V1, Va) — cl-core in the theory T, if

1) If Ais (V1,V3) a ¢l - atomic set in the theory T

2) cl(A) = M , M is the core model of the T theory.

We formulate some obtained results regarding these new concepts.

Lemma 1. Let T be complete for existential sentences perfect Jonsson theory. 1) If A is weakly (V,A) — cl-
atomic set in the theory T, then A is (V,A) — cl-atomic set, 2) If A is weak (V,A) — cl-atomic set in the
theory T, then A is (V, A) — cl-atomic set.

Proof. Note, that due to the perfectness of the theory 7" we use theorems 1,2 and definition 19. Since
dcl(A) = M € Ep, then M € ModT™*, where T* is a center of T. Since the theory T is perfect, then T™* is
model companion of T', and accordingly is a model complete theory. So any formula of 7% is equivalent to some
Y -formula.

It follows that any (V1,Vs) — ¢l set A is (A, A) — ¢l set A. Tt follows that both points of Lemma 1 are
satisfied.

Let i € {1,2}, M; = cl(A;), where A; = (£,X) — cl-is a atomic set. ag, ...,an—1 € A1, bg, ..., b1 € As.

Theorem 4. Let T - be complete for 3-sentences a strongly convex Jonsson perfect theory and let A is
(V1,V3) — cl-atomic set in T

Then (i) = (i1) = (it3) = (iv) A (vi), (1) = (1)* = (v) = (vi), (i7) = (it)* = (vi), ())* = (#9)* and
(iv)* = (iv), where:

(i) Ais (A,X) — cl-atomic set in theory T,

())* A is weakly (A, II) — cl-atomic set in theory T,

(i1) A is (X,X) — cl-atomic set in theory T,

(#3)* A is weakly (X, II) — cl-atomic set in theory T,

(7i1) A is weakly (32,3%) — cl-atomic set in theory T,

(i) cl(A) € APr,

(iv)* A is core in theory T,

(v) A is weakly (A, A) — cl-atomic set in theory T,

(vi) A is weakly (X, A) — cl-atomic set in theory T,

Lemma 2. Let Ay will be weak (X, X) — cl-atomic set of T. Assume that

(M17a07"‘7an71) :>3 (M27b07”‘7bn71>‘
Then for any a,, € M; there is some b,, € M5 such that
(Ml,ao, ...,an) =3 (Mg,bo,...,bn).

Proof. Let ¢(xq, ...,2,—1) be existential, satisfied by ay, ..., a,—1 in M7, and which imply every existential
formula satisfied by M; ag,...,an—1. It follows from the definition 19. Let t(xo,...,z,) be satisfy for the
some ag, ...,an. Then T = (¢ — Jz,v) and My = ¢(bo, ..., bn—1), is follows, that exists some b,, such that
My E (b, ..., by), and this b, will be what we need.

We can show, that (iii)=-(iv). Let M; be countable and weak (X, ¥)-atomic, and let Ms be any model of T'.
Then M; =3 M, since T is a complete theory for existential sentences, and Lemma 2 can be applied repeatedly
where A = {a; : i € w} to build step by step an embedding of A; into Ms.

Remark 8: By the perfectness of T', we can apply Lemma 1 and then, by Lemma 1, we can replace V; on A,
where i € {1,2}. Due to the strongly convexity of the theory, the theory T has a unique core model. This follows
from the fact that if the theory satisfies the property of joint embedding and is additionally strongly convex,
then its core model in the theory T is unique up to isomorphism [8]. Based on this fact, we can conclude that
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under the conditions of this theorem we have a unique core model, since its existence follows from strongly
convexity, and its uniqueness follows from the combination with Jonssonness.

Proof. The only implication that is not follows directly from the definitions is (#ii) = (iv), which is a
consequence of the previous Lemma 2, and (iv) = (iv)* follows from the remark 3.

All concepts that are not defined here can be extracted from [6].
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A.P. Emkees, A.K. Hcaesa

V-cl-aToMIbIK >K9He >Kail >KUbIHIaP

MakaJjtazia Gesrisii 6ekiTisireH HOHCOH/BIK, TEOPUSICHIHBIH, CEMAHTUKAJIBIK MOJEJIHIH apHalbl opMyIagap
K] >KUBIHIAPBIHBIH, MOJEJIbIi-TEOPUSIBIK KAaCUeTTEePl KapaCThIPbLIFaH. ByJI »KYMBICTBIH HETi3ri Makca-
ThI Kail »KOHE aTOMJIBIK MOJEJIbIAEP/iH, MHIYKTHUBTI Teopusaiap asChIHIA YHIeCiM/l €Hri3y *KoHe aMaJlb-
ramMa KacHeTTEepiHiH TyciHikTepi OOJbIT TaObLIaIbl. By VINiH apHalbl >KUBIHIAD aHBIKTAJIBI, OJIAPJIbIH
Op JIEMEHTI SK3UCTEHIIMOHAJIBIK, (hopMysiajgap asChlHIa Keibip 6acThl TUNTI ¥)Ky3ere ackipaiabl. OcbiHmAM
KUBIHJIAPBIHBIH, AHBIKTAJFAH TYHBIKTAIYbl 9K3UCTEHIIMOHAJIbI TYHBIK MOJEbIl KaablmTacTbipaibl. Ocb
MaKaJIa/[a aJIbIHFAH HETi3ri HOTHKE CaJIBICTBIPMAJIbI TYP/IE JIOHEC HIOHCOH/IBIK, TEOPUSICHIHBIH ATOMJIBIK, YKOHE
2Kail JKUBIHTBIFBIHBIH, KACUETTEPIH CUIIATTAN/IHI.

Kiam cesdep: KaTTbl JOHEC TEOPUsI, WOHCOH TEOPHUSICHIHBIH OPTAJIBIFBI, CEMAHTUKAJIBIK, MOJETb, ATOMJIBIK,
JKUBIH, aJreOPaJIbIK, YKail KUbIH, s1IPOJIBIK, YKUBIH.
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A.P. Emikeen, A.K. Ucaera

V-cl-aToMHbIE 1 TPOCTHIE MHOXKECTBA

B pabore paccMoTpeHBI TEOPETHKO-MO/IE/TBHBIE CBOMCTBA CIIENUAIBHBIX (POPMYJIBHBIX ITOIMHOYKECTB CEMaH-
TUYECKON MOJIEJIM HEKOTOPOi (DUKCUPOBAHHON HOHCOHOBCKO# Teopuu. OCHOBHON IIJIbIO JaHHON PabOTHI
SABJIAETCSI U3ydeHHe IOHATUI IIPOCTOTBI U ATOMHOCTU MO/Jiejleil B paKaX U3ydeHHusd MHAYKTUBHBIX TEOPHi,
JOITYCKAIOMUX CBOWCTBA COBMECTHOTO BJIOYKEHHS W CBOMCTBa aMajbrambl. JLJIst 9TOM I€IM OMpeIesTsTIoTCs
crnenuaabHble MHOXKECTBa, KaXKJbIil 3JIeMeHT KOTOPBIX peajn3yeT HEKOTODPBIN THII, ABJIAIONIAICA IJIaBHBIM
B CMBICJIE YK3UCTEHIUAJIBHBIX popMys. OmupegenMble 3aMbIKAHUST TAKUX MHOYKECTB 00Pa3yIOT SK3UCTEH-
UAJBHYIO 3aMKHYTYIO Mojeab. OCHOBHOIM pe3y/IbTaT, MOJIyUYeHHBI B 9TOM paboTe, OMUCHIBAET CBOMCTBA
ATOMHBIX U IIPOCTBIX MHOXKECTB OTHOCHUTEJIBHO CHUJIBHO BBIITYKJIBIX HOHCOHOBCKUX TEOPHU.

Karouesvie caosa: CUIIBHO BBIIIYKJIad T€OpUusd, HEHTP PTOHCOHOBCKOM TEeopuu, ceMaHTHUYIeCKasd MOJeJIb, aTOM-
HO€ MHOXKeCTBO, aJII‘e6pa.I/Iq€CKI/I OPOCTOE MHOZKECTBO, d/IePHOE MHOXKECTBO.
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Central types of convex fragments of the perfect Jonsson theory

In this paper, the central types of convex fragments of the perfect Jonsson theory are considered. The main
goal of this paper is to redefine the A.D. Taimanov’s question for complete theories in the sphere of Jonsson
fragments of formula-definable subsets of a Jonsson fixed theory’s semantic model. Also the relationships
between the center and Jonsson theory in the permissible enrichment of signature are considered. Herewith,
the considered theories are hereditary. It is also assumed that an algebraic closure coincides with a definable
closure. Within the framework of the above restrictions for the considered Jonsson theory, results on the
existence of core models for such theories were obtained.

Keywords: Jonsson theory, semantic model, existentially prime theory, pregeometry, model companion, core
model.

In the investigation of inductive theories, the study of Jonsson theories and their classes of models is one
of the actual problems of the Model theory and universal algebra concurrently. This is due to the fact, that
Jonsson theories are a subclass of inductive theories and the Jonsson conditions are satisfied for all known and
important examples from algebra. For example, these are the theories of group, abelian groups, fields of fixed
characteristic, of the modules, linear orders and Boolean algebras. The basic concepts and methods of Jonsson
theories’ studying were defined as the subject of research after the publication of an original B. Jonsson’s
works [1,2], in which he defined some conditions for algebraic systems. Jonsson conditions are natural algebraic
requirements that arise when we studying a wide class of algebras. All the above examples are important both
in algebra and in various areas of mathematics. As can be seen, from the listed list, the scope of application of
the technique developed for the study of Jonsson theories can be quite wide.

We will adhere to the standard designations adopted in Model theory [3]. The class of inductive theories
is wider than the class of Jonsson theories. As Jonsson theories are, generally speaking, uncomplete theories,
this causes additional difficulties and accordingly requires the creation of their own methods of study from
researchers. To date, the main of existing method’s of study is a semantic method. Its essence is a checking
properties of first-order sentences which belong to the Jonsson theory’s center with respect to the pre-image,
that is, with respect to the Jonsson theory itself. The first-order formulas subsets in the existentially closed
submodels of the considered Jonsson theory’s semantic model are automatically compared. Moreover, in the
case of perfect theories, sufficiently a complete descriptions of such theories and their classes of models were
obtained. All this is reflected in the book [2].

We have already noticed, that the class of Jonsson theories, as a proper subclass of inductive theories, is
quite wide. Also in algebra there are many natural examples of algebras whose axioms satisfy the axioms of
Jonsson theories. But still, it’s still a fairly wide class if we take into account its uncompleteness, so if we add the
convexity condition, then although the class is narrowed, we still have such classical examples as group theory,
theory of Abelian groups, theory of fields of fixed characteristic and many other classical algebraic objects that
are Jonsson and convex concurrently.

As a rule, we can consider two different ways to define an arbitrary Jonsson theory. In the first case, we
must consider the K class of models for some signature. Next, select all I'-sentences such that they are true in
every model of this class, where I'-is the kind of sentences in the language of this signature. For example, I' =V,
I' = 3 or their various combinations that are negotiated. The second way is a choose sets of sentences as initial
or axioms. The set of sentences that is equivalent to Th(K), is called the set of axioms for K. Examples are the
axioms of group theory, abelian groups, full groups and torsion-free groups, etc. In both cases, the considered
class must satisfy the Jonsson conditions. This can be achieved by various means. In particular, an important
subclass of the considered class of models is the class of existentially closed models. The following fact is true,
that the set of all V3-sentences which true in existentially closed models form a Jonsson theory. Therefore, both
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of the above methods in the obvious way by closing the subclass of existentially closed models with respect
to amalgam and the property of joint embedding will determine the Jonsson theory. Also We can move from
an arbitrary complete theory to the corresponding Jonsson theory using the following method: the addition
of some additional symbols to the signature. As a rule, three types of symbols are used: predicates, function
symbols and constants. But at the same time, the enrichment of signature must preserve the important certain
theoretic model qualities of the old signature. Without less generality depending on the specific problem, such
enrichments of a signature will be called admissible. For example, the requirements of preserving the stability of
a theory or a type definability. We say that the conservative extension of the theory T in the language L is the
theory 77 D T in the extended language L’ O L such that any model A of theory T can be enriched to model
A’ of theory T". Tt is known that any theory T has a conservative extension 7", which is inductive and admits
elimination of quantifiers. It is also known that every theory T has a conservative extension that is universal
and model-complete.

Moreover, it can be noted that if the complete theory is considered with infinite models, then both of these
extensions for this theory are Johnsonian ones.

Thus, all of the above suggests that the study of model-theoretic properties of Jonsson theories is an
important task.

We give the necessary definitions related to the Jonsson theories [4].

Definition 1. A theory T has the property of joint embedding if for any models A, B of the theory T there
is a model M of the theory T and isomorphic embeddings f: A - M,g: B — M.

Definition 2. A theory T has the amalgam property if for any models A, B, C theories T and isomorphic
embeddings f; : A — B, fy : A — C there are such M = T and isomorphic embeddings g¢; : B —» M,
g2 : B— M, such that gy o fi = g2 0 fo.

A theory is inductive if it is stable with respect to the union of chains. The following theorem is known:

Theorem 1. (Cheng-Los-Sushko). A theory is stable with respect to the union of chains if and only if it is
V3 - axiomatizable, i.e. is equivalent to the set of V3- sentences.

Definition 3. A theory T is Jonsson if:

1) Theory T has infinite models;

2) Theory T is inductive;

3) Theory T has the joint embedding property (JEP);

4) Theory T has the property of amalgam (AP).

As noted above, the following theories are examples of Jonsson theories:

1) groups;

2) Abelian groups;

) Boolean algebras;
) linear orders;
) characteristic fields (- a prime number or zero);

6) ordered fields.

Definition 4. Jonsson theory T is called a perfect theory, if each a semantic model of theory T is saturated
model of T™.

Definition 5. Let T be a Jonsson theory. Then a companion Jonsson theory T is a theory T of the same
signature if:

1) (T")y = Tv;

2) for any Jonsson theory T”, if Ty = T3, then T = (T")*.

3) Tys CT*.

The natural interpretations of the companion T# are T*, T°, T, TM T¢ where the T° is the Kaiser shell,
the T* is the center, the TM is the model companion, the T is a finite forcing companion in the Robinson’s
sence, the T is an elementary theory of all existentially closed models’ of class of T

Definition 6. A theory is called convex if for any its model A and for any family {B; | i € I} of substructures
of A, which are models of the theory T', the intersection (), ; B; is a model of T'.

Definition 7. If a theory is strongly convex, then the intersection of all its models is contained in some of
its models.

This model is called a core model of this theory.

Definition 8. The inductive theory T is called an existentially-prime if:

1) It has an algebraically prime model. The class of its AP denote by APr;

2) Class Er is not trivial intersects with class APp, i.e. APp N Ep # 0.

3
4
5)
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Since Jonsson theories are inductive, we can consider Jonsson theories which an existentially prime and
then among them we can consider the convex theories. The most striking example, which is showing, that such
examples a lot of is an example of group theory. This example is characterized in that it is an example of an
imperfect Jonsson theory. In the case of theory of Abelian groups, we have a perfect example of a convex Jonsson
theory.

Definition 9. A signature model of a given theory (structure) is called a core if it is isomorphic to an unique
substructure of each model of the given theory.

The core structure that is the model of the theory of a given signature will be called the core model of
theory.

Definition 10. Let X C C. We will say that a set X is V — cl-Jonsson subset of C, if X satisfies the following
conditions:

1) X is V-definable set (this means that there is a formula from V, the solution of which in the C' is the
set X, where V C L, that is V is a view of formula, for example 3,V,V3 and so on.);

2) d(X) = M, M € Ep, where ¢l is some closure operator defining a pregeometry [5; 289] over C (for
example ¢l = acl or ¢l = dcl).

Definition 11. If (X, cl) is a Jonsson pregeometry, we say that A is Jonsson independent if a ¢ cl(A\ {a})
for all @ € A and that B is a J-basis for YV if is J-independent and Y C acl(B).

Definition 12. We say that a J-pregeometry (X, cl) is J-geometry if cl(P) = 0 and cl({z}) = {z} for any
zeX.

If (X,cl) is a J-pregeometry, then we can naturally define a J-geometry. Let Xy = X \ ¢l(0). Consider the
relation ~ on X given by a ~ b if and only if cl({a}) = cl({b}). By exchange, ~ is an equivalence relation. Let
X be Xo/ ~. Define cl on X by cl(A/ ~) = {b/ ~: b€ cl(A)}.

Definition 15. Let (X, cl) be J-pregeometry. We say that (X, cl) is trivial if cl(A) = Yaeacl{a} for any
A C X. We say that (X, ¢l) is modular if for any finite-dimensional closed Jdim(AUB) = Jdim(A)+ Jdim(B)—
—Jdim(AN B).

We say that (X, cl) is locally modular if (X, ¢l,) is modular for some a € X.

Definition 14. We say that (X, cl) is modular if for any finite-dimensional closed A, B C X

dim(AU B) = dimA + dimB — dim(AN B)

Let T — be an arbitrary Jonsson theory in the language of signature o. Let C' be the semantic model of
T.ACC. Let or(A) = o U{cyla € AYUT, where T' = {g} U {c} U{P}. Consider the following theory, where
Tr(A) =Thy(C,a)eea U{g(a) =ala € A} Ug(c)UT,U{P(c)} U{"P C"}, where T, — expresses the fact, that
for any model (M, gM) |= T, takes place:

1) g™ — automorphism M;

2) {m € M | g™ (m) = m} is a universe of some existentially closed submodel M of the semantic model C
of theory T of signature o.

There is question that is to find the condition for preserving the definability of a type with the appropriate
stability obtained as a result of enriching the language.

In connection with the above question, well known are the results of T.G. Mustafin [6] and E.A. Palyutin
[7] about new types of stability for complete theories.

Also in the work [7] had noted that an each of above enrichment (unary predicate, automorphism, constant)
is satisfied to admissibility property that is saved the definibality of type in the frame of new kind of stability.

For the predicate P we write the expression {P C”}, which is essentially an infinite set of sentences,
this mean that an interpretation of the symbol P is an existentially closed submodel in signature . Due to
incompleteness, we do not write down the exact connection between the elements I' = {g} U{c} U{P}, but they
are supposed to be consistent within the framework of the theory TT(A).

The theory Tr(A) is not necessarily complete. Suppose that it is Jonsson, i.e. it has a center Tj(A). We
consider all replenishment of the center T* of the theory T in the new signature o, where I' = {g} U {c} U{P}.

By virtue of the Jonssoness theory Tr(A), T* it will also be a Jonsson theory, generally speaking, not a
complete theory, then its center, respectively, exists and we denote it by T¢. With the restriction of T to the
signature Tr(A)\{c}, the theory T becomes a complete type. This type is called the central type of the theory
T relative to the given enrichment Tt (A)\{c}.

Unfortunately, even while preserving the definability of the type, as mentioned above, not all Jonsson
theories preserve their Jonssoness with allowable enrichment of the signature, for example, field theory does not

Cepust «Maremarukas. Ne 1(93)/2019 97



A R. Yeshkeyev, M.T. Omarova

necessarily admit amalgam when enriching with a single predicate, those there is a counterexample. Therefore,
we will assume that the closure operator ¢l will define a modular geometry. We note that, in particular, the
algebraic closure operator in the sense of fields does not generate a modular pregeometry.

Definition 15. If X = C and (X, cl) is a modular, then the Jonsson theory T is called modular.

The following assertions will be used to prove the main assertions in the framework of the perfect Jonsson
theory T regarding the connection of lattices of formulas E,,(T") and the Boolean algebras F,, (7).

Fact 1 [4]. For any Jonsson theory T the following conditions are equivalent:

1) T is perfect;

2) T* is model complete.

Fact 2 [4]. For any complete for J-sentences Jonsson theory T', the following conditions are equivalent:

1) T* is model complete;

2) for each n < w, E,(T) is the Boolean algebra, where E,,(T) is a lattice of 3-formulas with n free variables.

At the moment, we do not know the amalgama criterion when enriching the signature, so we will work under
some assumptions.

Next we give the following definitions:

It is well known that the perfect Jonsson theory can be studied using of the first-order properties of the
center of this theory and its semantic model, since the center of the Jonsson theory is the model companion
of it. Imperfect Jonsson theories at the moment have not been studied. For example, a bright example of this
fact is the theory of all groups. We know that this theory is Jonsson, but does not have a model companion,
and the structure of its semantic model is unknown to us. In this work, in order to avoid the above mentioned
situation with non amalgamation under enrichment, we will consider a special subclass of Jonsson theories,
namely, hereditary Jonsson theories.

We introduce the following definitions necessary for the above purposes.

Definition 16. The Jonsson theory is said to be hereditary, if in any of its admissible enrichment any
expansion of it in this enrichment will be Jonsson theory.

All considered Jonsson theories in the future under this article are assumed to be hereditary.

Let T be a perfect, complete for existential sentences, Jonsson theory of signature or(A).

Let A is V-cl-Jonsson subset of C, C' is semantic model of the theory T', V = V3, ¢l = acl, with acl = dcl
and a pregeometry generated by cl on the set of all subsets of C' is modular. ¢l(X) = M, M € Er. We consider
the theory Thys(M), which we call the fragment of the set A and denote by Fr(A).

We formulate the question of A.D. Taimanov, given that this problem was defined for complete theories.

Namely, in studying the properties of models of the first order complete theories information about the
Boolean algebras (Lindenbaum-Tarsky algebras) F, (T) is usually, n € w [8]. In connection with these Boolean
algebras F,,(T'), n € w, the A.D. Taimanov’s question is well known (can be found in the works [9]):

(*) What properties should have to have the Boolean algebras B,,, n € w, to exist a complete theory T
such that B, is isomorphic to F,,(T), n € w?

We will say that the question (*) is solved positively for the complete theory T, if there exists a sequence
of Boolean algebras By, n € w, such that B, is isomorphic to F,,(T), n € w.

It is well known, that in some cases working with Jonsson theories we have the opportunity to restrict
ourselves to existential formulas and existentially closed models of the considered Jonsson theory. In this case,
instead of the Lindenbaum-Tarskian algebras F,,(T'), n € w, one should consider lattices of existential formulas
E,(T), n € w. Thus, the above of A.D.Taimanov’s question can be formulated as follows:

(**) What properties must have the lattices E,, n € w, that there was Jonsson theory T, such that E,, is
isomorphic to E,(T), n € w?

Similarly, we will say, that question (**) is solved positively for the Jonsson theory T, if there exists a
sequence of lattices E,, n € w, that E,, is isomorphic to E,(T), n € w.

In connection with these questions (*), (**) the following results were obtained:

Theorem 2. Let Fr(A) be a perfect complete for existential sentences Jonsson theory of signature or(A).

Then the following conditions are equivalent:

1) a positive solution to question (**) with respect to the theory Fr(A)*;

2) a positive solution to the question (*) with respect to the theory of T, where T¢ is the center of the
theory of T*.

