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MATEMATUKA
MATHEMATICS

UDC 517.51

A.N. Adilkhanov, Zh.Zh. Baituyakova, D.T. Matin

L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
(E-mail: adilkhanov_kz@mail.ru)

Strong approximation of Fourier series on generalized
periodic Morrey spaces

In recent years, a lot of attention has been paid to study of Morrey type spaces. Many applications in partial
differential equation of Morrey spaces and Lizorkin-Triebel spaces have been given in work G.Di Fazioand,
M. Ragusa and the book of T. Mizuhara. The theory of generalized Triebel-Lizorkin-Morrey spaces is
developed. Generalized Morrey spaces, with T. Mizuhara and E. Nakai proposed, are equipped with a
parameter and a function. First we give definition of Morrey and generalized Morrey spaces. Then we
recall the boundedness of periodic Hilbert transform. This will be our main tool for all wtht follows. In a
more or less elementary way, we carry over the known boundedness assertions for the Hilbert transform
on Morrey spaces defined on R to periodic Morrey spaces. Boundedness of the Hilbert transform implies
uniform estimates of the operator norms of the partial sumd of the Fourier series. Then we study vector-
valued Fourier-multiplier theorem for smooth multipliers. Afterwards, we study vector valued version of
famous Riesz theorem. Here we concentrate on Lizorkin representations. Finally, we get an interesting
characterization of the space £; ,, ,(T) by using differences of partial sums of the Fourier series Finally, we
get an interesting characterization of the space £ ,, ,(T") by using differences of partial sums of the Fourier
series and consequence for strong approximation of Fourier series on Morrey space.

Keywords: Morrey spaces, generalized periodic Morrey spaces, strong approximation, vector-valued version
of the Riesz theorem.

First we recall the definition of the generalized Morrey spaces (nonperiodic and periodic). As usual, B(z,r)
denotes the open interval (x — r,2 + r). T denotes the one-dimensional torus, usually identified with [—, .
For a measurable set 2 C R we use || to denote the Lebesgue measure of Q2. As usual, N denotes the natural
numbers, Ny the natural numbers including 0. All functions are assumed to be complex-valued, i.e., we consider
functions f : R — C. As usual, the symbols C,C4,... A, B,C, ... denote positive constants which depend
only on the fixed parameters s, p, ¢ and A and probably on auxiliary functions, unless otherwise stated; its value
may vary from line to line.

Definition 1. Let 0 < p < oo and 0 < A < 1/p.

(i) We say that a function f : R — C belongs to the (nonperiodic) Morrey space M)} (R) if f € Ly(B(x,7))
for all x € R and all > 0, and the following expression is finite

1 £ 1Mp (R)| := sup sup |B(z,r)| ™ | f|Ly(B(z, 1))l

z€R r>0

1 e say that a function : — C, m-periodic, belongs to the periodic Morrey space 1
ii) Wi h f i f+ R C, 2 iodic, bel h iodic M M;‘ T) if
f € Ly(B(x,r)) for all z € R and all » > 0 and the following expression is finite

1 1M (T)|| = Sup. sup | B, )| 1 Lp(B(, )l (1)

R O<r<m
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Remark 1.
(i) Obviously we have
MJ(R)=L,(R) and  M}/P(R) = L(R)

in the sense of equivalent norms. In the periodic case we obtain
MY(T)=Ly(T) and  M}/?(T) = Loo(T)

in the sense of equivalent norms.
(ii) Let us mention also the trivial embeddings

Loo(T) = M)°(T) < M}*(T) = L,(T), A< Ao

and .

1 _ 1 1 _ 1
Ly(T) = My(T) = Mg} “(T) = Mz “(T), 0<pz<pi<u<oo.

(iii) Morrey spaces, periodic or not, are not separable if A > 0. In some sense these Morrey spaces are
relatives of Lo, and not of L,, p < oco.

(iv) By periodicity it will be enough to restrict the supremum in (1) to z € [—m, 7).

Generalized Morrey spaces have been introduced independently by Mizuhara [1] and by Nakai [2]. Here the
parameter A is replaced by a function ¢ : (0,00) — (0, c0).

Definition 2. Let 0 < p < oo and let ¢ : (0, 00) — (0, c0).

(i) Then the generalized Morrey space MY (R) is the collection of all functions f : R — C such that
f € Ly(B(x,r)) for all z € R and all » > 0 and

1 ;
IFME @) = sup sup o) (g [ 1S@Pa)” <o

z€R 0<r<oco

(ii) Then the generalized periodic Morrey space M;?(T) is the collection of all functions f : R — C,
2m-periodic, such that f € Ly(B(z,r)) for all z € R and all » > 0 and

1 :
M#(T)|| :=sup s Pdy)” < .
9107 (Dl =sup sup o) (e [, 1f@Pdy)" < oo

Remark 2. Clearly, if o(r) := | B(0, r)|_>‘+%, r > 0, then we have coincidence M7?(T) = M;‘(’IF)7 in particular,
if p(r) := [B(0,)|7, r > 0, then M#(T) = L (T).

Of course, we shall need restrictions for ¢ to develop a reasonable theory. We are mainly interested in
smooth peturbations of | B(0, 7‘)|7’\+%. Following Nakai [3] we shall work with the following class of functions.

Definition 3. Let 0 < p < co. Then ¢ : (0,00) — (0,00) belongs to the class Gy, if ¢ there exist positive
constants C,C" such that the inequalities

o

d

o(t1) SCp(ta)  and 1y " (ta) < C'ty * p(th)

hold for all 0 < t; <ty < 00.
In the definition of M7 (T), we assume that ¢ is in G, that is, there exist some constants C,C" > 0 such
that the inequalities

p(t) < Cplta) and C't, "p(t) >ty " p(ts)

hold for 0 < t; <ty < 0.

The nonperiodic and the periodic Hilbert transform are classical objects in harmonic analysis. We give their
definitions.

Definition 4. The Hilbert transform of a given function f € L!°°(R) is defined as the Cauchy principal value

(Tf)(x):=PV. /+°° &dt = lim/ Mdt

o T 30 St t—z|>63 T — 1

at every point € R for which this limit exists.
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Definition 5. The periodic Hilbert transform (or conjugate function) of a periodic function f € L;(T) is
defined as the Cauchy principal value

(Hf)(z) := f(z) = %P.V. /_7r f(z — u) cot gdu =

1
= —lim f(xz —u)cot L
27 510 Js<u<n 2
at every point x € R for which this limit exists.
We recall the boundedness of the Hilbert transform on generalized periodic Morrey spaces, which have been
proved in [4].
Proposition 1[4, Theorem 2]. Let 1 < p, ¢, < oo and ¢ € G,. We assume that there exist some ¢ > 0 and a
constant C' > 0 such that
t&‘ ,',.8
<
o(t) = o(r)

Then there exists a constant C such that

|(S i) prz| < e S i) e
j=0 7=0

forall t>7r>0. (2)

holds for all f € M#(T).
A standard consequence of the boundedness of the periodic Hilbert transform is an estimate of the operator
norm of the partial sum operator of the Fourier series.

Sifl@) = Y e, zeR

k=—o0

be the Fourier series f € L1 (T) with ¢x(f). Here ci(f) is the Fourier coefficient of f given by

1 [" -
ex(f) = — f(t)e*tat.
2 J_.
We define
M _
Svulfl(x) = > ()™, NMeZ N<M.
k=—N

The next corollary is generalization of the famous Riesz theorem.
Corollary 1 [4, Theorem 5]. Let 1 < p < oo and a function ¢ € G, ¢ € G,. We assume that there exist
some € > 0 and a constant C' > 0 such that

tE < ,r,€
p(t) = p(r)
Then for all Ny M € Z, N < M, we have

forall t>r>0.

1S, | M7 (T) — M7 (T)|| < [[H|M7(T) — Mg (T)]. 3)

To reach our goal we need following vector-valued version of Corollary 1.
Theorem 1[5, Theorem 1]. Let 1 < p < co and a function ¢ € G, ¢ € G,. We assume that there exist some
€ > 0 and a constant C' > 0 such that

tE ,',.8
<C forall t>r>0.
p(t) = o(r)

Then for all (Nj);, (M;); of complex numbers, satisfying N; < M for all j, and all sequences (f;); C M (T)

we have - -

¢ ¢ ¢ A\ 1

(D 18w, an g5l (M| < e (NIME(T) = arg ) | S 15517) a4 () | (4)

j=0 J=0
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Remark 3. In case o(r) = |B(O,7")\%, r > 0, the Theorem 1 has been known before, we refer to [6] and
o(r) = |B(0,r)|_’\+%, r > 0, we refer to [7].

Looking at the Fourier side Corollary 1 and Theorem 1 can be interpreted as Fourier multipliers assertion
with characteristic functions of intervals as multipliers. For later use, we need a variant with smooth multipliers.
Smoothness is measured in terms of the Bessel potential spaces H5(R). These classes are defined as follows.

Definition 6. Let k > 0. Then H5(R) is the collection of all f € Ly(R) such that

IF1Hs R = I F A+ €2 PFFONL(R)]] < oo

Theorem 2 |5, Theorem 2|. Let 1 < p < 00, 1 < ¢ < o0 and ¢ € G,. Assume (2) is satisfied. Let (A;); be a
given family of finite and nontrivial intervals. With d; we denote the length of A;. Let

L.
K> -+ —.
2 min(p,q)

Then there exists a constant C' such that the inequality

I(S] 3 M watne
j=0 k=—oc0

<C sup ([ M(ds-) [ Hg (R)I 1(f3); 105 (T, Lg) |
j=0,1,...

IR

D =

holds for all sequences of functions M; € H5(R) and all sequences (f;); of trigonometric polynomials such that
Ck(fj) =0 if k ¢ A]‘, j € Np.

Now let us to give the definition of generalized periodic Lizorkin-Triebel- Morrey spaces. In fact, for us the
scale of the Lizorkin-Triebel-Morrey spaces will be more important one.
Let ¢ € C§°(R) be a function such that

v ={ 4 i [ ®)
Then, with ¢g := 1,
d(x) := ¢o(x/2) — o) and ¢;(x) = p(277 ), jeN. (6)

This implies

> ¢j(x)=1 forall zeR.
j=0

We shall call (¢;)52, a smooth dyadic decomposition of unity.
Definition 7. Let (¢;); be a smooth dyadic decomposition of unity as defined (5), (6). Let s > 0, 0 < ¢ < o0,
0 < p < oo and a function ¢ € G,. Assume (2). Then &7 , (T) is defined to be the set of all f € M?(T) such
that
Q) 1/q

Remark 4. Taking ¢(r) := |B(O,r)|%, r > 0, we are back in the case of classical periodic Lizorkin-Triebel
spaces, i.e., we have

M;f(T)H < 0.

11500 (DI = (D027 3 estkenp)e™
§j=0 k=—o00

€5 pa(T) = F5 (T).

¥,P,q

We shall call the spaces £ , ,(T) generalized periodic Lizorkin-Triebel-Morrey spaces. They represent the
Lizorkin-Triebel scale built on the generalized Morrey space M (T). The nonperiodic version of this scale of
spaces has been introduced by Tang and Xu in the year 2005 (for Morrey spaces). Lizorkin-Triebel-Morrey

spaces, related to generalized Morrey spaces, have been considered recently by Nakamura, Noi and Sawano [7].
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Lemma 1 [8, Lemma 4]. Under the restrictions to parameters p, g, s, ¢ in Definition 7 the periodic Lizorkin-
Triebel-Morrey spaces Esz’q(T) is independent of the chosen smooth dyadic decomposition of unity, i.e., if we
change the smooth dyadic decomposition of unity, then this change results in an equivalent quasi-norm.

We turn to an interesting characterization of the spaces £5  (T) by using differences of partial sums of the

; : ©.p:q
Fourier series.

We define
N
Snf(z)=S-nnf(z)= Z c(f)e* weR, N eN.
k=—N
Here ci(f) is the Fourier coefficient of f given by
alf)i= o [ fear
=5 .

—T

Theorem 3. Let 1 < p,q < 00,5 >0 and ¢ € G,. Assume (2) is satisfied. A function f € M7?(T) belongs to
&: ., ,(T) if and only if

¥.P,q
> . 1/q
LIS g (DI = ISLAME T + || (D 2759185000 £ = 50 £19) 7 1M (T) | < o
§=0

Furthermore the quantities [|-[€7 , ,II*
A,B such that for all f € M#(T),

and [|-€7 , || are equivalent on M (T), there exist two positive constants

Allf1€2 SFIES poll < BIFIES

pall’ pall™

Proof of Theorem 3. We fix a dyadic decomposition of unity. Let ¢ € C§°(R) be a function such that

(1 e <1,
Wf”)'{o if |z >3

Then, ¢¢ : ¥ (x) Then, with ¢ := 1,
0(z) = do(2/2) — do(x)  and  ¢;(x) =27 ), jEN,

we have

oo
> ¢ix)=1 forall zeR.
j=0

It will be convenient to use abbreviation

fitr) = > ¢i(k)en(fe*™. (7)
k=—oc0
We find that '
Sy f=Suf= Y alf)er =
20 <|k|<2i+1
= Y (@—1(k) + di(R) + b (B))er(f)e™® =

2 <|k| <29 +1

= (Soit1 fij—1 — S2i fj—1) + (Sait1 fj — S2i fj) + (Saitr fi41 — S2i fi41)s

where we used abbreviation (7) again. Applying Theorem and generalized Minkowski inequality, we have

H(i2ﬁsq|s2j+1f s f) g (m)| < 21: H(i2j5q|52j+1fj+l S fral?) g (1) <
j=0 I=—1 ;=0
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1 &) ] l/q
<o 3 [( 2o smr) M) < callF1€ -
I=—1  j=0

The estimate of the term ||y f[M(T)|| can be done in the same manner:
[S1AME (T < (IH M (Tl + DILFIM(TI| = Csl| f|M(T)]-

This prove that Al f|ES

opall™ S FIES ol with an appropriate positive constant A. To prove

1€, p.qll < BIFIES pqlI"

we proceed similarly. Let j > 1. For brevity, we put
gj = 52j+1f — ngf.

We start with the identity

fiz) = > diR)er(fe.
9i-1<|k|<32i-1

In the strength of the system’s orthonormality eikf”:zoioo on [—m, 7], we have

cr(gj) = % /j gj(z)e” " dy = % /j ( > Cu(f)ei”>e*ikxdx = a(f).

29 <|v|<2it1
Therefore ]
fi(z) = > bi(k)en(gj—1 + g5 + gje1)e™ =
2i-1<|k|<327 -1
Z Z ¢ (k)ek(g540)e™™.
l=—1k=—o0
Hence
> 1/q
11 pall = | (D 2701556@)17)  agg(m) | =
7=0
q
H(Z?”in > aiatse) )| -

l=—1k=—00

)

Then argue by using Theorem 2 instead of Theorem 1 to the last sum, considering

M;(k) = ¢;(k); fi(k) = 27°g;(x); cu(fj) = cu(2°g;); Aj = (27,271,

)

<C- sup |l (d ) [HE (R[] - 1127 (95);1M (T, 1) | =

j=o0,1,2...

- H(Z’ Z Z 0 (k)en (272 g;10)e™™

j=0 l=—1k=—0c0

Then we get

Q=

<

H(i‘ 21: i di(k)ck(275g41)e™™

j=0 I=—1k=—o00

N
=5 (S ran]) o) -
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Remark 5. In  case ¢(r) := |B(0,7)|"?,r > 0 this goes back to Lizorkin-Triebel and in case
@(r) := |B(0,7)| A1/ 1 > 0 this theorem have been proved in [7].

To prove next theorem we add the following.

Corollary 2. [8]. Let 1 <p<oo, 1<qg<oo0, s>0 and a function ¢ € G,. Then for all
feNGp(T)UES, o (T),

Lim [y f — f|M7(T)|| = 0.
j—o0

Now we are going to reach our goal in this paper. The next theorem is basic in this paper. Instead of
considering dyadic subsequences of (Sy)n, we switch now to the sequence (f — Sn)n-.

Theorem 4. Let 1 < p,q < o0, s > 0 and a function ¢ € G,. A function f € M7 (T) belongs to & , (T) if
and only if

s # .
||f|8<p,p,q|| T
= 1/q
= ISug M)+ || (30 NC01 = Sy p17) Mg ()| < oo (8)
N=1
Furthermore the quantities ||-|E5 , |[|# and ||-|€5 , .|| are equivalent on Mg (T?), there exist two positive constants

A,B such that for all f € M$(T),
ANFIES oI < NFIES pgll < BIFIES p.qll™-

Proof of Theorem 4. By Theorem 3, it will be sufficient to compare || - [€5, [|# and || - |3
Step 1. We shall prove that

pall”

IFI1€5 p.0llF < Ll FIES p oll" (9)
with some constant C; independent of f. First, we split the sum > % _; into dyadic blocks. More exactly, we set
) oo 277111
Z NG=Vaar_ gy fa = Z Z NG=Vaa gyl <
N=1 j=0 N=27
) 2711
A S ST
j=0 N=2j

where C5 is equal to 1 if s — 1/¢ < 0 and equal to 2(s=1/9)4 otherwise. Next, we use the identities
f=5Snf=1Ff—5inf+Sunf—5Svf

and

Soiv1f —Snf = Snait (SzHlf — Sy f)'

Inserting these identities in the previous inequality and applying Theorem 1 yields
- (s—1/q) 1/a d - i(s—1/9)q07 1/ d
[(3 wemtmay — sy pio) g (rd)| < G| (30 290923 f — Sy 1) a1+
N=1 §=0

29+l _q

S i 1/q
+CQH(ZZJ(371/(M > |SN’2'j+1(S2J+1f—52jf|q> |M£&(Td)H+
Jj=0 N=2i
e’} . 2Ji+1_q /g
G| (Do VDN Sy f = S f17) Mg (T
Jj=0 N=2i
Since
> ! BSE /e d . 1/q d
H(Z?J(S* > |521+1f—s2jf|‘1) |M;"(T)HSH(ZW\SWf—syflq) M (T,
j=0 N=2i =
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it remains to estimate

H( 2if = s it) |

Obviously, as a consequence of Corollary 2, we have

M-1

f=Synf= lim Spuf—Synf= lim > Syuf—Suf=

I=j+1

= > Sunif—Suf = Surstrf— Sorsf.

I=j+1 =1

Hence it follows that

[(2501f = S 1) sz 0| <
j=0

<3 (S 21 = Sorne i) szend)| <
=1

J=0

IN
1M
[N}

7=0 =1

Since s > 0, the geometric series is convergent. This completes the proof of (9).
Step 2. We shall prove that

IF1E3 pall” < call FIES 1ol

with some constant ¢4 independent of f. This time we use the identity

Sojir f— 8o f = > alf—Snf)ett, N=271 2 -1,

27 <||kfl oo <271
which implies that

2791

[Sos+1 f — Sai f|9 = 2=G—1) Z ‘ Z ce(f — Snf)e ike| °

N=2/=1 27 <||k]| o0 <2941

Hence it follows that

(5215 - s iz -
§=0

29 -1

H(sz U Y - Swpet

N=2J 2i<|k|<2i+1

1/
) g <

271

<CSH< 23(5 1/9)a Z |f — Snf|? ) /q|M;f(11‘d) ;

where we used Theorem 1 in the last step. Since
2i(s=1/0)1 < O NG—Vaa  2i-1 < N < 2,

with some constant Cs independent of j, this yields (10).

s (ZQ(J+l)sq|S2,+J+1f Sors f]? ) |M<p ’H‘d H < ||f|5¢pq” (22715)'

(10)

Remark 6. In case o(r) := |B(0,7)|"/?,r > 0 we refer [6] and in case o(r) := |B(0,7)|"**Y/P r > 0 this

theorem have been proved in [9].
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A H. Amnnxanos, 2K.2K. Baiiryakosa, J[.T. Marun

KannbutaaraH nepuoaTel Moppu KeHicriringe @ypbe
KaTapJiapbIMeH KYIITiI KOCBIHJIBLIAY

Conrbl XKbUTmapbl Moppy TUNTI KEHICTIKTEp/l 3epTTEY YJIKEH KBI3BIFYMbLIBIK Tyaeipabl. G.Di Fazioand,
M. Ragusa xymbicTapbiaga xkoHe 1. Mizuhara xitadsirga Moppu Tumnrec KeHiCTiKTepiH gepbec TYbIHIbI-
JIBI TeHJEYIEPIiH KUl KoJgaHyIbuiapbl Kepceriiren. T. Mizuhara »xone E. Nakai yceiaran »KaJnblLiaHFaH
Moppwu kenicrikrepinme napamerp xkoHe pyHKIns enriziaren. Ocor xxymbicta JInzopkuua-Tpubesas kKeHicTi-
ri Moppu KenicTikreri mkaJjana xacajara. AsgbivMer, Moppu MeH »Kainblaanran Moppu KeHicTiKTepiHil
aHbIKTaMachl Oeplyiai. Opi Kapail ['miabbepr Typirenaipyinin menenresairi kepcerinai. Byir 6i3aiy en 6a-
cThI KypasbiMbi3. [lepuoarer emec Moppu kenicririageri I'misbepT TypsieHAipyiHiH IIeHETEHAITIH KOTIaHA
OTBIPBII, TEpUoAThI Moppu KeHicTirine eTkizemis. ['uibbepT Typienaipyinin menenreniri @ypoe karapbi-
HBIH, IepOeC KOCHIHIBICHIHBIH, OITEPATOP HOPMACHIHBIH 6ipKAJIBINITHI GaraiaybiH Oimaipeni. BekTopsbr Typaeri
®ypbe MyIBTUILTUKATOPBI 3epTTeai. OcbiHbIH Herizinae 6enrini Pucc TeopemMachbiHBIH BEKTOPIBI TYPI aJIbl-
Hazpl. Myana 6i3 JIusopkun-Tpubess kenicrikrepinin xammbutanran Moppu kenicriringericin xapacTbi-
pambi3. 2KyMbicThiH, coHbIHIa Pypbe KaTapbIHBIH J1epOec KOCHIHIBICHIHBIH AbIPMACHIH KOJIJaHa OTBIPHII,
xasmbutanran Tpubens-JInzopkua-Moppn kenicririage & , (1) KBISBIKTBI CHITATTAMACH! AJLIHFAH YKOHE

¥,p,q
Moppu kenicriringe Pypbe KaTapbIHbIH, AITPOKCUMAIUSIAY Bl KOPCETIJINEH.