Proof. We prove from 1)=-2). Suppose that question (**) has a positive solution with respect to the theory
Fr(A)*. Within theory Tr(A) = Thy(C,a)eca U{g(a) = ala € A} U g(c) UT, U{P(c)} U{"P C"} we can
see, that F'r(A)* is generally speaking uncomplete theory, but is Jonsson due to consistency with 71 (A). Then
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it has a center, let it be equal to (Fr(A)*)*. Then by virtue of the perfect theory Fr(A), its center Fr(A)*
will also be perfect in the new signature or(A). Then by virtue of the perfect any formula with respect to
(Fr(A)*)* will be equivalent to some 3-formula by virtue of the model completeness of the theory (Fr(A4)*)*.
But this theory is complete. Therefore, since the question (**) has a positive solution, the question (*) will have
a positive solution, since the lattice E, (Fr(A)*) is a Boolean algebra by virtue of facts 1,2. By the construction
of Fr(A)*, T* in the new signature or(A) is also consistent with Tr(A) as Fr(A)*. By virtue of existentially
closed of M, where M is equal to dcl(A), this means, that question (**) has a positive solution concerning the
theory F'r(A)* if and only if, it has a positive solution concerning the theory of T in the new signature or(A).
It remains to apply Fact 1 and Fact 2 again regarding to 7™ and T, i.e. by the model completeness of T¢ we
can conclude, that E,(T*) is a Boolean algebra and, accordingly, the positive question (*) is solved for the
theory T°.

Now we prove from 2)=-1). Suppose the opposite, i.e. question (**) has not positive solution for the theory
Fr(A)*. This means, that for any sequence of lattices E,, (Fr(A)*) of Jonsson theory Fr(A)*, it is true, that E,
is not isomorphic to E,(Fr(A)*), n € w. But this is incorrect because the question (*) is satisfied for 7 and,
accordingly, for (Fr(A)*)* because of their consistency with 7r(A4). And since Fr(A)* C (Fr(A)*)*, we have a
contradiction with our assumption, since we can take as a sequence of lattices a sequence of Boolean algebras
from a positive solution of the question (*) for (Fr(A)*)*.

Theorem 3. Let a theory T be a perfect Jonsson strongly convex theory and let it be existentially prime.
A is as in the previous Theorem 1 and Fr(A) is existentially prime perfect Jonsson strongly convex fragment.

Then the following conditions are equivalent:

1) Fr(A)* has a core model;

2) Fr(A)¢ has a core model;

3) theory T has a core model.

Proof. We prove from 1)=2). Let Fr(A)* has a core model. Since Fr(A)* C (Fr(A)*)*, the class of
models Mod((Fr(A)*)*) of the theory (Fr(A)*)* is contained in the class of models Mod(Fr(A)*) of the theory
(Fr(A)*. Well known [10; 166], that if theory T satisfies joint embedding property in addition to being strongly
convex, then the core model of T is unique up to isomorphism. It follows, that (Fr(A)*)* has a core model,
since Fr(A)* u (Fr(A)*)* are model-consistent, but (Fr(A)*)* = Fr(A)°.

We prove from 2)=3). Let Fr(A)° has a core model K. Since Fr(A)* has the property of joint embedding
due to the strong convexity of the theory T, the model K is unique up to isomorphism and by virtue of the
fact, that (F'r(A)*)* C T* in the language of the new signature K € ModT.

We prove from 3)=1). Let a theory T have a core model K. Since the theory T is strongly convex and
admits the property of joint embedding, this model K is unique up to isomorphism. Since C' is a semantic model
of the theory T, then K is isomorphically embedded into C'. Let a model M € E(T), be such that A = dcl(M).
We know, that the theory Thys(M) = Fr(A)* C Thys(C). Suppose, that Fr(A)* have not a core model, but
due to the existential primeness of the theory T there is an algebraic prime model P and P € E(T). In the
model C there is a substructure K’, which is an isomorphic image of model K and which is a core substructure
of the theory T'. Since the theory T is perfect, E,,(T') is a Boolean algebra and, T* = Th(C') is a model-complete
theory, i.e. any formula in the language of the theory T™ is equivalent to some V formula. It follows, that the
core substructure 7% is the core model of T*. But Mod(T*) C ModT, i.e. K' € Mod(Fr(A)*). Since Fr(A)*
is a Jonsson theory, consistent with 71 (A), follow that K’ is the core substructure of the semantic model C’ of
the theory Fr(A)*. By virtue of the perfectness and the existential primeness of Fr(A) it follows, that K’ is
the core model of Fr(A). But since C’ a semantic model Fr(A)*, then K’ is a core model of Fr(A)*.
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A.P. Emkees, M.T. OmapoBa

oHcoH TeopmusChbIHBIH, J0HEeC (pparMeHTTEePIiHIH,
EeHTPAJABIK, TUIITEPI

Maxkasaza miHCI3 IOHCOH TEOPUSCHIHBIH, AOHEC (PPArMEHTTEDIHIH OPTAJIBIK, TUITEPI KapacToipbuirad. Ocbl
JKYMBICTBIH, Herisri maxcarbl — A.JI. TaliMaHOBTBIH, MocesieHI KalTa AHBIKTAy TOJIBIK TEOPUsiIap YIIiH
TYPaKThI HOHCCOH TEOPUSICHIHBIH, CEMaHTHKAJIBIK, MO/ HOHCCOH (DparMeHTTepi camachiHa (hOPMaJIIbl AHbI-
KTaJIFaH Kl *KWbIH eKeHiH KaiiTa anpikTay. COHIal-aK, CUTHATYPAHBI KETKUTKTI Typze OalbITyIarsl ioH-
COHJBIK TEOPHUsI MEH IEHTP/IiH apachIHIAFbl OalllaHbICTAp KaPaCTHIPBLIALI. By »Karnaiia 3epTTesiren Teo-
pusiiap MyparepJiik 6oJibin TabbLIaIbl. Arebpasiblk TYWBIKTATY aHBIKTAJFAH TYWBIKTATyMEH COKeC Ketel
nen 6omkaHabl. KapacThIpbLIaThlH HOHCOH/IBIK, TEOPUSLIAPFA KOPCETIITeH MEeKTeYIIep MeHOepiHIe OChIHIAM
TeopusIap YIIiH SIPOJIBIK, MOJEIbIEP/iH 6ap O0IyBl TYpasbl HOTUXKEJIED AJIBIH/IBL.

Kiam ceadep: HOHCOHIBIK TEOPHSsI, CEMAHTUKAJIBIK, MOJIE/Tb, SK3UCTEHITUAJIIBI JKali TeOPHsl, IPEIreOMETPHUS,
MOJEJIb/Ii KOMITAHBOH, SIAPOJIBIK MO/IEJIb.

A.P. Emkees, M.T. Omaposa

IlenTpajbHbie TUIIBI BBIMYKJIBIX (PparMeHTOB
COBEPIIIEHHOI MOHCOHOBCKOI Teopuu

B pabore paccmoTpeHbl TIeHTpaIbHBIE THIIHI BBITYKJIBIX (DPATMEHTOB COBEPIIIEHHON HOHCOHOBCKOI TEOPHH.
OcHoBHas 1eJIb JaHHON paboTbl — mnepeonpeneiienue Borpoca A.J[. TajimaHoBa Jisi MOJIHBIX TeOpUil B
cdepy HOHCOHOBCKUX (pparMeHTOB (POPMYIBHO ONPEIEIUMBIX MTOJIMHOYKECTB CEMaHTUIECKON MOJIETN (DUK-
CHPOBaHHOM WOHCOHOBCKOI Teopnu. TakzKe pacCMOTPEHBI CBA3U MEXKIY IMEHTPOM M WOHCOHOBCKOM Teopueit
B JIOIYCTHMOM O0OTaIlleHnK CUTHATYpbI. 1Ipn aTOM paccMarpuBaeMble TEOPUHU SIBJISIOTCS HACJIEICTBEHHbBI-
Mu. A Tak»Ke MPEJINOJIAraeTCs, 9TO aarebpandeckKoe 3aMbIKAHUE COBIIAJIAET C OMPEIETUMbIM 3aMbIKAHUEM.
B pamkax ykazaHHBIX BBIIIe OIPDAHUYEHUI HA PACCMATPUBAEMYIO HOHCOHOBCKYIO TEOPHUIO MOy Y€HBI PE3YIb-
TATBl O CYyIIECTBOBAHUU AJEPHBIX MoAeseil yId TaKUX TeOpHuil.

Karouesvie cro6a: HOHCOHOBCKAsI TEOPUS, CEMAHTUIECKAs MOJE/b, 9K3UCTEHIINAIBHO IIPOCTAs TEOPHS, IIPE-
reoOMeTpUsl, MOJIEIbHBIN KOMIAHBOH, SJI€PHAS MOJIEIb.
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On the inequality of different metrics for trigonometric polynomials

The article is devoted to the research question of inequalities for different metrics with trigonometric
polynomials. The structure of this exploring, its main components and types, as well as its classical
approaches are presented in this article. Nikolsky’s inequalities in different metrics are well known for
trigonometric polynomials. In this paper, inequalities of different metrics are proved in the Lorentz and
Lebesgue spaces for trigonometric polynomials of one variable. A similar result is obtained for trigonometric
polynomials of many variables. The article is focused mainly on mathematicians.

Keywords: Lebesgue spaces, Lorentz spaces, trigonometric polynomials, inequalities of different metrics.

Inequalities of different metrics play an important role among the essential attributes of mathematician’s
tools, exploring various mathematical structures. They are successfully used in many areas of modern theoretical
and applied mathematics, so inequalities of different metrics have become an essential element of serious
mathematical research, in particular research in functional analysis.

Denote by L,[0;27) the space of functions f(x), where the functions f(z) are scalar-valued, measurable in
the sense of Lebesgue on an interval [0;27) and integrable on [0; 27) to the p-th degree

1
P

2
Ifll,={ [ If(@)dz | .
=\

for which the quantity C is finite provided that 1 < p < co.
As usual, it is meant that in the limiting case p = oo the functions f € Lo[0;27) are measurable and
essentially limited with a finite essential maximum [1]

[flloe = sup vrai | f(x)] < oo.
z€[0;27)

A function of type

Tm(z) = i cpett?

k=—m

is called a trigonometric polynomial of order m, where ¢ (k = —m,...,m) are complex numbers and C' is a
variable.

The function

m : 1
D, (z) = % + Zcos kx = sm(;:l%)x

k=1 2
is called the Dirichlet kernel.

Lorentz spaces L, ; are a more subtle scale of spaces than the scale of Lebesgue spaces L, and have a great
use in the theory of Fourier series, in differential equations, in the theory of functional spaces.

Consider a space with a positive measure (U, ). For a scalar-valued p-measurable function f, which takes
almost everywhere finite values, we introduce the distribution function m(o, f) by the formula

m(o, f) = p{x: |f(2)] > o}
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For every measurable function f, we denote its non-increasing permutation by f*, if f* is defined by the
following relation

fr(@) =inf{o : m(o, f) <t}.

Lorentz spaces L, , are defined as follows: a function f belongs to the space L, 4, 1 < p < oo, if and only if

Q=

oo

1, = [ rw)' T <o

0

when 1 < ¢ < o0,
1
1z, . =suptr - f7(t) < oo,

when ¢ = oo [2].
In the case p = ¢, the Lorentz spaces L, , coincide with Lebesgue spaces L,

Lyp=L, 1<p<oo.

Let F be a normalized functional space whose elements are defined up to equivalence with respect to
Lebesgue measure. In other words, the elements of F are classes of equivalent functions, that is, almost
everywhere coinciding functions. In the record f € FE, under the f designation we shall mean either a class
of equivalent functions, or some function (a representative) of this class.

For the function f € E, defined on the set G C E, the restriction f to G* C G is the function f* = f
defined on G* by the equality

G*

[ (z) = f(z) YzeG".

Let E and F be two functional spaces. We say that E is embedded in F' and write £ C_, F if, firstly, all
the elements of E (or of their restrictions to the domain of the elements of F') are contained in F' and, secondly,
there is a constant C' independent of f such that the following inequality holds

[fllr <Cllflg VfeE.

Theorem. Let m € N, 1 < p < q < oo, Ty, be a trigonometric polynomial of order m, then the following
inequality of different metrics holds
1_1
HTm”Lq,l <C-mr~a- ||TmHvaoo , (1)
where the parameter C' is independent of m and T,.
Proof. Applying the Jung — O.Neil inequality [3]

If % gll,, . <C-1fl,, -ldl

Ly, ?

where
1:l+l’ 14'_1:1_;’_1, (2)
s t1 o te p T q
and putting in it
s=1, ti =00, t2=1,

we receive the inequality

1fxgllp,, <C-IIfll, . -Nallg, - (3)

Since
Su(f) = f* D (4)
(Dp)*(t) < C - min (1, M) , (5)

where Sy is the partial sum of the Fourier series, D)y is the Dirichlet kernel, and (Djs)*(¢) is a non-increasing
permutation [4], then denoting
g=Dnm

and using estimate (5), we obtain the following relation
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7 1 dt 7 1 dt
lgllr. . :/ﬁ g (t)— S/ﬁ ~min<t, M> o=
0 0

M
1 . 1 dt 1 . 1 dt
_/tr.mln<t,M>t—i—/tr.m]n(t,M)t. (6)
0

Taking into account that

1 1 1
min (,M) =M, min (,M) = -,
o<t< L \ 't A <t<oo \ 't t

we transform the relation (6) to the form

1
oo

M
lgll,,, , < M-/t%—ldt+/t%—2dt. (7)
0

L
M

Since we have a condition p < ¢, from the relations (2) it follows that

and then the ratio (7) is converted to the following form

L
M

o0 1 |37 1_q |®
1 1 tr tr—
1 Lo, _
||9||LT,1§M'/“ dt—}-/tr dt—M-T T =
0 1 mlo " ar
1 1_q
1\ r 1\~
()~ ()
ot gt T gt oot
1—r r—1
or 1 1 1
lglly,, <C-M'"F =C- M35, (8)

Using (4) and (8), from (3) we have an inequality of the form

1f *glly,, = 1S, <C-M7 -]l _.

The last inequality holds for any functionsf € L, .

Therefore, if we take f as a trigonometric polynomial of order m, that is, f = T,,, and, taking into account
that Sy, (Tyn) = Trm, we obtain the sought-for inequality

1_1
1Tl , < Coms = - | Tlly, -
The theorem is proved.
Remark. We note that the inequality of different metrics from the theorem is more accurate than the classical
Nikolsky’s inequality of different metrics for trigonometric polynomials of order m [1]

1

1_
||Tm||Lq <C-mr a- ||TmHLP 5 (9)

because
Lqy Co Lgg = Ly, Ly=1Lypp Co Lpoo,
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that is,
1T, <CITlly, . Tl <C-ITull,, -

Corollary. Let m e N, 1 <p < qg<o00,1 <7 <00, then
| Tl < Comb =5 [Tl (10)

where the parameter C' is independent of m and T,.
Proof. Since, under condition r < r1, the relation is satisfied for Lorentz spaces

1Az, <C-lflg,,,

P,T1

then from (1) we obtain (10)

1

1_
1Tnllz,, <1 Tmllg,, <C-me=s - Tall, <

1_1 1_1
<C-mbT Tl <C-mpi Tl -

The required inequality is proved.
S.M. Nikolsky has obtained for any trigonometric polynomial from R™ the inequality, similar to the relation

(9),
1_1
n P a
||Tm1...mn||q <2 (H mk) : ||Tm1...man , 1<p<qg<Loo,
k=1

where an arbitrary trigonometric polynomial of order myq, ..., m, with variables z1, ..., x, can be written in the
form

n
iy ks
Tml-umn (.131, ,xn) = E E Cly.. k€ °=! s

ki=—m1 km=—mn
and Ly is the space of functions f (1, ..., Zpn), which are measurable in R", periodic with period 27 with respect
to each of the variables x; and integrable to the p-th power (1 < p < oo ) on the period. Thus, for each function
[ € L, the following relation takes place [1]

27 27 P

171 = /.../|f(x1,...,xn)|pdx1...dxn < oo,
0 0

in the case of p = 0o, we have
1fll5% = supwvrai|f(z1, ..., zn)] -

X4
After conducting a similar proof, for any trigonometric polynomial in R™, we obtain inequalities similar to
relations (1) and (10),

1 1

P q

n
||Tm1~~mn||L;1 <2 (H mk) Ny |
k=1

Lr o 1<p<qg<oo;

=3 -

1Ty

pyr lsp<g=<oo, l=sr=oo,

n %7%
L:, <C-: (H mk‘) N
’ k=1

where the parameter C' does not depend on m and T,.
Here, the space L ,[0,27]" is defined as the set of functions for which the inequality holds

2 d %
I Y A
19y, = | [ (- 10) T <o
0
and f*(t) = f**(t1,...,t,) denotes a function obtained by applying a non-increasing permutation

sequentially in variables x1,...,x, with fixed other variables and this function is called a non-increasing
permutationof a measurable function f(x1,...z,) in [0, 27]™ [5].
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[''A. EcenbaeBa, A.H. Ecbaes, X. Ilormrmeswr

TpuronomMeTpusIbIK, KOIIMYINEJIKTED YIITiH
TYPJIi MEeTPUKaAaFbl TEHCI3AIKTED 2KaJTbI

Maxkasia TpUroHOMETPHUSIIIBIK, KOIIMYIITETIKTED VIIIiH TYPJli MEeTPUKAHBIH TEHCI3IIKTEPiH 3epTTeyre apHaFaH.
ABTOpJiap 0OCbl 3epTTEY/iH KYPBLIbLIMBIH OEpreH, OHBIH HEri3ri KOMIIOHETTEepi MeH TypJjepi, COHBIMEH Ka-
Tap OHBIH, KJIACCUKAJIBIK TOCIIEPIH KOPCETKeH. T pUroHOMeTpUSAIbIK KONMYIIe iKTep yinin Hukombekuiiin
OpTYpPJIi MeTpuKaJarbl TeHCI3miKTepi )Kakcebl Oesriyi. Ocel xxymbicta Jlopen xkone Jleber kenicrikrepin-
aeri 6ipTypJsi allHbIMAJBIIAH TYPATBIH TPUIOHOMETPHSJIBIK, KOIIMYIIEJTIKTED YIIIH TYPJl MeTPHUKAJIAD/IbIH,
TEHCI3MIKTEPI To/IeIJIeHTeH. AHATOTUSIBIK, HOTHXKE PeTiH e OipHele aifHbIMAJIbIIApIaH TYPAThIH TPUTOHO-
METPHSIIBIK, KOIIMYIIEeJIKTEp YIMiH aJblHran. Makaja HerizineH MaTeMaTUKTepre apHaJFaH.

Kiam cesdep: Jleber kenicriri, JIopeHI KeHiCTIri, TPUTOHOMETPUSIIIBIK, KOIIMYIIEJIIKTED, TYPJIi METPUKAIAFHI
TeHCI3AiKTep.

[''A. EcenbaeBa, A.H. Ecbaes, X. Ilormrmeswr

O HEpaBE€HCTBE PA3HbIX METPUK OJIA
TPpUroHoMeTrpmnieCKmnx I1noJImMHOMOB

CraTbsl TOCBSIIEHA BOIIPOCY MCCJIEIOBAHUS] HEPABEHCTB PA3HBIX METPUK JJIs TPUTOHOMETPUIECKUX ITOJIU-
HOMOB. ABTOpaMU IIPEJICTABJIEHBI CTPYKTYPa JaHHOI'O UCCJIEIOBAHUSI, €0 OCHOBHBIE KOMIIOHEHTBI U BHUJIBI,
a TaK»Ke ero KJIACCUYeCKue MOXOoJbl. [l TPUIrOHOMETPUYIEeCKUX MOJMHOMOB XOPOIIO M3BECTHBI HEPABEH-
crBa HukosibCKOro B pa3HbIX MeTpruKax. B gaHHOl paboTe HOKa3aHbI HEPABEHCTBA PA3HBIX METPHUK B IIPO-
crpancrBax Jlopenua u Jlebera /st TPUrOHOMETPUYECKUX [TOJIMHOMOB OHOIO IIEPEMEHHOI0. AHAJIOIMYHBIN
pe3yJIbTaT TOJIyYeH [Jjisi TPUTOHOMETPUIECKUX TTOJTMHOMOB MHOTUX TepeMeHHBbIX. CTaTbsi OpUEHTUPOBAHA,
TJIABHBIM 00Pa30M, HA MaTEMaTUKOB.

Karoueswie caosa: mpocrpancTsa Jlebera, mpocrpancTsa JIopeHra, TpuroHoMeTpuiecKre MOJMHOMBI, Hepa-
BEHCTBa Pa3HBIX METPUK.
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Generalization of Tsytovich strength conditions
for soils of anisotropic structure

The problem of developing a new generalized strength (plasticity)condition is applied to soils of anisotropic,
in particular a transversal-isotropic (trans-structural) structure. This condition is derived by generalizing
the known Coulomb-Moore plasticity condition o. for two directions: along the layers parallel and crosswise
to layers, that is, for the perpendicular directions to the layers, relative to the isotropy plane for the
transtropic soil, systematized for the first time by A.K. Bugrov and A.I. Golubev. It is proposed to analyze
the possibility of generalizing the conditions of plasticity (strength) in the principal stresses o1 and o2, as
well as on the values of the critical principal stress o1, and o2, , proposed and developed in due time for
soils of the isotropic structure N.A. Tsytovich and N.S. Bulychev. Following the approach of W. Witke,
who proposed to apply such a criterion to rocks of an orthotropic structure, the formulated criterion is
proposed, which allows to determine the moment of the onset of plastic destruction of anisotropic soil and
the direction of its further spread from the initial point. The table contains critical values of anisotropic soil
in two orthogonal directions of the coordinate axes, calculated with the help of the proposed new criterion,
which allows us to solve a new class of problems of fracture mechanics.

Keywords: soil, loam, isotropy, anisotropy, plasticity, isotropy plane.

Introduction

Most soils in nature have an anisotropic structure. For example, cover soils of mountain slopes, which are
accompanied by landslide processes or construction sites, leading to a heel of the foundations of a building, and
so on. Existing methods and approaches in soil mechanics are based on the assumption that soils are inherently
isotropic in structure. Mechanical structures of such soils are determined by two parameters: Young’s modulus
E and Poisson coefficient v. Whereas the properties of soils of an anisotropic structure are determined by five
parameters: two Young’s moduli E, Es, two Poisson’s coefficients 11, 15 and a shear modulus G5. This limits
the ability to solve soil stability problems by analytical methods. Moreover, there are no criteria to determine the
strength of the soil. Therefore, there the question of developing a criterion of strength for soils of an anisotropic
structure arises.
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Task 1. Below in Figure, on the left, the subsurface sandy sand (upper layer) and loamy structure (lower
layer) is shown, and on the right, the denser one — solid pebble soil and anisotropic. Such structures have soil
construction sites. And in the mountain slopes, where landslide processes are often observed, the cover soils have
not only sandy-loamy and pebbly structures, but also have more complex, sloping structures. It is not difficult
to see that if the soils on the left figure have horizontally layered structures, then on the right figure are visible
the destroyed soils, under the road, which have sloping structures.

Figure. Natural soils layered anisotropic structure

Now for the development of the criterion of strength we start from the well-known classical Coulomb-Moore
strength (plasticity)condition developed for soils and rocks of an isotropic structure [1, 2], which looks like:

7o = C + oytgp, (1)

where 7. is the tangential component of the tear-off voltage, C' is the adhesion force, o,, is the normal stress at
the slip site; ¢ is an angle of internal friction. Unaxial compression strength expressed by next formula:

2C cos ¢
- (2)

¢ 1—sing’
The condition of plasticity (strength) in the principal stresses (o3-does not affect the strength) expressed
by next formula:

Olc = Omaze = Oc + BO2¢, (3)
where 3 is the bulk strength parameter [2]:
1+4singp

p= 1—sing

(4)
The condition of limiting equilibrium for disconnected loose soils is written according to N.A. Tsytovich [1]:

Oc1 — 0c2 .

Tl ~9e2 _ gino, (5)
Oc1 + 0c2

where 0.1 and oo are the limiting principal stresses. Hence, to obtain the expressions for o.s, we transform the

expression (5)

02¢ = {01c, (6)
where L 1o
—sing
= —- = — 7
¢ B 1+sing Q
Also, from (6) using (4) we get
O1lc = 13020~ (8)

Now expression (6) with regard for (7) can be represented as

02 2 o ¥
— =tg“(45° £ -). 9
) 9( 2) ()
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This expression is widely used in the theory of pressure of soils on fences. The minus sign in parentheses
corresponds to the active pressure, and the plus sign indicates the passive resistance of loose soils. Now we write
down the condition of maximum equilibrium for cohesive soils

01— 02

— = —sing, 10
o1 + o2 + cctgp v 10)

whence .
o1 — 09 = 25111@(% +cctgp, (11)

or n
o1 =09+ 2sin<p(7a1 02) + cctg . (12)

2

This well-known N.A. Tsytovich criteria should be generalized taking into account the anisotropy of the
soil shown in Figure. It should be noted that in recent years the issues of anisotropy of soils have been actively
pursued by Kazakhstan scientists. For example, the authors of [5-10], in addition to researching the stressful-
deformed state of soils and rocks of anisotropic structure, surface, underground and other engineering structures,
develop and special criteria for destruction.

Results

Following V. Vitke’s [10] approach, proposed in due time for rocks of an orthotropic structure, the criterion
of strength (1)—(12) is extended for soils of a transtropically anisotropic structure. Here the plasticity in soils
can develop along the isotropy plane (parallel) or (and) in directions crosswise to it (perpendicular). They will
differ significantly from each other. Therefore, condition (1) is written separately for these two directions

Tlle = C)| + oyntgey; (13)

Tie=C1L+01ntgpL, (14)

where 7|, 71 are the tangential stresses on slip sites; C}|, C'| are cohesion forces, normal stresses on slip planes
in parallel oy|,,, and perpendicular o, directions to the isotropy plane are determined from the experiment or
removed from Mohr’s circles, ¢, ¢ are internal friction angles. For oblique-laminated anisotropic materials,
we denote the slope angle of the isotropy planes by . It should be recalled that the angles » and ¢ have
completely different meanings that are not related to each other. The tensile strength for uniaxial compression
is written in the form

2C| cos

Ol = M; (15)
1 —sin QDH
2C

g, = 2L OBPL (16)
1—sinpy

Also, the plasticity(strength) condition in the principal stresses will have the form
Ollc = Omaz|jc = Oljc + Bj|02||ci (17)

Olec = Omazle =01lc+ BLUQL(:v (18)

where )|, 81 — are parameters of bulk strength:

1 +Sin(p||.

_ 19

ﬂ” 1—sin<p||’ ( )
1+ sin

Br=gp oL (20)
—sinp

The condition of limiting equilibrium for non-cohesive bulk solids written by next expressions:

Ocl|| — O¢2||

= sinpy; 21)
Oc1|| T Oc2|| ! (
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Ocll —0c21

=siny,, 22
Oc1l +0c21 4 ( )

where 011 and o)) are the limiting principal stresses. Similarly, we write expression (6) in the following form

Tacl| = §||01c|]; (23)
02c1 =&101cL, (24)
where ) |
— Sy
LA 25
5” BH 1+SlntpH ( )
1 1—singp;
TR T Trsingy (20)
or from the expressions (11), (12) using (7), (8) we obtain
O1c| = B)|02¢]|; (26)
O1cl = B1o2c1- (27)

Expressions (11) and (12) with allowance for (13) and (14) with respect to the isotropy plane can be represented

in the form
T2¢||

oy £l
=tg?(45° £ ); 28
P ( 5 ) (28)
O2cl 2 o YL
=tg%(45° £ ). 29
o, W ( 5 ) (29)

It is known that, in the isotropic version, these expressions in the form (9) are used in the theory of pressure
of soils on fences. And here, in expressions (28) and (29) the minus sign in parentheses corresponds to the active
pressures, and the plus sign to the passive resistances of free-flowing soils.If the barrier is a retaining wall, then
the pressure on this wall according to expression (29) acts either perpendicularly or at an angle, depending on
the slope of the layers of the isotropy planes of soils with an inclined anisotropic structure.Since the pressure
in expression (28) acts across the layers of isotropy, then relative to the wall, they act parallel to the wall at
the points of adhesion, that is, on the boundary layer. Now we write the condition of limiting equilibrium for
connected soils by analogy with N.A. Tsytovich

O1c|| — 02¢|| .
= sinpy|; 30
T1el| + 02| + Cietgey) ! (30
Olel — 02¢L .
=siny;. 31
o1l +02c1 +Clrctgpy 4 (B
We transform these expressions to the next form:
. 01| + 02
o) — gy = 2sin oy (2 5 L4 Cjetgep); (32)
. 011 + 021
O'IJ__O'QJ_:2SIH@L(f+CLCt‘g@L)7 (33)
or to calculate the largest principal stresses, we represent them in the form
. 01| + 02
a1y 202H+281n%0u(7” 5 ! + Cctgepy)); (34)
. 011 + 021
U]J_:UQJ_+QSIHSDJ_(f+CJ_Ctg(‘0L). (35)

The need to develop such generalized criteria, allowing to determine not only the state of pre-failure, but
also the direction of damage propagation, confirms Figure. There are their experimentally determined values.
Such single data is available, for example, in [3]. The following table shows the critical values § for some of the
main types of surface soils. For comparison, limit values § for limestone and concrete are also given. These data
also confirm the need to develop a criterion for destruction for soils of an anisotropic structure.
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Table
Critical parameters of anisotropic plasticity for soils of an anisotropic structure
Volume | Strength Young’s Shear Poisson’s Clutch Internal Main
. weight | parameter Modules modulus | coefficients Strength friction stresses
No Soils
v, kH € EH’ E, G”J_, v v C“7 [l 0 0 P P
/m3 0 Muna | Mna Mua I + Mma | Mma | 7l | #4 el ok
1 Loam 17.0 0.60 13.4 | 26.4 7.6 0.16 | 0.24 | 0.025 | 0.050 | 26 | 26 0.80 | 0.160
2 Sand 17.0 0.43 23.0 | 16.0 7.0 0.30 | 0.30 | 0.005 | 0.005 | 27 | 33 0.16 | 0.180
3 Loam 20.0 0.48 30.0 | 15.0 7.6 0.36 | 0.24 | 0.030 | 0.060 | 19 | 23 | 0.084 | 0.197
saturated
4 Priming 19.0 1.00 10.0 | 20.0 7.4 0.30 | 0.40 | 0.080 | 0.120 | 20 | 24 | 0.230 | 0.370
5 Loam 9.4 0.65 12.0 8.0 3.4 0.39 | 0.35 | 0.010 | 0.014 | 20 | 24 | 0.029 | 0.043
6 Loam 8.0 0.65 6.0 4.0 1.7 0.39 | 0.35 | 0.050 | 0.007 | 15 | 18 | 0.130 | 0.019
7 Loam 9.2 0.65 9.0 6.0 2.5 0.39 | 0.35 | 0.006 | 0.008 | 18 | 22 | 0.017 | 0.024
8 Sandy loam 19.8 0.53 19.6 | 18.4 7.1 0.31 | 0.30 | 0.003 | 0.003 | 18 | 21 | 0.008 | 0.009
9 | Loam is hard 19.9 0.58 39.8 | 27.0 10.0 0.36 | 0.35 | 0.02 0.02 13 | 17 | 0.005 | 0.054
10 Sand fine 21.1 0.25 81.3 | 85.0 32.7 0.28 | 0.30 | 0.002 | 0.002 | 35 | 37 | 0.008 | 0.008
11 . Rock 2.5 0.33 3200 | 1600 1185 0.38 | 0.32 47 0.25 31 | 29 | 116.1 | 0.849
Limestone
Concrete
12 BIT-PE 1.65 4941 | 4941 1930 0.28 | 0.28 201.4 | 0.849
polyester
Conclusion

A justified criterion of strength is proposed, which makes it possible to determine the direction of propagation
of a fracture of earth fractures relative to the isotropy plane of inhomogeneous layers. They are directions
parallel to the layers and perpendicular.The developed parameters of strength (plasticity) for soils of natural
anisotropic structure allows to solve the class of geomechanics tasks associated with the definition of stress-
deformed condition of the covering soils of mountain slopes necessary for the prediction of landslide processes
and the state of stability of under foundation soils of construction sites.
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AHn30TPONTHI KYPHUIBIMABI TOIIBIDAKTAPFa apHAJFaH
Lp1TOBUYTHIH, KATAHABIK, MIAPTTAPBIH >KaJaNbliaayFa apHAJFaH
TPUPOTUKAJILIK, KYIIENTYIepIiH CUHTE3i

TaceIMasiayAblH TPAHCBEPCAJBI-U30TONTHIK, (TPAHCTPOLTHIK) KYPbUIBICTAPBIHA KATHICTHI KaHA AHU30-
TPONTBIK, TPYHTTHI KOJJIAHYFa aPHAJFAH KAHA 6epiKTIK (IIACTUKAJIBIK) YKAJIIBIIAHFAH MIAPTHIH KYPY Mo-
cesieci TajkputaHabl. Myaaail mapr 6enrisi Kymnon-Mop o, 6epikTik maprbiH eKi 6arbITTa >KaJIlbLIayIaH
IBIFAIBI KabaTTapra mapaJsiiesb *KoHe Kabartapra Kapcesl, sitan, A.K. Byrpos xone A.W. T'onybes anrammn
per XKyiiesiereH TPAHCTPONTHI KYPBLIBIMBI Oap TOMBIPAKTAP/IBIH, M30TPOIUS KA3BIKTHIFBIHA KATBICTHI Ka-
OaTTapra IepreHIuKyasap OareiTrap yiiiH. Herisri o1 »koHe 02, coHbiMeH KaTap ke3inge IlpiToBHY >xkoHe
H.C. BysnbrueBnen yCHIHBLIBIN JaMBITBLIFAH 01c YKOHE 02, HETI3T KPUTHUKAJBIK KepHEYJIep MoHI GOMbIHIIA
ninrimrikTig (6epiKTIKTIH) MIAPTTAPBIH *KaINbLIAY MYMKIHIIrIHE Taiay YCHIHBULALL. B.BuTKe yCBIHBICHI
OOUBIHIIIA, OCHI KDUTEPUIl OPTOTPOITHI KYPBUIBIMIBI Tay »KBIHBICTAPbIHA KOJIJIAHYbI €CKEPE OTHIPHII, aHU-
30TPONTHI KYPHLIBIMBI 6ap TOMBIPAKTAP/IBIH, INIACTUKAJIBIK, KHPAY MOMEHTIH »KoHe 6aCTalKbl HYKTEIeH apbl
Kapail TapaJiy OarbITBIH aHBIKTayFa MYMKIHIIK OepeTiH KpuTepuil Kypy YCBHIHBLIABI. Kupay mMexaHUKach
ecelTepiHiy *KaHa KJIACHIH IIelIyre MYMKIH/IIK TYFBI3aThIH »KaHa KPUTEPHUIIMEH eCellTesIreH €Ki OpTOroHaJI-
bl OCbTep OAFBITHIHA AHU30TPONTHI KYPBLIBIMBI 0ap TOMBIPAKTAPILIH, KPUTHKAJIBIK, MOHIEPIH KAMTUTHIH
Kecre Gepisrex.

Kiam cesdep: TONBIpAK, M30TPOINTHIK, aHU30TPONUSIIIBIK, WIITIIITIK, H30TPONTHI XKA3BIKTHIFHI.

P.B. Baitmaxan, A.P. Baitmaxan, 3.M. AbgunaxmeToBa,
A.A. Ceitracunosa, ['."M. Baiimaxanosa

O6061menue ycaoBuii mpounoctu IlprroBnya
JJIsi TPYHTOB aHU30TPOITHOTO CTPOEHUS

PaccmorpeH Bonpoc pa3spaboTKu HOBOIO 0G0BIEHHOIO YCIOBHA IPOYHOCTH (IUIACTUIHOCTH ) HIPUMEHUTEIHHO
K TPYHTaM aHU30TPOIHOIO, B YACTHOCTH, TPAHCBEPCAJIbHO-U30TPOIHOIO (TPAHCTPONHOro) crpoenusi. Takoe
yCJIOBHE BBIBOAUTCSI 0OOOIIEHNEM H3BECTHOrO yciaoBus Imacruanoctu Kymona-Mopa o, my1s1 AByx Hampas-
JIEHUI: BIIOJIb CJIOEB IAPAJIJIEJIbHO M BKPECT CJIOSIM, T.€. JIJIsl HAIIPABJIEHUH, HEePIEeHIUKYISPHBIX K CIIOIM,
OTHOCHTEJILHO INIOCKOCTH MU30TPOIINH JJIs TPYHTOB TPAHCTPOIHOTO CTPOEHUSI, CUCTEMATH3NPOBAHHOIO BIIEP-
Bole A.K. Byrposeim u A.U. Tony6esbivm. Caestan aHam3 BO3MOXKHOCTH 0OOOIIEHHS YCIOBUI IJIACTUIHOCTH
(IPOYIHOCTH) TIO IJIABHBIM HAINPSYKEHUAM 01 U 02, & TAKXKe 110 3HAUEHUAM KPUTHIECKUX [VIABHBIX HAIIPsIZKe-
HUN O1c U O2¢, IPEUIO’KEHHBIN 1 PA3BUTHIA B CBOE BpeMsI JUIst 'PYHTOB u3oTponHoro crpoennst H.A. Ilprto-
suueM u H.C. Bynbraeseim. Cremyst moaxoay B.Burke, KOTOpBIi npeaIoKuT TPUMEHUTb TaKOW KPUTEPHUit
K TOPHBIM HOPOJIaM OPTOTPOITHOIO CTPOEHUS, IPEJIOXKEH CHOPMYINPOBAHHbBIN KPUTEPHl, KOTOPI O3B0~
JISIET ONIPEJIEIUTh MOMEHT HACTYIUIEHMs IJIACTUYIECKOTO Pa3pyIIeHHUsI FPYHTOB aHM30TPOITHOTO CTPOEHUS U
HaIpaBJIeHUE €ro JajIbHeHIIero pacnpocTpaHeHus: OT HadaIbHON Touku. IIpuBenena rabmura, cogepKaas
KPUTHYECKUE 3HAYEHUs] TPYHTOB AHM30TPOITHOIO CTPOEHUsS B JBYX OPTOIOHAJILHBIX HAIIPABJIEHUSX KOODJIH-
HaTHBIX OCEH, BBIYMCJICHHBIE C IOMOINBIO IIPEIJIOKEHHOIO0 HOBOI'O KPUTEPHUsI, KOTOPBIH ITO3BOJISIET PEIINTH
HOBBIHI KJIACC 3aJad MEXaHUKH Pa3pyIIeHNUsI.

Kmouesvie caosa: TpyHT, H30TPONNS, AaHH30TPOINS, IIJIACTUYHOCTD, INIOCKOCTh H30TPOIINH.
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The energy method for solving a nonlinear
problem of thermoelasticity for arod
of variable cross section

A horizontal rod of limited length is considered. Radius of the rod varies linearly along its length. The cross-
sectional area of the left end is larger than the cross-sectional area of the right end. The lateral surface of
the test rod is completely insulated. The heat flow is fed to the cross-sectional area of the left end. Through
the cross-sectional area of the right end of the rod, heat exchange takes place with the surrounding medium.
The field of distribution of temperature, displacement, three components of deformation and stresses are
determined in the work, provided that both ends of the rod are rigidly fixed. And also, the magnitude of
the elongation of the rod is determined when one end of the rod is fixed and when the other is free.In
the case of fixing the two ends of the rod, the magnitude of the resulting axial compressive force is also
calculated. When studying the rod, the fundamental laws of conservation of energy were used.

Keywords: elongation, axial force, cross-section, temperature, displacement, deformation, stress.

Introduction

Many load-bearing elements of gas-generator, nuclear and thermal power stations, jet engines and the
processing industry are rods of variable cross-section. To ensure reliable operation of these equipments, it is
necessary to provide the thermal strength of load-bearing elements in the form of variable-section rods that
operate with the simultaneous action of dissimilar kinds of heat sources. Because of the variability of the cross
section, nonlinear thermomechanical processes appear in such rods.

To study the nature of such processes, consider a horizontal rod of limited length, of variable cross-section.
In this case, the radius of the section varies linearly along the length of the investigated rod, i.e. r = ax + b,
0 < x <), where is the [-length of the rod, a,b — const. The cross-sectional area of the rod varies nonlinearly
along the length of the rod in the following manner F(x) = 7(ax + b)?[m?]. The lateral surface of the test rod
along the entire length is heat-insulated. On the cross-sectional area of the left end of the rod F(z = 0) = 7b?,

. . . watt
a heat flux with a constant intensity ¢ 5
cm

} Through the cross-sectional area of the right end of the rod

F(z = 1) = m(al + b)?, heat exchange takes place with the surrounding medium. At the same time, the heat
watt

transfer coefficient h | ———
LmQ e

} , ambient temperature T,.[K], the physical and mechanical properties of the core

1 watt
material is characterized by the coefficient of thermal expansion « [K}’ thermal conductivity K. [ ]

m - K

C’ffz} . The scheme of the investigated rod is shown in Figure 1.

and modulus of elasticity E [
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Figure 1. Scheme of the investigated rod
Overviev

In the presence of heat flow, heat insulation and heat transfer, the functional of the total thermal energy
for the investigated rod has the form [1]:

J= / qTds + / (=—)%dv + / —(T —T,.)%ds, (1)
F(2=0) v 2 0z F(a=l) 2

where T'= T'(z) the field of distribution of temperatures along the length of the rod, which is approximated by
a complete polynomial of the fourth order

T(x) = ap + a1z + asx® + azz® + agx* = i (x)T; + 0 (2)Tj + @r(x)Ti + @m ()T + @n(2)Th, (2)
where ¢(x) — are spline functions:

(31* — 25032 + 70%2* — 80lz> + 322%)

pi(x) =

314 ’

(4803 — 2081722 + 288z — 128z*)
Py (‘T> = 374 ’
—3603x + 2281222 — 384123 + 19224

pnlw) = Z3LT 56314 - o, (3)
(z) = (161°z — 1121%2? + 224la® — 1282*)
Spm - 314 )

on(z) = =313z + 221222 — 4813 + 322

304 ’

0 < x < I, where the nodal temperature values are determined by the formulas

T; = T(x = 0); TizT(:c:D; Tk:T(x:;>; Tm:T(a::il>; T,=T(x=1). (4)

Taking into account (2)-(4), minimizing (1) with Tj, T3, Tk, T, and T,, we obtain a resolving system of
algebraic equations taking into account existing natural boundary conditions.Solving the system we determine
the nodal values of temperature (4), and by (2) we construct the field of temperature distribution along the
length of the rod. If one end of the rod is fixed and the other end is free, then the length of the rod Aly[cm] is
determined according to the general law of thermophysics [1]

1
AlT:/ oT (x)dx.
0

If both ends of the rod are rigidly fixed, then an axial compressive force R[kG| arises in the rod, which is
determined from the compatibility condition of the deformation [1]

_ Alp- Ef(f F(z)dz

= Z .
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k
In this case, a distribution field of the thermo-elastic component of the voltage o(x) [92} arises in the rod:
cm

R
a(x):m,()gxgl.

Then, according to Hooke’s law, we can determine the distribution field of the thermoelastic deformation
component e(z) [dimensionless|:

The temperature component of deformations ep(,) [dimensionless| is determined according to the general law
of thermophysics [1]:
ET(z) = —OéT(Q;‘).
Then, according to Hooke’s law, the field of distribution of the temperature component of the stress
kg
or(z)=F -ep(x) = —aF - T(x).
According to the theory of thermoelasticity, the laws of distribution of elastic components of deformations e, (,)
kg

[dimensionless| and stresses op () {2]:
cm

ex(7) = e(z) —er(z);

0:(z) = E-ex(x) = 0(x) —op(z).

The potential energy of elastic deformations is used to determine the displacement field [2]:

_ [ o=@ — | aFE - -T(x) ey(x)dv
H—/V 5 eg(z)dv /v E-T(x)-ez(x)dv.

According to the Cauchy relation [2], we have:

_ou,
oz’

U= U(l‘) = ‘pi(m)Ui + ij(x)Uj + ng(QT)Uk + @m(‘T)Um + (Pn(x)Uny

whereU is the displacement field. Minimizing II from the nodal values of the displacement, a system of linear
algebraic equations is constructed. To solve this system, it is necessary to specify the conditions for securing
the two ends of the rod, i.e. U; = U(x = 0) = 0 and U,, = U(z =[) = 0. Further, defining U;, U;, Ug, Up,, Uy,
a displacement field is constructed. For practical application of the above method and algorithm, we take the
following initial data { = 20 cM, @ = 5, b = 4 em, @ = 0,0000125%, E = 210525 K, = 10024t
h = 100}7”12%(, T,. = 40°K, g = —5003‘::;.

Figure 2 shows that the temperature is higher near the left end of the rod, where the heat flow is supplied.
Due to the thermal insulation of the lateral surface, heat is lost minimally, so that the temperature at the right
end of the rod is maintained at 2400 K.

With these initial data, the obtained solutions are shown in Figures 2-5.

€x(x)
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Temperature
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Figure 2. Dependences of the temperature T along the length of the rod

Stress
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Figure 3. Stress Dependencies along the length of the rod

Decision

The stresses along the length of the rod are shown in Figure 3 (1 — o(z) is the thermoelastic, 2 — () is
the temperature, 3 — og(x) is the elastic component of the stress). It can be seen from the figure that the
thermoelastic —o(z) and temperature —o ;) are the components of the stress along the entire length of the rod
are of a compressive nature. While the elastic —og(z) component of the stress in the area 0 < E < é has a
tensile character, and in the area é < F < it is compressive.