Kiam cesdep: Moppu KeHicTiri, xKannbianrad Moppu KeHICTIri, KaTaH KOCBIH/IbLIAY, PUCC TeOpEMACHIHBIH,
BEKTOPJIBI TYPi.
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A H. Amumnxanos, 2K.2K. Baiiryakosa, [.T. Marun

CunbHast cymMMuUpPyeMocTh psa/ioB Pypbe B 0000IIIeHHBIX
IepuoAndecKnX nmpocrpaHcTeax Moppu

B mocnmenmue rompr 60sbiioe BHUMAHHE YIETsJIOCh nu3ydeHmio mpocrpancrs tuma Moppu. B pabortax
G.Di Fazioand, M. Ragusa u B kaure T. Mizuhara maHo MHOXKECTBO NPUJIOKEHUN yPABHEHUN B YaCTHBIX
MPOU3BOIHBIX B TpocTpancTBax Moppu u mpocrpancTBax JIuzopkuna-Tpubessi. Pazpaborana Teopust 0606-
MEHHBIX pocTpancTB Tpubens-Jluzopkuna-Moppu. O606mmiennbie mpocTpancTBa MoppH, IpeJiozKeHHbIe
T. Mizuhara n E.Nakai, cnabxxenbl napamerpoM u ¢pyHknueit. CHagasa JauM OnpeaejeHue IIPOCTPAHCTB
Moppu u 06001eHHbIX TpocTpancTB Moppu. 3aTeM HaTOMHUM OTPAHUYEHHOCTDH TMEPUOINIECKOTO MPeod-
pasoBanus ['miibbepra. D10 Gy/eT HAIIUM OCHOBHBIM WHCTPYMEHTOM JJjis BCEX, UTO cJieiyer. Bosee min
MeHee 3JIeMEHTaPHBIM 00Pa30M MbI IIEPEHOCHM H3BECTHBIE YTBEPK/IEHUS OTPAHUYEHHOCTH JJIsl IIPe0OPa30Ba-
wust ['mnbbepra Ha nmpoctpancTBa Moppu, onpesenenubie Ha R Ha mepmoandeckux mpocrpancrsax Moppu.
OrpannueHHOCTH NpeobpaszoBanusa ['uabbepra MoJpasyMeBaeT PABHOMEPHBIE OLEHKHU OIEPATOPHBIX HOPM
qacTUYHON cymMbl psijia Pypbe. 3aTreM Mbl n3ydaeM BEKTOPHO3Ha4YHYIO TeopeMy Dypbe-MHOXKUTEJs JJIst
QKX MYJIBTUILIMKATOPOB. BIIOCIENCTBIN MBI M3y9YaeM BEKTOPHO3HAYHYIO BEPCHUIO 3HAMEHUTOI Teope-
Mbl Pucca. 3mech Mbl KOHIIEHTpUpYeMCsi Ha TpejacraBieHuax Jluzopkuna. B mHacrosmeit pabore n3ydeHb
npocTtpancTBa JIuzopkuna-Tpubesist Ha mKaje 0600IIEHHOTO TIEPUOIUIECKOT0 mpocTpancTBa Moppu. Hako-
HEIl, MBI ITOJTy9UJIM MHTEPECHYIO XapaKTepUCTUKy npocrpancrsa £ ,, ,(T'), HCnoap3yst pa3HOCTH YaCTUIHBIX

©,P:q
cyMM psiia Pypbe u CaeaCTBUE /I CHIIBHOM anmpokcuMarun psaos Pypoe B mpoctpancTsax Moppu.

Kmoueswie caosa: nipocrpancTa Moppu, ob6o0IeHHbIe TTpocTpaHcTBa MoppH, CHIbHAsg CYMMHPYEMOCTb,
BEKTOPHO-3HAYHAsI BEPCHUsI TeopeMbl Pucca.
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Waves of elastic stresses in the doubly-connected domain

In this paper, we consider a nonstationary mixed problem of impact of a rigid plate on the face surface
of the base body containing inside itself a central foreign inclusion. Formulated in terms of stresses and
velocities of displacements, the mixed problem is modeled numerically by means of an explicit difference
scheme of a through count, based on the method of the spatial characteristics. The results of a change in
the wave fields in a doubly connected domain are presented in the form of graphs. The analysis of numerical
information made it possible to investigate the dynamic effects of stress concentration in the neighborhood
of the contact of a doubly-connected domain, as well as near the corner points of a foreign inclusion.

Keywords: elastic, wave process, stress, speed, foreign inclusion, numerical solution, boundary condition.

The leading factor determining the efficiency of modern engineering structures is their layered heterogeneous
structure. In connection with this, the study of dynamic wave processes in deformable multiply connected
media in order to determine the nature of possible damage has, in addition to purely scientific interest, an
important applied value. In general, the number of works devoted to dynamic problems, taking into account
a number of weakening factors, is very small, they do not consider all aspects of their performance under the
conditions of nonstationary external loads [1-4]. However, the interest in these problems, primarily due to the
importance of solving complex practical problems, is great, and further improvement of numerical methods in
various modifications with the use of increasingly sophisticated computer technology should lead to a substantial
development of this direction.

Statement of the problem. A strip with a rectangular cross-section of finite sizes, consisting of a main body
and a central rectangular foreign inclusion, occupies a region in the Cartesian coordinate system z10xo (Fig. 1).
The physical and mechanical properties of the body (i = 1) and the foreign inclusion (i = 2) are characterized
by the density of the material p;, the velocities of the longitudinal and transverse elastic waves a;, b;.
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Figure 1. Study area

18 Becrnuk KaparanauHckoro yHuBepcuTeTa



Waves of elastic stresses in the doubly-connected domain

At the initial time ¢ = 0, an absolute rigid body with a displacement velocity vgl) = f(¢t) and vgl) = ( strikes
the outer boundary x1 = 0, |x2| < of the principal body in a static equilibrium state of the doubly-connected
domain. The problem is to determine within the doubly-connected domain 0 < z1 < ¢, |z2| < L the stress
and displacement velocity fields caused by fronts of incident and repeatedly reflected, refractive and diffracted
elastic waves at time moments t > 0.

A mathematical model of the wave process at interior points of a doubly-connected domain is a linear system
of dynamical equations of hyperbolic type containing as unknowns the dimensionless stresses p(, (9, 7(9) | speed
of displacements vy, v [5]:

piy o =Y —d? =7 =0 py o) -G+ -7 =0,
1 i i i
pi - (a2 w)py—ﬁﬁ—@ézQ
1 7 7 7
R R 8
1 7 7 7
where 0 " 0
a; i _ P .
az:aa bz aa 7 aa (2_172)

Here vgi)(scl,x%t), ’Uéi)(l'l,l'gﬂf) are the components of the displacement velocity vector in the direction
of the coordinate axes x7 and xo. The transition to dimensionless variables was carried out according to the

formulas [5]:
0.0 0 0

Qa, X v
k k
t=—" xp=-2, vy=— (k=1,2);
bo B b07 agn ( 7)7
0 0 0 0 0
011t 0y 011 — 0y _ Ojg 9
_2 0 02> q_2 0 02> - 0 02 ()
“Pm Ay “Pm A, Pm * Om

The upper index «0» is given to the dimensional values; 8" is the characteristic size; the index i(i = 1,2)
corresponds to the main body if ¢ = 1, and to a foreign inclusion if ¢ = 2; the index m refers to a material in
which the velocity of propagation of longitudinal elastic waves is a maximum (a%, = max; al); 09,03, 0%, are
the components of the stress tensor. We assume that the velocity of propagation of longitudinal elastic waves
in the main body is the greatest.

To determine the wave field in a doubly-connected domain caused by a dynamic action on the face frontier
x1 = 0, |x2| < L, of the main body, it is necessary to integrate for ¢ > 0 the hyperbolic system of differential

equations (1) with zero initial data
o) = o)) =p® = ¢ =70 =0 (i=1,2) (3)

and the following boundary conditions for ¢ > 0:

o= p, o =0 for e =0, |ml <L @
p—gM =0, M =0 for a9=1L, 0< x| < (5)
uil) =0, Uél) =0 for a1 =4, |xo| <L, (6)

pD g =@ L @ LW @ 0 @m0 (7)

on contact borders PG and QS and

PV — g = p@ _ @ ) _ @ D@0 @) (8)

on contact borders PQ and GS.
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Here f(t) is a given function that monotonically increases to the maximum value f(tg), and then decreases
monotonically. The zero initial conditions (3) mean that a doubly connected region is at rest up to the time
t <0 . The boundary condition (4) corresponds to the specification of the normal component of the particles’
velocity and to the absence of a tangential component of the particles’ velocity on the boundary x1 = 0, |za| < L
of the base body for all instants of time. The boundary conditions (5) mean that the lateral surfaces |z3| = L
of the base body are free from stresses for all instants of time. The boundary condition (6) corresponds to the
condition of rigid fixation of the points of the surface |z2| = £ of the base body.

The boundary conditions (7) and (8) at the contact boundaries of the main body and the foreign inclusion
correspond to the usual conditions of rigid contact. The conditions connecting the stresses at the contact
boundaries are the formulation of Newton’s third law, and the remaining ones that connect the particle velocities
ensure the continuity of the doubly-connected domain.

At the accepted loading in the body it is appeared a complex process of propagation of longitudinal waves
in the directions of the axes x1, z2 and propagation of transverse waves. After a while (depending on the size
and speed of propagation of disturbances) they begin to interfere. To determine the stresses and velocities of
particles in a doubly connected region, it is necessary to integrate the hyperbolic system of differential equations
(1) for given zero and boundary conditions (3)—(8).

The solution of the system of equations (1) for initial (3) and boundary (4)—(8) conditions is found by the
method of spatial characteristics at the nodal points, into which the entire doubly-connected region is divided [6].
The peculiarity of the considered body is that on the contact boundaries of the doubly connected domain, as
well as at the inner corner points (P, G, @, S) of foreign inclusion, the «smoothness» of the functions «usual»
for dynamic problems is violated. In general, as we know, there were no methods for solving the tasks with
such singularities. In addition to the known relations [6], the calculated relations on the contact boundaries
of the doubly-connected domain and also at the internal corner points (P, G, @, S) of the foreign inclusion are
obtained [5].

The developed technique was numerically realized for a rectangular strip (0 < zq < 14-h), |z2| < 12-h with
central foreign inclusion (4-h < 21 < 10-h), |x2] < 4-h for hard coupling of dissimilar materials. The material
of the main body is steel (i = 1, p{ = 7.9-10% kg / m 3, a¥ = 5817 m/sec, b = 3109 m/sec), and the foreign
inclusion - copper (i = 2, pY = 8.9-10% kg/m 3, a§ = 4557 m/sec, b3 = 2131 m/s). The program, written in the
Fortran language, allows us to calculate a sufficiently wide class of dynamic problems describing unsteady wave
processes in multiply connected isotropic media. The wavefield parameters were calculated for a band with a
central foreign inclusion at the following values of the initial data: £ = 0.7, L = 0.6,h = Az; = Axy = 0.05,
k = At =0.025,f(t) = t-e* for t > 0 and for f(t) = 0. The time step k is chosen in accordance with the

necessary stability conditions
k) 7 7
— | <nmin ,
<h> {72+1 (272—1)}

of the explicit finite-difference calculation scheme used. For comparison, the calculation was carried out for a
single-connected steel strip without foreign inclusion with the same boundary conditions.

The results of calculations are presented in the form of graphs of the variation of various functions as a
function of time at fixed points and the distribution of these same functions wih respect to the coordinate
for certain fixed time instants. An analysis of the obtained results reveals certain features of the process of
propagation of perturbations in a doubly connected medium. Because of the symmetry of the location of the

foreign inclusion and the nature of the loading, the normal stresses p(¥, ¢(¥) and the longitudinal velocity vgi)

are symmetric, and the tangent stress 7(¥) and the transverse velocity véi) are antisymmetric with respect to
the axis o = 0. In this connection, Figures 2-4 show the results of calculations only for positive values of
ZTo, (.TQ Z 0) .

The calculated oscillograms of the transverse vél) particle velocity in the time interval ¢ € [0,100 - k] at
nine fixed observation points 1(zy = 2-h, x93 = 2-h), 2(x1 =2 -h, 29 = 10-h), 3(x; = 7-h, 29 = 2+ h),
4(.1‘1 = 7h, Ty = 10'h), 5(1‘1 = 12-h, Ty = 2'h), 6(%‘1 = 12'h, Ty = 10'h), 7($1 = O, Ty = 0),
8(xy =7T-h, xo =4-h),9(x1 =4 -h, x5 = 2-h) are represented by the curves in Figure 2. The solid curves with
round points indicate the velocities displacements arising in a simply connected strip without foreign inclusion
with the same boundary conditions. The appearance time of the transverse component of the velocity vél) and its
magnitude are completely determined by the transverse-wave fronts. The transverse component of the velocity

véi) at point 1 is small. Therefore, at the point under consideration, near the symmetry axis o2 = 0, we can
assume that the condition for a quasi-one-dimensional motion is satisfied.
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The displacement speed vg), generated by the diffraction waves from the angle R(zy = 0, x5 = 0.6), appears
at point 2 before (¢t ~ 5- k) than at the point 1 (¢ ~ 24-k). At ¢t ~ 13-k point 4 is already covered by additional
transverse motion due to arrival of diffracted waves emanating from the angle R and from the free surface
RK (x5 = 0.6) of the base body. From the form of the velocity of displacement vél) at the point 3(t =~ 15- k) (for
the simply connected (curve 3 — @ — —) and doubly connected (curve 3 - -) regions), the effect of the diffraction
of the angle G of a foreign inclusion is well traced. The appearance of the transverse velocity vél) at point 5 for
(t = 23 - k) is due to the diffraction of transverse waves from the angle S of foreign inclusion.

At a distance of 10 - h from the axis x5 = 0 (points 2, 4, 6), the impact of the diffraction fronts is more
significant than their influence at points 1, 3, 5 located near the axis of symmetry. The motion polarized in
the transverse direction has less propagation velocity than the velocity of the displacement of the longitudinal
wave. The diagrams for the transverse velocity of displacements vg) are characterized by the presence of a set
of local extrema, which is caused by the interaction of multiply reflected, refracted and diffracted waves. And
this, in turn, determines the pulsating nature of the movement in the transverse direction.

i)
Jl."i.-":4

0.160 N

0.020

ik

-0.080

20 40 1] i 100
Figure 2. Oscillogram of transverse velocities véi)
of particles at nine fixed observation points

Comparison of kinematic parameters of motion at six points of a doubly connected medium with correspond-
ing values in a simply connected medium shows that the influence of the material of foreign inclusion with
acoustic stiffness, which is twice less than the stiffness of the material of the main body, significantly affects the
magnitude and character of the change in the velocity vector vél) of particles in time at points 1, 3 , 5. As well
as the presence of foreign inclusion significantly affects the early appearance of the transverse component of the
displacement velocity vél) at points 3 and 5.

Figure 3 shows the isolines of normal stresses p* + ¢(¥) = const in the plane x1/h - x2/h for the time
(t = 50 - k). Sequential action of plane wave fronts, their interaction with reflected, refracted and diffracted
waves leads to a dynamic concentration of compressive stresses near the corner points (G.S) of foreign inclusion
in which they reach local maxima. At this time, a relatively high concentration is formed around the corner point
G. The degree of stress concentration around the corner points varies with time. The maximum concentration
(t = 50 - k) is observed near the corner points R, K of the strip in the vicinity of which the stress field has the
largest gradients.

In conditions of the existence of internal points with maximum stresses, it becomes important to ensure the
compatibility of the deformation of the materials of the foreign inclusion and the main body.

The distribution of the tangential stress 7(9 in 25/h in the sections z; = 2-h(1), z; = 4- h(2),
21 =T7-h(3), x1 =10-h(4), 1 = 12-h(5), is shown in Figure 3 for the time moment (¢ ~ 50- k). The maximum
values of the stresses in sections 1 and 5 arise in the vicinity.
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Figure 3. Isolines of normal stresses p'¥ + ¢(V = const at the time ¢t = 50 - k

The maximum values of the stresses in sections 1 and 5 arise in the vicinity of free surface RK of the band.
In the neighborhood of the corner points G, .S of a foreign inclusion located in sections 2, 4, significant changes
in the behavior of tangential stresses are noted. The presence of sections of the sharp changes in 7" is due to
the piecewise heterogeneity of the material properties and the additional wave diffraction caused by them. At
the moment considered, the effect of diffraction waves emanating from the corner points of a foreign inclusion
on the nature of the change of the tangent stresses 7() is weaker in the remaining sections along the x5 /h axis,
but over time it becomes more noticeable (Fig. 4).

Jkrfij
0,020 L saeemmtiy
t=50k -—\2& 1
0.040 / ™

</

1 x3th

<

-0.040

-0.080 e

12

Figure 4. Change of tangent stress 7(?) with respect to /b in cross-sections
T = Qh(l), Tr1 = 4h(2), T = 7h(3), xr1 = 10h(4), T = 12h(5)
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Waves of elastic stresses in the doubly-connected domain

As a result of the studies carried out, it can be concluded that the developed calculation technique for
nonstationary dynamic problems with a centrally located foreign inclusion of a rectangular shape quite correctly
conveys the main regularities and features of the ongoing wave processes and makes it possible to study the
stress-strain states in simply connected and multiply connected media with a complex system of inhomogeneities
of the considered types.
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ExkibGaitstaMabl oOJIbICTarbl cepHIMAl KEPHEYJITIK TOJKBIHIAP

Maxkanaga oprasblk imki 6esiri 6acka 6erme MaTepuaJMeH TOJTBHIPBIIFAH HETI3rl JeHEHIH CBIPTKBI OeT
JKarblHAH KATTHI IIITAMIIIIEH YPFAH KE3JErl CTAIMOHAD €MeC apaJiac ecell KapacToipbuiran. Kepueysep MeH
KBLTJIaMJIBIKTap TEPMUHIH/E KOWBIIFAH apaJiac ecell aKbIH ailbIPBIM/IBIK, CXEMa, aTall alTKAH/IA, CAHJIBIK
KEHICTIKTIK cunarraMaJiap djiciMen memiijired. ExibaiisiaMabl o0JIbICTa MTaiiga 60JIaTHIH TOJIKBIHIBIK, OPICTIH
e3repy mportieci rpadukrep TypiHze 6epiiaren. AJbIHFAH CAHILIK, HOTHXKEJIEP/Il Tajaay OapbIChIHIA eKibaii-
JIaMJIbI OOJIBICTBIH, TYHICKEH »KaHacy HYKTeJiepi MeH Oerje JieHeHiH OYPBIIITHIK HYKTeJIepiHiH MaHalbIHIA
KepHeyJIep KOHIIEHTPAIMSICHIHBIH, TUHAMUAKAJIBIK, 9 (EKTICIH 3epTTeyre MyMKIHIIK 6ep/Ii.

Kiam cesdep: cepmiMIiiK, TOJKBIHABIK YP/IIC, KEPHEYIIK, 6erje /1eHi, CAaHIbIK IIeIIiM.

H.Ammp6aes, 2K. Ammup6baera, T.Cynrantek, M.I1lomanbaeBa

Bouabl yripyrux HampskeHuii B JBYXCBA3HOI obJsiacTu

B pabore paccmorpena HecranpoHapHasi CMeIIaHHAas 3ajada o0 yZape »KeCTKOro IITaMIIa IO JIUIEBON I10-
BEPXHOCTU OCHOBHOT'O TeJIa, COIEPIKAIIETr0 BHYTPH Ce0sl MEHTPAIBFHOE HHOPOIHOe BKItoUeHne. ChopMyaupo-
BaHHAsl B TEPMUHAX HAIIPSI?)KEHUI U CKOPOCTEl NepeMeIleHnii CMelllaHHast 3a/1a9a MOJIEJIUPYeTCsl YUCIEHHO
C MOMOIIBIO SIBHON PA3HOCTHOI CXEeMBI CKBO3HOTO CYETa, OCHOBAHHON HA MeETOJle NMPOCTPAHCTBEHHBIX Xa-
pakTepucTuk. B Bume rpaduKoB mpeacTaBIeHbI Pe3yJIbTATH U3MEHEHUsI BOJIHOBBIX TOJIEH B JIBYXCBS3HOMN
obstactr. AHaau3 YKMCI0BOI MHPOPMAIUU TIO3BOJINII UCCAEN0BATH AUHAMUYIECKUE 3PPEKTH KOHIEHTPAIUN
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HaHpH}KeHI/Iﬁ B OKPECTHOCTHU KOHTAaKTa ,ZLByXCB?LBHOI‘/JI O6J'IaCTI/I7 a TakyKe BOJIM3U YIVIOBBIX TOY€K MHOPOIHOTO
BKJIIOYCHUA.

Karouesvie crosa: yupyroctb, BOJIHOBOI IIPOIIECC, HAIPS?KEHIE, CKOPOCTH, NHOPO/IHOE BKJIIOYEHNE, IHCTICH-
HOe pellleHre, I'PAHUYHOE YCJIOBUE.
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On the unique solvability of a family of multipoint-integral
boundary value problems for a third order differential equation

A family multipoint-integral boundary value problems for a third order differential equation with variable
coefficients is considered. The questions of a existence unique solution of the considered problem and ways of
its construction are investigated. The family multipoint-integral boundary value problems for the differential
equation of third order with variable coefficients is reduced to a family multipoint-integral boundary value
problems for a system of three differential equations by introducing new functions. For solve of resulting
family of multipoint-integral boundary value problems is applied a parametrization method. An algorithms
of finding the approximate solution to the family multipoint-integral boundary value problems for the
system of three differential equations are proposed and their convergence is proved. The conditions of
the unique solvability of the family multipoint-integral boundary value problems for the system of three
differential equations are obtained in the terms of initial data. The results also formulated relative to the
original of the family multipoint-integral boundary value problems for the differential equation of third
order with variable coefficients.

Keywords: multipoint-integral boundary value problem, third order differential equations, parameter, family
of multipoint-integral boundary value problems, system of differential equations, algorithm, unique solva-
bility.

Introduction

Mathematical modeling of various processes in physics, chemistry, biology, technology, ecology, economics
and others are leaded to multipoint-integral boundary value problems for differential equations of higher orders
with variable coefficients and parameters [1-8]. The problems of solvability of multipoint-integral boundary
value problems remain important for applications because they are directly connected with the theory of splines
and interpolations and used in the theory of multi-support beams. Despite the presence of numerous works,
general statements of multipoint-integral problems for ordinary differential equations with parameters remain
poorly studied up to now. The method of Green functions proves to be the main method for the investigation
and solution of family multipoint-integral boundary value problems. This method reflects the specific features
of the analyzed boundary value problems. However, the problem of construction of the Green function is quite
complicated due to the complex nature of the investigated object and the absence of the required information
about its properties.

One of possible ways of overcoming these difficulties is connected with the development of constructive
methods aimed at the investigation and solving of family multipoint-integral boundary value problems for
higher order differential equations without using the fundamental matrix and the Green function. Thus, in [9],
a parametrization method was proposed for the investigation and solving of two-point boundary value problems
for ordinary differential equations. Parallel with construction of the coefficient criteria for the unique solvability
of the investigated problem, parametrization method enables one to propose algorithms for finding the solution
of this problem. In [10, 11], the parametrization method was applied to multipoint boundary value problem
for ordinary differential equations. A family of multipoint boundary value problems for system of differential
equations and multipoint nonlocal problem for system of hyperbolic equations were considered in [12, 13].

In the present paper we study of a questions the existence and uniqueness of solutions to family of multipoint-
integral boundary value problems for the third-order differential equations and the methods of finding its
approximate solutions. For these purposes, we are applied parametrization method [9] for solve of this problem.