Deformation
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Figure 4. Dependence of the deformation along the length of the rod
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Dependences of deformations along the length of the rod are shown in Figure 4 (1 — o(z)—thermoelastic,
2 — 0(y)— temperature, 3 — og(z)— elastic component deformation). The distribution field of the deformation
components is proportional to the corresponding stresses.

A Displacement

0.020

0.015 4

0.010 1

0.005

0.000

0.0 2.‘5 5.’0 7.‘5 10'.0 12‘.5 15‘.0 17'.5 20’.0
Figure 5. Dependences of displacement along the length of the rod

Figure 5 shows the field of distribution of displacements of a rod fixed at two ends. From this it can be
seen that all sections (except for exceptions) move in the direction of the z axis. The greatest amplitude of
3l

displacement corresponds to the coordinate ofr ~ 2.

Conclution

A numerical model of nonlinear thermomechanical processes in a rod of variable cross-section is developed,
based on the fundamental law of conservation of energy. This allows to obtain reliable numerical results taking
into account all natural boundary conditions. The results obtained are consistent with the corresponding laws
of physics. This method can be used for the numerical solution of a class of problems determined by the steady-
state thermomechanical state of load-bearing structural elements operating under the influence of dissimilar
kinds of heat sources.
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AjiiHbIMaJIbI KOJIeHeH, KIMAChl 0ap ChIPBIKTBIH, ChI3BIKThI €MeC
TEPMO3JIACTUKAJIBIK, eceOiH MIelnyae SHEePreTUKAJIbIK d/ICTI KOJIJaHYy

T'a3 remepaTopJ/iapbIHBIH, sIJIPOJIBIK, YKOHE KBIIY JEKTDP CTAHIUSIAPBIHBIH, PEAKTUBTI KO3FAJTKbBIIITAPbI-
HBIH, YKOHE OHJIEy OHEPKOCIOIHIH KeITereH 3J1eMeHTTEepl afHbIMAJIbI KOJIJIECHEH, KIMAChl 6ap CBIPBIK OOJIBII
TabbLTabl. OChl XKabIbIKTapAbIH, CEHIM/II *KYMBIC iCTeyiH KaMTaMachl3 €Ty YIIiH, *KbLIYy KO3JepiHiH opTyp-
JIi TYpJepiHiH 6ip yaKbITTa ocep eTyiMeH >KYMBIC ICTeHTIH affHbIMAJIbI KOJIIEHEH KAMAacChl 6ap ChIPBIKTHI
KapaCTBIPHIN, MOMBIHTIDEKTED 3JIEMEHTTEPIHIH KBTIy OeplIyiH KaMTaMachl3 eTy KaxkeT. Makaraaa aiHb-
MaJIbl KOJIJIeHEeH, KUMa/ Iarbl IIEKTEYJIi Y3bIHIBIKTAFbI ChIPBIK, KAPACTHIPbLIAbL. KesieHeH KuMachl OHreeK,
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OHBIH, PaINYChI Y3bIHIBIFBI OOMBIMEH CBHI3BIKTHI TYpe o3repei. Cost XKaKThIH KOIIeHEH, KUMACHI OH, YKAKTaH
VAKeH. 3ePTTENreH ChIPBIKTHIH OYiiip GeTi TOIBIFBIMEH T€pMAJIIbl TYpe OKIayiaanraH. 2KbLTy aFbIHBI COJI
JKAKTBIH KOJIJIeHeH, KUMAaChIHa KOJIAaHbLIa bl. ChIPBIKTHIH OH YKaK, IIETIHIH KOJIJIeHeH KIMAChI apKbLIbI KOP-
IaraH OpTaFa YKbBUTYy aJMacybl XKypriziiemi. 2KymbicTta TemmepaTypa, BIFBICY, CBIPBIKTBIH €Ki KaFbl KATAH
GekiTiireH Karaigarsl gedpopMalus *KoHe CTPECTiH, yII Kypamaac 6emikrepi anbikraaran. Conpaii-ak 6ip
merine Gekirim, ekiHmmici epkiH GosFaH Ke3Jle CBHIPBIKTHIH Yy3apTy IIaMachl aHbIKTaJIbl. CBHIPBIKTBIH €Ki
YIIbIH OEKiTy HOTHIKECIHe aJIbIHFaH OCHTIK KBICBIM/IBI KYIITIiH MoHI ecenTesiai. ChIPBIKTHI 3epTTEy Ke3iHe
SHEPIUsiHbl CAKTAY/IbIH 1presii 3aHbl Maia aHbLIIbL.

Kiam cesdep: y3apy, OCbTIK KYIII, KIMa, TEMIIEPATYPA, XKbLIKY, AedOpMaIysi, CTPECC, SHEPIETHKAJIBIK, d/IIC,
CBIPBIK.
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DHepreTuvecKuii MeTo JJid pelleHns HeJIMHEeHOM 3a1a49m
TEPMO3JIACTUYHOCTHU JJI CTEPKHHA II€EPEMEHHOIO IMOIIEPEYHOro CeYeHusI

MsHuorne HecyIne 3/1eMEHTHI PEAKTUBHBIX IBUraTe e, 000PYJ0BaHUs & TAKKE ra30reHEePATOPHBIX, ATOMHBIX
1 TEIIOBBIX JIEKTPOCTAHIHI U TepepabaThIBAIOIIEN IPOMBIIIJIEHHOCTH SBJIAIOTCS CTEPXKHAMU [T€PEMEHHOIO
cevyenns. Jlns obecrieveHust HaIe2KHON pabOTHI STUX 00OPY/IOBAHUN HEOOXOJUMO OOECHETUTH TEPMOIIPOU-
HOCTB HECYIIUX JIEMEHTOB B BHJIe CTEDPrKHEl IEPEMEHHOI0 CedeHusI, KOTOpble pabOTalOT IIPU OJHOBPEMEH-
HOM BO3JIEHCTBUHU PA3HOPOJIHBIX BHJIOB MCTOYHHKOB TeIsIa. B crarbe pacCMOTPEH IOPH30HTAJIBHBII CTep-
JKEHb OTPAHMYIEHHON JUIMHBI IIEPEMEHHOIO IIOEPEYHOro cedenns. Paamyc creprkHsI MEHsIeTCs JIMHEHHO II0
ero juuHe. I110manb MONEPEYHOrO CeYeHus JIEBOr0 KOHIA GOJIbIIE IJIOMIAIN IIOIEPEYHOr0 CeUeHUsI Mpa-
BOT'O KOHIIA. BOKOBasi IMOBEPXHOCTH HCCJIE/LyeMOrO CTEPXKHSI IIOJTHOCTBIO Teruion3osmposana. Ha momass
[IOIIEPETHOr0 CEYEHUS JIEBOI'O KOHI[A ITOBOJUTCS TEIJIOBON MOTOK. Uepe3 IJIOIa b [MOIEPETHOrO CeICHUS
IIPABOT'O KOHI[A CTEPKHS IIPOMCXOUT TEIIOOOMEH ¢ OKPYy2Karolei cpenoit. B pabore onpe/iesieHs! moJie pac-
IIpeJie/IeHns] TEMIIEPATYPbI, IIEPEMEIIEHNUs, TPU COCTABJIAOIINE 1ehOPMAIINN U HAIPSXKEHHUs IIPU yCJIOBUH,
4T0 062 KOHIIA CTEPIKHSI KECTKO 3aKPeIlJIeHbl. A Tak:Ke OIpe/Ie/IeHa BeJIMYMHA YIJIMHEHHs] CTEPXKHS, KOTJa
OJIMH KOHEIl CTEPXKHs 3aKpeIUIeH, a Ipyroi — cBoboJeH. B ciydae 3akpellieHHs! IBYX KOHIIOB CTEDXKHSI
BBIYNCJ/IEHA BEJIMYNHA BO3HUKAIOIIEIO OCEBOIO C2KUMAIONIEro ycuiust. IIpu nccirejoBannu cTep:KHS UCIIOJIb-
30BaJIC PYHIAMEHTAJIBHBIA 3aKOH COXPAHEHUS SHEPIHH.

Kmouesvie crosa: yoauHeHne, oceBasi CUIa, CEIeHNEe, TEMIIEPATYPA, TepeMeleHre, 1epopMaris, HapsizKe-
HUe.
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Two-dimensional calculations of stratified
turbulent flow in a pipe

In this paper, we consider the stratified turbulent flow of a two-phase medium in inclined pipes. Based on
the new turbulence model [1], a program code for calculating two-dimensional flows for the study of two-
phase stratified flows in pipes was developed, including taking into account the rough of the pipeline wall.
The technique for calculating two-phase flows in extended pipelines is described. The problem of stationary
stratified two-phase flow in a pipe of constant cross section in the case of turbulent regime is numerically
solved. Calculations of the resistance of a rough pipe are carried out and the results on the influence of
roughness on pipe resistance and velocity distribution are presented.

Keywords: stratified turbulent flow, resistance, two-dimensional calculations, rough surface.

Introduction

Calculations of two-phase flows in long pipelines remain relevant in our time [2]. In connection with the
specific nature of the flow, the known turbulence models for such flows require an appropriate correction. Despite
a satisfactory description with the proposed modification of the resistance of the pipeline [3], there remains some
dissatisfaction with the description of velocity profiles. In the experiments, a small systematic deviation of the
velocity profiles in the axial region of the pipe from the logarithmic law

" (&)

where u, is the velocity in the laminar sublayer. This deviation obeys the so-called «speed defect law» in
Uy, — U

the form

=f (%), where the function f reflects the speed excess over the logarithmic law calculated
U
(t, is the maximum speed on the pipe axis). Since the CAM-1 turbulence model described in [3] does not give

such a deviation, a modification of the turbulence model, called CAM-2, was proposed in [1], where the logic of
choosing the necessary dependencies is shown.

When calculating a two-phase stratified flow with a horizontal interfacial surface, we will use the simplest
square grid in the cross section of the pipe, as was done in the case of laminar flow [4, 5]. Note that when
approximating the equations of laminar flow on a square grid, the main error appeared near the walls of the
pipe. In the case of turbulent flow, the situation becomes more complicated in connection with the special role
of the wall laminar sublayer and the buffer region. Even in the one-dimensional problem, in connection with the
singularity of the equations, it was necessary to use a grid of up to 5000 nodes with a condensation of the grid
near the wall [1]. In the two-dimensional case, this would lead to an unjustified increase in the counting time
and high demands on computational resources. A compromise solution in this situation is the use the «near —
wall» functions, i.e. special approximations of the unknown functions in the near-wall region.

1 Distribution of speed
An example of such an approach is the method of determining frictional stress by measurements of velocity
near the wall. Assuming that the velocity distribution obeys the logarithmic law:

YUy

EzClln( >

*
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Tw

P
stress on the wall). To apply method the near-wall functions, it is necessary to have velocity approximations
suitable at any point close to the wall, including in the laminar sublayer and in the buffer zone. As such, an
approximation near a smooth wall, we can propose the following relationships:

from this relationship, can be determined u, = by the measured values of y and u (7, is the frictional

U C C
- =Cn(y) +Cy— >+ 2
and v Yy« for y, < 5. The values: C5, Cy are determined by the smooth conjugation of these formulas

Ux
for y. = 5. In the CAM-2 model [1] the following values of constants: Cy = 2.439, Cy = 5.386, C3 = 30.31,
Cy = 43.76 are accepted.
Special attention was consider to velocity distributions near the rough wall and approximations were
obtained
Y O (y> By — @+%‘,Bg — 8.5+ 1.78b — 0.89b2, (1)
« ke Ys  YS
where b = (Igk. — 2)°.

Thus, for a point, spaced by a distance y along the normal from the surface, the velocity of the fluid will
be known. These formulas allow us to determine the frictional stress, which is considered at this point equal
to friction on the wall. After this, the differentiation of the approximation formulas determines the viscosity,
from which the boundary condition for the turbulent viscosity transport equation can be obtained. This solves
the problem of the boundary condition for y > hs (hs is the height of roughness), which was mentioned in the
consideration of roughness [6].

2 Calculation of two-dimensional two-phase flows in a pipe

Consider in more detail the application of the CAM-2 turbulence model in the two-dimensional
approximation, changing the notation somewhat. Now let x, y be the Cartesian coordinates in the cross section
of the pipe, and the z coordinate is directed along the pipe axis. Accordingly, the longitudinal velocity is denoted
by w, vy is the turbulent viscosity, the total kinematic viscosity vs; = 14 +v (in the section of logarithmic velocity
distribution 75, ~ 7, = u2p), on the interface (h is the depth of the lower layer of the liquid), R is the radius of
the pipe.

For stationary problems for a circular pipe with allowance for the axial symmetry, the balance equation for
the turbulent viscosity is written in the form

_ 3
k,Covs [ (0w\® (0w’ o ( v\ 0 [ ou
2 ((m)*(m) *m:”m)*ay@wy
A al/t 2 61/,5 2 = Vi 2
@(@m>+(@> +u(7) )

Ly _ 0 (w0 (, o
pdz 0z \' 0z oy \Zoy )"

To approximate these equations on a square grid, the simplest approximation of the second order of accuracy
on a five-point template is used. It is important that equation (2) in the near-wall nodes of the grid is not
approximated, and the turbulent viscosity in them is determined with help of the near-wall functions, as was
described [1].

To organize iterations for solving difference equations with respect to the value of the desired function, in
the central node of the grid template it is possible. In addition, for convergence it is necessary to apply lower
relaxation [7]. The convergence turns out to be very slow, but due to the not too shallow grid, the counting
time is quite acceptable.

The program code of this solution by on the modified CAM-2 turbulence model for the two-dimensional
approximation made it possible to obtain the following results.

For speed, we have
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8 Results

Figure 1 shows the results of a two-dimensional calculation of drag and velocity profiles in a smooth pipe
on a square grid with 50 cells per radius (the fragment of the grid is shown in the left part of the Fig.)

? 2 3 dgbu) 4 5
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Figure 1. Results of a two-dimensional flow calculation
in a smooth pipe on the grid h/R = 0.02

A comparison with a more accurate one-dimensional calculation, the results of which are shown in [1]. For
convenience of comparison, we represent this result in Figure 2.
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1 — theoretical in the laminar regime; 2 — experimental Prandtl under turbulent regime; 3 — the velocity distribution
in the laminar sublayer; 4 — in the turbulent core of the current; 5 — coefficients of resistance over the CAM-2

Figure 2. Coefficient of resistance and velocity distribution in a smooth
pipe (the CAM-2 turbulence model) for the one-dimensional case

As a result of the numerical solution to the modified turbulence model (CAM-2), a graph of the dependence
of the drag coefficient on Re in logarithmic coordinates is constructed for the one-dimensional case and is shown
in blue circles in Figure 2. The results shown in Figure 2 give the best agreement with the experimental data
on frictional resistance given in [§].

In Figure 1, you can see that the use the near-wall functions provides acceptable accuracy. Let is attention
that in yellow circles speed values are marked in the grid node closest to the surface.

To judge the influence of the grid step on the accuracy of the calculation, in Figure 3 the results obtained

for 20 cells per radius are given. In this figure, you can see the principle of approximation of the boundary of
the calculated area, shown by a blue broken line.
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Figure 3. Results of two-dimensional flow computation
in a smooth pipe on a grid h/R = 0.05

As mentioned above, the near-wall functions can also be used for rough surfaces. The most famous results
on the influence of rough on pipe resistance and velocity distribution were obtained by I. Nikuradze [9] and are
given in many monographs and textbooks, for example [8, 10].

As a demonstration of this fact, and to check the accuracy of the approximations (1), we give in
Figures 4-7 the results of two-dimensional calculations of flows in rough pipes. We note that, with a significant
rough and a fine grid, several layers of grid cells can enter the zone of near — wall approximation, which
complicates the calculations. For this reason, the results of calculations with a strong rough are not given here.
The results shown in Figures 4-7 show that even calculations on a coarse grid have satisfactory accuracy. In
these figures, the blue circles are the results of calculating the resistance at a fixed roughness, the horizontal
line to the right is an experimentally determined resistance with full roughness, and the dark blue circle is the
experimental value of the minimum coefficient of resistance.
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Figure 4. Results of two-dimensional calculation of flow in a pipe
with the roughness R/hs; = 507, on a grid h/R = 0.05
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Figure 5. Results of two-dimensional calculation of flow in a pipe
with the roughness R/hs = 252, on a grid h/R = 0.05
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Figure 6. Results of two-dimensional calculation of flow in a pipe
with the roughness R/hs; = 126, on a grid h/R = 0.05
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Figure 7. Results of two-dimensional calculation of flow in a pipe
with the roughness R/hs = 60, on a grid h/R = 0.05
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4 Conclusion

In this paper, we present the results of a two-dimensional calculation of the flow in a pipe based on the CAM-2
turbulence model, where the turbulent viscosity balance equations are used. The technique for calculating two-
phase flows in long pipelines is described, and with roughness. In the formulation of the corresponding conditions
at the level of the maximum roughness height (or higher), this method is combined with the method of applying
the near-wall functions describing the distribution of parameters near the wall and resting on experimental data.
The results of calculations with this roughness description are given in the form of dependences of laminar and
turbulent resistances on the Reynolds number, and in the form of a velocity distribution calculated from the
equations of the model.

This work was supported by the Scientific Committee of the Ministry of Education and Science of the Republic
of Kazakhstan (grant 5318 / GF4).
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C.K. Margees, H.2K. 2Koitmi6ekos, b.C. Illarabaesa, /1. 2Kycymnosa

KyObip/iarbl crpaTudunupjaaHfal TypOyJIeHTTIK
aFbIMHBIH, €KieJIIIeM/Ii ecernreyjepi

Maxkanana rocdazasbl opraga Kejabey KyObIpJapafbl CTpaTH(GUIMPIAHFaH TypOYJIEHTTIK aFbiM Kapac-
teipbLabl. 2Kana TypOymenTrik Momens [1] merisimme kocdaszansl crparndunmpIanFaH, COHBIMEH KATAD
KYOBIp/IbIH, 0eTi KeIip-Oy/IbIp >Karaaigarbl, TypPOYJIEHTTIK arbIMIap/Ibl 3epTTEy MaKCATBIHIA, €KieJImeM i
aFrpIMJIAp VIIIH MPOrpPaMMAJIbIK KO »Ka3bLiabl. COo3bLIFaH KyOBIpJIAarbl KOCha3asbl aFbIMIapIbl eCcernTey-
HiH omicremeci YCHIHBLIALL. TypOy/leHTTI pekuMaeri TYpakThl KUMa KaFrJaiia CTAIOHAPJIBI CTPATH(U-
mupJIaHFralH Kocdasalibl aFbIMHBIH, ecebi mrenrii. Kemip-Oyabipibl KyObIpJiap/IblH, KeJdeprici »KoHe KeJip-
OYIBIPJIBIKTHIH KYOBIDJIBIH KeJIepriciHe ocepi XKoHe YKbLIIAMIBIKTAPIBIH TapaThLIYbl €CeMTe i /I,

Kiam cesdep: crparudunupianrad TypOyJIeHTTIK arbIM, KeIepri, eKieamemal ecenTeysep, Keaip-Oyabip
oer.

C.K. Margees, H.2K. 2Koitmioekos, b.C. Illarabaesa, /1. 2Kycynopa

JIByMepHbIe pacdeTbl CTPATUMUIIMPOBAHHOIO
TypOyJIEHTHOTO IIOTOKa B TpyOe

B crarpe paccmorpeno crparudunmpoBarnHOoe TypOyJIEHTHOE TedeHne NBYXMas3HOU Cpe/bl B HAKJIOHHBIX
Tpy6ax. Ha ocHOBe HOBOII Momesnn TypOynenTHocTH [1] 6b11 paspaboraH OPOrpaMMHBIA KO /IS pacdera
JIBYMEDHBIX TE€UEHU JJIsi M3ydeHUsl ABYX(a3HbIX CTPATU(PUIMPOBAHHBIX TEeYeHU B TpyHax, B TOM YHC-
JIe C yIeTOM IIEPOXOBATOCTHU CTEeHKU Tpybomposoga. Onmcana MeTOAMKA pacdera AByX(a3HBIX TEUYEHU B
MIPOTSI?)KEHHBIX TPYOOIPOBOAaxX. YHUCIEHHO peleHa mpod/ieMa CTAIMOHAPHOTO CTPATUMUITUPOBAHHOIO JIBY X~
da3HOro MoTOKa B TPybHe IMOCTOSIHHOTO CeYeHMsl B ciiydae TypOyJIeHTHOro pexkuma. [IpoBemeHbl pacyeTsl
COTIPOTHUBJIEHUSI IIIEPOXOBATON TPYOBI, U MIPEJICTABJIEHBI PE3Y/ILTATHI IO BJIUSHIIO IIIEPOXOBATOCTH HA COMPO-
TUBJIEHUE TPYObI M PACIPEesIeHUe CKOPOCTEI.

Kmouesvie crosa: crparudunnpoBaHHbIN TYyPOYJIEHTHBIN TOTOK, COMPOTUBJICHUE, IBYMEPHBIE PACIETHI, IITe-
poxoBaTas IOBEPXHOCTb.
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Particle motion over a plane, which rotates about a horizontal
axis and makes a certain angle with it

Differential equations of relative material particle motion over a plane, which rotates about a horizontal
axis, have been set up. Plane location relative to a rotation axis is set by a certain angle, which value can
range from zero to ninety degrees. If angle value is equal to zero, a plane passes through a rotation axis;
if angle value equals to 90 degrees, it is perpendicular to a rotation axis. The equations have been solved
using numerical methods. In case of end positions of an angle, analytical solution has been found.

Keywords: soil-tilling disk, rotary motion, differential equations of motion.

Introduction

Particle motion over a horizontal plane in the form of a rough disk, which rotates about a vertical axis, is
considered to be the most investigated one. Such disks with blades attached to them are used in scatters of
centrifugal type. Operating elements with a horizontal axis of rotation in the form of a shaft with flat blades
attached to it are used for spreading organic fertilizers. They can be also used to mix particles or scatter them
in a centrifugal direction. It is interesting from theoretical perspective and it is to the point for the possibility
of practical implementation to investigate particle motion over a plane, which rotates about a horizontal axis
and makes a certain angle with it.

Compound particle motion over rough surfaces of operating elements of agricultural machinery has been
considered in the major works [1-4]|. They investigate particle motion over a horizontal disk, which rotates
about a vertical axis, both without blades and with blades of the simplest designs. Paper [5] considers particle
motion over a flat disk, which rotates about the axis that is inclined to the horizon. Patterns of particle motion
over a disk both without blades and with straight blades arranged in radial direction from the axis of rotation
have been investigated. The research presented in paper [6] is similar to ours but with the difference that the
axis of rotation is not horizontal but a vertical one. This research considers relative particle motion in a wide
range of angles of inclination of a plane to a rotation axis, beginning from a horizontal position and finishing
with a vertical one. The development of a bladed operating element of a conveyer-mixer has been considered in
paper [7]. There is a separate group of scientific papers, which investigate particle motion on a rough surface
under the action of weight force [4, 8-15, 16, 17].