We consider the family multipoint-integral boundary value problems for the third-order differential equation

03z 0%z 0z

a2 Al(t71‘)7 + AQ(t71') ot

8752 + Ag(t,LE)Z + f(t"r)7 te (O7T)’ T E [va]; (1)
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S {an@ P | g @ P20 o e )+

— ot? ot
+/T Ki(r,2) a(; D) | Koo (r,2) ‘%E,;T’ %y Kys(r,2)a(r, o) fdr =di(@), @ eo.w) (2)
g
> foual) P 4 o) P s atoret
+ /T{Kzl(T,x)az‘;(y + Koo, x)aza—(:) + Kag(7,2)2(7, ) fdr = da(a); (3)
0
> foun() 2 4 o) ) s atoretm
+ /T {Ka(r x)% + Kap(r,2) az(aTT’ ) 4 Kas(r,2)(r, ©) pdr = ds (@), 4)
0

Here z(t, x) is unknown function, the functions Ag(¢,x), f(¢, ) are continuous on Q = [0, 7] x [0,w], k = 1,2, 3,
a;;(z), Bij(x), vij(x), dj(z) are continuous functions on [0,w], the functions K;(t,z) are continuous on
Q i=0m,j=1,2,3,0=tg<t1 <to<..<tpm1<tm=T.

Let C(Q, R) be a space of continuous functions z : @ — R on Q with norm [[ullp = (m;ax9|z(t , )]
)€
The function =z(t,x) € C(, R), that has partial derivatives W e C(,R), 822&21) € C(,R),

% € C(, R) is called a solution to family of problems (1)—(4) if it satisfies third-order differential equation
(1) for all (¢, z) € ©Q and meets the boundary conditions (2), (3) and (4) for all = € [0, w].

For fixed z € [0,w] problem (1)-(4) is a linear multipoint-integral boundary value problem for the third
order ordinary differential equations. Suppose a variable z is changed on [0,w]; then we obtain a family of
multipoint-integral boundary value problems for ordinary differential equations.

We will investigate the existence of a unique solution to the family of multipoint-integral boundary value
problems for the third-order differential equation (1)—(4). We use parametrization method for solve of the family
problems (1)—(4) and construct of its approximate solutions. An algorithms of finding the approximate solution
to the family of multipoint-integral boundary value problems for the system of three differential equations are
constructed and their convergence is proved. The conditions of the unique solvability of the family of multipoint-
integral boundary value problems for the system of three differential equations are established in the terms of
initial data. The results also formulated relative to the original of the family multipoint-integral boundary
value problems for the differential equation of third order with variable coefficients. The obtained results are
applied to a family of multi-point boundary value problems for the third order ordinary differential equation.
The efficiency of the proposed approach for solve of the multi-point boundary value problems for the third
order differential equations that arise in applications. The results can also be used in the study and solve of a
nonlinear multipoint-integral boundary value problems for the third order differential equations. Some types of
problems (1)—(4) were studied in [1-8]. For fixed x and K;;(t,x) =0, = 1,3, j = 1, 3, the problem (1)-(4) were
considered in [14]. At fixed z the problem (1)—(4) were investigated in [15].

1 Scheme of the method

We introduce the following notations

0 1 0 0 dy(z)

At,z) = 0 0 1 , F(t,z) = 0 , d(z) = da(x) |;
Az(t,z) As(t,z) Aqi(t,x) ft,x) ds(x)
Yir(x)  Bi(r) () Kis(t,x) Kpot,z) Kii(t,x)
MI(Z‘) = ")/22(1') 612(LE) Oéig(x) ; K(t,l‘) = Kgg(t,l') Kgg(t,x) KQl(t,l')
viz(z) Piz(w)  auz(z) Kas(t,x) Kso(t,z) Kai(t,x)
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1 is identity matrix of dimension 3.
Problem (1)—(4) can be write in the vector-matrix form

Ju
r =A(t,x)u+ F(t, x); (5)
m T
ZMi(sc)u(ti,sc) + /K(T, x)u(r, z)dr = d(x), (6)
=0 0
where u(t, z) = (u(t, z),uz(t, ), us(t, ), ui(t,z) = z(t,x), us(t,z) = azgft’w), ug(t, ) = 622&2’”.

A continuously differentiable function u : Q — R? is called a solution of the family multipoint-integral
boundary value problems (5), (6) if it satisfies system (5) for all (¢,z) € Q and condition (6) for all « € [0,w].
By p(x), we denote the value of the function u(t, z) for ¢ = tg.

We perform the change u(t, z) = u(t,x) + p(z) in the problem (5), (6).

Then problem (5), (6) is reduced to the following equivalent problem with unknown functional para-

meter pu(x):

?;t‘ A(t, )i+ A(t,2)p(x) + F(t,z); (7)
u(to,x) = 0, x € [0,w]; (8)
m m T
> Mi(@)u(x) + Y M(2)u(ti,z) + /Km T:L'dT+/KTIdTu ) =d(z), zel0,w. (9)
1=0 =1 0

A pair (u(t,z),pu(x)) is called a solution to family of problems with parameter (7)—(9) if the function u(¢,x)
is continuous and continuously differentiable by ¢ on 2, satisfies of the system (7) for all (¢,2) € €, initial
condition (8) and multipoint-integral condition (8) for all x € [0, w].

Problems (5)—(6) and (7)—(9) are equivalent. If a vector function w(t,z) is a solution to family of
multipoint-integral problems (5), (6), then a pair (u(t, x), u(x)), where u(t, z) = u(t, ©)—u(to, x), u(x) = u(to, x),
be a solution to family of problems with functional parameter (7)—(9). And conversely, if a pair (u* (¢, x), u*(x))
is a solution to family of problems with functional parameter (7)-(9), then a vector function
u*(t,x) = u*(t,z) + p*(x) be a solution to original family of multipoint-integral problems (5), (6). At fixed u(z)
the problem (7), (8) is a family of Cauchy problems for system of three differential equations and the relation
(9) is connected a values of function u(t, z) with unknown parameter p(z).

A solution of the family of Cauchy problems (7), (8) is equivalent to a family of Volterra integral equations

second kind ,

u(t,z) = /A(T, x)u(r, z)dr + /A(T,m)dTu(:c) + /F(T,:zr)dT, (t,x) € Q. (10)
0 0 0

Substituting the right-hand side of the integral equation (10) instead of the function @(r,z) at ¢ = 7 and
repeating the process vth time (v =1,2,3,...), we get

U(t,z) = D, (t,2)u(x) + Gy (t,z,0) + F(t,z), (L) € Q, (11)
where

T

A(T,.%‘)/A(Tl,x)dTldT—F...—l—
0

D,(t,x) = /A(T,]J)dT—l—

+O/A(T z)

o (t,x, ) /A /A T, T / A(ry, x)u(r,, x)dr,dr,—1...d1dT;

o\ﬂ

A(my, ) /ATV, Yd1,dTy_1...dTdT;

St~
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T

ﬁy(t,$>:/F(T7$)dT+ A(T,a:)/ (m,z)dmdr + ..+
0 0

o—_ .

t T Tv—1

+/A(T,£C)/A(T1,J})... / F(1,,x)dr,dry_1...dT dT.
0 0 0

From the representation (11) we determine the values of function u(t,z) for ¢t = t;, i = 1I,m, t = 7 and
substitute them into the appropriate expression (9). Then, we obtain

m

{Mo(x) + Z M;(z)[I + D, (t;,x)] + /K(T, x)[I + D,(r, x)]dr] Z M;(z)F, (t;,z)—

i=1

/KTQ: Tx)dr—z ()G (t, @, w) — /KTxG(Txu)dT (12)
0

The relation (12) is a linear system of three functional equations w1th respect to parameter p(z).
Introduce the notation Q, (T, z) = My(x) + Z M;(z)[I + D, (t;,x)] —|—fK 7,2)[I + D, (7, z)]dr. If for some

v € N the (3 x 3) matrix @, (T, x) is invertible for all x € [0,w], then at ﬁxed values u the functional parameter
w(x) is uniquely determined from system (12). So, for finding a solution to family of problems (7)—(9) we have
a closed system of equations (10) and (12).

2 Algorithm and main result

If the function u(t, ) is known, then parameter p(x) can be found from the system of functional equations
(12). Conversely, if parameter u(z) is known, then function @(¢,z) can be found from the family of Cauchy
problem for system of differential equations (7), (8). Since neither (¢, z) nor u(x) are known, we use the iterative
method and find the solution of family problems with parameter (7)—(9) in the form of a pair (@*(¢,x), u*(z))
as the limit of a sequence (u(®)(t, z), u®) (x)), k = 0,1,2, ..., determined according to the following algorithm:

Step 0. Assume that, for chosen v € N the matrix Q,,( z) : R* — R3 is invertible for all z € [0,w]. We use
the initial condition (8). We determine the initial approximatlon in the parameter () (x) from the system of

functional equations Q, (T, x)u(z) = d(z) — Z M;(z)F,(t;, ) for all z € [0,w).

We solve the family of Cauchy problems (7), (8) for pu(x) = p®(x) and find of function @ (¢,z) for all
(t,x) € Q.

Step 1. Substituting the obtained function u(%) (¢, ) for u(t, ), from the system of functional equations (12),
we obtain p(M(x) for all 2 € [0,w]. Further, we solve the family of Cauchy problems (7), (8) for u(z) = u™ (z)
and find of function u) (¢, z) for all (t,z) € Q.

And so on.
Step k. Substituting the obtained function u*~1) (¢, z) for w(t,z), from the system of functional equations
(12), we get u®)(z) for all 2 € [0,w]. Solving the family of Cauchy problems (7), (8) for u(z) = u(M)(x), we find

a®) (t,z) for all (t,2) € Q, k=0,1,2,....
Introduce a notations

a(w) = max [|A(t )] = max(1, mae {Av(E2)] + [Ax(t2)| + |Aa(t. )] )

k(z) = max ||K(t,z)|| = max max{|K11(t )| + | Ko (t, )| + | Kis(t, x)|}.
t€[0,T] te[0,T] =1,3

The following theorem establishes sufficient conditions for the applicability and convergence of the algorithm
proposed above, which also guarantee the unique solvability of problem (5), (6).

Theorem 1. Let for some v € N the matriz Q,(T,z) : R* — R3 is invertible for all x € [0,w] and let the
following inequalities be true:

a) [[Qu(T, )] 7| < nu(T, x), where n,(T,x) is a positive continuous on x € [0,w] function;

b) ¢ (T,z) =n,(T,x)- (E [| M (x )||+/<V(x)T) 'mﬂ[ea(x)tf‘—l— > [a(ﬁ%} < x < 1, where x is a constant.

i=1,m 7j=1
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Then family of multipoint-integral boundary value problems (5), (6) has a unique solution.

The proof of theorem 1 is similar of proof theorem 1.

By using the parametrization method, we split the procedure of determination of unknown functions into
two part:

1) determination of the unknown function (¢, z) from the family of Cauchy problems for system of three
partial differential equations (7), (8);

2) determination of the introduced parameter p(z) from the system of functional equations (12).

Taking into account the notations and the equivalent transition to problem (5), (6), we have.

Theorem 2. Let for some v € N the matriz Q,(T,z) : R®> — R is invertible for all z € [0,w] and let the
inequalities a), b) of Theorem 1 be true.

Then family of multipoint-integral boundary value problems for the third-order differential equation (1)-(4)
has a unique solution.

Ezample. We consider the family of boundary value problems [8]:

% =p(t,x)z+ f(t,x)+r,  tE(a,b), z€][0,1]; a3
z(a,z) =a, x€]0,1]; »
3Z(aat, 28 B, we01]; (15)
aZ(abfj r) _ bzl o

Assume that the functions f(t,z) and p(t, ) are given, and p(t,x) = 0 for ¢t € [a,c) U (d,b], a<c<d<b,
and z € [0, 1], the parameter r, «, 81, and S are constants.
For this problem

01 0 0
Alt,z)=1 0 0 1 , F(t,z) = 0 ;
0 0 p(t=) ft2)+r
100 00 0 00 0 i o
Mo(z)=10 1 0 |, Mi(z)=( 0 0 0 |, K{,z)y=[ 0 0 0 |, dlx)=| 5/ |;
00 0 01 0 00 0 Ba
t t T
D,(a,t,z) :/A(T,x)dTJr/A(T,x)/A(Tl,x)dTldTJr...Jr

t

T Ty—1
+/A(T,$)/A(T17[L')... / A(ry,x)drydry—q...dmdr, v=1,2, ..,
a a

a

o(z) = max(l,tren[a)g |p(t,x)|).

s

Theorem, 3. Let for some v € N the (3 x 3) matriz Q,(a,b,z) = My(z) + My (z)[I + D, (a,b,z) is invertible
for all x € [0,1] and let the following inequalities be true:

a) |[[Qu(a,b, )] 7| < 7,(a,b,z), where 7, (a,b,x) is a positive continuous on [0, 1] function;

b) G(ab,2) = i, (a,b,z) - [P@0-0) 1 — 57 BEGal [ <y <,

j=1

Then family of two-point boundary value problems for the third-order differential equation (13)-(16) has a
unique solution. B

Note that in the repeated integrals of the D, (a,t,z) the element of the matrix A(¢,z) is function p(t, z)
and it will be calculated on the interval [c, d] x [0, 1].

Let p(t,x) =1 for t € [¢,d] x [0,1], p(t,x) =0 for ¢ € [a,c) U (d,b], x € [0,1].

Cepust «Maremarukas. Ne 2(90)/2018 29



A.T. Assanova, A.E. Imanchiyev

Then the matrix @, (a, b, z) independent on x. In this case, the conditions of Theorem 3 will be formulated
only in the terms of numbers a, b, ¢, d.

We have
1 b—a 0

Theorem 4. Let the (3 x 3) matriz Q1(a,b) = 0 1+b—a O is invertible and let the following
0 1 d—c

inequalities be true:

@) [[[@1(a.b))7!| < mase (7. 1) + (b — a1, 7 ) e

b) ¢,(a,b) = |max + max(b—a,1, 7 1+1La Slett=a) —1 - (b—a)| < 1.
() (o )rwt=a) | )

Then two-point boundary value problem for the third-order differential equation (13)-(16) has a unique
solution.

So, the family of multipoint-integral boundary value problems for third order differential
equation (1)—(4) is reduced to an equivalent family of multipoint-integral boundary value problems for system
of differential equation first order. For solve of the family multipoint-integral boundary value problems for
system of differential equations results of articles [10-13] are used. Algorithms of finding solutions to the family
of multipoint-integral boundary value problems for differential equations are constructed and their convergence
is proved. The conditions of the unique solvability to the family of multipoint-integral boundary value problems
for third order differential equations are established.
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A.T. Acanosa, A.E. NImanunes

Yimiaimi perrti nmuddepeHnnaJIbIK TeHAEY YIMiH
KOIMMHYKTEJIi-MHTErPaAJIAbIK MIETTIK ecenTep 9yJeTiHiH
OIpMOH/AI MIENTiLIIMIIIIr Ty paJabl

MakaJsrana koaddumuenTrepi affHbIMaJIbl yIOiHIN peTTi auddepeHnnaIblK, TeHIeY VIIH KOIHYKTeJIi-
WHTErpaJIIbIK, IIETTIK ecenTep oyJeTi KapacThIpbLabl. DBys ecentin »Kasrbl3 Imemriminiy 6ap 60i1ybl
MoceJiesiepi MeH OHbI Taby Koazapbl 3eprreiai. 2Kana dyHkmsamap eHrizy omici apKpLibl KO3 DUIIMEHT-
Tepi aHbIMAJIbI VIIHII peTTi guddepeHnnaliiblK, TeHIey YIIH KOIIHYKTEe/i-HHTerPAJIJIbIK, IIETTIK ecernrep
oysteri ymr nuddepeHnuaaaplK TeHIEYJeH  TYPaTbIH 2Kyie VIIH KOIMHYKTeJi-MHTErPaIbIK [IETTIK
ecerrrep oyJerine kenrtipinemi. HoTmkecinme ajblHFaAH KOMHYKTEIIi-HHTETPAJIIBIK IIETTIK €CENTep dYJIeTiH
[IENTy VINH TapaMeTpJiey 9/ici KOJMaHbLIAbL. Y1 JuddepeHuaiablK TeH/Iey/IeH TYPAThIH XKyiie yIiH
KOITHYKTEJI-MHTErpaJIIbIK IIEeTTIK ecenTep oyJeTiHiH »KybIK, IIemiMaepid Taly aJropuTM/iepi YChIHBLIFAH
2KOHE OHBIH KUHAKTBIIBIFBI JI2JIEJICHTeH. YT udOEPEHITNANIBIK, TeHACYIEH TYPAThIH XKYile YIMH KO-
HYKTeJI-MHTEerPaJIIbIK IETTIK ecenTep ayaeTiHiH OipMoH/Ii MIelriIiMIiTir HiH mapTTapbl 6acTankbl 6epiaiM-
nep TepMmuHiHe anbiaraH. Hornkesep colikecinme Gacrankpl KoadduimeHTTepl afHBIMAJIbI YIHIHIIN peTTi
muddepeHITIANIBIK, TEHIEY VIMH KOTHYKTETi-UHTErPAJIIbIK IMETTIK €CemTep OYy/IeTi VIMH /1€ TYXKBIPBhIM-
AJIFaH.

Kiam cosdep: KOMHYKTEM-UHTETPAJIIBIK, IIIETTIK €Cel, YIIHII peTTi auddepeHInaiibK TeHIeyIep, mapa-
MeTP, KOIMHYKTe i-UHTerPaJIJIbIK IIETTIK ecerrep oyieTi, guddepeHnuaibiK, TeHaey/ep Kyieci, aaropurm,
OipMOH/II HIenTiM/ITIK.

A.T. Acanosa, A.E. NImanunes

O6 ogHO3HAYHOII pPa3pernImMOCT CEMECTBA
MHOTI'OTOYE€YHO-UHTErpaJIbHBIX KPaeBbIX 3aJia4 JIJIsd
anddepeHnmnaIbHOrO YPaBHEHNST TPETHETO MOPAIKa

B crarbe paccMoTpeHO ceMENCTBO MHOTOTOYEYHO-UHTETPAJILHBIX KPAEBBIX 33734 1t JuddDePEHITNATEHOTO
YPaBHEHUsT TPETHErO MOPSIIKA C TEPEMEHHBIMU KOo3hdurmenTamu. VccmemoBalbl BOIPOCKH! CYIIECTBOBAHUST
€IMHCTBEHHOT'O PEIIeHNsT PACCMATPUBAEMOIT 38241 U CIIOCOOBI €ro MOCTPOoeHusi. MeTo1oM BBEIeHUsT HOBBIX
GbYHKIUH ceMefCTBO MHOIOTOYE€YHO-NHTEIPAIBHBIX KPAEBBIX 33134 /A AuddepeHIIaJIbHOTO yPABHEHUST
TPETHETO MOPSIIKA C TIePEMEHHBIMU KO3 PUITEHTAMI CBOIUTCS K CEMENCTBY MHOIMOTOYEYHO-NHTErPAIbHBIX
KPaeBBIX 3aJ1a4 JjIsd CUCTEMbI TpeX AudDepeHInaIbHbIX ypaBHeHnitl. [l perennst moyIeHHoro ceMeti-
CTBa MHOI'OTOYEYHO-MHTErPAJIbHBIX KPaeBbIX 3a/[ad IIPUMEHSIETCsS MeTo]l napamMerpusanun. lIpesmoxkensr
aJITOPUTMBI HAXOXKIEHUsT TTPUOJIMKEHHOTO PEIEHUsI CEMeCTBa MHOMOTOYEYHO-NHTErPAIbHBIX KPAEBBIX 3a-
a9 JJIsi CHCTEMBI TpeX auddepeHnnaabHbIX yPABHEHUN, U JOKa3aHa UX CXOAUMOCTD. [losryueHbl ycioBust
OJIHO3HAYHOI pas3pelnMOCTH ceMelicTBa MHOIOTOYEeYHO-UHTErPaJIbHbIX KPaeBbIX 33/1a4 JJId CUCTEMBbI TPeX
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mudepeHIIATBHBIX YPABHEHUN B TEPMUHAX UCXOIHBIX JAHHBIX. Pe3yIbTaThl TakKe COOPMYTUPOBAHBI OT-
HOCHTEJILHO UCXOIHOT'O CEMEHCTBa MHOTOTOUYEIHO-NHTEIPAJILHBIX KPAEBbIX 3aJ1a4 A JuddepeHInabHOrO
yPaBHEHUSI TPETHErO MOPSIKA C ITEPEMEHHBIMU KO3 uIimeHTaMu.

Karoueswie cA06a: MHOTOTOUETHO-UHTErPAIbHAS KpaeBas 3ajada, JuddepeHnalbHoe yPaBHEHNE TPETHEro
IopsJiKa, HapaMeTp, CeMEHCTBO MHOI'OTOYEYHO-MHTEI'DAJIBHBIX KPAeBBbIX 33/1a4, aJITOPUTM, OJHO3HAYHA
Pa3pemnMoCThb.
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The first boundary value problem with deviation from the
characteristics for a second-order parabolic-hyperbolic equation

We pose and investigate the first boundary value problem using a model second order equation of
parabolic-hyperbolic type with A.M. Nakhushev’s conditions violated relative to coefficients. Despite these
conditions are violated an a priori estimate similar to the a priori estimate obtained by A.M. Nakhushev
takes place for solving the first boundary-value problem under study.

Keywords: equation of mixed parabolic-hyperbolic type, the first boundary value problem, a priori estimate
of the solution.

Introduction
Consider the equation
-k TT < 07
f=Lu= 4t = FWa Y (1)
Uyy + Ug, y >0,

where k(y) > k1 > 0, f = f(x,y) are given functions, and v = u(z,y) is an unknown one. For y < 0, equation
(1) coincides with the Chaplygin equation [1; 21], and for y > 0, it is a parabolic equation backward in time
(with z standing for a time variable). Thus, equation (1) is a second-order parabolic-hyperbolic equation with
non-characteristic line of degeneracy [2].

A great number of scientific researches are devoted to the study of boundary-value problems for second-
order parabolic-hyperbolic equations with non-characteristic line of degeneracy. For example, in [3], by the
spectral method, a priori estimates in the L,- and C-classes for solution of the Tricomi problem for an equation
of the form (1), are obtained. In [4-8], boundary value problems with deviation from the characteristics for
parabolic-hyperbolic equations are studied.

In [9], a method enabling one to formulate well-posed boundary value problems for a class of linear parabolic-
hyperbolic equations of the form

Lu = uyy - k'(fE, y)urr + a(xvy)uz + b(fE, y)uy + C(Iay)u = f(xa y)7 (2)

in a bounded domain 2 with piecewise smooth boundary ¥, is given. It is assumed that the coefficients of (2)
are continuous and satisfy the Nakhushev conditions, namely:

kx(x,y), ax(x,y), Caf(xvy) eC (ﬁ) ) f(z,y) € Ly (Q) ) (3)
k(z,y) >0,  V(z,y) €, (4)
alz,y) >0, 2a(x,y)+ ky(z,y) >0, Y(z,y) € Qo, (5)

where Qg is the domain of parabolicity of (2). In particular, all parts of ¥ which should be free from boundary
data, are specified. Moreover, an a priori estimate for such a problem for (2) is obtained. The latter implies
the uniqueness of a regular solution and the existance of a weak one. In [10], this problem is called the first
boundary value problem for parabolic-hyperbolic equations.