Material and method

Let us locate a plane in the form of a rectangle, which will be rotated, in three-dimensional coordinates
OXYZ. Firstly, let it be in agreement with a horizontal plane OXY, here, we set our own coordinate axes: Ou
axis lies in OX solid axis and Ov axis lies in OY axis (Fig. 1, a).

z

e
s O X2 j:/ : T TO=v=

a) b) c)

PSR
§

Figure 1. Location of a rectangular section of a plane in three-dimensional coordinates OXYZ
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Let us rotate a plane about OY axis by a certain angle 8 (Fig. 1, b) and fix it in this position. Figure 1, ¢
shows plane location in three-dimensional coordinates OXYZ, when OY axis of the latter is projected to a point
and the plane itself is projected to a line.

Parametric equations of a plane in projections onto solid axes OXYZ are written as:

X =wucosf;
Z = usin §.

Let us rotate a plane about OZ axis with constant angular velocity w. Then, during time ¢ a moving plane
rotates through an angle ¢ relative to a fixed system. The degree of rotation angle ¢ is determined by the
familiar formula:

¢ = wt. (2)
Parametric equations of a plane after its turn by the angle p=wt about OX axis are written as:
X =wucosf;
Y = wvcoswt — usin Ssinwt ; (3)

7 = vsinwt 4+ usin S coswt .

Figure 2 shows a set of separate plane positions built at equal time intervals. It bends round a cone with
axis.

Figure 2. Set of separate plane positions built at its rotation about OX axis

During plane rotation a material particle slides over it having relative motion. Here, its coordinates v and
v in a plane will vary with time, that is why, we consider them to be time-varying functions ¢: u=u(t), v=uv(t).
Such a relation between independent variables v and v through the third variable ¢ describes a certain line in
a plane — a trajectory of relative motion. Provided that v = u(t) and v = v(t), the equations (3) also describe
a line in three-dimensional coordinate system — a trajectory of absolute motion of a particle.

Projections of absolute velocity and absolute acceleration of a particle on the axes of a fixed OXY Z
coordinate system are determined by successive differentiation of the equations (3), considering u and v to
be unknown functions.

After differentiation of (3) and grouping of terms we get projections of absolute velocity:

7 = cosf3;
y = (v — uwsin ) coswt — (u'sin B + vw) sin wt; (4)
2/ = (v — uwsin B) sinwt + (v’ sin 8 + vw) cos wt.

Here, let us denote coordinates x,y, z not by capital letters as it is in (3) but by lowercase letters, since we
moved from the equations with two variables to the equations with one variable t. After differentiating the
equations (4) and grouping of terms we get projections of absolute acceleration:

" =u"cosf;
Yy = (U” — vw? — 2u/wsin B) coswt — (u” sin B 4 2v'w — uw? sinﬂ) sin wt; (5)
2= (v” — vw? — 20/wsin B) sinwt + (u” sin B + 2v'w — uw? sin 5) coswt.
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Let us establish a motion equation in the form of mw = F, where m — mass of a particle, W — vector of
absolute acceleration, F' — resultant vector of the forces exerted upon a particle. Such forces are weight force
mg(g = 9,81m/s2), reaction N of a plane and friction force fN at particle sliding over a plane f — friction
coefficient). All the forces must be projected on the axes of a fixed coordinate system.

Weight force is downward-directed, thus, its projections can be written as: {0;0; —mg} .

Plane reaction N is perpendicular to it (Fig. 1, ¢) and its projections are the following:

{=NsinB;0; N cos 5} . (6)

Friction force is directed at a tangent to the trajectory of relative motion opposite to the direction of velocity.
Let us find projections of velocity vector of relative motion by differentiating the expressions (1), assuming that
u=u(t) and v=v(t):
u' cos 3;
v (7)
u' sin 3.

2
’

Y

o

Relative velocity value is determined by geometric sum of the components (7)

V=22 +y2?+ 22 = Ju? + 2. (8)

A unit vector, which is at a tangent to the trajectory of relative motion, is determined from dividing the
projections (7) by the value of velocity (8). Taking into account that friction force fN is directed opposite to
the direction of relative particle motion, its projections can be written as:

u’ cos 3 v u' sin 8
{_fN /u’2 + 0’2 ! —fN w2 + 0’2 ! _fN1 /w2 + 1’2 ’ (9)

Weight force (6) does not change its direction during plane rotation. Plane reaction force N (7) and friction
force (9) depend on rotation angle ¢ (2) of a plane. Thus, they must be also turned through the angle ¢ = wt
about axis. Having taken that into consideration, projections of plane reaction force N take the following form:

—Nsinf;
—Ncosfsinwt; . (10)
N cos B coswt

Projections of friction force after a turn through the angle p = wt can be written as:

N u cosfB .
N

v’ coswt—u’ sin Bsin wt |
_fN Vu'2fu'2 ’ . (11)

—fN v’ sin wt+u sin 3 cos wt
\/’LL/2+’U/2

Let us set up a vector equation mw = F in projections on the axes of a fixed three-dimensional coordinates,
taking into account the applied forces (6), (10) and (11):

"o_ : u'cos .
mxr = 7N (SIH/B —+ fw>,

.y N cos B sinwt+
my" = — ! cos wt—u' sin Bsinwt | ;
+f v COS W\/u/szI:QB S1n W (12)

. cos 3 cos wt—
mz" =N _f v’ sin wt+u’ sin B cos wt —mg.
\/u/2+v/2
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Let us substitute other derivatives (projections of absolute acceleration) from (5) into the equation (12).
The obtained set of three equations contains three unknown functions: N = N(t),u = u(t) and v = v(t). Let us
solve it for N, u” and v":

g cos wt+w(2v'7uw sin ,8)
\/u/2+v/2 ’

u” = —sin B [gcoswt + w (20" — uwsin )] — v’ f cos B

g cos wt—i—w(?v/—uw sin ﬁ) (13)
Vu'2+v’2 :

v = —gsinwt + w (vw + 2u' sin 3) — v’ f cos B

N =mcosf [gcoswt + w (20" — uwsin )] .

The first two equations make a system of nonlinear differential equations of the second order for the functions
that describe the trajectory of relative particle motion over a plane.

Let us consider a partial case, when angle § = 0. In such a case a plane passes through axis which is its
rotational axis (Fig. 1, a). Here, particle motion is possible in radial direction parallel to v axis at u = const.
In this case the system (13) is simplified:

t+2v'w |
o' = _u/fgcoiﬁg—,—vg w :
(14)
. 2 t+2v’
v = —gsinwt + vw? — v’f%
At u=const the first equation of the system (14) is changed into an identical equation and we obtain only
one linear differential second-order equation:

v = —gsinwt + vw? — f (gcoswt + 2v'w). (15)
The equation (15) has its analytical solution:
2 .
(TR wt o /TT PPt 2fcoswt+(1—f )smwt
v=e ( ) (Cl+026 >+g 2(1+f2)w2 . (16)

For further determination of the values of integration constants ; and o let us find the expression of relative
velocity by differentiating the equation (16):

dv _
v=e e (F+v/1e 7)ot {cl (f /1 f2) + o (f 1+ f2) e2v1+f2wt} +
(1= f?) coswt — 2f sinwt
2(1+ fAw

Let a particle be separated from the axis of rotation by the distance vy at the initial time point, when a
plane is in a horizontal position (that is to say, at ¢ = 0), and have initial velocity V. Let us substitute ¢t = 0
into (16) and (17) and equate these expressions to relative initial values of position and velocity and we obtain
a set of two equations for unknown constants ¢; and cs:

+g (17)

Vg = Mﬁ% +c +ceo;
(- (e
Vo= W —w [\/W(C1—62)+f(61+02)} :
Having solved (18) for ¢; and ¢z, we obtain expressions for the determination of these constants:
g<1+f2 —Qf\/1—|—f2> — 2w (1+f2) {V()—Fvow (f_ /1+f2>}
12 (14 f2)72
g (14 P2+ 20 VTF 2) 4 20 (14 12) [Vo o wow (£ + VTF 2)

3
4w? (14 f2) /2

C1

b

Cy =
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Results

Figure 3 represents dependency graphs (16) and (17) under set initial conditions vy = 0,2m and V; = 0 and
friction coefficient f = 0,3. They show that a particle can move in radial direction either away from a rotation
axis or towards it. It depends on the value of angular velocity of plane rotation. At w = 55~ !- a particle moves
towards a rotation axis, here, in the line of about 0, 1s it practically does not move and only at its turn from a
horizontal position to the angle ¢, which is close to a friction angle, it begins to move.

0.8 4
v, m V, m/s

0.6r
0.4r
0.2

of - 1 . i |

; . o
f s il ts A

-0.2 -2 g ; " +

0 0.1 0.2 0.3 0.4 05 0 0.1 0.2 0.3 0.4 05

a) b)

Figure 3. Graphs of distance v = v(t) — a) and relative velocity V =V (¢) - b) at 8 =0

However, without reaching a rotation axis, after 0,22 s plane reaction force is equal to zero, that is to say, a
particle does not presses the surface (from this moment on the graphs of distance and velocity are represented
using a dashed line). At w = 7s~! a particle moves away from a rotation axis and after 0,5s it is more than
0,6m away from it and it gains velocity of more than 3m/s. Plane reaction force increases as well.

The equation (17) enables finding the parameters of particle motion in radial direction only. However, initial
velocity of a particle entering a plane may have another direction, for example, the one that is parallel to a
rotation axis as is the case in snow throwing machines for delivering snow on a rotor blade. In this case it is
necessary to solve the system (14) using numerical methods at u # const or the system (13) at 8 = 0. Figure 4
shows graphical representations of particle motion at § = 0, which enters a plane with various initial velocities
along u axis and zero initial velocity in radial direction (v’ = 0).

0.3 4 : : .
u V, m/s v’ =1m/s
0.28 P
3 u'=15m/s
0.2t u"=2mis
0158 >
0.1
u =05m/s T
- = 1 u'=05ms |
u'=0mis rE
. . " " . u _ﬂl'm/s . ts
0.2 0.3 0.4 0.5 0 0.05 0.1 0.15 0.2
a) b)

a) trajectories of particle sliding; b) graphs of velocities

Figure 4. Graphical representations of particle motion (8 = 0,w = 10s71,f = 0,3, = 0,2 m)

In addition, the system of differential equations (13) makes it possible to find trajectories of particle sliding
at w = 0, that is to say, when a plane is fixed. For example, let us take an inclination angle 8 of a plane which
is equal to a friction angle. For f=0,3 this angle has the following value: § = arctgf = 16, 70. Figure 5, a shows
trajectories of particle motion at various angular velocities including w = 0 that have been built using numerical
methods. At the beginning of its motion a particle was given initial velocity V' = 4m/s along Y = v axis. It
traces out a curvilinear trajectory and after a certain time (3s) it enters a rectilinear trajectory, which coincides
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with the line of the greatest inclination of a plane. Here, its velocity is stabilized and it becomes twice less than
the initial one (Fig. 5, b).

V.m/s

a) trajectories of sliding over a plane; b) graphs of change in velocity over time

Figure 5. Graphical representations of particle motion over a plane,
which has an inclination angle 8 equal to a friction angle

Then a particle moves along the line of the greatest inclination with a stabilized velocity. Such a result is in
a complete agreement with the result obtained in paper [18], which considers particle motion over an inclined
plane at its side feed.

If a plane is given a rotating motion with low angular velocity under previous initial conditions, motion
trajectories and graphs of velocity change (Fig. 5).

Let us consider a general case when angle 50. At 8 = 0 and at v = const (that is to say, without relative
initial velocity along a rotation axis) a particle moves in radial direction (Fig. 4, a at v’ = 0). Let us find
out how a particle moves, if angle 3 is gradually increased. Figure 6 shows trajectories of particle sliding at
various values of angle 3. Figure 6, a represents trajectories that a particle traces in 0,5s. At § = 0 it moves
in radial direction. If angle [ increases, a particle trajectory begins to deviate from radial direction but it
moves practically rectilinearly. The length of the distance covered gradually decreases. A dashed line is used to
represent a trajectory in case when angle g is equal to a friction angle 8 = arctgf. Figure 6, b shows relative
particle motion at further increase of angle 3 over the time of 1,5s. The figure shows that even an insignificant
increase in angle S results in a sharp decrease in the distance covered. Here, the angle of deviation from radial
direction increases and the trajectory remains rectilinear. At further increase of angle 3, the trajectory of a
particle becomes curvilinear and there is a moment when reaction of a plane becomes equal to zero, that is to
say, there is detachment of a particle from a plane. Figure 6, ¢ shows trajectories of relative particle motion
during 0,5 s, here, a heavy line represents the trajectory where particles press a plane. At angle 8 = 45° the
detachment of a particle from a plane happens in 0,4 s and at 8 = 60° — in 0,175 s. Thus, if angle 3 is close to
90°, relative particle motion over a plane becomes impossible. At 3 = 90° it is impossible from a logical point
of view, since a plane is vertical and there is no interaction with a particle.

¥ geta#
2000 P
p=18"
Il
1500} =207 0.6
s 0.5
B=22" 4
1000 ¥ 0.4
b 0.3
4
500 =257 0.2
0.1
B=277 u

0 500 1000
b) c)

a)—w=10s"" b —f=0,3; ¢)—vo=0,2m

Figure 6. Trajectories of particle sliding over a plane at various values of angle g
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Thus, under our initial conditions and at angular velocity w = 10°~!, transition from rectilinear to curvilinear
trajectory of relative motion occurs, if angle 3 is close to 27°. We have considered this transition in details during
5 s after the beginning of motion, when a particle covers a great distance. Figure 7, a represents trajectories of
relative motion, which show that a change in angle 8 from 260 to 270, that is to say, within the range of one
degree, results in the change of a trajectory from rectilinear to curvilinear. If a trajectory is rectilinear, particle
pressure on a plane increases and if a trajectory is curvilinear, it becomes equal to zero over a certain time.
Figure 7, b shows graphs of pressure change for a particle weighting 0,01 kg. For a particle that moves along a
curvilinear trajectory (at B = 26,8%), pressure becomes equal to zero in 4,86 s. At great values of angle 3 the
detachment of a particle happens almost immediately after its entering a plane as it has been previously shown.

a
3><‘|EJ' . . . i
N N
2F ﬂ=-‘?6ﬂ
\‘\
1_
0 &
p=268"/
: B
"0 1 2 3 4 5

a) motion trajectories; b) graph of pressure change

Figure 7. Graphical representations of particle motion during 5 s at w = 10s™!, f = 0,3,19 = 0,2m

If there is curvilinear motion, a particle turns in the direction of u axis (Fig. 6, ¢). If a plane is positioned
as it is shown in Figure 1, b, this direction coincides with the direction of the line of the greatest inclination
of a plane. We can assume that such a change in the direction of a trajectory is the result of the action of
weight force of a particle. However, calculations with dropping particle weight (at g=0) show that trajectories
and graphs of velocity change differ with and without weight (Fig. 8). It can be explained by the fact that the
main force, which causes particle deviation from a rectilinear trajectory, is the component of Coriolis force.

25 : . . . , , , ,
" §=Y # v.m/s

1 20}
15}

10F

0 0.2 0.4 0.6 08 1
b)

a) motion trajectories; b) a graph of relative velocity change

Figure 8. Graphical representations of particle motion during 1 s at 8 =27°, w =10s~!, f =0,3,19 = 0,25 :

If angle g = 0, Coriolis force is directed perpendicular to a plane and does not shift a particle from a
rectilinear trajectory. A particle moves in radial direction under the action of centrifugal force. At 5 # 0 there
is a component of Coriolis force that, at first, causes deviation of rectilinear motion from radial direction and
then, if angle 8 increases, there is trajectory bending towards u axis.

If weight is ignored, a particle picks up speed faster and covers a greater distance. Obviously, it is due to
the fact that friction force decreases in those moments of rotational motion of a plane when a particle is located
under it.
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Conclusions

When a particle enters an inclined plane, which rotates about a horizontal axis with constant angular
velocity, a particle traces out a relative trajectory on a plane (a sliding trace), which form depends on the angle
 between a plane and a rotation axis. If angle 3 = 0°, a relative trajectory is a straight line along which
a particle picks up speed in radial direction. At side material feed, that is to say, if a particle enters a plane
having certain initial velocity in the direction that is parallel to a rotation axis, a particle traces a curvilinear
trajectory on a plane, which approaches rectilinear radial direction over a certain time. If 3 # 0, the pattern
of particle motion changes. At low angle values it moves in rectilinear direction, which makes a certain angle
with radial direction. This angle increases, if angle 3 increases, here, the distance of particle sliding over a plane
during the same time period decreases rapidly. If there is a further increase of angle 3, there is a moment when
the trajectory of particle motion becomes curvilinear; here, there is trajectory bending towards u axis. Here, a
particle moves along a curvilinear trajectory only until a certain moment when plane reaction becomes equal to
zero and there is particle detachment from a plane. If angle values are close to 90°, particle motion over a plane
becomes impossible, since it is detached from a plane almost immediately after entering. If 3 = 90°, motion is
impossible due to the fact that a plane is vertical and there is no interaction with a particle.
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C.®. Immmmnaka, H.B. Kirenanit, B.. Tpoxansak

KenngeneH ochTi aiiHAJIATBIH >Ka3bIKTHIKTA >KATAThIH YKOHE
OHBbIMEH OeJIriJIi OYPHII >KAaCaiThIH OOJIIIEKTIiH KO3FaJbICHI

Keunenen ocbTi aiftHAIATHIH *KA3BIKTHIKTAFBI MATEPUAJIBIK, OOJIIIIEKTEPIIH CATBICTBIPMAJIBI KO3FAJIBICHIHBIH
muddepeHnranIblK, TeHIeyIepl KypacToIpbuLabl. AfiHany ecine 6aillaHBICThI YKA3bIKTHIKTHIH, OPHBI MOHI
HOJIJIEH TOKCAH I'PaJyCcKa JIeHiHTl apaJbIKTarbl OYpHIIIineH 6epiiai. Bypbimbl Here TeH OOJIFaH Ke3e »Ka-
3BIKTHIH aiffHAJIy OCi apKBLIBI OTEJl, aJ TOKCAH IPaJIyc OOJIFaHIa OJT alfHaJy OCiHe MEePIIeHIUKYJISIp OOJIa b
Tennmeynep canaplK 9micTepMEH MIEMIII. BYyPBIMTHIK MEeTKi MO3UIUSICHI YIMH AHAJIATUKAJIBIK IIIEITiM Ta-
OBLIIIbI.

Kiam cosdep: TonbIpak OHIAEATIH IUCK, afiHAIMAJbBI KO3FAJIBIC, KO3FAJIBICTBIH Au((MEPEHIINATIBIK, TEHIEY-
JIepi.

C.®. [Inmmaxa, H.B. Kienauit, B.. Tpoxansk

JIBu>kKeHne 9acTUIbl 110 MJIOCKOCTH, BpAIalonieiicss BOKPYT
TOPU30HTAJBHON OCU U COCTABJIAIONIEN C Hell Olpee/IeHHbBIN yTroJl

Cocrasyensl quddepeHiaabHble ypaBHEHUsI OTHOCUTEIHLHOIO JBUYKEHNUsT MATePUAIbHON YACTUIIBI 110 ILII0C-
KOCTH, KOTOPasl BPAIIaeTCsl BOKPYT FOPU30HTAIbHOM ocu. [losioykeHne mI0CKOCTH 110 OTHOIIEHUIO K OCU Bpa-
IIEHUsT 33JA€TCsI YTJIOM, KOTOPBII MOYKET MMETh 3HAUECHNE U3 MPOMEKYTKA OT HYJIS [0 AEBSIHOCTA IPAJIYCOB.
IIpu yrie, paBHOM HYJIIO, IIJIOCKOCTD IIPOXOJUT Y€PE3 OCh BPAIEHUs], IIPU JEBAHOCTA I'PAyCcax OHA IIePIIeH-
JIUKYJISIPHA OCH BpAIlleHUsI. Y DABHEHUSI PEIIeHbl YHCJIeHHBIMUA MeTojaMu. st KpaflHuX IOJI0XKeHU# yriia
HaNIEHO AHAJUTUIECKOE PEIICHIE.

Kmouesvie caosa: mouBooOpabaATHIBAIONINNA IUCK, BpalllaTe/IbHOEe JBUXKeHHe, TuddepeHna bHble ypaBHe-
HUsl JIBUXKEHUSI.
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Comparison the readings of gravity field and it‘s gradient potential

The problem of studying the deep structure of the earth’s crust is one of the strategic directions of
geophysical research, ensuring the development of Earth sciences. Therewith, gravimetry is one of the
main methods for studying the structure of the earth’s crust. This study is associated with the concepts
of gravitational field‘s potential and gradient of the underground anomaly. Solving the inverse problem of
restoring density of the underground anomaly, thorough analysis of the direct problem plays an important
part. This study analyzes the characteristic features of the readings of anomaly gravitational field‘s potential
and gradient. Based on the results obtained by the author, it has revealed and verified the necessity of
choosing a gradient as the boundary conditions of the direct problem, which will significantly improve
the inverse problem calculations results — finding the density of anomaly. This research demonstrates
quantitatively that anomaly gravitational field‘s gradient more accurately describes the anomaly, compared
to the gravitational field‘s potential.

Keywords: inverse problem, gravitational potential, gradient method.

Introduction

Inverse problems cover a wide range of applied problems. Among hyperbolic, elliptic and parabolic inverse
problems, elliptic problems are very inaccurate. In this regard, the problem itself is very complicated. In the book
[1] a wide range of tasks of all types is considered. The inverse problems of hyperbolic type [1] are represented
especially widely. Previous results obtained by the authors [2, 3] were published in the studies. There is a general
overview of the situation on the issues of gravimetry at the field [4, 5]. On the basis of gravimetric readings on
the Earth surface in the studied area, we use the mathematical apparatus for solving inverse problems of elliptic
type.

When constructing a mathematical model, we simplified the objects under study as much as possible.
Consider a vertical section of the ground. For simplicity, we chose it in the shape of a rectangle. It is known
that inside this area in a certain place there is an anomaly, but it is unknown what type of anomaly it is
(what is its density). The area of anomaly is known, and we will designate it by 2. On the earth surface we
have gravimetric readings of the field potentials n;(z) and its gradient nz2(x). We denote the lower and lateral
subsurface boundaries by I" as shown in Figure 1. We artificially expand the study area so that the value of the
gravitational potential of the anomaly field does not affect the external boundaries.

] g x
n
U
b i
n
W S
= I
7 WY

Figure 1. Interpretation of the simplified model of the problem
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The equations of condition (direct problem) are described by the following formulas. The potential difference
between perturbed and non-perturbed gravitational fields is described by the Poisson equation with boundary
conditions (1)—(4). The expression (3)—(4) characterizes the results of measuring the potential and its derivative
on the outer surface. Condition (5) characterizes the difference in the density of the soil with and without
anomaly over the entire study area.