In what follows, by €2 we denote the union of 1, Qs and J,., i.e. Q =Q; UQy U J,., where

Q={(z,y):0<z<r, 0 <y <opx)};

Qo ={(z,y):0< 2z <, (z) <y<0}U{(z,y): I <z <r yz)<y<0}
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and
Jr={(z,y): 0 <z <r, y=0}.

It is assumed that
o(z) € CI[O,T], 7(z) € Cl[O,l}, Ya(z) € Cl[l,r]

and
p(x) >0, () <0, %(@) >0,  7(0)=12(r) =0, 7()=12().

We will use the following notations:
A=A(0,0); B=B(r0); C=C(n); Ao=A0(0,0(0)); Bo=Bo(r e(r));

oo={(z,y):0<z<r, y=p()} or1={(z,y):0<z<l, y=mn(2)}
and
o2 ={(z,y):l<z<r y=mr)}

We also require f(z,y) and k(y) to be continuous, i.e.
FeC(), i=12  k(y) e CMm),0].

As it is shown in [9], the well-posedness of the first boundary-value problem for equation (1) strongly depends
on the mutual location of curves o1 and o9, and the characteristics

Y

y
ACy rxz + / VE(@)dt =0 and ChB:z — / k(t)dt =r.
0

0

Here, C1 is the point of intersection of the characteristics passing through the points A and B.

In this paper, we consider equation (1) with coefficients not satisfying the Nakhushev conditions. We state
and solve the first boundary value problem in the case when the curves o1 and o5 lie entirely in the characteristic
triangle ABC'. We also prove an analogue of the a priori estimate obtained in [9].

Formulation of the problem

By substitution [9]:
u(z,y) =v(z,y) exp (nz), (6)

the given operator Lu associated with the operator L,v according to the formula

oo = ) o = kW) vee = 2uk(y) ve — p k(y) v,y <O;
K Vyy + Vg + 10, y >0,

where p is some negative number. The operators Lu and L,v when replacing (6) will be related by
Lu = exp (px) Lyv.
The Regular solution of the equation
Lyv = fu, fu=exp(—pz) f (7)

in the domain Q we call any function v = v(z,y) for the class C' () N C* (Q) N C? (1) N C} (), which turns
the equation into an identity upon substitution.

Problem 1. Find in the domain € the regular solution v =wv(z,y) to the equation (7) of
v(z,y) € C* () NC?(Q;), i = 1,2 satisfying the boundary conditions

v=0 V (z,y) € BBy U oy Uos; (8)

vy =0 Y (z,y) € o1. (9)
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Theorem to get a priori estimation of the solution to problem 1

Further, we use the following notation:

(u, v)y = /ude; ||u|\(2) = /quQ;
Q

Q

||u||‘f:/[u2+ui+u§] d.
Q

The following Theorem holds true.
Theorem 1. Assume the curves og, o1 and o9, restricting the domain 2 are such that they possess the

following properties:

ao: y = p(x) € C10, r], and besides ¢'(x) <0 V z € [0,7]; (10)
o1y =) €C'[0,1]; 05 =CB: y=a(z) € C I, r]; (11)
-1 <VEk(y)Y(x) <0 ¥ (z,y) € AC; (12)
0 < VE@W) v(z) <1 V (z,y) € CB. (13)
Then to solve v = v(x,y) of problem 1 we have the energy inequality
[olly < Myl fully » (14)

where the function v = v(z,y) is associated with the solution u = u(z,y) of original equation (1) according to
the formula (6), and M; is the positive constant that does not depend on the sought function v(zx,y).
Proof. For the operator L,v as y < 0 the equality

20(z) vy Lyv = 20(2) vy [vyy — k(Y) Ve — 21 k(y) vo — pk(y)v] =

0 0

= oM [20(z) vy vy] — B

+6(2) [ (k(y)? +v2) — duk(y)o? + ap’k(y)v?]

[6(z) (k(y)vZ+ U§ + 1Pk(y)v?)] +

holds true while as y > 0 we have the equality

20(x) Lyv =26(2) [vyy + vg + pov] = 3% [6(z) (po? —vp)] + 3%/ [28(z)vpv,] +

+4(z) [202 + avi — pav?],

where d(z) = exp (ax), a > 0. With the above equalities, it is easy to verify that for any function
v(z,y) € C* () NC? (), i = 1,2 holds

2(6(x)vz, Lyv), = /25(36) Vg Lyvd§) = /26(m) vy LyodQ + / 20(x) vy LyvdQs =
Q 951 Q2

= /25(36) Uy [Uyy — k(Y)Vss — 200 k(y) vz — p2k(y)v] dQ1+

Q
+ [ 26(z) vy [vyy + vz + pv]dQy =
/
—/2 [26(z) v, vy] — 9 [6(z) (k(y)v2 +v2 + 1k(y)v?)] dQi+
Q

36 Bectnuk Kaparanmauickoro yHuBepcuTeTa



The first boundary-value problem ...

+/ % [6(1') (/J”U2 — ’US)} + gy [2(5(m)vzuy] dQs+
Qo

+ / §(x) [a (k(y)v2 +v2) — Apk(y)vl + ap’k(y)v?] dQi+
Q1

—|—/5(x) [207 + ozvj — pow?] d€ds.
Qo

Applying the Green formula to the last equation, we obtain

2(3(x)vy, Lyv)y = — / [26(2) va vy) dz + [8(x) (k(y)v; + vy + p*k(y)v*)] dy+

Iy

+/ [6(z) (v — ’Uj)] dy — [26(x)vgv,] dz+
I

+ [ 0) [la — 44) b(y)o? + @ + arhly)o?] dou

1951
+ [ i(x 2v§+av§f av?] dQy =
SZ () [ pav?]
Ao Bo
= [3) [30.9) w0 0. ] dy + [ o) (102 (r.9) = 3 r.0)]
A B
By
+ [ d(z) |2vuvyda + fugf 0?) dy] —
A/O @ | (3~ no?) dy)

§(z) [2v, vyda + (k(y)vl + vi + pPk(y)v?) dy] —

§(x) [2vg vyda + (k(y)vl + U; + 1pPk(y)v?) dy] +

+ [ () [(or —4p) k(y)v? + owz + auzk(y)vﬂ A+

P O B~

+/6(m) [202 + avj — pow?] dQs =
Qo
=h+DL+I3+ 14+ 15+ I+ Ir, (15)

where I'1 = AAyg U AgBy U BBy U AB; T'y = AC UCB U AB — are boundaries of the domains £2; and s,
respectively.
Since p < 0 then
Ao
B = [8(0) [0 9) = w* 0. )] dy 2 0
A
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and due to boundary condition (8)

Bo

Iy= [ 6(z) [pv?(r,y) — vg (r, y)] dy = 0.
/

Next, in view of boundary condition (8) v(z,¥) |a,8, = v(#,y) |y=p(z) =0, and therefore in the line AgBy
the equality: v, + vy’ (2) = 0 holds. Thus,

I; = /5 QUI’Uyd.T-F(U — pv? )dy] = /5 2Uzvy+U ¢'(z)] do =

Ao
/5 v + ¢ (x /5 2da?

and with condition (10) for the function y = ¢(x) the integral I3 > 0.
On the curve o7 : y = 71(x) taking into account the boundary condition (9) we have

c
- / §(z) [2vy vyda + (k(y)v2 + ’U; + 1Pk(y)v?) dy] =
A

!
/5 [2v, vy + (k(y)vi + v§ + u2k(y)v2) Y1 (2)] do =
0

Similarly on the curve o : y = v2(z) get

B
—/5(:5) 20, vydx + (k(y)vl + vy + (P k(y)v?) dy] =
c

T

= —/(5(35) 205 vy + (k(y)vZ + V] + 12 k(y)v?) 75(x)] do =
1

T

= /5(ar) [—k(y) va(z) V2 — 2vp vy —Y5(x) vy — 1 k(y) 75 (x) v*] da.
!

Due to condition (8) of problem 1: w(z, ¥)lo, = v(@, Y|y = 4@ = 0. Hence
[va(z,y) + vy (2, y) ¥4 (x)] |sn=cB = 0. Considering this, for the integral I5 we have
Is = /5 v — k(y) 5 )’U;] dr = /6(33) v5(z) [1 = k(y) fyé%x)] U;dl’.
!

By the last formula it is clear under conditions (11), (13) on the curve oo = CB : y = 7y2(x) for integral I5
we get the inequality

I = [ Snho) [1 = by) @] vide = 0,
l
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Thus, under conditions (10)—(13) of theorem 1 the integrals I,, > 0, n = 1,5. Discarding the nonnegative
integrals I,,, n=1,5 by (15) we arrive at the inequality

2(6(z)va, Lyv)y >

> [ 6(a) [(a ~ 4 Kw)? + av] + anhly)e?] d+
Q

+/5(m) 202 + av] — pav®] dQy =

Qo
- / 5(x) [(2H (y) + (0 — 42) k(y)H (—9)) 02 + o] d2+
Q
+a [ 8(0) [ H () - n ()] v*do, (16)
Q

where H(y) is the Heaviside function.
On the other hand, with the Cauchy-Bunyakovskii inequality, for all ¢ > 0 find

0

< v

By (16) and (17) the inequality

/ 5(x) [(2H(y) + (o — 4p) K(y) H (—y)) o2 +
Q

+CE) [V L

’Z (17)

+ avy + o (pPH (—y) — pH(y)) v* ] dQ <

<e|Vam e, + o @ |Vam Lo

2
)
0

is implied, whence

[ 8(@) [2H @) + (@ 40) kw) H (~9) ~ ) o2 +av? +
Q
+a (WPH (—y) — pH(y)) v*]dQ < C1 () || Lolfy , (18)

where C; () = exp (ar)C (g). Select in the latter inequality the numbers ¢ > 0, @ > 0, u < 0 so that
e < min {(o — 4p) k1, 2}. Then for the left-hand side the following estimate holds:

50 [2H@) + (@~ ) k) H (9) =) 02 + awt
Q

+ o (WPH (—y) — pH(y)) v* ] dQ > M / (0% +0F +07) d2 = M o]}, (19)
Q

where M =min {2 —&; (o —4p)k1 —¢; a; plo, |plat.

By inequalities (18)—(19) we arrive at the a priori estimate (14). Theorem 1 is proved.

By the Theorem 1 we conclude that if w = u(x,y) in the domain € is the solution of original equation (1)
for the class C! (Q) with the right-hand side f(z,y) € Lo (Q) satisfying the boundary conditions

u=0 V(x,y) € BByUoyUoa,

then we have the estimate
(10 = )+ + 2] 4 < MF | £ (20)
Q
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By the a priori estimate (20) implies the uniqueness of the regular solution of Problem 1 and the existence
of a weak solution for the dual of Problem 1 for any right-hand side f(z,y) € L2 (2).

We note that boundary condition (9) in the statement of Problem 1 can be replaced either by the condition
v, = 0 V(x,y) € o1 or the condition v,, = 0 V (z,y) € o1, where v,, is the derivative of the function
v = v(z,y) in the direction of the outward-pointing normal to the curve o1 = AC.

10
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eKiHIII peTTi mapaboJia-rurnepooJIajIbIK TUIITI MOJIEJI]
TeHJey YIIiH OIpiHII MIeTTIK eceIr

Exinmi perrti mogeni mapabosia-rurepOosiaablK TAMTI TEHJIEY MbICAJIbIHIa KO3MMUIUEHTTEPiHEe KATHICThI
A.M. HaxymreBTiH mapTrapbl OpbIHIAJIMAFAH XKaFgaflbl YITiH OIPIHIII MIETTIK ecenl KOWBLIBII 3€PTTE/ITEH.
Koaddunmenrrepine karsicror A.M. HaxymieBTiy mapTrapbl OpblHIAJIMAaraH XKarjaiira KapaMacTaH, XKy-
MBICTa 3€PTTEJIiHIN oThIpFaH Oipinmi mertik ecen yiin A.M. HaxyimeBriH »KyMbICTAPBIHIA aJbIHFAH allpu-
OpJIBIK OaraJjiayra yKcac alpUOPJIBbIK Oarayay bl OPBIH aJIaTbIHbI KOPCETIIIeH.

Kiam cesdep: mapaboSMKAIBIK-TUIEPOOJIATIBIK, TEHIEY, OIPIHIIN IMeKapaJiblK ecer, MpobJIeMaHbl IIMENTyre
anpropJIbl bGaraJiay.
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2K.A. Bankuzos

IlepBas kpaeBas 3asava JIJjisi MO/IeJIbHOTO ypPaBHEHUS
napaboJIo-ruIiepooJIMIEeCKOro TUIa BTOPOTO MOPSAIKA
C OTXOJIOM OT XapaKTEPHUCTUK B 00JIACTU TUIIepPOOJIMIHOCTHI

Ha npumepe mogensHOro ypaBHeHus: napabosio-rurnepbomaeckoro THIla BTOPOTO HOPSIKA, OTHOCUTEIHHO
K03 PUImeHToB KOTOpOoro Hapyinensl yeaosus A.M. Haxymmesa, cdopMmynmnpoBaHa U MCC/IeIOBaHA [T€PBast
KpaeBad 3ama4da. [lokazaHo, 9TO HECMOTPsS HA TO, YTO OTHOCUTEIHHO KOIMDMUIIMEHTOB PACCMATPUBAEMOTO
ypaBHeHusi HapyieHbl ycioBust A.M. Haxymesa, fuis pemnenus: uccieyemoit B pabore 1mepBoii Kpaesoit
3a/1a9n OyJIeT UMETh MECTO allpUOPHAs OIEHKA, AHAJIOTMYHAs allpUOPHOM oleHKe, nmoaydennoi A.M. Haxy-
LIEBBIM.

Karouesvie caosa: ypaBHEHHE CMEIIAHHOTO HapabOsIo-TUIIEPOOJINIecKOro THIA, IepBas KpaeBas 3a/a4a,
aIpUOPHAs OIEHKA PEIIeHUs.
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Hardy-Littlewood theorem for series with
general monotone coefficients

In this work we study trigonometric series with general monotone coefficients. Also, we consider Ly (Lq)
space. In particular, when ¢(t) = 1 the space Lqp(Lq) coincides with Lg. Well known the theorem of Hardy
and Littlewood about trigonometric series with monotone coefficients. Also known various generalizations
of this theorem. In 1982 this theorem was generalized by M.F. Timan for the spaces Lyp(Lq). And in 2007
S.Tikhonov proved Hardy-Littlewood theorem for trigonometric series with general monotone coefficients.
In this work we have generalized Hardy-Littlewood theorem for Fourier series of functions f € Lgp(Lq)
with general monotone coefficients. Also, obtained upper-bound estimate of best approximation of functions
f € Lg through its Fourier’s coefficients which are general monotone.

Keywords: trigonometric series, Hardy-Littlewood theorem, general monotone sequences, convergence, Fou-
rier’s coefficients.

Let L,(0,27), 1 < ¢ < 400 denotes the space of all 27- periodic, measurable by Lebesgue functions f(z),

for which .
27 F
= ([ ) < o
0

Through E, (f), we will designate the best approximation of a function f € L, by trigonometrical polynomials
of total degree n in the metric of spaces L:

En(f)y =int £ = Tully:

Let the function ¢(¢) satisfies the following conditions [1]:
a) o(t) is an even, non-negative, non-decreasing on [0, +00);
b) ¢(t*) < Cip(t), t € [0,00), C' = 1;

c) % 4 on (0,+00) for some & > 0.

Measurable, 27-periodic function f € Lgp(Lg), if

/0 @) o (@))% de < +oo.

In particular, when ¢(t) = 1 the space Lyp(Lg4) coincides with L.
We consider the series

oo
Z Gy, COS NI (1)
n=1

and denote by f(x) the sum of this series.
Definition [2]. The sequence of numbers {a,,} is said to be general monotone, or {a, } € GM S, if the relation

2n—1

Z lak — ag+1] < Clay|

k=n

holds for all n > 1, where the constant C' is independent of n.

The set of all numerical sequences {a,} such that a, | 0, n — oo, is denoted by MS. It is known that
MS C GMS.
We give the following well-known theorem of Hardy-Littlewood
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Theorem A [2]. Let {a,} € MS. A necessary and sufficient condition that the function f(z) € L,

1 < g < 400, is that
400

Z ni 2. al < +o0.

n=1
In 1982 this theorem was generalized by M.F.Timan [1] for the spaces Lqp(Lq).

Theorem B. Let ¢(t) satisfies conditions a)-c) and f(z) € L; is an even function with Fourier series
—+oo
> apcosnz, where {a,} € MS. A necessary and sufficient condition that the function f € L,¢(L,) for
n=1

some p > 1, is that
+oo
> " ahp(n) < oo,
n=1

In 2007 S.Tikhonov [2]| proved the following theorem.
Theorem C. Let {a,} be a positive sequence and {a,} € GMS. A necessary and sufficient condition that
the function f should belong to Ly, 1 < ¢ < 400, is that inequality

+oo
Z ni=?.al < +oo

n=1

holds.

Our main goal is to prove the theorem of Hardy and Littlewood for the Fourier series of a function
f € Lgp(Ly), the coefficients are generally monotonous.

To obtain the main result we need the following Lemma.

+oo
Lemma. Let f(x) = > a,cosnz, where positive sequence {a,} € GMS and for some ¢, 1 < ¢ < +o0
n=1

+o0
i 9=2 . 44
converges the series > n al.

n=1
Then, the following inequality holds
1
) —+o0 q
En(f)g <C |antn+1)' s+ Y k%0l ) | ,n=12..
k=n+1
Proof. From the properties of the best approximation and norms, we have
En(f)q <|f- Sn(f)”q =|f = Su(f) +an - Dn() —an - Dn()”q <
< Hf_Sn(f)"‘an'Dn(')”q"‘an ||Dn(')||q7 (2)
n
where S,,(f) is the partial sum of series (1), D,,(x) = Y coskz is the Dirichlet kernel.
k=1
For the Dirichlet kernel is known the following inequality [2]
1
IDn()l, < C-n' "5 3)

To estimate the first term in (2) we use the theorem C. Because the sequence of coefficients of the series

+o0
f(l‘) - Sn(f)(w) + an - Dn(-%') = Zbk -coskx
k=1

belongs to GM S. Indeed, for
b { an, k=1,..,n;
k =

ag, k=n+1,...
we have
2m—1
Z |br, — br+1] =0< C by, at 2m —1 < n;
k=m
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2m—1 2m—1

Z |br, — brt1] = Z lar — ag+1] < C-ap =C by, at m > n.
k=m k=m
If m <n < 2m — 1, then we assume that b, = a,, kK =m,....m+sand by =ap, k=m+s+1,...,2m — 1,
where s is natural number. Then
2m—1 m—+s—1 2m—1
Dok =bipal= Y bk =il + D bk —br| =
k=m k=m k=m+s
2m—1 2(m+s)—1
= Z lay — ary1| < Z lar — apy1| S C - amys < C - by
k=m-++s k=m+s
Therefore, by theorem C
1
n oo q
If = Su(f) + an- Du()ll, < C (azqu2+ > M) <
k=1 k=n+1
1
1 e K
<Chap(n+1)77+ ( > aZ~kq2> : (4)
k=n-+1

Now, using inequalities (3) and (4), from (2) we have

1
+o0 q
En(f)g <C |an(n+1)'"7 + ( > kq—2~ag> n=12 .

k=n-+1

This completes the proof of Lemma.

Now we prove the main result:
Theorem. Let the function (t) satisfies the conditions a)-c), and f(z) € L; is an even function with Fourier

—+oo
series Y ay cosnz, where {a,} is positive sequence, and {a,} € GMS.

n=1

A necessary and sufficient condition that the function f should belong to L,p(L,), ¢ > 1, is that

“+oo
Z n? 2. ad - p(n) < 4oo. (5)

n=2

Proof. Suppose inequality (5) holds. Then, from the properties of the function ¢(t) converges also following

“+ o0
E ni=2%.ql.
n=2

So, by theorem 4.2 of [2] f € L,. Then applying the Lemma, the inequality of Hardy [1] and the properties
of the function ¢(t), we have for 1 < pg < ¢ < +o0:

series

q

+oo +oo +oo %
Do p(n) - B () < C- Y 30 p(n) - fan(n+1)'77 + ( > k) <
n=1 n=1

k=n+1

IN

+o0 v . +o00o . 400 %
<C- an,g ~(n) - aflnq(k%) +C- z:nﬁf2 ~(n) ( Z kpo—2. a’,;°>
n=1 n=1

k=n+1

IN

+o0 too ) . p .
co ot sy Eor D wpto)
n=1 el

k=n-+1
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.
0
<

B WARUREES WLl (TR
<C- an 2. alp(n) < 4oo0.

Hence by theorem 3.3 of [1] we have

/0 @) o (F(@)]%) de < +oo.

Now let us prove the opposite. Let f(z) € Lyp(L,). Then by theorem 13.1 of [3; 54] we have

/ @) o (@) de = / ) o (F1 ) dt < oo,
0 0

where f* — is non-increasing rearrangement of f.

Let
/f Ydu and fao(z /f1 Ydu, for z € (0,7).

Also for x € (0,7) we denote
/ ff(w)du and f4(z / fa(u

.. the following inequality is satisfied

In [4] proved that for ;7% <2 < 4%

fa@) 2 [ fo(@)| 2 f2(2) 2 — Z Q.-

Next, arguing as in [4], we have
q

+oo —+o0 2
Z ni7% . alp(n) < C- Z nd=2% . p(n) - ar | =
n=1 n=1 k:[%}

+oo
<C-Y 0?72 g(n) _min_ (fa(@))?

4(n+1) ST>7,

o0 = - g
<03 oD [T (Y e <

ey /4’* (£)" () oy aa
g (/ fsu du) dr —
_ O </ £ dt)du) i <
<c ﬂx“l(/ox(/ousoi(:)f*(ﬂdt)‘ﬁ‘)qus

du) dx

e (LU @ rom) )

Bectnuk Kaparanmauickoro yHuBepcuTeTa

|
Q
3
8
b
Q
S
A~
H\ﬂ
7 N/~

46



Hardy-Littlewood theorem for series with general...

o (e [ ([ G )
< C/Oﬂ <x‘1+3 /Om pi (%) f*(t)dt)q ‘i—x -
c[ (i/w () f*(t)dt)qugc./o%(j) () de <

<c. / ") 0 ((F(6)") dt < oo,

This completes the proof of Theorem.
Remark. The proved Theorem is extension of the Theorem B. Also, at ¢(t) = 1 the Theorem C follows from
the proved Theorem.
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C.Bitimxan

2Kajnnbel MOHOTOHABI KO3 dUIMeHTTI KaTapJjap YIIiH
Xapau-JInTTaBya TeopeMachl

Maxkasaa 2Kaambl MOHOTOHIBI KO MUIMEHTTI TPUTOHOMETPHUSIILIK, KaTapaap 3eprresai. Corbimen Gipre
Lqop(Lg) kenicriri kapacTeippuiasl. depbec xarmaiina ¢(t) = 1 6omranga Lgp(Lg) xenicriri Lg Kenicri-
rimen Gerrecesi. MOHOTOHIBI KO3(MDMUIMEHTTI TPUTOHOMETPHUSIIBIK, KaTapap yImH Xapau MeH JIuTTiasyn
TeopeMachl Kakchl Oenrimi. CoHaii-ak TeOpeMaHbIH OPTYPJIl KaanbliaMaiapbl fga 6esrimi. 1982 k. ocbr
reopemanbl M.@. Tuman Lqp(Lg) Kenicriri ymin xanusutaapt, an 2007 xk. C.Tuxonos Xapau-JIurriasysn
TEOPEMAaChIH KAJIIBI MOHOTOHBI KO3(MDMUIMEHTTI TPUIOHOMETPHAJIBIK KaTapJap YIIiH J1aiesaeni. By xy-
mbicta Xapau-Jlurtasys reopemacwn f € Lgp(Lg) bynkumsaconbm koaddunmenTTepi XKaambl MOHOTOHBI
6ostaTbiH Pypbe KaTapsapbl yiiiH xasnbuiansl. ConbiMeH 6ipre f € L, GYyHKIMACHIHBIH €H, XKaKChI 2Ky bIK-
TaybIHBIH, YKOFapblIaH GarajayblH OHBIH »KaJIIIbl MOHOTOH/bI 6onareiH Pypbe K0dddUIMEHTTEP] APKBLIBI
AJTBIHIBL.