A n(x, z) = — 4nGy(x, 2); (1)
n(z, 2)|p = 0; (2)

n(z,0) = n(z); (3)
L(gz’ 9_ m2(7); (4)
o ={ g

where 7(z,z) is the potential of the gravitational field, G is the gravitational constant, ¥ (x,z) is the
anomaly density, 71(z) is the measured readings of the gravitational field, n(z) are the measured values of
the gradient of the gravitational field, I' is the boundary of the study area without the earth’s surface, 2 is the
anomaly region.

In the direct problem, we consider density as a known value. We calculate the value of the gravitational
field potential and its gradient on the studied area using one of the conditions (3) or (4).

Inverse problem is a search for the anomaly density based on the results of measuring the potential and
its derivative on the outer surface. The inverse problem is solved by optimization method, more precisely -
a gradient method. It is necessary to introduce a functional using the standard deviation as a minimization
parameter.

First statement of optimization problem looks as follows:

Az, z) = — dnGy(x, 2);

n(z,2)|p = 0;
n(z,0) = m(x);
ML) — (o

w@@:{awﬂnﬁ'
L (to) :/OL (87759}(;())—772(X))2dx—>min.

Second statement of optimization problem looks like this:

Az, z) = — dnGy(x, 2);

n(z,2)[p = 0;
n(z,0) = m(x);
L) — (o

l(@,2) = { 0’1/10, in Q;.

L
100) = [ (.0)=m () dxmin

We do not know yet, which of these forms is better. However, some information about the properties of
these optimization problems can be obtained on the basis of a quantitative analysis of the direct problem. We
want to find out what happens at the upper boundary (earth surface) at different locations of the anomaly
inside the area.
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Suppose we need to examine a region with a size of 100 horizontally and 50 vertically. We artificially expand
the region up by 100 in order to analyze what will happen at the upper boundary z = 50. All calculations were
performed on COMSOL Multiphysics 5.2 (Fig. 2). The anomaly has a dimension of 2 to 2. We will change the
location of the position of the anomaly horizontally along j = 0, 10, 20, 30, 35, 40, 45. It will be sufficient to
change the anomaly location to the middle of the study area, since earlier in the studies we found that the results
are symmetrical. The vertical shifts along i = 5, 10, 15, 20, 30, 40. Figure 3 shows the surge of the gravitational
potential on the surface z = 50, that is, theoretically, the readings of a gravimeter on the surface of the earth.
Figure 4 shows a graph of the value of the anomaly gravitational field gradient, located as in Figure 2. Later in
the tables, we analyzed the indication of the potential and its gradient for different variations of the anomaly
location.

Figure 2. Anomaly location at the extended upper boundary.
The angle of the lower left edge of the anomaly is located at (20;10)

Une Graph: Dependent variable u (1) o
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Figure 3. The value of the gravitational field potential on the surface z = 50
at the anomaly location in the coordinate (20;10)
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Figure 4. Gradient value of the gravitational field on the surface z = 50
at the anomaly location in the coordinate (20;10)
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Below there are table of symbols describing the parameters of the gravitational field potential and gradient.

e i is the line — horizontal position, bottom up;

e j is the column — vertical position, left to right;

e a is the horizontal coordinate of the anomaly;

e ap is the coordinate of the potential peak on the outer surface;

e ag is the coordinate of the potential gradient peak on the outer surface;

e bp is the value of the potential peak on the outer surface;

e bg is the value of the gradient peak on the outer surface;

e cpl is the coordinate of the point to the left of the peak with a drop in the potential value by an order of
magnitude compared with the peak value;

e cgl is the coordinate of the point to the left of the peak with the gradient value falling by an order of
magnitude compared with the peak value;

e cpr is the coordinate of the point to the right of the peak with a drop in the potential value by an order
of magnitude compared with the peak value;

e cgr is the coordinate of the point to the right of the peak with the gradient value falling by an order of
magnitude compared with the peak value.

Consider the most extreme point of the anomaly both vertically and horizontally (Tables 1, 2).

Table 1
Horizontally anomaly location at x = 5 (i = 5 line). The anomaly «runs through»
from left to right to the middle of the area (depending on the j column)
j |a|ap|ag| bp bg cpl cgl cpr cgr
0 [51]19]20]0.04|-001 1] 18.54 | 13.91 | 38.82 | 28.26
10 | 5|29 | 21| 0.51 | -0.02 | 19.43 | 15.18 | 40.67 | 29.96
201532 |26 | 088 | -0.04 | 22.26 | 18.22 | 44.27 | 34.82
30 | 5|37 |32 114 | -0.04 | 26.72 | 23.88 | 49.78 | 42.13
35 |5 |40 | 37| 1.22 | -0.04 | 29.15 | 27.53 | 53.13 | 46.67
40 | 5 | 43 | 41 | 1.28 | -0.05 | 31.97 | 31.97 | 56.27 | 51.35
45 | 5 | 47 | 46 | 1.31 | -0.05 | 35.21 | 36.42 | 59.51 | 56.06
Table 2

Vertical position of the anomaly at y = 0 (j = 0 column). The anomaly «runs» from bottom to top to
the middle (from the depth to the surface) of the region z = 50 (depending on the i line)

i a | ap | ag | bp bg cpl cgl cpr cgr

55 | 19|21 |0.04 | -0.002 | 18.54 | 13.91 | 38.82 | 28.26
10 | 10 | 26 | 19 | 0.09 | -0.004 | 17.85 13 37.99 | 26.69
15 | 15 | 25 | 18 | 0.13 | -0.007 | 16.95 | 12.11 | 36.25 | 24.83
20120 | 23 | 15| 0.19 | -0.011 | 15.11 | 10.67 | 33.49 | 22.43
30|30 | 17 | 10 | 0.37 | -0.028 | 10.89 | 7.26 | 25.83 | 15.28
40140 | 9 | 5 | 0.86 | -0.128 | 5.53 | 3.65 | 13.9 | 7.31

Now consider the central location of the anomaly (Table 3).

Table 3

Vertical location of the anomaly at y = 45 (j = 45 column). The anomaly «runs» from bottom to top to
the middle (from the depth to the surface) of the region z = 50 (depending on the i line)

i a [ap | ag | bp bg cpl cgl cpr cgr

5| 5 |47 |46 | 1.31 | -0.04 | 35.21 | 36.42 | 59.51 | 56.06
10 | 10 | 47 | 46 | 2.45 | -0.08 | 35.17 | 36.72 | 59.35 | 55.64
15| 15 | 46 | 46 | 3.68 | -0.13 | 35.56 | 37.31 | 59.03 | 54.99
20 | 20 | 47 | 45 | 5.05 | -0.18 | 36.01 | 37.96 | 58.2 | 54.12
30 | 30 | 46 | 46 | 8.59 | -0.35 | 37.32 | 40.01 | 55.96 | 51.82
40 | 40 | 46 | 45 | 14.71 | -0.84 | 40.34 | 43.05 | 52.17 | 49.01
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Studying the obtained results, it was found that the value of the gravitational field gradient more accurately

describes the anomaly location and provides the most accurate anomaly center readings and boundaries. All
calculation tables (all possible combinations of location) were in favor of the gravitational field gradient. Thus,
it is better to be guided by the readings of the gravitational field gradient in the search for the vertical anomaly
location.
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AHoMaJInsIIAFbI TPABUTAIINSJIBIK ©PICTIH,
MMOTEHIINAJIbIH YKOHEe TPAJIUEHTTIH TaJIIay

7Kep KBIPTBICHIHBIH Te€pPeH KYPbLIBIMBIH 3epTTey Moaceseci 2Kep TypaJsibl FBUIBIM/IBL JaMBITY/IbI KaMTaMa-
CBI3 €TETiH re0pU3NKAIBIK, 3ePTTEYIEPIiH CTPATETUSIIBIK, OAFBITTAPBIHBIH 6ipi 606 TabbLTaIbI. COHBIMEH
KaTap I'PaBUTAIUSIIBIK Oapjay »Kep KbIPTBICHIHBIH, KYPBLIBIMBIH 3€PTTEYIiH Herisri oaicrepinin 6ipi 60bI
ecernresie/li. By >KyMbIC 2Kep acThl aHOMAJIUSACBIHBIH, TPABATAIMSJIBIK OPICiHIH ITOTEHINAIbl MEH IPaINeHTI
TypaJibl TYCiHIKTepMeH GaitstaHbICThI. 2Kep acThbl aHOMAJIMSICHIHBIH, THIFBI3/IBIFBIH KAJIIBIHA KeJITIPpYIiH Kepi
ecebiH IIenry TikeJse ecenTi MyKUAT TaJlIayda MaHbI3Ibl POJT aTKapaabl. Makasia a aHOMAIUSHBIH TPABUTA~
MBI, OPICiHIH TOTEeHIMAaIbl MEH I'PaIUeHTIHIH OeJrisiepiHe TOH epeKInesikrepi TaagaHabl. ABTOpIapMeH
aJILIHFaH HOTHKeJIeD HETi3iH/ie TiKesell eCcelTiH IMeKapaJIbIK, MapTTapbl PeTiHAe IPAJIMEHTTI TaH Ay KasKeT-
TNl aHBIKTAJIBI YK9HE JI9JIesIeH i. Byt Kepi ecenTi mblrapy HOTHXKeJIEPiH — AaHOMAJIMSHBIH, ThIFbI3IbIFbIH
i3eyi KakcapTaabl. ATajgFaH *KYMBICTa aHOMAJIMSTHBIH, TPABUTAIIASIIIBIK, OPICIHIH I'PaINeHT], TpaBUTAIINSI-
JIBIK, ©PICTiH MOTEHIINAJIBIHA CAJTBICTHIPMAJIBI TYPJE KaparaHIa, AaHOMAJUSIHBI HAKTHIPAK, AHBIKTANTHIH IBIFbI
CaHBIK, KOPCETKINITEPMEH CHUIIATTAJIIBL.

Kiam cesdep: Kepi ecel, rpaBUTAIUSIIBIK, IOTEHIUA, TPAJIUEHT 9iCi, TIKeJIell eCenTiH MeKapabIK, IIapT-
TapBbl.
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M.O. KenxkebaeBa

AHajau3 rpajJueHTa U MOTEHIINAJIA
I'PaBUTAIIMOHHOIO ITOJII aHOMAJINU

IIpobema m3ydenusi cTpoeHUsT 3eMHOM KOPBI SABJISIETCS OJHUM M3 CTPATETMYECKUX HAIMPaBJIEHUI reodu-
3UYECKHX MCCIIe0BaHuil, obecrieunBaioyx pa3sBurue HayKn o 3emuie. 1Ipu sToM rpaBupasBeika sBIISIETCS
OJTHUM W3 OCHOBHBIX METOJIOB M3yUYEHUsl CTPOEHUsI 3eMHOI Kopbl. JlaHHast paboTa CBsi3aHa C MOHSITUSMU
MIOTEHNNAJA U TPaJNeHTa T'PABUTAIMOHHOTO IOJIs MOA3eMHOM aHomaJmu. [lpu perenun obpaTHoil 3a71a-
9P BOCCTAHOBJIEHUS IJIOTHOCTU IIOJI3€MHOI aHOMAJIMU BaXKHYIO POJIb UI'DaeT TIIATEJIbHBI!l aHAJIN3 IPIMON
3ajaun. B cTarhe mpoaHaIM3UPOBAHBI XapaKTEPHBIE OCOOEHHOCTH TOKA3AHUS TIOTEHITNAJIA U TPAIMEHTa TPa-
BUTAIOHHOI'O TI0JIs aHoMasnu. Ha ocHOBe pe3ysbTaToB, MOTyYEHHBIX aBTOPOM, BBISBJIEHA U OOOCHOBAHA
HeOOXOIMMOCTh BBIOOpa I'DaJHEHTa B KadeCTBe I'DAHMYHBIX YCJIOBHU IIPDH pellleHnH IpsMoil 3amadu. Kpo-
Me TOTO, KOJIMYEeCTBEHHO IOKa3aHO, UTO I'PAJMEHT I'PAaBUTAIIMOHHOIO IIOJIA aHOMAJIMM TOYHEE OIINCHIBAET
aHOMAJINIO, TI0 CPABHEHUIO C IIOTEHIIMAJIOM I'DABUTAIIMOHHOTO IIOJIS.

Karouesvie caosa: obpatHas 3aja4da, FPABATAIMOHHBIN TIOTEHINAJ, I'PA/IMEHTHBIN METO/, PelleHne IPSIMOM
3aJla9u.
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Research of possibilities of characteristics and parameters
increase of asynchronous machines

Improving the efficiency and reliability of ship electric power systems is a priority task for modern
shipbuilding. One of the ways to solve this problem is to use the power of the main power plant for
the production of electricity. In this case, it is advisable to give preference to asynchronous machines as the
simplest in production and reliable in operation. It should also be noted that the asynchronous machine
can be made with a massive ferromagnetic rotor or a sleeve with the use of nanotechnology, which will
improve the energy parameters and performance of the electrical machine and the system as a whole. The
article analyzes the characteristics of the device and the operation of an asynchronous machine (AM) with
a short-circuited rotor with a ferromagnetic sleeve. Dependence of AM parameters and characteristics on
the geometric dimensions of the sleeve is shown, and a technique for their determination using the system
of Maxwell differential equations is proposed. An algorithm for calculating the characteristics of an AM
machine and the equivalent parameters of a ferromagnetic sleeve is developed.

Keywords: asynchronous machine, rotor, ferromagnetic sleeve, slip, equivalent active and inductive
resistances.

Introduction

Target setting. The modern stage of development of shipbuilding is characterized by an increase in the
efficiency and reliability of ship power systems. One of the main directions of an increase in the efficiency is the
improvement of waste-heat recovery system, including heat recovery of exhaust gases of main and auxiliary diesel
engines using turbochargers with built-in electric machines [1]. Taking into account high speeds of rotation of
turbochargers as electric machines in these systems it is expedient to use machines with a massive ferromagnetic
rotor or with a ferromagnetic sleeve. At the same time, the efficiency of exhaust gas heat recovery is improved,
and the operation of the compressor in different operating modes of the diesel engine is improved.

Analysis of basic researches and publications. Applications of integral turbocharger systems using an electric
machine with permanent magnets, as well as asynchronous machines with a short-circuited rotor are known
[2, 3]. At the same time, the problematic issues are ensuring the mechanical strength of the rotor and problems
of regulating the voltages and powers of electric machines [4]. The solution of the above problems is greatly
simplified by using asynchronous machines with a massive ferromagnetic rotor using nanotechnologies in the
design of ferromagnetic sleeves. Regulation of voltages, frequencies and powers in such systems is provided by
means of semiconductor frequency converters.

Objective of the work is to analyze the characteristics of asynchronous machines with a ferromagnetic
sleeve and to develop an algorithm for determining the parameters of the sleeve and calculating the operating
characteristics of machines.

Materials, methods and results of research

Improvement of reliable and mass-dimension characteristics of asynchronous machines can be achieved by
applying a special design rotor with frequency-dependent parameters, including using nanotechnology. One of
the directions of the solution of such a problem can be the use of a rotor with a ferromagnetic sleeve [3, 5]. In
such a design, the length of a conventional short-circuited rotor pack is 20-35 % greater than the active length
of the stator pack. The elongated part of the rotor is pressed with a sleeve with soft magnetic steel (Fig. 1).
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1 — stator, 2 — ferromagnetic sleeve, 3 — dielectric interval, 4 — rotor with short-circuit winding, 5 — shaft

Figure 1. The design of a rotor with a ferromagnetic sleeve

A distinctive feature of this design is that the ferromagnetic sleeve is placed under the frontal parts of the
stator winding and it does not require an increase in the overall length of the machine. The processes of energy
conversion in the AM of the proposed design proceeds in the same way as in the AM of the standard design
but the difference consists in the following. The main magnetic flux of the machine induces an electromotive
force F5 in the rotor winding, under the action of this EMF, a current I, flows in the rotor winding, creating
a magnetic flux going through the circuit: a massive sleeve, rotor clutch, a rotor back. The resulting magnetic
flux passing through this circuit and formed by the combined action of the MMS of rotor winding and the
eddy currents of the massive sleeve leads to an EMFEj5 in the rotor winding. This EMF significantly limits the
current flowing in the short-circuited rotor winding, and leads to a significant reduction in the starting current.
This EMF can be represented as a sum of two components, which are voltage drops on the equivalent active rj
and inductive x5 resistances of a massive sleeve:

—E5 = 7"5j2 +j.’£5]2

Thus, additional active-inductive resistance is put into the circuit of rotor winding, where the voltage
drop from the rotor current is equivalent to the mentioned EMFE;. In this case, the value of the resistance
significantly depends on the frequency of the rotor current [5]. In low slip modes of the machine, and therefore
at a low rotor current frequency, a small resistance is introduced into the rotor circuit, so the rigidity of the
mechanical characteristic, the power factor and the efficiency factor of the AM with the rotor of the proposed
design is reduced insignificantly, compared to AM with a short-circuited female rotor. As the rotor speed of the
AM female rotor decreases, and the sliding increases, a complex additional resistance with the predominance
of the active component is automatically introduced into the rotor circuit, which leads to an increase in the
electromagnetic moment of AM, while limiting the growth of the consumption current, and also to widening the
control range. In this case, the necessary AM characteristics are obtained by choosing the appropriate geometric
dimensions: the length and thickness of the sleeve.

At present, two methods for determining the parameters of the AM equivalent circuit with distributed
secondary parameters is applied in practical calculations:

1. The calculation method, based on the classical works of Neumann on the theory of skin effect [5]. The
advantage of these formulas is that they take into account both the impermanence of the magnetic permeability,
and the loss of eddy currents and hysteresis. However, they are valid with sharp cases of the skin effect, when
the cross dimensions of the magnetic circuit exceed twice depth at which the electromagnetic wave completely
damps.

2. A calculation technique based on solving a system of differential equations of the electromagnetic field
with finding the Pointing vector. The components of the complex Pointing vector is the flow of active and
reactive power through a unit of surface. By the found active and reactive power, equivalent parameters of the
equivalent circuit are determined.

In the study of electromagnetic processes in AM with a ferromagnetic sleeve on the rotor, the main attention
is paid to the consideration of issues associated with the reflection of an electromagnetic wave from the outer
surface of the sleeve, which has a thickness less than twice equivalent depth of penetration of the electromagnetic
wave. The expediency of choosing such a sleeve thickness is explained by the fact that at this thickness it is
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possible to achieve high rigidity of the mechanical characteristic and the best energy parameters in the nominal
mode [3].

The method based on solving a system of differential Maxwell equations makes it possible to calculate the
electromagnetic field for any sleeve thickness, so we choose it for further calculations. In order to obtain a simple
solution in the form of functional dependencies, the problem is solved in a rectangular coordinate system with
the following assumptions:

— the magnetic permeability p in the entire volume of the massive sleeve at the derivation of the main
relations is assumed to be constant and only in the final formulas it is considered as a function of the magnetic
field strength;

— the inner surface of the sleeve (Fig. 2) turns into a plane.

Figure 2. Surface of a ferromagnetic sleeve

Ay
il z- -
| JI.Ev
[] 1 g
| —
i = —— —— —7L*x
B 3

Figure 3. View of the surface of a ferromagnetic sleeve in a rectangular coordinate system

The base of the rectangular coordinate system is located on the inner surface of the massive sleeve: the x
axis is directed along the circumference of the rotor, the y axis is parallel to the rotor axis, the z axis is along
the radius (Fig. 3):

— the influence of higher harmonics is not taken into account;

— the short-circuited rotor winding is represented as an infinite current layer distributed on the surface of
the steel of rotor body, the magnetic permeability of the rotor steel is assumed to be equal to infinite distance;

— in the coordinate system that is stationary relative to the AM rotor, the electric field strength is constant
along the length of the sleeve, and along the coordinate x it varies according to the law:

T

Ey(z,2,t) = Eym(2) cos (wt - 7) ,

where w — angular frequency of the rotor current; 7 — pole pitch.
Substituting given equation into Maxwell system of differential equations and performing the
transformations, we obtain following equation:

Eym = A-sh(\-2) + B-ch(\-2),
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where A and B — constant integration,
A=a(l+j),a=/— = —,

where d); — the equivalent depth of penetration of the electromagnetic wave into the sleeve in the direction of
the z coordinate.

Constant integration is determined from the boundary conditions:

a) we assume that the tangential component of the magnetic field strength on the inner surface of the
ferromagnetic sleeve Hy is:

__Jwi
a(l+7)

b) the normal components of the induction of the magnetic field at the interface between the two
environments (the outer surface of the ferromagnetic sleeve - air space) are equal to each other. Since the
magnetic resistance of the air is much greater than the magnetic resistance of the sleeve, the normal component
of the induction of the magnetic field on the outer surface of the massive sleeve must be zero, so:

Hg;

Jwi .
B=————"—th|la(1+j)h|Hs.
Syt (L) hH,
The total power of the electromagnetic field penetrating into the ferromagnetic sleeve through a unit of
surface is:

) . 1. .
S. = Sp+3Ss = =5 [Bym - Him| -

And the active and reactive components are determined accordingly:

1 P o
Sp=-n,/—H;
P oy e
1 pw o

Sy=< —H
q 2m 2,_}/ ER

where n and m are coefficients that take into account the geometric dimensions of the ferromagnetic sleeve, ~
is electrical conductivity of steel.

_ th(ah) + tg*(ah) - th(ah) + th*(ah) - tg(ah) — tg(ah)
N 1+ th?(ah) - tg?(ah) ’

th(ah) + tg?(ah) - th(ah) — th?(ah) - tg(ah) + tg(ah)
1+ th?(ah) - tg?(ah)
Analytical expressions for the active and inductive resistances of the sleeve, which are equivalently
introduced, are got in a result of solving the system of Maxwell equations under the condition of the constancy
of the magnetic permeability

m =

n = const:
N T Wt my (kurw:)? -
° 2 Hs wd ’
k. 17«01)2
L g, [P0 e i (Bunn)”
T5 = A Ty, TV HsS P ’

where g — magnetic constant; wg — angular frequency of the current of the AM male rotor; s — AM slip value,
myq; kw1, w1 — the number of phases, the winding factor, the number of turns of the winding of the AM male
rotor; us — relative magnetic permeability on the inner surface of the ferromagnetic sleeve, determined from
the main magnetization curve from the value of the magnetic field strength on this surface H,.

Final expressions for the determination of resistances, which are equivalently introduced, taking into account
the effect of the impermanence of the magnetic permeability and hysteresis losses on the equivalent parameters
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of the sleeve, and also the effect of the edge effect are taken into account with the help of the corresponding
coefficients:

15 = kapn - \/iss - 1+ ke;

x5 = kagm - \/liss - 1 - ke,

where o, oy — coeflicients, that take into account the change in magnetic permeability in the sleeve and losses
due to hysteresis; k. = 1+ % — coefficient of edge effect; p — number of pairs of AM poles.