Kiam ce3dep: TpPUrOHOMETPHUSAIBIK, KATapaap, Xap/anu-J[MTTiIBy T TeopeMachl, 2KajIbl MOHOTOH,IbI Ti30eKTeD,
KUHAKTBIIBIK, Pypbe K03 durmenTrepi.
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C.Butumxan

Teopema Xapau-JIuTTaByna ajiss psgaoB ¢ 0000IIEHHO-
MOHOTOHHBIMU KO3 PUImeHTaMu

B crarpe uccienoBanbl TpuroHoMeTpudecKue psabl ¢ 0000IEHHO-MOHOTOHHBIME Kodddunmentamu. Takxke
paccMorpeHo npoctpascTBo Lqp(Lg). B wactaocrn, xorma ¢(t) = 1, npocrpancrso Lqp(Lg) coBnagaer ¢
L,. Xopormio n3BectHa TeopeMa Xapau u JINTTIByZa O TPUTOHOMETPHUYIECKUX PsIaX C MOHOTOHHBIMU KO-
sdbdunmrentamu. Takrke n3BeCTHBI pa3andHble 00001IeHNs 310N TeopeMmbl. B 1982 r. M.®.Tuman 06o0mumt
9Ty TeopeMy Juist npocrpancTBa Lqp(Lg), a B 2007 r. C. Tuxonos nokasas treopemy Xapau-JIurmiByga s
TPUTOHOMETPUIECKUX PsIJIOB C 000OIIEHHO-MOHOTOHHBIMU Koddduimentamu. B manHoit pabore 06001uIn
reopemy Xapau-JIlurrasyna qys pagos @ypoe bdyuxkuun f € Lep(Lg) ¢ 06061I€HHO-MOHOTOHHBIMU KO-
dunmenramu. Tak>Ke HoJIydeHa BepXHsisl OLEHKA HAWJIydInero npubsmkenus dyHkiun f € L, depes3 eé
K03 durmeHTsr Pyphe, KOTOPHIE SBIISIIOTCS 0000IMEHHO-MOHOTOHHBIMH.

Kmouesvie ca06a: TPUTOHOMETPUIECKHUE PsIIIbI, TeopeMa Xapau-JIuTTiaByma, 0600IIEeHHO-MOHOTOHHBIE TIO-
CJIEOBATEILHOCTH, CXOJIUMOCTD, KO3d duiuenTor Pypbe.
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On spectral question of the Cauchy-Riemann operator with
homogeneous boundary value conditions

In this paper we consider the eigenvalue problem for the Cauchy-Riemann operator with homogeneous
Dirichlet type boundary conditions. The statement of the problem is justified to the theorem of M. Otelbaev
and A.N. Shynybekov, which implies the correctness of the considered problem. As an example, non-local
boundary conditions and Bitsadze-Samarskii type boundary conditions are given. It is taken into account
that the above spectral problem for a differential Cauchy-Riemann operator with homogeneous boundary
conditions of the Dirichlet type type is reduced to a singular integral, also reduces to a linear integral
equation of the second kind with a continuous kernel. And it is also taken into account that the index of
the singular integral equation is zero and the Noetherian condition is obtain. It is proved that the considered
spectral problem does not have eigenvalues, that is, for any complex ?, has only the zero solution and thus
the Cauchy-Riemann spectral problem is a Volterra problem.

Keywords: Cauchy-Riemann operator, Dirichlet type problem, spectral parameter, resolvent set, residues,
kernel, homogeneous boundary conditions, Volterra property, Noetherian, Fredholm equation.

Introduction

In the functional space C' (]z| < 1) we consider an operator K, generated by the differential Cauchy-Riemann
operation
Ow(z)
Kw(z) =
() =252,

where z = x + iy, z = ¢ — 1y, % = % (%—i—ia@y) on the set

D(K) C {w(m) €C(z] < 1), %‘; € C(z] < 1)}.

We assume that the operator K has a non-empty resolvent set p(K). Not begging for generality, we assume
that
0 € p(K), (1)

i.e. there is a bounded operator K~!. In [1] the set of the operators {K} with the property (1) has been
described:

Theorem 1. [1]. For every linear operator K with the property (1) there exists a bounded operator G, which
carries continuous functions in the circle |z| < 1 into holomorphic functions for which imaginary parts are equal
to zero when z = 0, and also the bounded functional S(f) on the set of continuous functions in the circle |z| <1
that uniquely determine domain of the operator K by the formula:

g—; € C(lz] < 1) ,Rew(z) = ReG(a—w), |z| = 1;

D(K) = {w<z> e (2 <), o

Imw(0) = ImS(g—;), |z| = O}.

Inversely, the pair of G and S determines , for which (1) is true.
It is known in [2; 151], that the boundary value problem:

ow
S CHRS
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Rew(2)||21=1 = 9(2);
Imw(0) = C,

has a unique solution w(z) at any selection
f(z) € C(l2] <1), g(2) € C(lz] = 1), C € R.

Moreover, this solution is obtained by the Schwartz’s formula [2] (in the multidimensional case by the Poisson

formula):
1 t+z dt . _
W(Z):% Q(Z)t_z '?+@C+Lq>lf(2)7
lt]=1

where
wa(z) = Ly f(2)
is a solution of the homogenous boundary value problem for the non-homogenous equation:
Owe (2)
0z

with the homogenous boundary value conditions:

= f(2), |2 < 1,

Rews (2)1zj=1 =0, Imws(0) = 0.

Let the operator be given by the Cauchy-Riemann relation and the condition (1) holds, that means existence
of the inverse operator K !, it implies, that the operator equation Kw(z) = f(z) has the unique solution
w(z) = K~1f(2).

Denote the real part of the solution w(z) on the circle |z| = 1 by g(z), and the imaginary part of the solution
w(z) when z=0by C .

In [1] as specific boundary value conditions it is chosen the boundary pair:

NG =5 § L
[tj=1
S(f) = % @dt.

t|=1

The corresponding eigenvalue problem to this boundary pair has the following form:

g—; = dw(z), 2] <1;
1 Aw(t
Rew(z) = RGT 7{ tLUdt, |z| = 1;
i —z
[tj=1
1 Aw(t)
I —Im— ¢ Wy
mw(0) my_ . dt
ltj=1

For this problem in [3] for the spectral parameter A conditions have been obtained for which the problem
is Noetherian in the corresponding function space and is reduced to a linear integral Fredholm equation of the
second kind with a continuous kernel. Moreover, formulas, characterizing the approximate structure of solution
of the boundary-value problem with shift, have been obtained. The paper [4] is devoted to study of spectrum of
elliptic operators. In the general case, the spectrum of an elliptic operator is essentially determined by spectral
properties of boundary operator. However, identification dependence of the spectrum of the operator K in initial
terms of boundary conditions represents an actual (unresolved) problem. From the general results, such facts
are not traced; therefore it is necessary to involve deeper methods, related to specifics of the specific boundary
conditions.
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Formulation of the problem

In [1] along with nonlocal boundary-value conditions, as specific boundary value conditions the Bitsadze-
Samarskii type boundary conditions, that is, the problem «with shift in interior of the domains as well as the
Dirichlet problem type homogeneous boundary value conditions are chosen, that is,

(GH)(2)z1=1 = 0;

S(F)lmo = 0.
Then the spectral problem has the form:
Ow(z)
= . 1' 1
7% Aw(z), 2] < 1; (1a)
Rew(s) =0, |2| = 1; (2)
Imw(0) =0, z=0, (3)

where complex ) is a spectral parameter, which is reduced to singular integral equation with continuous kernel,
and the index is calculated, the condition for the Noetherian is established in [5, 6].

This case will be the subject of our research in this paper.

Description of general regular boundary value problems for the differential Cauchy-Riemann expression was
developed by J.F. Neiman, M.I. Vishik, A.A. Dezin, in 1982 by M. Otelbayev and A.N. Shynybekov [1].

From another point of view, the problems of solvability and behavior of solution of the boundary value
problem for the generalized Cauchy-Riemann equation have been extensively studied in [7-10]. Boundary value
problems for the generalized Cauchy-Riemann system with non-smooth coefficients were studied in [11].

Spectral problems with regular but not intensely regular boundary value conditions for the multiple diffe-
rentiation operator were studied in [12].

Main result of the paper

Denote general solution of the equation (1) by ®(z) = w(2)e*?. Since

0 xz
b (6)‘ w(z)) =0

in the circle |z| < 1 the function ®(z) is holomorphic. Consequently, the spectral problem (la)-(3) has the
following form:

0D(z)

TR 0, |z] < 1; (4)
Re (e** - ®(z2)) |21 = 0; ()
Im®(0) = 0. (6)

Rewrite the real part of the complex number (5) in the form of a half-sum of the complex number and its
conjugate, then we get to the relation when |z| = 1, with considering z-zZ =1:

M B(2) 4D (1) =0.
z

Introduce the function: o
D(z) =D(2),|2| < L;

@:¢<i>7|z|>1.

—_~

It follows that ®(z) = ® (1) when |z| = 1. Then along the unit circle |z| = 1 we have e’\zi\(z/)—l—e)‘zq),(z) =0.
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Solution has the following form [2; 147]: az/) =),
At — Xt

where
1
I(z)=—— dt.
2mi t—=z
tj=1
When |z| = 1 check the condition ®(z) = ® (1).
As a result, we get:
1 1 At — Xt 1 Xt — N—
F'z)=r(-)=— dt = —— dt.
(2) (z) 27 t—=z 2mi t—1
t|=1 It|=1 z
Duetot-t=1,z-%Z =1, we consider the expression when [t| =1 and |z| =1
M—X  N-XM_ X-X | — 1 dt
— = = 't,dtdtd<)2
Hence we have _
- _dt 1 At — Nt dt
— At — At = — -
2mi ( )t—z 2me 1—2t ¢
[¢[=1

[t]=1

Due to the obvious equality, were write the last integral in the form:

o (t 1>dt:A1 (t(tl—zf(l—lzt)t?)dt‘

2mi t—z 1—at 2ms
[t]=1 t]=1
By the Deduction Theorem [13] we have that
_ _ 2
A z—lim -z =X i+lflimt72—limi T
t—z 1 — 2t —z oz toz(l—zt)t?2  t=0dt \ (1 — zt)t?
and also
A (z—liml) =X\ <—12 (—1> —z).
t—z —2 z z
It yields that
- 1 1
A (z—l—) =A- (z—3> = 0;
z z
that is ) .
A.(Z+1>+A-(Z31)Q
z z
The last equality is reduced to
_ 2 1
A+x(zz ):0
z

Hence, inside the unit circle |z| = 1 we get 22X + A\22 — X\ = 0.
Taking derivative by ¢ in the polar coordinates, we have:

o .. ‘
— €PN+ Ne*¥ — X =0.
dp
Then the following equation is true:
220 = —\2z.

As a result we receive:
A+A=0.
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From this case it is not hard to establish that when A = 0 condition z2(—\) + A\2? = X holds. Thus, it is
proved

Theorem 2. The spectral problem (1a)—(3) does not have eigenvalues, that is, for any complex A, the spectral
problem (la)—(3) has only the zero solution.

Remark. The spectral problem (1a)—(3) turned out to be a Volterra problem.

In conclusion, the authors express their gratitude to Professor Sh. A. Alimov for attention to the paper.
The article was written with the support of the state grant «The Best Teacher of the University — 2017 of the
Ministry of Education and Science of the Republic of Kazakhstan.
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BiprekTi niertik maprrapmen oepiiren Komu-Puman
ONepaTOPbIHBIH, CHEKTPAJIABIK, MaceJieci

Maxkanana {upuxite TekTi 6ipTekTi meTTiK maprrapMmen Gepinren Komu-Puman onepaTopbIlHBIH MEHIIIK-
Ti MOHIEpIH 3epTTeyre apHaJFaH ecell KapacThIpbuIraH. EcenTid KuChIHABI KOUbLIYbl M. OresnbaeB mnen
A.H. [IIsiHBIGEKOBTHIH TeOpeMachiHa Herizjenred. by Teopema Herizinge Komu-Puman oneparops! yimiu
OelJIOKAIIBI EeTTIK MmapTTapMen oepiyiren xkoHe Bunaaze-CamMapcKuii TEKTI METTIK apTTapMeH OepiireH
ecenTep/IiH, MbIcAJIIaphl Kopcerinren. KapacTolpblibill orbiprad Jlupuxie TekTi 6ipTeKTi MeTTiK mapTrap-
MeH 6epinren Komm-Puman onepaTopbIHbIH, MEHITIKTI MOHJEDPIH 3epTTEyre apHaJIFaH eceOiHiH CHHIYIISPJIbI
WHTETrPAJIJILIK, TEHJEYTe, COHAH COH CBI3BIKTHIK MHTErPAJIJIBbIK, eKiHI TekTi PpearoyibM TeHIeyine peryK-
[USIAHFAHDBI, COHIAN-aK CHHTYJISAPJIBI MHTEIPAJIIBIH, TeHACYIIH UHIEKCIHIH HOJre TeH OOJIATBHIHIBIFLI YKOHE
HETEPJIK MAapThl TypaJbl MojiMerTep eckepinred. Apropaap Kommu-Puman nuddepennmanabik oneparo-
PBI YIMH KOABLIFAH CIEKTPAJIIBIK €CeNTiH MEHINKTI MOHAEPIHIH, OOJIMANTBIHABIFBIH JI9JICIIETeH, SIFHA Ke3
KeJITeH KeIIeH i A VIIiH TeK KaHa HOJIIIK IIemriMi rana 6ap 60J1aIbl.

Kiam cesdep: Komu-Puman omeparopsl, Jupuxiie TeKTec ecer, CHEKTPAIILIK TapaMeTp, Pe30IbBEHTTIK
2KUBIH, KaJBIHIBLIAP, sIp0, OIPpTEKTi MIeTTIK IapTTap, BOJAbTEPJIK, HeTepsi, PpegarosbM TeHIeyi.

H.C. Nmanbaes, B.E. Kanryxun

K cnexkTpaapHomy Bompocy omniepatropa Komm-Pumana c
O/THOPOJHBIMU KPAeBbIMU YCJIOBUAMM

B crarpe paccmorpena 3ajiaua Ha coOCTBEHHBIE 3HAYeHUs1 onieparopa Kormu-PuMana ¢ oHOPOSHBIME Kpa-
eBbIMU ycioBusiMu Tuna 3agaqun dupuxse. [locranoska 3amaun obocHoBaHa K Teopeme M. OresbaeBa u
A H. ITbiabibekoBa, yCTaHOBJIEHA KOPPEKTHOCTh PACCMATPUBAEMON 3a/1a4M, B KAUeCTBE [IPUMEPa YKA3AHbI
HEJIOKAJIbHBIE KPAEBbIE YCJIOBUS M KpaeBble ycjoBust Tuiia Bunaaze-CamMapckoro. Y YuTbIBaeTcs, YTO yKa-
3aHHAas BBIIIE CIIEKTpaJbHasI 3aa4a st quddepenimaabHoro oneparopa Komu-PuMmana ¢ oqHOpOgHBEIMU
KpPaeBbIMU yCJIOBUAMU TUIIA 3a0a9N ,HI/IpI/IXJIe peaynupoBaHa K CUHTYJIIPDHOMY UHTETrPaJIbHOMY, 3aTeM K JIN-
HEHHOMY MHTErpajJbHOMY ypaBHeHuo Ppearoabma BTOPOro poaa ¢ HEIMPEPBIBHBIM SIAPOM. A Tak»Ke y4ITeHO,
4TO MHIEKC CUHTYJISIPHOIO MHTErPaJbHOIO YPaBHEHUs] paBEH HYJII0, U YCTAHOBJIEHO yCJIOBHE HETEPOBOCTH.
JokazaHo, 9T0 paccMaTpuBaeMasi CIIeKTpaJibHas 3a/1a4a He UMeeT COOCTBEHHBIX 3HAYEHUMH, T.€. IIPHU JIFIOOOM
KOMIIJIEKCHOM A HMeeT TOJIbKO HYJIEBOE€ pelIeHue.

Karouesvie caosa: oneparop Komu-Pumana, 3agada tuna Jdupuxiie, crieKTpaJJbHBIA TapamMerp, pe30JbBeHT-
HOE MHOXKECTBO, BBIYETHI, $1/IPO, OJHOPOJIHBbIE KPA€eBble YCJIOBUs, BOJIBTEPPOBOCTH, HETEPOBO, ypPaBHEHUE
PpenroasMa.
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Introduction. In recent years, an increasing interest in studying loaded differential equations is manifested.
In this both the steadily extending field of their applications and the fact, that the loaded equations are a special
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On a stability of a solution of the loaded heat equation

Steadily growing interest in study of loaded differential equations is explained by the range of their
applications and a circumstance that loaded equations make a special class of functional-differential equa-
tions with specific problems. These equations have applications in study of inverse problems of differential
equations with important applied interests. In this paper solvability questions of stabilization problems
with a boundary for the loaded heat equation are studied in the given bounded domain Q = (—7/2,7/2).
The task is to choose boundary conditions (controls), that the solution of the obtained mixed boundary
value problem tends to a given stationary solution with the prescribed speed exp(—oot) as t — co. At this
the control is required to be a feedback control, i.e. that it reacted to the unintended fluctuations of the
system, suppressing the results of their impact on the stabilized solution. Stabilization problems have a
direct connection with controllability problems. The paper proposes a mathematical formalization of the
concept of feedback, and with its help it solves the problem of stabilizability of a loaded heat equation by
dint of feedback control given on the part of the boundary is solved.

Keywords: stability, feedback control, loaded heat equation, boundary value problem, inverse problem,
Green function, eigenvalue, eigenfunction.

class of equations with specific problems, played a role.

In this paper, the statement of the inverse problem on the stabilization of solutions for the loaded heat
conduction equation using the boundary conditions is given. The theorem on the solvability of the inverse
problem is proved and an algorithm for approximate constructing boundary controls in the form of synthesis
is developed. The numerical calculations have been carried out, that show the effectiveness of the proposed

algorithm (Fig. 1-3).
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Figure 1. Graphic of uq (¢) Figure 2. Graphic of usy(t)
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Figure 3. Graphics of 1 — ||y(z, 1) 1, (—r/2,7/2)
2 — Cy - exp{—oot}, where Cy = 2,6808 - \/m; « =5, 59 =4,5

Statement of the boundary value problem. Search for such boundary controls us(t),us2(t) € L2(0,00), that
the solution y(x,t) of the boundary value problem

yt(mvt) - ygm(l‘,t) ta- y(()?t) = Ov {I’t} € Q; (1)

y(=7/2,t) = w(t), y(7/2,t) = ua(t), y(x,0) = yo(w), (2)

as t — oo approach zero as follows:

y(@, )| Lo(—m /2,7 /2) < Coe™ 7, (3)

where Q = {z,t] 5F <x < 3§, t >0}, a € C, 0 is the given positive number, yo(x) € L2(5*, §) is the given
function.

Equation (1) is called the loaded equation [1-3]. We note that the vast literature is devoted to the inverse
problems of the differential equations. Among them, we want to acknowledge the recently published textbook
for university students [4], which is apparently the first textbook dedicated to the inverse and ill-posed problems,
and in which there is fairly detailed overview of statements current problems and unsolved problems.

On the solvability of the boundary value problem (1)-(2). We write the problem (1)—(2) in the operator
form:

Ly = {yO’ U, U'?}’

where
L: LQ(Q) —F= LQ(*W/Q,’/T/Q) X LQ(0,00) X LQ(0,00),

and we give the definition of a strong solution.
Definition 1. The function y(z,t) € L2(Q) is called a strong solution of the boundary value problem (1)—(2),
if there exists a sequence

{ys(e, )}, € O (@) N C(Q),

such that
ys(z,t) = y(z,t) in La(Q), Lys — {yo,u1,u2} in E at s — oo.

The following theorem holds
Theorem. For any given controls uy(t),us(t) € L2(0,00) and any initial function yo(x) € Lo(=",5) of
boundary value problem (1)-(2) has the unique strong solution y(z,t) € L2(Q), and y(z,t) € W(0,00), where

W(0,00) = {v|v € Ly(0,00; Wy (—7/2,7/2)),v: € La(0, 00; Wy (—7/2,7/2))}.
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Proof. We transform boundary value problem (1)—(2) to the following loaded integral equation

/2 t /2
vty = [ w©cende—a [y0.0) [ cloge-nasars
—m/2 0 —7/2
t t
+ [ ui(r)Hy(x, t — 7)dT — [ ua(7)Ha(x,t — 7)dT, (4)
/ /

where the Green function G has the form

G(z,¢&,t) Zsmn x +7/2)sinn(€ + 7/2) exp{—n’t},

n=1

and the functions H; and Hy are expressed in terms the Green function by the formulas:

Hl(xat) = G(w7§7t)|§:77r/27 H2(:E7t) = G(m7£7t)|§:ﬂ'/2~

9 9
¢ 9¢
In turn, from (4) for the unknown function u(t) = y(0,¢) we obtain the following integral equation

t

w(t) + a/K(t —71)u(r)dr = F(t), t >0, (5)
0

where the kernel of the integral operator has the form
n 1

% Z 2n " exp{—(2n — 1)%1), (6)

the right-hand side of the equation represents the sum F(t) = Fy(t) + Fi(t) + Fa(t),

where
/2

0= 730 ew{-@n 170 [ @ sinan -~ (6 /20 7)
- —m/2
t
Fi(t) = [ Al = ryus(ryar, j=1.2, ®)
0
the kernel A(t) is determined by the formula:
_ % Z 12 — 1) exp{—(2n — 1)%}. )

We note that expressions (6) and (9) are called the Dirichlet series with real exponents [5; 111].
We show, that the function K(t) € Li(0,00), and the functions Fj(t), j = 0,1,2, belong to the space
L2(0,00). Indeed, we have

4 [ [exp{—(dn—3)%)  exp{—(4n — 1)} N
/ t)|dt = WZ:O/{ dt <+

(4n —3) (4n —1)

according to the formula 0.234.4 from [6; 9]: > (—=1)"7'/(2n — 1)3 = 73 /32.

n=1
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We use the Cauchy inequality [7; 28]:

o0 2 o0 o0
(zanbn> Y
n=1

n=1 n=1
where
/2
i = / yo(€) sin(2n — 1)(€ +7/2) d€, by = exp{—(2n — 1)21},
—m/2

&)
and also the equality 0.234.2 from [6; 9]: > 1/(2n — 1)? = 7%/8,
n=1

/ Fo(t)Pdt < C2 - Z_: / exp{—2(2 )t}dt<“yZ”o oo
0 =
where
0o w/2 2
Ci=3| [ wisinzn (& +x/2) e < ol
n=1
—m/2

Further, the functions Fy, F» are square-summable on the positive semiaxis, if the absolute value of functional
series (9) is integrable. To prove the latter we rewrite series (9) as the sum of the differences:

At EZ dn — 3) exp{—(4n — 3)*t} — (4n — 1) exp{—(4n — 1)t}] .

>1

We note that each of these differences

(4n — 3) exp{—(4n — 3)*t} — (4n — 1) exp{—(4n — 1)*t} (10)
represents a alternating function of the variable ¢, which changes sign once from negative to positive at the point

tn = [8(2n —1)]7'In(4n — 1)/(4n — 3), and it is evident that t; > ta > ... > t, > ..., t, = 0+ at n — oo.
So, the integral of the absolute value of each difference (10) on the semiaxis is equal to:

_ / (4 — 3) exp{—(4n — 3%} — (4n — 1) exp{—(4n — 1)°}| dt =

=2 {4711— 3 exp{—(4n — 3)%t,} — — exp{—(4n — 1)%}] — [4n1_ 3 4n1_ J ) (11)

Note that, by simple analysis to the maximum, we have that the following equality holds:

exp{ (4n —1)%*t,} =

exp{—(4n — 3)? n}—

1
4n — 3

exp{—(4n — 3)*t} —

= _1\2
RS [4n -3 7 exp{—(4n —1) t} :

We take the sum of the right hand side of (11) from 1 to co and multiply the result by 2/7 (see formula
(9). As a result, taking into account the well-known equality

Z on—1

n=1
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we have -
13 (! .
AB)dt < =S L exp{—(2n — 1)%,)} — =,
[1atars 3 G expl-on 1) -
) -

where for all odd n : t, = t,,11 = t,. The series on the right side of the last inequality converges by Leibnitz
Theorem for alternating series [8; 302]. A positivity of the right side follows from relation (7).

Now it remains to use the convolution property (8) to obtain the desired properties of functions
F](t) € LQ(0,00) [97 9]

The existence and uniqueness of strong solution. Assume that functions yo(x), u;(t), j = 1,2, satisfy the
conditions of Theorem. And assume that problem (1)—(2) has two distinct solutions y;(z,t) and y2(z,t). Then
the difference g(x,t) = y1(x,t) — y2(z,t) is the solution of the following homogeneous boundary value problem:

{ gt(xvt)_gzm(xat)"_ag(oat) :07 ZL’ﬂfGQ; ( 2)
1
’g(.’IJ, O) = 07 :Ij(—ﬂ'/2,t) = :lj(’]'('/2,t) =0.
By taking a inner product of (12) with §(z,t) in Lo(—7/2,7/2), we have
1d, . - - .
5 7 19@ OIIE + 192(z, O < |V |5(0. )] - [, 8)llo- (13)
Here and further we denote by || - ||o and (-, -)o the norm and the inner product in Lo(—7/2,7/2), respectively.

Then, using the Friedrichs’, Holder’s, Cauchy inequalities to the right side of (13), we have

d . . _ -
%Ily(zyt)llg + 12 (2, )15 < lafm*[lg(z, 1)]l5.
Hence, by Gronwall inequality [10], we have
_ o 1
Y(z,t) =0 € Loo((0, 00); La(—7/2,m/2)) N La((0, 00); Wy (—=7/2,7/2)),

i.e., the boundary value problem (1)—(2) has no more than one solution.

Hence it follows that the integral equation (5) has no more than one solution. Otherwise, if the integral
equation (5) has more than one solution, the boundary value problem (1)—(2) according to relation (4) would
also have more than one solution, which is impossible, as we have just proved. This means that integral equation
(5) in the class L2(0,00) can have only one solution. The uniqueness is proved.

The foregoing proof of the uniqueness without changes holds for the homogeneous boundary value problem
adjoint to (12):

/2
—m/2
p(z,00) =0, p(=m/2,t) = p(m/2,t) = 0.

We transform the boundary value problem (14) to the following loaded integral equation

00 w/2
P t) = —a / GO0, 2,7 — 1) / B(E, t)de dr, (15)
t —m/2

where the Green function G has the form:
2 o0
G, z,t) = — E sinn (€ + 7 /2) sinn(z + 7/2) exp{—n?t}.
T
n=1

Implies that (15) integral equation the corresponding to the boundary-value problem (14) adjoint to the
equation (5)
/2

v(t) +E/K(T —tv(r)dr =0, t >0, where v(t) = / p(&,t)d¢ (16)

—m/2
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and the kernel of the integral operator (in accordance with formula (6) has the form

n 1

% Z T exp{—(2n - 1)%t}.

Since the uniqueness holds for the adjoint boundary value problem (14), then integral equation (16) in
L5(0,00) can have only the trivial solution.

So, according to the theory of integral equations, in Ly(0,00) integral equation (5) has a unique solution
for all F(t) € La(0,00). Consequently, it follows the existence of a unique strong solution of boundary value
problem (1)—(2). It remains to show that under the conditions of Theorem 1 the solution of problem (1)—(2),
represented by formula (4) belongs to the class Lo(Q).

We write a detailed expression for solution (4):

o w/2

v ) =23 [ (e sinn(e + n/2)ds -sinn(a + /2) exp{-n’t}~

s
n:li’n_/2

= 2n—1 )

74?04 Z sin (2n — 1)(17 +7T/2) /exp{f(Qn . I)Z(t o T)}y(O,T) dr+

—l—% Zn -sinn(x + 7/2) /exp{—nQ(t —7)}uy (1) dr+
n=1 0
Z )l s1nn(x+7r/2)/exp{ n2(t — 1) yua (T dT_Zy] (z,1). (17)
n=1 0

Hence the required property of the solution follows. Indeed, the first summand is estimated as follows (using
Cauchy inequality):

o [ 1/2 /o 1/2
a0 = 2|t < 2 (z) (zbz> ,
Vs
n=1 n=1
where
/2 oo
an= [ wo(©) simn(e+m/20dg, Y fanf? < () < oo,
—7/2 n=1
7T3
b (2,t) = sinn(z + 7/2) exp{—n>t}, Zl 1bn (2, 8)12,40) = n Z =
Thus, we obtain:
Hyl(xﬂt)”L*z(Q) < OO,i.e.yl((L'ﬂf) € LQ(Q)
For the second summand ys(z,t) we take:
in (2 1 2 ;
= DT [ exp(—(n = 1200 - D)}y(0.7)

0

Taking into account the recent notations and applying the Cauchy inequality as in the case of the first
summand, as a result of simple calculations, we obtain:

ly2 (2, t)|| 1y (Q) < 00, ie. ya(z,t) € La2(Q).
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We estimate the third summand. For this we rewrite it in the form:

t

ys(z,t) = % Z sinn(z + 77/2)/nexp{—n2(t —7)}up (1) dr =
n=1 0
% Z sin 2ma - Sy, (t Z cos (2m — 1)z - So. (), (18)

where
Sim(t / 1)™2m exp{—4m?*(t — 7)}u, () dr,
0

Som(t) = /(—1)m_1(2m — 1) exp{—(2m — 1)*(t — 7)}us (1) dr.

Further, for the first summand of the right part of (18) we have:

> Sim(t) = Z/ [—2(2n — 1) exp{—4(2n — 1)(t — 7)} +
m=1 n=17
+ dnexp{—16n°(t — 7)}] ui (1) dT = Z S9 (1. (19)

We note that in the last representation each summand in the form of the integrand function enclosed in square
brackets changes sign from positive to negative only once, and the point of changing the sign is determined by
the formula:
= ! 1 2n t1 > tg > >t, =0 at n = o0
W= Pop_p 1Rz :

We estimate the norm of the first sum in (18) taking into account (19):

oo

< \/EZ 1575 ()] 22 0,009 - (20)

L2(Q) n=1

(t)

We now estimate each summand represented as a convolution S, (¢):

| t
1520 ()17 5.0,00) < / / (2n — 1) exp{—4(2n — 1)*(t — 7)} +
0 1o

2

+ dnexp{—16n°*(t — 1)} ui(7) dr| dt <

. 2
< Jur ()12, 0,00 - /|_2(2n— 1) exp{—4(2n — 1)*t} + 4nexp{—16n°t}| dt
0
Now we compute the second factor on the right hand side in the last inequality:
(o)

/ |—2(2n — 1) exp{—4(2n — 1)*(t — 7)} + 4n exp{—16n>(t — )} dt =
0
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= / [—2(2n — 1) exp{—4(2n — 1)*(t — 1)} + dnexp{—16n°(t — 7)}] dt+
0

oo

+/ [2(2n — 1) exp{—4(2n — 1)*(t — 7)} — dnexp{—16n>*(t — 7)}] dt =
exp{—4(2n — 1)%*t,,}  exp{—16n>t,} 1 1
:{ o — 1 - 2n }_{2(2n—1)_4n}>0’

since a simple research to maximum of the function shows

ult) = PGP SV ) = s a0}

Taking into account the calculations for the right hand side of (20), we obtain:

VQ/WZHSM [22(0,00) < V 2/ [[u1 ()| £20,00) X

b

x{ i [exp{—4(2n —1)%t,} B exp{—16n?t,}

2n —1 2n

n=1

since the series on the right hand side converge (by the Leibnitz theorem as alternating series).
Analogous calculations (carried out for the first summand of the right part of (18) are valid for the second
summand of the right part of (18). Thus, we obtain the desired estimate for the third summand in (17)

lys()llLa(@) < oo
Now we show, that yy(z,t) in (17) belongs to L2(Q). We have:

ya(z,t) = % > sinn(z +m/2) - Su(t),

where
t

() = / (—1)" T exp{—n(t — 7)}ua(r) dr.

Hence we obtain the following estimate:

1ya(; D)l Lo (@) < \/2/7fz 15 (8| 2 0.00)-

To obtain an estimate for the convolution S, (t) we rewrite it in the form:
oo o0
PIEACEDPEH)
n=1 n=1

where

SOt / [(2n — 1) exp{—(2n — 1)*(t — 7)} — 2nexp{—4n®(t — 7)}] uz(7) dr.
0

By arguing as in the estimate of y3(x,t), we obtain the required estimate |ly4(t)||1,(q) < oo

Thus, the first assertion of Theorem is completely proved.

The next section is devoted to the proof of the second assertion of Theorem, that is to the establishment of
additional differential properties of the solution of problem (1)—(2).
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On additional smoothness of the solution. We note that according to the theorem on traces [11; 32-33,
265-269] for the given functions u;(t) € L2(0,00), j = 1,2, there exists a function w(z,t) € W(0, c0), where

W(0,00) = {v|v € Ly(0, 00; Wy (—=7/2,7/2)),v; € La(0, 00; Wy *(—7/2,7/2))},

such that
w(—m/2,t) = u1(t), w(m/2,t) = us(t).

The boundary value problem (1)—(2) takes the form:

{ (y - w)t(xat) - (y - w)m(z,t) + Oé(y - w)(ovt) = fl(xvt)v {‘Tat} € Q; (21)
(y —w)(@,0) =yi(z), (y —w)(=7/2,1) = (y — w)(7/2,1) =0,
where
{ f1=—wi(z,t) + wee(x,t) — aw(0,t) € La(0, o0; W271(—7T/2,7T/2>); 22)
y1 = yo(z) —w(x,0) € La(—7/2,7/2).

Earlier, in [12] on the basis of a priori estimates established there and the application of Galerkin method it
was proven that boundary value problem (21) for any given functions fi(x,t) and y; (x), satisfying the conditions
(22), has a solution (y —w)(x,t) € W (0, 00), namely corresponding to (21) boundary value problem (1)—(2) has
a solution y(x,t) € W(0, c0).

Hence the second assertion of Theorem follows. Thus, the proof of Theorem is completed.

However, relation (3) requires the choice of boundary controls that would provide the decrease of Lo-average
values of the solution not slower than some exponent by time. Fourier method provides this requirement by
choice of those exponents {exp{—Ait}, k € Z} in the representation of solution through a series, where numbers
Ak, are defined by positive eigenvalues of the corresponding spectral problem, and which are not less than the
exponent of decrease in the exponent of condition (3).

Thus inverse problem (1)—(2) will be solved, if we find a way of constructing the controls w;(¢), j = 1,2,
that provides the existence only the exponents of the form {exp{—Ait}, k € Z} (where A\ > 0¢ in (3)), in the
presentation for the solution in the form of a series.

The following section of work is devoted to constructing and justifying the algorithm of choice of the desired
boundary control functions u;(t), j = 1,2, in the problem (1)—(2) and its numerical realization.

Solving the problem of stabilization by extension of domain for independent variables. We consider in the
domain @ = {z,t| — 7 < x <7, t> 0} the additional problem

2¢(2,t) — 2gp(w,t) + - 2(0,t) = 0, {z,t} € Qu; (23)

z(—m,t) = z(m, t), z,(—m,t) = zx(m, 1), 2z(x,t)|t=0 = 20(x), (24)

where zo(z) is a function that must be defined.
We will seek a solution of problem (23)—(24) in the form

2a.t) = Y Zult)ou(a). (25)
keZ

where {¢r(x), k € Z} is the basis of the space Lo(—m,7) and Z = {0, £1,£2,...}.
For this, we consider the spectral problem corresponding to problem (23)—(24):
—¢" (@) + a - ¢(0) = Ap(x); (26)

(=) = p(n), ¢'(-m) = ¢'(m). (27)

We introduce the following notation Z’ = Z\{0}. For problem (26)—(27) we consider the following two cases.
19, The case when there is no such k € Z, that o = k?. The general solution of spectral problem (26)—(27)
has the form:

gpk(x) = Akei Ak + Dy, (28)
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and substituting (28) into (26) we find D}, = 24 here we take Ay = 1. Then it is necessary to take A\, = k2,

T Ap—a?
to satisfy conditions (27). Hence we can write the final form of the solution of equation (26)

pr(a) = e+ —— keZ.
k—

For k = 0: pg(z) = const, A\g = «; that is for the eigenvalue Ay = « it is possible to take the eigenfunction

wo(z) = 1.
Thus, we have the following system of eigenfunctions and eigenvalues

{op(x), \p; k€ Z} = {1, Ao =a; eF* 4 a " e =k% ke Z’}. (29)

k2 —

We note that the obtained system of eigenfunctions (29) is complete in the space Lo(—m, ), constitutes
a basis, but it is not orthogonal. Completeness of the system of eigenfunctions (29) follows from the known
theorem of Paley-Wiener [7; 224-227]. For (29) we will find a biorthogonal sequence in the following form

{r(z), k€ Z} = {fo(x), e**, ke Z'},

where fo(x) is unknown function.
Using basis (29) we will seek the unknown function fo(z) in the form:

folz)=Co+ Y C (é’“f + nzo‘ ) :

—
nez’

from orthogonality conditions:

(15 fO(’I)) = 17 (6ikz + a 067 fo(ﬂ?)) = 07 k S Z/'

k2_

From these conditions, we have:

Co + Z Cy (ei”” + nQQQ)] de =27 -

nez’

™

(1 foo) = [

—T

(e%

neZz’

Hence it follows Co = 5= — Y, .5/ Cp - 2> Further

ikx @ inx o _ /.
(6 +m, C0+ch(€ +n2_a>>—0,kez,

nez’

a « 1
. —_— _— = Z/_
Co k2—a+ck+k2—a (27r Co> 0, ke

Here we find C, : C) = — - - e k€ Z'. Using the values Cj we rewrite Cj :

1+ (nia)rz] .

nez’

1
Cy=— -
0 2T

Further, using the value Cy we write the desired function fy:

1 « . 1 « .
= — . |1 - LetnT | — = . einT
fo(2) 2m l Z n2—a ] 2 Z n—a ©

neZz’ neZz

Therefore, for basis (29) a biorthogonal sequence is the following sequence:

1 o inT ikx
{¢k<x),k62}{%zn2_a~e ,ek,kGZ'}, (30)
nez

which defines in the space Lo(—m, ) a biorthogonal basis.
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20. The case when there exists such number k € Z, that o = k*. Let us ko be such number, namely o = k2.
The general solution of spectral problem (26)—(27) has the form:

cpk(x) = Akei Ak + Dy, (31)

and substituting (31) into (26) we find Dy, = A fere we take Ay = 1. Then it is necessary to take A\, = k2,

)\k-*a
to satisfy conditions (27). Hence we write the final form of the solution of equation (26)

or(x) = ™ 4 k€ Z'\{xko}.

[0
)\k—Oé7

For ko : ¢k, () = const, A\, = a = kZ; that is for the eigenvalue A\, = o = k2 it is possible to take the
eigenfunction ¢y, (x) = 1. Further, the system of eigenfunctions and eigenvalues are complete, if we find the
associated functions that satisfy the following conditions

— Py (@) + @ 2y, (0) = kg, () = i (32)
B (=) = B (1), Bl (=) = P (7). (33)

The general solution of spectral problem (32)—(33) has the form
ako (.Z’) =C+ Aleikoz + A2e—ik0x. (34)

Substituting the general solution (34) into (32) we find a(A; + As) = k2, here we take A; + Ay = 1. The
associated functions are {e*i*o},
Thus, we have the eigenvalues and the corresponding eigenfunctions

{on(x), \is k€ Z\{Fko}} =

— {1, Ao :kg; ethr 4 2

- — M=k ke Z’\{iko}} (35)
and the associated functions _
{@1ko(x), Mo} = {eilk(’:’:, Ao = k% = oz} . (36)

Here, the constant is an eigenfunction corresponding to the eigenvalue \g = kZ = a. Furthermore, we note
that zero is not an eigenvalue. In this case, the system of eigenfunctions is not complete and not orthogonal in
the space Lo(—m, ).

Combining (35) and (36), we obtain the complete system [7; 224-227]:

(,Ok(l'), Ak? kel} = 17 AO :k2, €iik0z, )\0 :kQ = qQ;
0 0

eikr 4 2 = A= k% ke Z’\{iko}}. (37)

2 _
For (37) the biorthogonal sequence is
{r(2); k€ Z} ={fo(x), €™, keZ'},

where it is necessary to find unknown function fo(z) by the following way:

fo(z) = Co + Z Chn <6im+ 2a

> + Ckoezkoa: + C_koefzkoa:’
n® —o
n€Z'\{xko}

from orthogonality conditions
; !
(L, fo(x)) = 1; (dkw + kQ_avfo(CE)) =0, keZ\{*ko};
=0.

(e, fo())
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From these conditions we find:

(1, fo(z)) =27 -

(67

neZ'\{tko}
Co= 4 — Y G e
"7 o " np2—a
neZ'\{xko}

Further

ikx « _ ikx « inx o _N.
<€ +k2_a’f0(x)> = (e tEoa Gt ). G (6 *nz_a>> =0
n€Z’'\{£ko}
ke Z'\{%xko}.
Hence it follows

(e} - 1 o /
Coa—tOtm—- (%_C()) =0, ke Z\{Fko}.
Here we find Cy: .
(e !
Ck =5 13— k€ Z\{Fho}.

Using the values C} we rewrite Cy:

1 « ?
CO_%. L+ Z (n2a)

neZ'\{xko}

Next, using the values Cy we write the desired function fy:

1 o inT
folw) =—5- D ——— e

neZ

So for (37) the biorthogonal system is

2r n? —aq
nez

{¢p(2), keZ}:{ 1 ZL-em, et kez’}. (38)

This system also defines a biorthogonal basis in the space Lo(—m, ).
To determine the Fourier coefficients of expansion (25) we have Cauchy problem:

Z(t) + M Zi(t) = 0, Zg(0) = 2ok, k € Z, (39)

where zgj, are the expansion coefficients of the function zo(z) on system {py(x)}.

The solution of Cauchy problem (39) has the form: Z(t) = zope !, k € Z.

We will further assume that in the space La(—m, 7) we have:

— basis {¢k(x), k € Z}, composed of the system of eigenfunctions (29) or of the system of eigenfunctions
and associated functions (37);

— and the corresponding biorthogonal basis {¢(x), k € Z}, (30) or (38).

Then the solution of original initial-boundary value problem (23)—(24) can be written in form (25):

2
2(x,t) = zo0e” “Fipo(x) + Z zore " Lop(z), (40)
keZz’

where
T

200 = /wk(x)zo(x)dm, keZ,

—T
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are Fourier coefficients zo(z), where ¥y (z), k € Z, are defined by the formulas (30) and (38). From (39) and
(40) it follows directly that if
zon =0 at k% < og (41)

and
z00 70 at Rea > g9; 200 =0 at Rea < oy, (42)

then solution (40) of problem (23)-(24) will satisfy the inequality
[2(2, )] Ly (—mymy < Ce™ 70

We denote by Zg (Zo C Z) the set of indices k that satisfy conditions (41) and (42).
Now, with the restriction operator (_r,, and (/o we find the desired controls

ui(t) = Capafz(z, D)}, ua(t) = Gryofz(z, 1)}

It remains to construct an extension operator of the function yo(x) up to the function zg(z), defined on the
interval (—m, ),
E: LQ(_W/zvﬂ-/2) - LQ(_T“ ﬂ-)a Le. (4(—7r/2,7r/2)EZ/0)(33) = yO(x)v (43)

so that the Fourier coefficients zgx of function zy = Fyg (43) would satisfy conditions (41) and (42). Here we
use the notation ((_r /2 x/2) for the restriction operator {(_r/2,r/2) : Lo(—7,7) = Lo(—7/2,7/2).

By arguing as in the lemma of [13] we obtain the following lemma.

Lemma. For each oy > 0 there exists a continuous extension operator E in (43), that for all yo(z) €
€ Ly(—m/2,7/2) equality holds

/wk(:z:)(Eyo)(x)dx =0, Vk€Zo: |k| <00 (44)

Proof. We define the operator E (43) by the formula

yo(z), x € (—m/2,7/2);
Eyo(z) =

z1(z), ze(—m—n/2)U(n/2,7),

where the function z;(x) to be determined. By virtue (44) z;(x) must satisfy the system of equations:

@) - 21(x)de = — / Dn(@) - yo(x)de = —Go(k), k € Zo. (45)

(=7, —7/2)U(m/2,7) (—7/2,m/2)

We seek the function z;(z) in the form:

z(z) =Y 2(i);(). (46)

J€Zo

Substituting (46) into (45), we obtain a system of equations to determine z3 (j):

> anzi(G) = —To(k), k € Zo, (47)
J€%Zo

where o (k) is defined in (45), and the coefficients ax; are determined by relations:

w= [ R ke (48)
(=7, —7/2)U(7/2,m)

The matrix A = ||ay;]| is positive. Indeed, if

U = {qZk, k€ Zy} and ¢ = Z i (),

keZo
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then by virtue of (48)

A0, 0) = 3 ay by b= ) [ v B d 0 -
k.j€Zo k’jGZO(—ﬂ',—ﬂ/Q)U(W/Q,Tr)
S B M R Serrn
(—m,—7/2)U(r/2,m) I€Z0 k€Zo
- / D@ - b(2)dz = / b (2) 2 > 0. (49)
(=m,—7/2)U(7/2,7) (=7, —7/2)U(r/2,7)

If for some ¥ in (49) the equality holds, then

Y(x) = Z szdzk(x) = 0 and hence @Zk =0, Vk € Zy.

k€Zo

Hence det ||ag;|| # 0 and therefore system (47) and formula (46) uniquely determine operator (43), satisfying
all the conditions of Lemma.