. [powo My (kurwi)?
k=4 . .
27 wd

So, the active and inductive resistances of the ferromagnetic sleeve, which are equivalently introduced,
depend on the geometric dimensions of the sleeve, the relative magnetic permeability on its inner surface, the
number of pole pairs and the AM slip.

In turn, the magnetic permeabilityus depends on the strength of the magnetic field H,, and hence on the
value of the current of the female rotor I}, which acts.

On the basis of the above calculation procedure for the parameters of the ferromagnetic sleeve, which are
equivalently introduced, the sequence of calculating the static performance of an asynchronous machine of a
special design can be described by the following algorithm (Fig. 4):

calculate
r
3 i

1
calculate

) "
f x: ‘r} IEF ﬁiiLI:Ié

no
>
Yes

calculate

M, M4
no
Yes

Figure 4. Algorithm for calculating the operating and starting
characteristics of AM with a massive sleeve on the rotor
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1. We set the initial values of the slip S;piziai of AM, the axial length li,iti21 and the radial thickness hipigia
of the ferromagnetic sleeve.

2. From the above formulas, we find the initial approximation of the current of the female rotor I, without
taking into account the parameters of the sleeve (2{,ivatent = 0)-

3. Determine the magnetic field strength on the inner surface of a massive sleeve, taking into account the

connection of the tangential component of the magnetic field strength on the inner surface of the sleeve and the
2m1 k;wlwl I,
— 2

4. With the magnetization curve of the sleeve rflraterial s = f(Hs), we find the magnetic permeability ps.
In this case, it is expedient to use the approximated expression of the magnetization curve.

5. The found value of the magnetic permeability, taking into account the parameters n and m, determined
from the above equations, correspond to the equivalent parameters of a massive sleeve 7/, and z..

6. Calculate the current of the female rotor I}, reduced to the winding of the male rotor, taking into account
the parameters of the ferromagnetic sleeve found in paragraph 4.

7. Specify the initial approximation of the current of the female rotor and repeat the calculation of the
parameters until the initial approximation and the calculated value of the current I, become equal to each other
with the necessary accuracy.

8. Calculate the working and starting characteristics of AM.

9. Set the increment As and perform the calculation of the characteristics for a given slip range.

When implementing the algorithm, it is assumed that the known values are: the number of pairs of poles of
the synchronous and asynchronous machines, the number of turns and the winding coefficient of the male rotor,
the parameters of the AM equivalent circuit, the coefficients of the curve for approximating the magnetization
curve of the ferromagnetic sleeve material (in our case, the material is steel 3).

The calculation is performed for some slip points s in the range from sipitjal Up t0 Smax With increments
As each time for specific geometric dimensions of the sleeve. In accordance with the algorithm, the program is
made and the calculation of characteristics is performed (Fig. 5).

value of the current of female rotor: Hy = /2 -

5.,0€.
0
0,2 \\
\
0.4
0.6
/
0.8 //
/
1,0
0 20 ' 40 ' 60 ' 80 100 ' 120 ' 140 M.H -u

h = 0.008 m, 1 = 0.094 m

Figure 5. Mechanical characteristics of AM at a constant speed
for the length and thickness of the ferromagnetic sleeve

The initial section of the graph (Fig. 5) for small slip is stiff, there is no pronounced maximum in the
regulation zone. Analysis of the curve (Fig. 5) confirms the expediency of choosing an AM with a ferromagnetic
sleeve on the female rotor. AM of such a design has good regulatory properties.

Calculated by the above methodic equivalent parameters of the ferromagnetic sleeve are shown on Figure 6.
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Figure 6. The results of calculating the equivalent active (2) and inductive (1)
resistances of a ferromagnetic sleeve with a length [ = 0,11 m and thickness h = 0,008 m

From the analysis of graphs (Fig. 6) it follows that the equivalent parameters of the ferromagnetic sleeve
essentially depend on the AM slip value. For small AM slip, the parameters have small values and have an
insignificant effect on the AM characteristics.

This allows to provide high rigidity of mechanical characteristics of AM. With an increase in the frequency
of the rotor currents, a rapid rate of increase in the active component of the resistance is observed, which is
equivalently introduced, in comparison with the inductive one, which provides an increase in the starting torque
of AM.

Conclusion

The proposed method for calculating the parameters and characteristics of a ferromagnetic sleeve with the
help of Maxwell differential equations allows simplify the development of asynchronous machines with a massive
rotor. The developed algorithm for calculating the operating and starting characteristics of AM is expedient for
use in the design of integral turbocharger systems of marine diesel engines.
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C.B. Boponenko

AcuHXpOoHABI MallIMHAJIAPABIH, KOPCETKINITEPI MeH
nmapaMeTpJiepiH apTThIPY MYMKIHIIKTEPIH 3epPTTEey

Keme ayiekTp 9HEpreTuKaJIbIK, »KyiesiepiHin YHeMIIrh MeH CeHIMJIIJIriH apTThIPy Kal3ipri 3aMaHFbl KeMe
2KacayablH 6achbIM MiHAETI OOJIBII TaOBLIAAbI. By MpobieMaHbl MIelTy OarbITTAPBIHBIH Oipi — 3JIeKTp 9HEp-
TUSICBIH OHJIPY VIINiH 6aCThl SHEPTETUKAJIBIK KOHIBIPDFBIHBIH KyaThiH Maiigasany. Ockl peTTe aCMHXPOHIbI
MallliHAJIApFa OHJIIPICTe €H KapamalbiM YKOHE XKYMBICTA CEHIMII PEeTiHIEe apTHIKIIBLIBIK Oepy OPBIHIHL.
Conjiaii-aK, aCMHXPOH/IbI MAIIIMHA HAHOTEXHOJIOTUSIIIAPLI KOJIJIAHA OTBIPBIIT, MaCCUBTI (PepPOMArHUTTIK PO-
TOpMEH HEMeCE TUJIb3aMeH iCKe KOCBLIYbI MYMKIH €KEHIH aTall OTy KaXKeT, OyJI 9JIEKTP MAaIlUHAIAPHl MEH
2KaJIbI XKYHWEHIH SHEePTeTUKAJIBIK, TTapaMeTpJjepl MeH KOPCETKIMTEPiH apTThIPyFa MyMKIHAIK O6epemi. Maka-
Ja7a peppoMarHATTI THAB3achl 6ap KbICKA TYHBIKTAIFAH POTOPLI 6ap acMHXPOHIbI MamuHAHBIH (AM)
KYPBLIBIMBI MEH YKYMBICBIHBIH, €peKINeJIKTepiHe Tajaay Kyprisiig. ['uab3aHbH, TeOMETPUSIIBIK, ©JIIIEM-
nepine AM mapamerpJsiepi MeH cUnaTTaMAaJIapLIHBIH TOYEIIIr Kepcerinred, onapas Makcsesr audde-
PEHIMAJIIBIK TEHIEYJIep XKYieciH KoITany apKbLIbl aHbIKTAY 9/icTeMeci yebiburan. Mammaa meH deppo-
MAarHUTTIK TUJIb3aHbIH 3KBUBAJIEHTTI apaMeTPJIEPiH ecenTey ajaropuTMi o3ipJaeH/Ii.

Kiam ce3dep: acHHXpPOHBI MaIlIWHA, POTOP, (DEPPOMATrHUTTIK I'HMJIb3a, CHIPFY, OEJICEH/] »KOHE WHIyKTHUBTL
KeJeprire basama.

C.B. Boponenko

HccinenoBanue BO3MOXKHOCTEN IMOBBINIEHUS
nokasaTeJieil 1 mapaMeTpPOB aCUHXPOHHBIX MaIlIUH

TloBrbImienre SKOHOMUIHOCTH ¥ HAJEXKHOCTH CYJIOBBIX JIEKTPOIHEPTETHIECKUX CUCTEM SIBJISIETCST IPUOPU-
TEeTHOM 3a/adeii cOBpeMeHHOro cynoctpoenus. OMHUM U3 HAIPABJIEHUIN PEIleHUs] JAHHONW TPOOJIEMbI SBJIs-
€TCsl UCIIOJIb30BaHUE MOIIHOCTH IVIABHOU SHEPreTHYEeCKOHl YCTAHOBKHU JJIs IIPOM3BOJICTBA 3JIEKTPOIHEPIHN.
IIpu sToM npeamouTeHME 11€JIeCOOOPA3HO OTIABATh ACKHXPOHHBIM MAalllMHAM KakK HanboJiee MPOCTHIM B IIPO-
WU3BOJICTBE W HAJIEKHBIM B pabore. HeoOxommmo OoTMETHUTH Tak»Ke TO, YTO ACHHXPOHHAS MAITMHA MOXKET
OBITH BBIIIOJIHEHA C MACCUBHBIM (DEPPOMATHUTHBIM POTOPOM WJIM I'MJIB30i C NPHUMEHEHWEM HAHOTEXHOJIO-
TUif, 9TO TMO3BOJIUT TOBBICUTH SHEPIETUYECKHE MAapaMeTPhl M MMOKA3ATEIN IJIEKTPUIECKON MAIUHBI U CU-
CTeMBI B IIeJIOM. B cTaTbe mpoBesieH aHAIN3 OCOOEHHOCTEN YyCTPOWCTBA W PAOOTHI ACHHXPOHHON MAIHHDI
(AM) ¢ KOpPOTKO3aMKHYTBIM POTOpOM ¢ (hbeppOMarHuTHOM rusib3oii. [lokasaHa 3aBUCHMOCTH IAPAMETPOB
u xapakTepucTuk AM OT reoMeTpUYIecKuX pasMepoB T'MJIb3bl, TMPEJJIOXKEHA METOIUKA MX OMNpPEIe/ICHUs C
KCIOJIb30BAHUEM CHCTEMBI JnddepeHuaababix ypaBaeHnit Makcseiuta. Pazpaboran ajaropurm pacdera
xapakTepucTuk AM MaIllMHBI U SKBUBAJIEHTHBIX [TApaMETPOB (PepPOMArHUTHON THJIb3HI.

Karoueswie cro6a: aCHHXpPOHHASI MAIMHA, POTOP, (PepPPOMArHUTHAS UIb3a, CKOJbXKEHHE, SKBIUBAJIEHTHDLIE
AKTUBHOE U MHIYKTUBHOE COIPOTHUBJICHUA.
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On the calculation of rectangular plates
by the collocation method

The article is devoted to the application of the collocation method to solving differential equations, which
are the basis for calculating many problems of mechanics. In this article the structure of this method
is presented, its main components are highlighted; its types are characterized, as well as its classical
approaches. The research of the problem of rectangular plates bending is carried out by the method of
collocations in this article. The collocation method, like all numerical-analytical approximate methods, has
a number of advantages and disadvantages, which are also noted in this article. The article is focused mainly
on mechanics, engineers and technical specialists.

Keywords: collocation method, collocation points, bending of a rectangular plate, plate deflection function,
plate equilibrium equation.

A collocation method is one of the classical methods, which has been repeatedly used to solve many problems
of structural mechanics. A collocation method is a method for the numerical solution of ordinary differential
equations, partial differential equations and integral equations. The idea is to choose a finite-dimensional space
of candidate solutions and a number of points in the domain (these points are called collocation points), and to
select that solution which satisfies the given equation at the collocation points.

The collocation method for solving differential equations

The collocation method is a numerical-analytical approximate method for solving a differential equation

Ly(z) = f(), (1)

where L is a differential operator; y(x) is a function, which satisfies the given boundary conditions at the
boundaries of the interval (a,b); (a,b) is the domain of definition of the function y(z).
The solution is sought as a finite series

M
y(x) = Z A77L<pm(x)' (2)
m=1

Here ¢, () is the coordinate functions satisfying the given boundary conditions; A,, are unknown coefficients;
M is the number of members of the series.

To determine the coefficients A,,, the solution (2) is substituted into the differential equation (1), which is
satisfied at the points z; (i = 1,..., M), i.e. at the collocation points from the interval (a, b)

M
Ly(z:) = Y AnLom(z:) = f(x2). 3)

m=1

As a result, we obtain the system (3) M of algebraic equations. Having solved this system, we determine
the unknown coefficients A,,. After determining the coefficients, the function y(x) and the necessary derivatives
of this function are calculated at any point of the interval (a,b), as well as outside the interval. The accuracy
of the solution depends on both the choice of functions ¢,,(x) and the choice of collocation points.

The collocation method refers to the simplest approximate methods for solving differential equations,
requiring only differentiation, functions calculation, and solution of a system of equations. In contrast to the
grid method, after determining unknown coefficients numerical analytical methods allow to use the methods of
mathematical analysis, to differentiate, to integrate, to determine the maximum-minimum points, etc. [1]
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Internal collocation method

As mentioned above, the coefficients A,, are chosen so that equation (1) is satisfied at the points of
collocations within the domain of definition of this equation.

Boundary collocation method

For the boundaries of a complicated form, the representation of the solution in the form (2) may be useful, where
the coordinate functions ¢,,(x) satisfy equation (1), but do not satisfy the boundary conditions. The equations
for determining the coefficients A,, are obtained from satisfying the boundary conditions at the points of the
boundary [2].

The calculation of rectangular plates in bending by the collocation method

Consider a rectangular plate. We take the plate deflection function in the form

M N
y) = Z ZAmnXm(x)Yn(y)v (4)

m=1n=1

where X,,(z), Y, (y) are functions satisfying the boundary conditions of the plate support at the boundaries
=0,z =aand y =0,y =0 respectively; A,, are unknown coefficients.

We define the collocation points x;, y;, ¢ = 1, ..., K, where K = M x N is the number of points of collocations.
K is equal to the number of members of the series.

The plate equilibrium equation is satisfied at the collocation points

V4w(xi,yi) = (](xiTW’ (5)

3
where D =

substitute (4) into (5)

is the cylindrical rigidity of the plate, ¢ is the intensity of the external distributed load. We

i 8 wmn(xzyyz) +284wmn(xwyz) + a4wmn<xi7yi)
— Ozt 0x20y2 Oy*

m

_ Q(xiayi). (6)

n [ X (@)Y (yi) + 2X 00 (2) Y, () + Xon (20) Y, ()] D

-3

m=1

M
M N
Consider a rectangular plate, hinged on the contour, with the following dimensions 0 <z < a, 0 <y <b.
The boundary conditions of the plate bearing are

w(0,y) = wla,y) =0; M(0,y) = M(a,y) = 0;

w(z,0) =w(z,b) =0; M,(x,0) = M,(z,b) =0. (7)

From the condition that the bending moments on the contour are zero, we have

Pw(0,y)  Pw(ay) 0
ox2 ox2 7

O*w(x,0)  0*w(w,b)
oz oy?

Taking into account the boundary conditions, we accept

=0.

. € . )
X = Slnmwg, Y, = smnﬂ'g;
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and obtain a solution in the form of a double series

M N
w(z,y) = Z ZAmn sinmwg sinmr%.

m=1n=1

Obviously, the boundary conditions (7) are satisfied.
The system of equations for the collocation method (6) is obtained in the form [1]

M N
<g>4 Z Z Apy [m* 4+ 2(Amn)? + (An)?] sinmr 2 sinnr 2l = M,

m=1n=1 a b D
a
i=1,.,K; A=-
b
or
M N A
Z ZA C s Ti . yi _ q(@i,yi) a
mnCmn SINMT—SIMNT— = ——— —,
a b D 4
m=1n=1
where

Cpmn = m* +2(Amn)? + (An)™.

Examples of the calculation of a rectangular plate with one member of the series (4) and with three members
of the series (4) are given in [1]. As can be seen from these examples, the accuracy of the calculation depends
on the number of members of the series and also on the ratio of the plate sides. For a square plate, the accuracy
of the calculation by three series members as compared to the calculation with one series member increased
about three times for both deflections and bending moments. For a rectangular plate with A = 1.5 the accuracy
increased significantly only for deflections, for bending moments the accuracy changed slightly.

It is also shown in [1] that the accuracy of the calculation results depends on the choice of collocation points.
It can be seen from the results of calculation that for a square plate the change of collocation points led to a
certain increase in the accuracy of deflections and a decrease in the accuracy of bending moments. At the same
time, the values of deflection and bending moments were greater than the exact values, while in the previous
calculation their values were less than the corresponding exact values. For a rectangular plate the change in
collocation points led to a certain increase in the accuracy of the deflection and a more significant increase in
the accuracy of the bending moments [1].

In the case of a bending problem for a rectangular plate, the desired deflection function w(z,y) can be
represented as a sum

M
w(z,y) =Y Ampm(z,y), (8)

where A,, are the sought-for constant coefficients,

Om(®,y) = Em(2)Nm(y)

are pre-selected functions that determine the possible deformation of the plate and satisfy all boundary
conditions.
Substituting (8) into the plate equilibrium equation

DV*V?w = q(z,y),

where V2V?2w is the biharmonic operator, we get the expression

M
S e (€LY @ma(v) + 260 (1 (w) + @l )] = L2 0

m=1

which is generally not satisfied for any values of the constants A,,.
We require that the expression (9) be satisfied at M points (z1,41), (Z2,¥2),.-., (Zn,Yn) in the considered
domain. Then from (9) we get the system of algebraic equations
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Xl\i A [E8Y (@ 0)mm (y1) + 280 (@) (y1) + Em(z)nlY (11)] = q(xliD,yﬂ;
M IV " " v q<x2,y2).
> q(nr, ynr)
22 A &0 (@) (ye) + 267, @an)nin (an) + m(@ar)in (yar)] = =57

of which M constants A,, are defined.

In this case, if the selected functions ¢,,(z,y) do not satisfy all the boundary conditions, then in addition
to the equations (10), it is necessary to write for several points of the plate contour such equations that satisfy
the given boundary conditions.

For example, if the edge of the plate = a is free from fixings and loads, and the selected functions ¢, (z,y)
do not satisfy the conditions

Mm(aa y) = Qw(aay) = 07

then for k£ points of this edge one should write down

M
M(a,ye) = =D 32 Am (&5, (@)1 (yr) — vEm(a)niy, (yk)] = 0;
m=1
(11)
M
Qu(a,yr) = —D 21 A (6 (@)1 (yr) + (2 = V)&, (@), (ye)] = 0.
m=
Naturally, the total number of equations of type (10) and (11) should be equal M, i.e. should be equal
the number of constants A,, to be determined. From this it follows that in case of an unsuccessful choice of
functions ¢, (z,y), the accuracy of solution of the main differential equation of the problem decreases due to
the fact that in the domain occupied by the plate, it is necessary to reduce the number of collocation points.

As an example, we consider a square hinged plate loaded with a uniformly distributed load ¢. We confine
ourselves to the first approximation, i.e. we keep in (8) only the first member of the series

w(z,y) = Arpr(z,y) = A& (@)m(y).
For coordinate functions, we take the following expressions
{ & (z) = 2t — 2023 + au; 12)
12
m(y) =y* - 2ay® + a’y,
which are functions of deflections of a hinged beam of length a and satisfy the given boundary conditions on
the plate contour. Derivatives of these functions (12), included in the equation (10) have the form
I(z) = 122% — 12az; 0y (y) = 129% — 12ay;
V(@) =245 Y (y) = 24.

We choose the collocation point in the center of the plate, i.e. we write (10)

A6l (waym () + 261 (e () + Eaanmt” ()] = 5.
for 1 = y1 = a/2

Ay (7,50 + 18a* +7,5a*) = %,
then we obtain
q
Al = O,O3a4D.
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Deflection in the center of the plate is

2 4
a a a a q 9 4 qa
_ = = A — —) = _ J— = 2 —_—
w(5:3) = AG(GIm(3) =0.03—1 (16a> 0,00293%%
Comparing this result with the more accurate solution 0, 00406% given earlier in [3], one can see that the
error is 28 %.
If we took a point with coordinates x1 = y; = a/4 as a collocation point, we would get

q a a qa*

A =0,048—0 w (2, 2) = 0,00469°%-,

that is, a slightly more accurate solution with an error of + 15.5 %. It follows that the collocation point does not
always need to be taken in the place of the least rigidity of the structure, as some researchers have recommended.

If the number of members in the row (8) increases, the accuracy of the solution naturally increases. Thus,
for two terms in a series (8), for coordinate functions represented by power polynomials of type (12) and for
two collocation points x1 = y; = a/2, the deflection in the center of the plate is equal to 0, 00394qa4/D, ie. it
differs from the exact solution by 3 %.

It can be seen that the use of the collocation method is connected, as in the variation methods, with
the intuitive choice of functions. Compared to variation methods, the collocation method gives less accurate
solutions with the same number of held constants. If in variation methods the error appears only when we
choose approximating functions, then here, moreover, it arises when we choose collocation points.

Moreover, in the collocation method, the reciprocity of the coefficients of resolving algebraic equations is
violated; as a result, these equations do not have symmetry. In addition, the collocation method is simpler
than the variation methods. There is no need to integrate functions ¢;(z,y) within the considered domain and,
therefore, less time is required for the preparation of algebraic equations.
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[''A. Ecenbaena, /I.H. Ecbaesa, H.K. Cozabikosa, I1.A. Axknanos

Kosokamust aaiciMeH TiKOYPBINITHI IIJIACTUHAJAPABI €CenTey TYPaJibl

MakaJjia MexaHUKAHBIH KOITEreH eCelTepiH ecenTeyIiH Heri3i O0IbIn TadbLIaThIH JuddepeHITnaIbIK, TeH-
JeyJIep/ii IIenryre KOJIOKAIAs 9JIiCiH KOJIJIaHy MoceJieciHe apHajraH. Makajajga OChl 9MICTiH, KYPbLIbIMbI
OepiyireH, OHBIH Heri3ri KOMIIOHEHTTEPI KOPCETIIreH, COHJIai-aK OHBIH TypJiepl MEeH KJIACCUKAJBIK TOCLI-
Jepi cumarTaJFal. ABTOpJIap KOJTOKAIUsT 9iCIMEH TIKOYPHIIITHI IJIACTUHAJIAPIBIH UiTyi TypaJibl eCenTep/i
zeprreai. Conaii-ak 6apJsIblK CaHIbIK-aHAJTUTUKAIBIK, KYBIKTAJTFAH OJIICTEp CUSKTHI KOJIJIOKAIIHS OICIiHIH
OipkaTap apTBHIKIIBLIBIKTAPBI MEH KeMIMijikTepi 6ap ekeHi kepcerkeHn. MakaJia, HerizineH, MexaHUKTEpre,
WHXKEHEepJIEpre YKOHE TEXHUKAJIBIK MaMaHIBIKTAFbl MaMaHIapra OarbITTa IFaH.

Kiam ceadep: xoutoKaius oJiici, KOJIJIOKAIWs HYKTeJepi, TIKOYPBIIITH! IJIACTHHAHBIH UiIYyl, IJIaCTUHAHDBIH
iy OYHKIUSICHI, IJIACTUHAHBIH TEe-TEH K TeHJIeyi.
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On the calculation of rectangular plates...