An algorithm for solving the inverse problem. The results of the preceding sections allow us to implement
the following algorithms of approximate constructing the boundary control functions (and even in the form
of synthesis, processing their random perturbations), providing monotonic decrease in time, not slower than
the given exponent according to formula (4) in Lo(—7/2,7/2)—norm of the solution. The latter is achieved by
fulfillment of requirements (41) and (42).

Step 1. According to original boundary value problem (1)—(2) at half-strip of the width 7 with non-
homogeneous Dirichlet boundary conditions and initial condition on the interval (—m/2,7/2), given by the
function yo(x), auxiliary boundary value problem (23)—(24) is posed on the extended half-strip of the width
which is equal to 27, with periodicity conditions (instead of the Dirichlet conditions) and the initial function
zo(x) on the interval (—m, 7). The function zo(z) will be defined as the continuation of the given function yg(x).

Thus, in auxiliary boundary problem (23)—(24) it is necessary to complete the definition of function zo(z)
on the interval (—m, 7), so that for the solutions z(x,t) of problem (23)—(24) requirement (4) would be fulfilled.
In this case, condition (4) holds for its restriction y(x,t) and the required boundary controls ui(t) and us(t)
will be determined as traces of the function z(z,t) when x = +7/2.

Step 2. Constructing the complete biorthogonal systems of functions on the interval (—m, ) by solving the
corresponding spectral problems.

Step 3. We find the coefficients of the expansion of the required function zo(x) on the interval (—m,7) by
complete biorthogonal system that constructed in the preceding step, so that conditions (41) and (42) were hold.
We note that conditions (41) and (42) provide the fulfillment of requirement (4) to solve auxiliary boundary
value problem (23)—(24).

Step 4. According to solution z(z,t) that is obtined of auxiliary boundary value problem (23)—(24) we find
the solution y(z,t) of original boundary value problem (1)—(2), satisfying required condition (4). We find the
boundary controls u; (t) and us(t) as traces of the solution z(z,t), that is

ur(t) = 2(2,t)|g=—ny2,  u2(t) = 2(2,1)|p=r/2-

The main step of the algorithm is the third. The constructive realizability of step 3 is mathematically
justified by Lemma.

Conclusion. In this paper the statement of the inverse problem to stabilize the solution of the loaded heat
conduction equation using boundary conditions is given. Theorem on solvability of the stated inverse problem
is proved. An algorithm of approximate construction of boundary controls in the form of synthesis is developed.
Numerical calculations were carried out, that showed the effectiveness of the proposed algorithm. We note that
within this work the load is determined at the point x = 0. This unessential condition, the results can be easily
extended to the case of an arbitrary point in the interval (—m/2,7/2).
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2KyKTeJIreH XKbLTYOTKI3TINITiK TeHAeyi IMeImTiMiHiH
CTAOMJIN3AMUACHI TYPaJIbl

ZKykrenren nuddepeHnunaaablK TeHIeyIep/ii 3epTTeyre YHEMI apThIl Kejle KATKAH KbI3bIFYIIbLIBIK YKYK-
TeJITeH TEH/JIeyJIep HAKThl eCenTepre KATHICTHI (PyHKIIHOHAJIBI-TudMEepEeHIINaIIbIK, TEeHIEYIEP/IiH apHaibl
KJIACHIH KAJIBIITACTBIPYHI CHIHIBI KOCHIMITIAJIApPBl MEH KarmasTTapblHa OaillaHbICTBI TYCiHAipizemi. By
TeHJeYIep MaHbI3AbI KOIIaHOAIbI TAPTHIMIBLUIBLIFLL 0ap auddepeHnuaaibK TeHAeYIepIiH Kepi ecenTepin
3epTTeyre apHaJFaH KochiMmnasaapra ne. Makanaga ) = (—m/2,7/2) mexresred o0JIbICHIHIA KYKTEJIIeH
KBITYOTKI3TIMITIK TEH eyl YIITiH MeKapa apKbLIbl CTAOMIN3AIUsIay eCeNTEPiHIH MenIeTiHIir Maceterepi
seprresren. Mocese mekapanblk mapTrapis! (6acKapyabl) Tangay KesiHie aJblHFaH apasac METTIK €CenTiH
mrenniMi ¢ — 0o Gosrana GeplireH exp(—oot) KbULAM/IBIKIIEH Ge/Irisll cTaloHap NIeliMre yMThULY BIHA.
ConbiMeH KaTap 6ackapy Kepi OallylaHBICTBI OOJIYBI TAJIAIl €TiIeMdl, SFHU OJ YKYHeHIH KyTiaMmereH (QJyk-
TyalusIapbliHa >Kayal 0epe OTBIPHII, OJIAP/IbIH, IIEMIMHIH CTAOMTU3AIUICHIHA 9CEP €Tyl HoTUXKeJIepin Oa-
cybl Kepek. Crabunmsanust ecenrepi 6acKapbIMIBLIBIK, MOCEIEIEPIMEH TiKe el baillaHbICTBI. ABTOPIAp Kepi
OallyTaHbIC YFBIMBIH MATEMATUKAJIBIK (DOPMATM3AINIAYIbl YCHIHALI KOHE JIe OHBIH, KOMETIMeH YKYKTEe/TeH
KBLTyOTKIZMIITIK TeHIeyi mekapa aiMarbiHga OepijireH Kepi OailjlaHbICThI 0ACKAPY apPKbLIbI IIEIIiIe]T].

Kiam cosdep: crabuinmsanysi, XKYKTEITEH XKbLIYOTKIZMIINTIK TeHAeyl, MEHIIIKTI MOH, MEHITIKTI OyHKITAS.
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O CTa.GI/IJII/IBaHI/II/I pernmieHnsa Harpy>keHHOI'o
YpaBHeHHnsd TellJIOIIPOBOAHOCTHA

Ilocrosauo pacTymuit “HTEpeC K M3yYE€HUIO HATPYKEHHBIX AuddEPEHINATbHBIX YPABHEHNH 00bsICHSIET-
Csl UX IPUJIOXKEHUEM M TeM OOCTOSTEJIbCTBOM, YTO HArpyKEHHBbIE ypaBHEHHs 0Opa3yIOT OCOOBIM KJjacc
dyuknonaabHO- UMD GEPEHINAIBHBIX YPABHEHUN ¢ KOHKPETHBIMY 33/1a9aMi. DTH yPABHEHUS UMEIOT IIPH-
JIOXKEHUs TSt M3ydeHnsT OOpaTHBIX 33/7a49 JuddepeHnnaabHbIX YPABHEHUH ¢ BayKHBIMU TPUKJIAIHBIMY WH-
TepecaMu. B cTaTbe ncciie10BaHbI BOIIPOCH! PA3PENINMOCTH 33/1a49 CTaOMJIN3aIUH C TPAHUIE /I HAarpy >KeH-
HOI'O yPaBHEHUs TEILUIOIPOBOIAHOCTU B 33JaHHOI orpaHndeHHoi obiacru ) = (—m/2,7/2). Sanaua 3akimo-
9aeTCsl B BBIOOPE TPAHUYHBIX YCJIOBUI (YUDPABJICHHMIA); PEIICHHE TIOJIyI€HHONW CMEIIAHHON KpaeBoil 3a1aum
CTPEMHUTCSI K 33JIaHHOMY CTAIlMOHAPHOMY PEIIEeHHIO C 3aJaHHON CKOpPOCTbIO exp(—oot) npu t — oo. Ilpn
9TOM TpebyeTcsi, ITOObI yIpaBeHHe ObLIO ¢ 0OPATHON CBA3BIO, T.€. YTOOBI OHO PEArupoBajIO HA HEIPEIy-
CMOTPEHHbBIE (DIIYKTYAIMH CUCTEMBI, TIOJABJISAS PE3YAbTATH UX BO3IEHCTBUS HA CTAOUIN3UPYEMOE PEIlleHueE.
SBajaun crabuimsanyuy UMEIOT HEIIOCPEJCTBEHHYIO CBs3b C IpobieMaMu yrpasisemoctu. B paGore npej-
JIO’KEHa MaTeMaTudecKasl (popMasIi3alis HOHITHS 0OPATHON CBSI3H, U C €r0 IOMOIIBIO PEIIAeTCs 3aatda O
CTaOUIN3UPYEMOCTH HATPYKEHHOTO YPABHEHHS TEILIOMPOBOIHOCTU OCPEICTBOM yIPABJIEHUsI C 0OPATHOMN
CBSI3bIO0, 33/IAHHOTO HA YACTHU I'DAHUIIBL.

Karoueswie caosa: crabunmsaiys, ypasieHue ¢ 00OpaTHO CBSI3bI0, HAIPY?KEHHOE yPABHEHNE TEILJIONPOBO/I-
HOCTH, KpaeBas 3ajia4a, obpaTHas 3aa49a, pyuknus ['puna, cobcTBeHHOE 3HAUEHNE, COOCTBEHHAS (DYHKITHS.
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On the ill-posed problem for the Poisson equation

A boundary value problem in a two-dimensional rectangular region for the Poisson equation is studied in
the paper. The original ill-posed boundary value problem is transformed to the optimal control problem.
The paper gives a brief overview of the problem under study, defines the formulation of the original
boundary value problem and optimization problems, proves the existence of a solution to the regularized
optimization problem, determines the formulation of the adjoint boundary value problem, studies the
optimality conditions, and presents the application of the variable separation method. The necessary and
sufficient conditions of optimality in terms of the conjugate boundary value problem are established in
the paper, and a strong criterion for the solvability of the ill-posed boundary value problem is obtained.
Boundary value problems for the Poisson equation arise in many sections of physics, mechanics, and other
applied sciences. So, the stress function in the torsion problem of elastic rods is the solution of the Dirichlet
problem, and the height of the liquid rise in the cylindrical capillary is the solution of the Neumann
problem. But in many cases practitioners are interested in ill-posed problems for the Poisson equation and
their solvability, which determines the relevance of the problem studied in the article.

Keywords: Poisson equation, ill-posed problem, optimal control, variational inequality, two-dimensional
rectangular area.

Introduction. Recently among the experts on equations of mathematical physics interest in problems that
are ill-posed by J. Hadamard has significantly increased [1]. Due to the ill-posed problems classic work by
J. Hadamard [1], A.N. Tikhonov [2], M.M. Lavrent’ev [3] and many others can be noted, which have drawn the
attention of researchers for ill-posed problems and have made a significant contribution to the development of
this important area of mathematics. In this paper we study the ill-posed problem [1]-[8] for the Poisson equation
in two-dimensional rectangular domain. The correctness criterion of homogeneous mixed Cauchy problem for
the Poisson equation in a rectangular domain was established in the paper of T.Sh. Kalmenov, U.A. Iskakova
[6]. In paper [8] the ill-posed problem for the heat equation is considered. The general regularization method
for constructing an approximate solution of ill-posed problems of mathematical physics was proposed by
AN. Tikhonov [2]. In the book R. Lattes, J.-L. Lions [4] for regularization of ill-posed boundary value problems
the quasiinversion method is proposed. Features and questions of the regularization of Cauchy problems for
abstract differential equations with the operator coefficients are studied by I.V. Mel'nikova and U.A. Anufrieva [§].

Statement of the problem. We consider the boundary value problem

Y (2, 1) + Yau (2, 1) = f(,1); (1)
y(ovt) =0, y(ﬂ-vt) =0 (2)
y(xv _1) = <P1(9U)a yt(x’ _1) = 902(7")7 (3)

in the domain Q = {z, t|0 <z < m,—1 < ¢t < 1} with the additional condition
yi(x, 1) € Uy, where Uy is a closed convex set of Ly (0, 7). (4)
It is assumed that the data in the problem (1)—(3) satisfies the following conditions:
f € Ly(Q), p1 € H}(0,7), @2 € La(0, 7). (5)

In the book R.Lattes, J.-L.Lions [4], it is indicated that problem (1)—(3) is ill-posed in the space Lo (£2).
In this paper for solving the ill-posed problem we apply methods of optimal control.
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The optimization problem. For the investigation of the problem (1)-(4), we formulate according to it the
following optimization problem:

ytt(xat)+yrz(xat) :f(x,t)v (6)
y(0,t) = y(m,t) = 0; (7)
yt($7 _1) = 902(‘7:)5 yt(l’, 1) = ¢($)7 (8)
with functional of optimality:
TW) = [ lnale =) = ¢ (a)de > min Q
0

We note, in optimization problem (6)—(9) the function ¥ (x) plays the role of control function. In addition,
further in the work it will be shown that boundary problem (6)—(8) is well-posed, namely it is uniquely solvable
for any given functions ¢ € Uy C L2(0,7), f € La(2).

As it is known from the theory of optimal control optimization problem (6)—(9) is also ill-posed. The ill-
posedness of this problem is shown in the following: functional to be minimized (9) is not strictly convex.
Therefore, to small change of the value of the minimized functional (9) the significant change of the control
function 1 (z) can correspond in the admissible set Uy, or to single value of functional (9) the set of admis-
sible controls can correspond. For such optimization problems, there is an effective regularization method of
Tikhonov [2]. To study our problem, we will use stabilizer of Tikhonov [2].

Regularized optimization problem. Effective tool is the method of regularization. In our case

o [ W@z (@>0)
0

will serve as a stabilizer.
We consider the problem of minimizing the following functional

Talw ) = [ lna(o.-1) ~ Ph(@)Pdo -+ a [ [00)Pdz - iy (10)
0 0

Thus, we have the regularized optimization problem (6)—(8), (10). Due to the presence of the stabilizer the
problem has become strictly convex, namely we get well-posed optimization problem. Therefore, for each value
a > 0 this problem has the unique optimal solution that delivers the minimum value to minimized functional
(10). However, it does not exclude the fact that the minimum value problem of functional (10) can be strictly
greater than zero.

For optimal control problem (6)—(8), (10) we will establish optimality conditions. We introduce the concept
of optimal control.

Definition 1. An element ¥ € Ly(0,7) which satisfies the condition

Tol0) = inf Tu(v)

18 called the optimal control.
We denote the solution of problem (6)-(8) by y(x,t;1) corresponding to the given control ¢ (x) € Uy.
So y(x,t;0) corresponds to the solution of problem (6)—(8) when t(z) = 0. Then, we get
w(wr,2) = [l (e, ~1i00) = .~ 1:0))x

0

T

xM@—mm—%wrnwm+w/muwwmw;
0

Lwnaﬂmw—%uﬁummmﬁmm—%@ﬁnmm.

0
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Here, 7(11,2) is the bilinear functional on Uy, L(¢1) is the continuous linear functional on admissible set
of controls U,, as it will be shown below, that the solution y(z,t; 1) of problem (6)—(8) is not only continuous
but it is continuously differentiable on control ¢. Using the notation, functional (10) can be rewritten as

*7 W) (¢ w _2L /|yw - 7 @ll(-f)|2dl‘

The ezistence of solution of the regularized problem and the variational inequality. The following theorem
holds [9].
Theorem 1. As w(v,) is the continuous symmetric quadratic functional on a Uy and satisfies the condition

(¥, ) > cl|9]|?, (e = const > 0), (11)
then for problem (6)—(8), (10) exists only ¥ € Uy:

Jo(¥) = inf To(v).

PeUy

The inequality (11) holds, as

™

(Y, ¥) = /Iyx — Ya (2, 0)\2dx+a~/1/12(z)dx.

0

The solution of optimization problem (6)-(8), (10) we denote by
(@) = arg min Jo ().

g
Further, according to the theory of strictly convex optimization problems the following optimality criterion
formulated in terms of the directional derivative is valid.
Proposition 1 (Variational inequality). The function ¢ € Uy is a function of the optimal control if and only
if the following inequality holds:
(Jay (), =) 2 0, Vo € Uy,

namely we have
s

[ e (0 =10) = @) - 5 e (0. -10) - [0G0) = ) ot

ar [ [b@) - B(@)] de 2 0, ¥ b€ Uy, (12
0
We now carry out the necessary further transformations of variational inequality (12). For this purpose, we
rewrite the boundary value problem (6)—(8) in the operator form Ay = F = {f, p2,%}. As for any admissible
controls boundary value problem (6)—(8) is uniquely solvable, then its solution y(z, ;1) can be written in the
following form y(x,t;1) = A~'F = Ay f + A7 oo + A5 M. B
Next, we take the derivative of this solution in the direction of ¢ — 1. We have
yp (2, 6:9) - [ = 9] = A7 (W —¢) =
= A AT e+ A = [AG f + AT oo + AT = w(a,69) — y(@s £ 9)
or B B
Thus inequality (12) has the form:

/ 1) — (@] - [yaws—139) — ya (2, —1; 5)] dat
0

74 Bectnuk Kaparanmauickoro yHuBepcuTeTa



On the ill-posed problem for the Poisson equation

s

+a- /@(I) () — ()] de >0, Vo €Uy (13)
0

The adjoint boundary value problem. For further study of regularized optimization problem (6)—(8), (10),
we introduce the adjoint boundary value problem

Vi (2, 1) + Vg (2, 1) =0, x € (0,7), t € (—1,1);
v(0,t) = v(m,t) =0, t € (-1,1);

Jon(e. 1) = —y, (2, ~1:9) + (14
et @) iy (0, -155) — (), YO <m <z <
ve(z,1) = 0.
For its formal conclusion we consider the following expression
1 =
// [Gee (2, 1) + Go (2,1)] - v(2, 85 90)dadt = 0,
210

where g(.’t, t) = y(x, t; 1/)) - y(x, t; E)
We transform this expression, considering adjoint boundary value problem (14)

1 =« T
//[gjtt(:mt) + Y (2, 1)] - v(z, 5 90)dadt = /[w(x) —Y(z)]v(z, 1;9)dz+
Z10 0
+ [ —10) =y (o~ 50) 1) = (15)

0
Thus, we obtain desired adjoint boundary problem (14).
Optimality conditions. By applying the equality

x

/vt(f, —1)dé = —y, (v, —1;0) + o1 (@) +yy (0, —1;0) — pi(n), VO<n <z <m,
n

we rewrite expression (15) as follow

K T

/ e (2, ~1:B) — @4 ()] [ye (& —1; ) — s (2, —1; )} = — / o(@,1) - [U(z) - B())d,

0 0

then from relation (13), we finally obtain the desired variational inequality

™

/ [—o(e, 159) +a- ()] - [(@) - D(@)] do >0, Vv €Uy, (16)

0

Thus, on the basis of Proposition 1 we have established the optimality conditions, which can be formulated
as the following proposition:

Proposition 2. The element 1 (x) is the optimal solution to the problem (6)-(8), (10), if and only if it satisfies
boundary value problems (6)—(8), (14), and variational inequality (16).

Application of the method of separation of variables. For resolving the conditions of an optimality (6)—(8),
(14) and (16) we use a method of separation of variables. We will search solutions of boundary value problems
(6)—(8) and (14) in the form

ya,t) =Y () Xu(x), v(et) =) on(t)Xn(@),
k=1 k=1
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where ik
Xp(r) = 222 N\ =% k=1,2,..., (17)
/2

are systems orthonormalized eigenfunctions and eigenvalues for a spectral problem:

X"(z) =\ X(z), X(0)=X(r)=0.

From (6)—(8), (14) and (16) we accordingly obtain

{ yi(t) — kyx(t) =fk(t),j€ (—1,1); )

Yr(—1) = o Y (1) =hps k=1,2,..;

{ v (t) — k2ug(t) =0, t € (—1,1); (19)
v (=1) = K ye(=1) —puls v (1) =0; k=1,2,...;

[—oe(D) + -] - [e — U] 20, for Vg, k=1,2,..., (20)

where fi(t), ©1k, ©ors ¥p, Uk, k =1,2,... are Fourier-coefficients of functions f(x,t), v1(x), @2(x) and ¥(x),
(x) on system (17).
Assume us write solutions of boundary value problems (18) and (19):

1

— coshk(t+1) cosh k(1 —1t)
w®) =vVe = or TP hemhok T / Gilt;m) - fi(r)dr; (21)
21
B kcoshk(l —t)
v (t) = =[yr(=1) — ¢1x] - Tanhor (22)
where h k(1 h k(1
2 ( _Q'COS ( +T), —l<r <t <
Gi(t,7) = sinh 2k
’ cosh k(1 —7) - cosh k(1 +t)
- - ,—l<t<T<l.
sinh 2k
From (21)—(22) and (20) we find
—0e(1) = [n(=1) = o] -
Vi = Yk Pk sinth:’
h2k 1 h
— cot —
yk(—=1;y) = —par 3 +¢ksinh2k +/Gk(—1,7)fk(7>d7',
]
h 2k i
— cot —
Aratp = P1b — p2n—p +/Gk(—1,7)fk(7)d7 [k — 4] =0 for all 4y, (23)
]
. 12
where Ag, = W, k=1,2,...

sinh 2
Now we put, that U, = L2(0, 7). Since the functions 1)(x) do not have any restrictions except for belonging
to the space Ly(0,7), from (23) we can find the optimal values of Fourier coefficients ¢, k=1,2,...:

1

— _ coth 2k

U, = At | o1k + o2 5 _/Gk(_laT)fk(T)dT . (24)
21

Further, as o — 0 (21) and (24) imply that

. sinh k(1 +¢
yro(t) = (}él_>mo yr(t) = p1x cosh k(1 +t) + (p%#—
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1 1

~ cosh k(1 + t)/Gk(—l,T)fk(T)dT +/Gk(t,r) - Fu(r)drs (25)
—1 —1
1
o = lim By, = pup sinh 2k + ooy COSZ% — sinh 2k / Gr(—1,7) fu(r)dr. (26)

-1

_Additionally, the solutions yx(t) found under formula (21) according to optimal Fourier coefficients
Y, k = 1,2,... (24) must satisfy to limiting relations: lin%yk(—l) = 1k, which really hold. And it is
a—r
coordinated with a condition y(x, —1) = @1 (x) from (3).
Thus, for a finding of the exact solution of problem (6)—(8) according to (26) we construct the following
series:

1
— . th 2k
P(z) = Z V/2/msinh 2k | p1p +<,02kco T /Gk(—l,T)fk(T)dT sin kx
e

k=1

and for initial Cauchy-Dirichlet problem (1)—(3) we obtain the solution on the basis of formulas (25).