['A. Ecenbaesa, /I.H. Ecbaesa, H.K. CoizapikoBa, 11.A. Aknanos

O pacdere InpaMOYI'OJIbHBIX IIJIACTHMH MEeTOAdOM KO.H.J'[OKaI_II/Iﬁ

CraTbsl TIOCBSIIIEHA BOMPOCY MPUMEHEHHS MeTOJa KOJIOKAINY K PeIeHno qudOepeHITnalbHbIX YPaBHe-
HU, SBJISIONIAXCS OCHOBOI pacdeTa MHOIMX 3aJa49 MeXaHUKH. B craTbe IpeacTaBjieHa CTPYKTypa JaHHOIO
METO/1a, BBIJIEJIEHBI €0 OCHOBHbIE KOMIIOHEHTHI, OXapaKTEPU30BAHBI €0 BU/IbI, & TAKyKe €ro KJIACCHYECKUe
MO/IXOABI. ABTOpaMU MPOBEIEHO MCCIEIOBaHUE 3a1a9u 00 u3rube MPsiIMOYTOJIbHBIX MIJIACTUH METOIOM KOJI-
Jiokanuii. MeTos KoJIJToKaIuii, KaK U BCe YUCIEHHO-aHAJIUTUIECKUE PUOJIMKEHHBIE METO/bI, UMEET PsiJl
MIPEUMYIIECTB U HEJIOCTATKOB, KOTOPbIE TAKXKe OTMEYEHBI B JIaHHON pabore. CTaThbsi OpUEHTUPOBAHA, TJIaB-
HBIM 00pa30M, Ha MEXaHUKOB, NH?KEHEPOB U CIIENNAJINCTOB TEXHUIECKUX CIEIHATLHOCTE.

Kmouesvie caosa: MeTON KOJTOKAIAN, TOYKHU KOJLIOKAIIN, M3TUO MPSMOYTOJBHON IJIACTHHBI, (DYHKITUS
nporu6a MJIaCTUHBI, YPaBHEHNE PDABHOBECUS IJIACTHHBI.
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JlokTopy dbu3mKo-mMareMaTuiecKux HayK, mpodeccopy, akaaieMuKy
HAH PK C.H. Xapuny — 80 jer

CranuciaB Hukonaesna XapuH, JOKTOP (PU3NKO-MATEMATHICCKUX HAYK, TTPO-
deccop, akagemuk HAH PK, pogauincs 4 nekabpst 1938 r. B ceste Kackesren Ajma-
Arunckoit obnactu. B 1956 r. ¢ 30710TO# MeJIAJIbI0 OKOHYMII CPEJIHIO IIKOJIY B
r. Boponexe. B 3T0M 2Ke rojy mocTynmi Ha MEXaHUKO-MATeMaTHIeCKuil (haKyJib-
TeT Ka3axckoro rocyiapcTBeHHOIO YHUBEPCUTETA, KOTOPBINA C OTJIMYNEM 3aKOHYIMIT
B 1961 . B 1961-1964 rr. o obyvaJica acnupanType Kadeapbl ypaBHEHUIT MaTe-
marndeckoit dpuzuku Kasl'V. Vike B aru rogpr C.H. Xapun mposiBur He3aypsiIHbIe
CITOCOOHOCTH BEJICHUST HAY THO-UCCJIEI0BATEILCKIX paboT B 00J1aCTH ypaBHEHNH Ma-
TeMaTH4eCcKol (pU3NKN U UX IPHUIOKEHUN.

Cporo TpynoByto gesitesibHOCTh Cranucia HukosnaeBuu Havasr B CekTope
maremaruku u mexannku AH KazCCP, npeobpasosannom B 1965 r. B UucruryT
maremaruku u Mexanuku (IMM AH KaszCCP), rue npoxoaut Bcs ero JajbHeii-
mas TpygoBas JesrenbHocTb. B 1968 . C.H. Xapun samuTuia KaHIUIATCKYIO
JIICCEPTAIIIIO, KOTOPAasi ObLITa MOCBAIIEHA PEIEHUIO CUHTYISPHBIX NHTETPAIbHBIX YPABHEHU, CBI3aHHBIX C IIPO-
GiieMaMy MATEMATHIECKOIO MOJIEJIMPOBAHUS TEIIOBBIX MPOIECCOB B ajiekTpuiuecknx koHTakTtax. C 1969 1. mo
1980 r. C.H. Xapun 3aHUMAJI JOKHOCTH CTAPIIEro HAYyIHOTO COTPYIHUKA Jab0paTOpUN ypaBHEHUI MaTeMaTH-
veckoit dusuku (JIYM®), a B 1980-1994 rr. — 3amecTuressi upekropa 1o HayuHoii pabore UMM (mo3anee
NTIIM MH AH PK). B 1990 r. um Gblia 3amyIiineHa JOKTOPCKasl auccepranysi Ha Temy «Maremarndeckue
MOJIE/IM TeIIOMPU3NIECKUX ITPOIECCOB B JIEKTPUIECKUX KOHTakTax» B WHcTuTyTe Temnodusuku Cubupckoro
oraenerns AH CCCP (r. HoBocubupck).

B 1994 r. C.H. Xapuu 6611 u3bpan wieH-koppecnonjenToM HarmonanbHoit akajgemun sayk u B 1994—1997 rr.
SIBJISJICST aKaJleMUKoM-cekpeTapéMm OrienieHust (pu3mKo-MareMaTndeckKux Hayk PecryOsumku KazaxcraH, oiHO-
BPEMEHHO 3aHUMasl JIOJXKHOCTD 3aBeyioiiero Jaboparopueir YM® UTIIM MH AH PK. C.H. Xapuu B 1994
1997 rr. siByisics wienoM [lpesuamyma Hanmonasnbroit akamemun Hayk Pecrybsimkn Kasaxcran.

Mmuorue wuccenoBanusi, mpoBoguMbie B cucreme Aranemun Hayk PK, casanbr ¢ umenem C.H. Xapumna.
Nm pazpaboTaHbl U U3yUeHBl MATEMATHIECKUE MOJIEIHN, OIMICHIBAIONINE HECTAIMOHAPHBIE U 9JIEKTPOMATHUTHBIE
[I0JIsl B 3JIEKTPOKOHTAKTHBIX CHCTEMAaX; MPOIECCH B HU3KOTEMIEPATYPHO IIJIa3Me JIEKTPUIECKON JyTH B KOM-
MYTAIIMOHHBIX AIIapaTaX U ILIa3MOTPOHAX; siIBJIEHUs] MOCTUKOBO! U JIyTOBOI SPO3UU U CBAPUBAHUS 3JIEKTPOJIOB.
B uccienopanusx C.H. Xapuna nocrpoenbr Teopust u 3(pdEeKTUBHBIE METOJIbI PEIIEHUs KPAeBbIX 3a/1a9 B 00J1a-
CTSX C MOJIBMKHBIMU TPaHUIAMU. B Xoze nccieoBanns UM pa3paboTaH anmapar HOBBIX CIIEIINATIbHBIX DYHKITHIT
Tra XapTpH, ¢ IOMOIILI0 KOTOPOT0, B YACTHOCTHU, TIOJIyI€HO AHAJINTHIECKOe pelrenue aByxdasuoii 3amaan Cre-
daHa ¢ TPAHTIHBIM YCJIOBUEM TIOTOKA B hopme psiaa dyukimit Xaptpu. Ha ocHoBe pernenust mpoCcTpaHCTBEHHON
3a/1a49u CcTeAHOBCKOIO THIIA B HOBOI ITOCTAHOBKE Pa3pabOTaHa MAaTEMATHYECKas MOJIEJIh, OIMUCHIBAIOIIAS IIPO-
[IECCHI TIJIABJIEHUS] U CBAPUBAHUS JIEKTPUIECKUX KOHTAKTOB [P CKBO3HBIX TOKAX, & TAKXKE JAHO TEOPETHIECKOe
00OCHOBaHME ODHAPYKEHHBIM paHee dKCIEePUMEHTAJIbHO TpéM 30HaMm cBapuBanus. C.H. XapuabiM Takxke usy-
9eHbl HOBbIE TUIBI KPAEBBIX 33124 JJIA MapabOJIMIeCKUX yPABHEHU, OMUCHIBAIOIINX [IPOIECCHI TEILIO- U MacC-
coobMeHa B TejlaxX € MePEeMEHHBIM cedeHueM. J[Jist 9Tux 3a/1a9 MOCTPOEHDI TEIJIOBBIE MTOTEHINAJIBI, HCCIIEI0OBAHDI
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COOTBETCTBYIOIINE CUHIY/ISIPHBbIE MHTEIPAJbHBIE YPABHEHUSI IICEBIOBOJIBTEPPOBCKOIO TUIA, U Pa3pabOTaHBI Me-
TOABI MPUOJINYKEHHOTO PEIIeHNs], B 9aCTHOCTH, METOJ] MAaKOPAHTHBIX (DYHKITUI U HOBas MOAUMUKAINSA METOIA
Kapmana-Ilosraysena. [losmydyentnie pe3ysibTaTsl HALIN IPUMEHEHNE B TEOPUU HU3KOTEMIIEPATYPHOM 3JIEKTPO-
JYTOBOM IIJIA3MBI 1 KOMMYTAIIMOHHBIX IIPOIIECCOB B JIEKTPUYECKUX aIlapaTax.

C.H. XapuHbIM aKTHBHO Pa3BHBAETCs MaTeMaTUYECKUI allapart, [MO3BOJISIOIINN TPOU3BOJIUTH ONTHMAJIb-
HBII BBIOOP KOMITO3WIIMYM KOHTAKTHBIX AP C MUHUMAJBHOM WM CaMOOTpaHWYUBAIOIIelics spo3ueil. 3a pa3pa-
6orky 3stekrpudeckoro coequauTeas SP-063 C.H. Xapun B 1981 r. ynocroen 3omoroit menamm BJIHX CCCP,
a B 1982 . marpaxkaen snakoMm «M3o06peraresss CCCP» 3a BHeapeHne METOIOB pacdéra OMMETAJJINIECKUX PAC-
npefesuTesieil annaparos 3amuTel. Paborsr C.H. XapuHa 1o TerioBoii TeoOpun KOHTAKTHONW MOCTHKOBOI 9po3un
u3BecTHB! BO BcéM Mupe. B 2015 r. C.H. Xapun nosyuwmsi npemuio Ragnar Holm Award B CIIIA 3a nccienoBanmus
B 00JIaCTH JIEKTPUIECKAX KOHTAKTOB.

Anaymz MaTeMaTHIecKoro MOJIEJIMPOBAHUST TEMIIEPATYPHBIX U 3JIEKTPOMAIHUTHBIX MOJIEH B KOHTAKTHBIX CH-
cTeMax MMO3BOJIMII BBIACHATH POJIb TYHHEJIHHOTO 3 deKTa, ONeHUTh BIAUSHIE Ha HErO aI€3MOHHBIX U TACCUBUPY-
OIMUX IJIEHOK U pa3paboTaTh 3aIUIIEHHBIE ABTOPCKUME CBUIETEIbCTBAME 3JIEKTPOKOHTAKTHBIE KOHCTPYKITUN
CO CIIeNMaJIbHBIMU YCTPOMCTBAME, HEHTPAIU3YIOMIUMY TYHHEIbHBI IIePErPeB U 00ECIIEYNBAIOIIIMEU CTaONIbHOE
[IEPEXOJIHOE COPOTUBJIEHIE.

CranuciaB Hukonaesua Xapun siByisiercs aBropom 6osiee 300 myOsmkarmii, BKrodast 4 MoHOrpaduu u
12 aBTOPCKHUX CBUIETEIBCTB HA W300PETEHMUS.

Bouibiioe BHUMaHue ydeHbIl yesss U yAeaseT IMOANOTOBKE HAydIHLIX KaapoB. [loz ero maydHbIM pyKO-
BOJICTBOM ycuenrHo 3armuineHo 10 kanmumarckux u 4 PhD mauccepramuu. On 6b11 npescemaresieM Komurera
[0 HAyYHO-TEXHUYECKOMY COTpyaHUYecTBY Mexky Pecnybsukoit Kasaxcran u Vcmamckoit Pecryosukoit I1a-
kucran (1996-2001) u npesumenrom Maiioit akagemun Hayk MKOJALHUKOB. Ceffuac OH YCHENIHO IPOI0JIZKAET
CBOIO MCCJIEJIOBATENIBCKYIO JE€ATEIbHOCTD, U JOKA3ATETbCTBOM ITOTO SABJISETCH BBIXOJ B CBET HOBOW MOHOIDa-
bun «Maremarndeckne MOIEIN ABJICHUI B JIEKTPUIECKAX KOHTAKTAX», OMYOJMKOBAHHON B MPOIIIOM TOLy B
Hoocubupcke.

Kpowme toro, C.H. Xapun siBisiercst mpodeccopom KBTY, wienom ducceprammonnoro coera KBTY mo
3aIuTe JUCCEPTAlnii Ha MPHUCYKIeHNe yaeHoli crenenu jgokropa dunocoduu (PhD), mokropa mo npoduio B
2016 1. mo manpasiyienuio «MareMaTrndecKoe 1 KOMIBIOTEPHOE MOJICTUPOBAHUIE.

Penxommerns maydnoro xypuasa «Bectnnk Kaparanmurckoro ynmsepcurerta. Cepuss MaremaTrukas cep-
neuno no3pasisier CranuciaBa HukosaeBudaa ¢ 80-jieTHUM 100MJI€EM U YKEJIAET €My KPEIKOIO 3JI0POBbsl U
TBOPYECKOT'O JIOJITOJIETHUS.
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JokTopy (pusnko-mareMaTndecKnx Hayk, nmpodeccopy
M.N. PamazanoBy — 70 Jiet

Mypar Nbopaesua Pamazanos, 1okTop (pU3MKO-MaTeMaTHIECKUX HAyK, Mpodec-
cop, pommiics 24 despaitst 1949 1. B 1. Bynaeso Cesepo-Kazaxcranckoit obmactu. ITo-
cJle OKOHYAHUS MeXaHUKO-mMaremaTudeckoro (akynbprera KasHY nm. ann-Oapabu
(KasI'V um. C.M. Kuposa) B 1971 r. 0H Hauaa CBOI TPYIOBYIO JIEATENHLHOCTH B
KaparaumHCKOM TOCYIapCTBEHHOM YHUBEPCHUTETE U IO Cell JIEHb BHOCHUT OOJIBIION
BKJIaJ B pa3BuTne yuumsepcureTa. B 1981 1. Obl1a 3amuimena KaHuIaTCKasd JUCCeP-
Tarusi, a B 2006 1. — JJOKTOPCKAast JIMCCEPTAIIHS.

M.. Pama3aHOB sSIBJISIETCSI BHICOKOKBATU(PUITTPOBAHHBIM CIIEITHAIICTOM B 00-
JIACTU HArpyKeHHBIX TuddepeHIna bHbIX YPABHEHUN B YACTHBIX IIPOU3BOIHBIX, UH-
TerpajbHbIX YPABHEHUI U MX IIPUJIOYKEHU K MPUKJIaIHBIM 3a1adaM. OH OCTOSTHHO
BBICTYIIAET C HAYIHBIMU JOKJIAJAMI Ha MEXKIYHAPOIHBIX KOHI'DECcaX, KOH(EPEHI-
X, CHMIIO3UYyMAaX, [TOCBSINEHHBIX 00CYKIEHUIO COBPEMEHHBIX ITPODJIEM MATEMATHKH,
KOTOpBIe poBojsaTcs B Pecriybnke Kazaxcran u 3a pyOeKoM.

Hayunsie qoctmxkenns M. M. PamazanoBa omyb/InKOBaHbI B PEHTHHIOBBIX Ky pHasax u3 6a3nr Web of Science
«Boundary Value Problems», «Siberian Mathematical Journal», «Advances in Difference Equations» n npyrux,
B [IPUOPHUTETHBIX M3JaHusIX N0 MaremaTuke: «Iuddepennumanbaeie ypasaerus» (Mocksa, PAH), «Cubupckuii
maremarudeckuil xKypuaia» (Hosocubupck, CO PAH), Tpyupt Mucruryra maremaruku um. C.J1.Cobosesa (Ho-
Bocubupck, CO PAH), Tpyast Uncruryra maremaruku HAH Benapycu, B Tpynax MexiyHapoiHbIX MaTeMa-
Tudeckux Kourpeccos: I. Ilekun, Xaiinapaban (Muaus) u apyrux. 3a mocsejnue Tpu roja UM OILyOJIMKOBAHO
6oJstee 15 HayYIHBIX CTaTell B BBICOKOPEHTUHIOBBIX KYPHAJIAX.

B repmunax (KOMILIEKCHOIO) CIIEKTPAJBLHOIO HApPaMeTpa, sBJIAIONErocs Ko3(hQ@UIMEHTOM HArpyKEeHHOIO
caaraemoro, mpodeccopom M.UM. PamazaHOBBIM BBIMIOJIHEHO ONMMCAHUE PE30JBBEHTHOTO MHOXKECTBA W CIIEKTPA
IJIsE CHEKTPAJILHO-HATDYKEHHOT'O [1apabOInIeCKOr0 OIepaTopa, JaHa XapaKTePUCTHKA KPATHOCTH COOCTBEHHBIX

dyHKINI B IPOCTPAHCTBE OIPAHMYEHHBIX U HENPEPBIBHBIX (PYHKINN B 3aBUCHUMOCTUA OT 3HAYEHUS CIIEKTPAJIb-
HOro mapamerpa. 1lo pesysibraram 3TUX HCCaeJOBaHUil m3gaHa MoHorpadus «HarpyzkeHHble ypaBHEHUsI Kak
BOBMYyIIeHNs JudHepeHnaabHbIX YPABHEHUN».

B nmocimennune rogsr MM, PamazanoB BMecTe ¢ COTPYAHUKAMU BEIET MCCIEIOBAHUS IO OJHOPOTHBIM Kpae-
BBIM 3aJ[@4aM TEIJIONPOBOIHOCTH B BBIPOXKTAIONTUXCS HEIMJIMHIPUIECKAX O0IACTSAX. YCTAHOBJIEHO, UTO 37ECh,
Hapsi/ly C TPUBUAJIBHBIM PEIIEHNEM, CYIIECTBYIOT U HETPUBUAJIbHBIE.

Heonenum  Bkiam Mypara IOpaeBuya B [OATNOTOBKE HAYYHBIX KaapoB. llog ero  HaydIHBIM
PYKOBOJZICTBOM 3aIlUINEHbl 3 KaHAWAATCKue maucceprarmu, oosee 10-tu marucrepckux muccepramnmit. Ha man-
veiii MmomenT M.U. Pamaszanos siBisercs HaydHBIM DyKOBojuTeseM 3 jokTopaHToB PhD 1o cnenmansnocTn
6D060100 — «MatemaTukas.

Taxxke ¢ umenem M.U. PamazanoBa cBsi3aHbl HaydIHBIE UCCJIEIOBAHUS, IPOBOINMbBIE B DAMKaX DAHTOBO-
ro dunancuposanus MOH PK: on pykoomurens rembr Ne1164/T®4 «Heknaccuueckue 3ajadu MaTeMaTH-
1ecKkoil (DUBNKM W CHUHTYJISIDHbIE HHTErpaJbHble ypaBHeHusl Bombreppbl» (20142017 rT.), MCIOSHATENH TEMBI
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Ne(823 /T @4 «CrekTpasibHO-HATPYKEHHbIE OIIEePATOPhl U uX npuioxkenusgy (2014-2017 rr); uCIoJHUTE b TEMbI
NeQ052 /TIID (mekmynaposubiii) «OneparopHble METOBI perieHus O0NMX KPAeBbIX 3aad I YPaBHEHUN
YACTHBIMU [IPOU3BOAHBIMU ¥ UX Ipusioxkenus» (2013-2015 rr.), B ZaHHBI MOMEHT OH SIBJISIETCS PYKOBOZUTE-
sgeMm Tembl «IIceBmo-BosbreppoBble MHTErpaJibHbIE YyPABHEHHUS U HEKJIACCUYECKHE IBOJIIOINOHHBIE IPDAHUYHbBIE
sagaun» VIPH npoekra: AP05132262 (2018-2020 rr.).

Homnrue Tosipl OH siBJIsieTcs TIpejcenaTeneM luccepranumoHHOTo coBeTa 1o crernuaabaoct 6D060100 — «Ma-
TeMaTuKay npu KaparaHauHCKOM roCyJIapCTBEHHOM yHHUBepcuTeTe nMeHn akajgemuka FE.A. Bykerosa.

3a Gosbmmoit Bkl B HayKy M., Pamazanos 6601 yiocroen [ocymapcTBeHHON HAYIHON CTUIEH TN JIJIsT yUe-
HBbIX U CIENHUAJMCTOB, BHECIINX BbIJIAIOMMiicH BKJIa [ B pa3BuTue Hayku u TexHuku 2008-2010 rr., HarpakjaeH
HAIPY/HBIM 3HAKOM «3a 3ac/iyru B paspuTun HaykKu Pecrybiuku Kazaxcramy, robuieiinoit Mejgasipio «40 jer
Kapl'V um. akagemuka E.A. BykeroBay, siBjisiercst ob0jiaaTesieM IpaHTa Ha 3BaHue «Jlydimnumii mpernojgasaresib
By3a» (2009 r.). Jlaypear IIpemun umenu g-pa &d.-m.H., npodeccopa T.I. Mycraduna, 3aciyKeHnbiit paboTHUK
Kaparanauuckoro rocyapcrsenHoro yuusepcurera uM. K.A. BykeroBa; uMeer psiJi OYETHBIX rpaMoT AKuma
Kaparanmumckoit obiactu «3a aKTHBHOE ydacTHe B ODIECTBEHHO-TIOJUTUYICCKON KU3HU OOJACTH W JIMIHBIN
TPYJOBOIl BKJIaJI B JI€JI0 IIOCTPOEHUS HOBOI'O Ka3aXCTAaHCKOro obmiecTBay, HannoHaabHON masaThl IpeNIIpUHA-
maresieit PK «3a GosbIie 3aciyru mepes Ka3aXCTAHCKON HAyKOW W HEOIEHWMbIH BKJIAJ B PA3BUTHUE BBICIIEH
IIKOJIBI, ITOJITOTOBKY BBICOKOIPO(MECCHOHAIBHBIX criennaancToB st Pecnybauku Kazaxcran». M.M. Pamazanos
gomien B TOP-50 Ienepasbroro peiirunra ITIIC By3zos PK ¢ 6amiom 1500 (Hanuonanbaeiii pefituar Bocrpe6o-
Bannocru By3oB PK—2018, Acrana, 2018).

Penkosuterust Hayunoro xypHaaJa «Becrauk Kaparanauackoro yausepcurera. Cepust MaremaTukas cepied-
Ho mo3apaBisier Myparta NUbpaesuyda ¢ 70-JeTHUM I00MI€EM U KEJIAET €My KPEIKOr'o 370POBbsl U TBOPUIECKOTO
JIOJITOJTETHS.
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