Conclusion. From equalities (25) and (26) the following directly holds:

Firstly, with growth of index k and at a — 0 the Fourier-coefficients of the function 1 (z) and, respectively,
the solution yi(t) can increase without limit if this growth is not be «suppressed» with corresponding more
rapid decrease of the absolute values of the coefficients @1y, @2 and values of norms || fx(£)|| £, (=11

Secondly, boundary problem (1)—(3) under conditions (5) has unique Le-strong solution [10] if and only if

{exp{2k} - ou}ney s {k " exp{2k} - o}, {exp{2k} - [ fe(P)lLa-11) b ooy C Lo (27)

Thus, it is clear not only the meaning of regularization in problem (6)—(8) and (10), but also the nature of
incorrectness in Cauchy-Dirichlet problem (1)-(3) [6, 7]. And regularization allows us to find an approximate
solution.

Thirdly, we consider the example of Hadamard [11; 37]. To receive analogue of the Hadamard example in
problem (1)—(3) it is necessary to accept:

fx, ) =0, g1(x) =0, po(x) = /2/7 - k - exp{—Vk} sinkz, k € N.
Really, the solution of Cauchy-Dirichlet problem for Laplace equation has the form:

y(x,t) = /2/7 - exp{—Vk} sinkz - sinh k(t + 1), k € N. (28)

Figure. Graph of solution yy(z,t) at k = 1,6 of (28)
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In Figure are shows the graphs of the solution yk(z,t) at k = 1,6 of (28). This solution of a problem in
example of Hadamard considered by us is unique. Moreover, as k — oo the function ¢o(x) approaches uniformly
zero and that not only, but also all its derivatives approache zero and it belongs to space L2(0, 7). However the
solution (28) at any ¢ > —1 has the form of a sinusoid with an arbitrarily large amplitude and does not belong
to space L2((0,7) x (—1,1)).

In order to the function ps(x) satisfied to condition (27), it is necessary and sufficient, that the Fourier-
coefficients o) had the asymptotic behavior for large k of order exp{—(2 + )k} where ¢ > 0. In example
of Hadamard considered by us we have asymptotic which is only equal to exp{f\/E}, and it is obviously not
enough for a correctness of Cauchy-Dirichlet problem for Poisson equation.

10
11
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M.T. ZKuenosmen, M.M. Amanrammena, K.b. VImanbepaues

IIyaccon Tenaeyi yIIiH KOPPEKTi eMec ecell TypPaJibl

Maxkanana Ilyaccon tenzaeyi ymmiu exiesmemMi TIKOYPBIIITE OOJIBICTA IMIEKAPAJIBIK, €CEI KAPACTBIPBLIIHL.
KoppekTi emec mertik ecen tuimai 6ackapy ecebiHe KeaTipiimi. ABTOpIap 3epTTeeTiH Macesere KbICKaIa
IoJ1y »Kacall, 6aCTalKpl IIETTIK ecell IeH TUIMJIIK eCenTepiHiH, KONBIIBIMBIH aHBIKTAIl, PEryJIspH3alisi-
JIaHFaH TUIMIUTK ecebiHiH mmemmiMiHiyg 6ap 60TyBIH J9JIeIeil OTHIPHIN, TYHIHIEC METTIK eCenTiH KOWBLIbI-
MBIH aHBIKTAIl, THIMJIIK IIapTTApbIH 3epPTTEreH, COHJIal-aK alHbIMAJIbLIAPILI O6JIIKTey OJIiCIHIH KOoJI1a-
HBLIYBI KenTipinren. 2KymbicTa THIMAITIKTIH KaKeTTi »KoHe >KETKUIKTI mapTTapbl TYHiHIeC MIeTTIK ecel
TepMUH/IEPiHIe TaObLIBI, KOPPEKTI eMeC MIeTTIK eCeNnTiH MennMITiriHig o/l kpurepuiii anbiaran. [lyac-
COH TeHJEyl YIIH IIeTTik ecentep (pU3NKAHBIH, MEXaHHKA KOHE Je 0acKa KOJIIAaHOAJbI FHLIBIMIAD/IBIH
KeITereH cajiasapbiaga kesueceni. CepriMi e3ekTiy 6ypasybl TypaJibl ecebingeri keprey yHKipsco! u-
puxute ecebiHiH TIentiMi, aa MUINHAPIIK KaMUIISpAaFbl CYUBIKTHIH KoTepiayinin ouikriri Heliman ecebinin
mrenrimi 60JtbIn TabbLIaABI. Jlerenmen kernreren »karnaiia npakrukrepai [Iyaccon Tengeyi yimin KOppekTi
eMecC ecerrTep *KoHe OJIap/IbIH, MIENTIMIIIIr MoceseIepi KbI3bIKThIPaIbl, COHIBIKTAH MAKAJIAIAFbl 36PTTE/INEH
MOCEeJIEHIH, ©3€KTLIITri apTabl.

Kiam cesdep: Ilyaccon Teneyi, KOPpPEKTi eMec eceln, TYHiHIeC MmeKapasbIK ecel, THiMIl 6ackapy, THIMITIK
IapTTapbl, PErysapu3aliis, BAPUAIUJIBbIK, TEHCI3IIK, eKiomeM/Ii TIKOYPBIIIThI 00JIbIC.
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M.T. Jlxxenanues, M.M. Amanranuesa, K.B. Uman6epiues

O HekoppeKTHOIT 3a/1a4e a4 ypaBHenus: Ilyaccona

B pabotre paccmorpena KpaeBast 3ajatda B IBYMEPHO IPSIMOYTOJIBHOM obsacTu ajist ypasuenus [lyaccona.
Uzyuennas HeKOppeKTHas KpaeBasl 3a/1a4a CBOJUTCA K 3a/1a4e ONTUMAJIBLHOIO yIpaBjeHus. ABropamMu JaH
KpaTKuil 0030p ucciexyeMoil IpobseMbl, OIpe/iesIeHbl IIOCTAHOBKA NCXOTHONW KPAaeBOU 33/1a9M U 3aJJa49U OIl-
THUMU3AIAN, JOKA3aHO CYIIECTBOBAHHUE PEIICHUS PEryIdPU3UPOBAHHON 3a1a9i OINTHUMU3AINAM, OIIPEAECJICHA
IIOCTaHOBKa COIIPSKEHHOI KpaeBOW 3a/a4M, UCCJIeI0BaHbl YCJIOBUSA ONTHUMAJIBHOCTH, IPEJICTABIECHO IIpUMe-
HEHUE MeTOJla Da3JieJIeHNs IIepeMeHHBIX. B paboTe ycTaHOBJIEHBI HEOOXOIUMBIE M JOCTATOYHBIE YCJIOBUS
ONTUMAJIbHOCTA B TEPMHHAX COIPSAXKEHHOU KpaeBOI 3aladd, a TaKzKe IOJIydeH CHUJIbHBIM KPUTEpHUU pas-
PeInMOCTH HEKOPPEKTHON KpaeBoil 3amaun. Kpaesble 3ajaun s ypaBHenus llyaccona BO3HHKAIOT BO
MHOTI'HX pa3jiesiaX hU3MKU, MEXAHUKU U JIPYTUX IPUKJIATHBIX HAyK. Tak, QyHKINSA HAIPSXKEHUH B 3aja4e
0 KPY4YeHHUU YIPYTUX CTEepXKHel saBjsercd pelieHueM 3amadn Jlupuxie, a BbICOTa MOABEMA KUJIKOCTH B
MWIMHAPAIECKOM KalWIspe — pemrenneM 3aaa4u Heiimana. Bo MHOrEX ciy4asx mIpakTHKOB MHTEPECYIOT
HEKODPPEKTHBIE 33/1a49U JJIs ypaBHeHHs [lyaccoHa M BOIIPOCHI UX Pa3pEIINMOCTH, YTO OIPEEsieT aKTyalb-
HOCTB HCCJIEYEMOI B CTaTbe IPOOIEMBL.

Kmouesvie caosa: ypasuernne IlyaccoHa, HEKOppEKTHas 3a/a9a, CONPsIKEHHAs TDAHMYHAS 33/1a9a, OITHU-
MaJIbHOE yIIpaBJI€HHE, YCJIOBUS ONTHUMAJIbHOCTH, PEryJIIPU3aIus, BAPDUAIMOHHOE HEPABEHCTBO, JIByMepHas
[IPSIMOYTOJIbHAs 00JIACTD.
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Some integral estimates on the cones of functions
with the monotonicity conditions

In this paper we obtain estimates for the integrals of monotone functions arising in the study of the covering
of various cones of functions with monotonicity conditions. We apply the method of covering of the cones
with the help of generalized Hardy operator. Sharp conditions are found on the kernels of representations for
the validity of given estimates on the cones. The proofs are based on the reduction of integral estimates on
the cones of monotone functions to ones on the family of characteristic functions of intervals. The obtained
results can be used in finding the condition for the mutual covering of cones associated with decreasing
rearrangement of the generalized Bessel and Riesz potentials.

Keywords: functional norm, cones of functions with monotonicity conditions, covering of cones.

When studying the embedding of the potential spaces in rearrangement-invariant spaces, various cones of
functions with monotonicity conditions arise. In terms of such cones, we can formulate the embedding criteria
for the space of generalized Bessel and Riesz potentials in rearrangement invariant spaces [1-3]. In this case, an
important role is played by problems of ordinal covering of cones.

Let (S, %, ) be a measure space. Here ¥ is o-algebra of subsets of the set S, on which is determined a non-
negative o- finite, c— aditive measure p. Lo = Lo(S, X, 1) denotes the set p-measurable real-valued functions
f:S—RLI={fe€Ly:f>0}.

Definition 1. [4] Mapping p: L§ — [0,00] is called a functional norm (short: FN), if for all f,g, f, € L{,
n € N the conditions are fulfilled:

(P1) p(f)=0= f =0, u— almost everywhere (short: pu— a.e.);

plaf) = ap(f),a = 0;p(f + g) < p(f) + p(g) (property of the norm);

(P2) f<g, (u—ae) = p(f) <p(g) (monotonicity of the norm);

(P3)  fn 1 f = p(fn) = p(f)(n — oo)(Fatou property);
(P4) 0<p(o) <oco= [ fdu<c,p(f),f € Lg. (Local integrability);

(P5) 0 < p(o) < 0o = p(xo) < oo (finiteness of the FN for characteristic functions (x,) for the sets of
finite measure).

Here f, T f means that f, < fni1, li_>m fo=1 (u— ae.)

Definition 2. Let p be a functional norm. Set X = X (p) of functions in Ly, for which p(]f]) < oo is called a
Banach function space, generated by a FN p. For f € X we set

I1fllx = p(fD-

Let relations of partial order and equivalence be introduced on Lar :
f < g with properties of transitivity, i.e. f < f;

f=g9 g=<h=[f=<h frgefg=</f
We assume, that the order relation is subordinated to pointwise estimate u-a.e., i.e.
1) f<g, (n—ae)=f=<g 2) fulf = ful f (1)
Here f,1 f means that f, < foy1; f=[sup]f, ie. f,<f neNandiff, < f, neNthen f<f.

A basic example of the order relation: f < g < f <g, pae. = p(f) < p(g).
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We are interested in the relation of the order associated with the decreasing rearrangement of functions.
Denote for f € Ly

M) =pfzeS: [fl@)>y}, yel0,00) (2)
— Lebesgue distribution function. Through I.LO denote the set of functions f € Ly for which A¢(y) is not identical

L]
to infinity, i.e. yo € [0,00) :  As(yo) < oo. For f € Ly we introduce a decreasing rearrangement f* as a right
inverse function of a decreasing function Ay, i.e.

F)=inf{ye0,00): Ar(y) <t} teRy=(0,00). (3)

It is known that 0 < f* |; fft+0) = f 1), t € Ry; f* is equimeasurable with |f], i.e.

wm{te Ry f*(t) >y} = Af(y), y € [0,00). In addition, for f € Ly we have: Af(y) — 0, (y — +o0) &
< |f(z)] <oo, (W—a.e.)onS.

.+
We define the order relations for the functions from L :
) f=ge [fO)<g(t); te(0ubs); (4)
¢ ¢
2) f<ge [fars [gan te©us). )
0 0

The order relation (5) is subordinate to (4); both are subordinate to pointwise estimation u-a.e.. The equivalence
of functions by order relation (4) means equimeasurability.
Definition 3. Let p be a FN. We say that p is consistent with the order relation <, if for f, g€ Ld, f<g

we have p(f) < p(g).
Let us note that by property (P2) any FN is consistent with a pointwise estimate:

f<g (w—a.e)=p(f) < pg) (6)
Definition 4. A FN p is rearrangement-invariant if it is compatible with the order relation (4) i.e.
T <g" = p(f) <plg). (7)

BFS X = X(p), generated by rearrangement-invariant FN p, we call as rearrangement-invariant space (short:
RIS).

Let K, M C La' be cones of functions [5], equipped with non-degenerate positive homogeneous functionals
pK, and pys i.e.

prk: K —[0, o); heK=ahecK, a>0; pg(ah)=apk(h);

pr(h)=0= h =0, u-ae. and analogous for pps(h) h € M.

Let on the La' given order relation<. Following [6], we introduce the notions of ordinal covering and order
equivalence of cones.

Definition 5. Cone M covers the cone K with the covering constants ¢y € Ry and ¢; € [0,00) if for any
h1 € K there exits hoy € M such that

pu(he) < copr(hi),  hi < ha+cipr(hy). (8)

Designation of an ordinal covering: K < M.
Definition 6. We call the cones K, M order-equivalent, if they mutually over each other.
The designation of ordinal equivalence:

KaeM&K<M=<K.

If the order relation < coincides with a pointwise estimate of the functions p- a.e., we will talk about pointwise
covering of the cones and write K < M. So when K < M (8) takes the form

prr(h) < coprc(hr),  hi < hg +cipr(hr),  (n—a.e.). (9)
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Pointwise equivalence of the cones signifies their mutual pointwise covering and is denoted: K = M. So,
K=2M&K<M<IK. (10)

Let T € (0, 00]. Through Q(T) denote the class of functions on (0, T') :

AT =L o 0<pt) /wﬁ<M;¢@+®:w®,t€@T)- (11)
0

We introduce the functions of two variables ¢, 7 € (0,T")

R _ o(t), T € (0,1;
h@m%Jmﬁwwiﬂﬂ}—{ﬂﬂ7 i (12)
t
1 :
RS M A 13
o(r), TeT)
It is clear that f,(t,7) decreases and is continuous from the right by ¢ and on 7. Further,
) t
peul) = ¢ [wdez o), te©.D) (14)
0
so that R
0< folt,7) < folt,7), t,7€(0,T) (15)

and f,(t,7) decreases by 7 on the (0, 7). Now space with a measure (S,%,u) is given as follows: S = (0,7);
Y there is o— algebra of Lebesgue-measurable subsets of (0,7), u is Lebesgue measure. Let E = E(0,T) be an
RIS of measurable functions on (0,7) with decreasing rearrangements with respect to Lebesgue measure p;

EY=EY0,T)={g€ E(0,T): 0<gl on (0,7)}. (16)

We introduce the cones of functions from Lg (0,7) :

T
Mﬂ—KMU%:h@EM%ﬂZ/h@WWWTQEW , (17)
0
T
R(T) = Rop(T) = L 0t) = ilgit) = [ Fo(t.1)g(m)dr: g e B (18)
0

Cones K and K are equipped with functionals: for h € K, he K

pi(h)=inf {|lgllz: g€ E% h(g;t)=h(t), te(0,T)}; (19)
o) =inf{llgl: ge B hgit) =ht), te(0,7)}. (20)
We denote for ¢ > 0, ¢ |,
t
[ e(€)dg
B, := sup Ot . (21)
““”%gw@x%

When investigating the problems of the mutual covering of cones K, g(T') and f(% g(T) the following
statements of independent interest can be used.
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Theorem 1. Let ¢ € Q(T) see.(11) and ¢t € (0,T). The following estimates are valid:

t 1 P t t
O/ AE)ie < {p 0/ [w(ﬂw / w(&)dél df} <2 0/ P(E)de; (22)

T

%/@(T)Td’r < peir(lof,t] {;/ [go(T)T—i—/cp(f)dg] dT} < %/@(T)Td’f. (23)
0 0 0

T

Proof.
At p € (0,¢] we have

/p [w(ﬂw /t so(é“)d&] dr = /p o(r)rdr + /p ( / <p(§)d§> dr = /p o(T)rdr+
0 0 4

0

We denote by

Then
T(p) < Qp) <2¥(p).

We note that the function ¥(p) decreases monotonically on (0, ¢]. Indeed, since
p
U'(p) = —p% [ ¢(r)TdT < 0 therefore = ¥(p) | .
0

Consequently,
t

sup W(p) = W(+0) = / (€)de.

€(0,t
p€(0,1] A

In the formula for ¥(40) we took into account that

. P P
p0/<p(7')7'd7 < b/g@(T)dT =0 (p— +40).

Moreover

. 1 /
nf W) =0 = ; / o(r)rdr. (25)

From this and (24) follow the estimates (22), (23).
Corollary 1. Under the conditions of Theorem 1, for p € (0,¢], t € (0,7") the estimate holds

t

+ [etmar <= 0/ [ww / @(ﬁ)dfl dr <2 0/ o€ de. (26)

0 T
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If B, < 0o (see.(21)), then with p € (0,t], t € (0,T) the estimates hold

t

@(f)dél dr < 2/w(§)d£; (27)

0

1]@(7)Td7§ ;/ﬂ {@(T)TJr/tcp(S) } dr < %/@ )rdr. (28)
0 0

Theorem 2. Under the conditions of Theorem 1, we denote (see (17), (18)):

xsm‘ =
o\ﬁ
S
™
&
IN
|-
o\b
|
S
>
\‘
+
—

. h(g . .
Copr = sup¢ 15(7) ; Cy,= sup Cyy. (29)
E 0,t
IS %fh g€(0,t)
0
Then the following estimates hold
1 N
§B¢ <C,<B,+1. (30)
Proof. Let h € K, g(T). g € E¥(0,T), be such that
T
() = higst) = [ Tt a(mdre lglle < 2o (h) (31)
0
It follows that
t T t
/h(g;f)d€ = /Q(T) (/fw(fﬁ)%) dr, te(0,T).
0 0 0
According to (12)
fe&m)=(r), £€(0,7]; fel&m)=9(§), €€ (1),

so that
t

T t
/ h(g;€)de = / o) [(ww / w(f)di) X0 (T) + (T X <T>] dr.
0

0 T
It follows from (13) that

th(g;t) =/9 [(/s@df) X(0,0(T) + to(T)X (2,7 )(T)] dr.

oo |- [a(r) [ (] 90 x () + totrncan ()] ar | "

oer E)fg(T) K T+f<pd§> 0(T) +to(T)x (t,T)(T)] dr

All terms in the numerator and denominator in (32) are nonnegative, and the second summands coincide.
Therefore, denoting

So,

Of 9(7) Kg‘ sod§> Yo m} ar
geBt fg(T) K@(T)r + jcpdﬁ) X(0.0(T) + to(T)X(t.1) (7)} dr

; (33)
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we get 5 .
<C,, ot + 1. (34)

Now denote

FE,1= sup ofth Wlé) X(0,)(T )} dr
T e fK + [ ed )X(O 0(T )+t@(T)X(t,T)(T):| o

0 T

(35)

As for any RIS E(0,T) we have g(7) = x(0,0)(7) € E*(0,T) at p € (0,T) it is obvious that Dyy > Eyy. In
fact, these quantities coincide (see, for example, [5]);

D<p = E@ t, SO that
Ep1 <Cpy < Epp+1; (36)

moreover, by virtue of (22)

B, = max {Eg . E;7t} , (37)
where
50) Ofp [(Oj @(S)d§) X(o,t](T)] dr o P (jso(é“)dé)
o pzl(lopt) f (‘P(T)T j (f)dﬁ) X(0.4(7) + to(T)X (2,1 (T)dT : pzl(l&] bf (<p(7')7' +Tftap(§)d§> dr 7
. F{(] 04 x| ar )

e of (%0(7')7'4— i w(é)d5> X0.0(7) + to(7)X () (T)dT
] ple)de
sup £

e | («p(T)T i) sodé) 7+t [ plr)dr
0 T K

In E( ) the upper bound is achieved when p € (¢,T) has the minimum value p = ¢, so that

©, @,
Thus,
¢
J pdé
; (0 0
Epv=EY) = ol - (38)
pe(0,t] | 1
;bf (QD(T)T-F:[(pdg) dr
Further, taking into account that
t t
J (&)d€ J (&)d€
0 0
T R T &
r 1f o(T)T + [p(§)dE ) dr inf X[ (¢ + [ @(&)de | dr
r 0 T pe(0,1] * 0 T
and applying Theorem 1 in the denominator, we obtain, by virtue of (23),
t t
t [ pdé t [ pdg
0 2 0
t S Egp,t S t .
2 [ o(r)rdr Je(r)rdr
0 0
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Therefore, on the base of (36), we have

t t
t [ pdé ) t [ pde
0l <1 pe),
2 [o(r)rdr [ p(r)rdr
0 0
from whence )
§B¢§C¢§B¢+l.

Theorem 2 is proved.
Corollary 2. Under the conditions of Theorem 2, the estimates hold

t
hgit) < Coury [ hlai €1, (40)
0
1 t
h*(g;t) < Atp,t;/h(%g)dfa (41)
0
1 t
g, < Cory [ a0 (42)
0

for all t € (0,T), g€ E*0,T). Here C, < B, + 1.
Indeed, (40) follows from (29), and for C,, the estimate (30) is valid. Moreover, on the right-hand side of (40)
there is a positive, continuous decreasing function, as the mean integral with respect to (0,t) of a decreasing

function h(g;t), so
t * t

%/h(g;f)df = %/h(g;f)dé;
0

0
: [rgod| =1 [hgd

0 Loo(t,T) 0
Therefore, (40) = (41), (42).
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H.A. Bokaes, M.JI. Tonpaman, I.2K. Kapmbiruna

Keiibip MOHOTOHIBI KOHYyCTapMeH OaiijIaHBICTHI
dbyHkIusaaap yIiiiH daraJjaysiap

MaxkaJia/1a MOHOTOH/IBI IAPTTAPFa 1e, SPTYPIl DYHKIUsS KOHYCTAPBIHBIH KOMKEPLIyIepin (?KabblIy1apbIH)
3epTTey Ke3iHJie Ke3/1eCeTiH MOHOTOHIBIK (DYHKIUsIAD YIIH HHTErPpaIAbIK Oarajaysiap ajabiHrad. 2Kamms-
JIaHFAH Xap/u OIEepaTOPBI KOMETIMEH KOHYCTAPBIH, ONEPATOPJIBIK, KOMKEPiTyl (?Kabbliny) 9/1ici KO JaHbLI-
nel. Kenripinren 6arasayiapabls, JyPBICTHIFBI KOHYCTapAbl YCBIHATHIH SAPOJIapra HAKTHI MAPTTAp KeITipy
apKbUIbl KepceTinren. lpsenmey apajblKTap/blH CHIATTAMAJBIK, (BYHKIUAIAPbIHBIH, apachIHIAFbl MOHO-
TOHB! (DYHKIHSIIAD KOHYCTAPBIHBIH HHTETPAJIILIK OarajiayapblH DeLyKIMsiIara Heri3esres. AJIbIHFaH
HOTHUKeJIep 2Kajnblianral Beccesn xxonHe Pucc Typinzmeri kemiMesi aybICTBIPBIMIAPMEH OailIaHBICKAH KO-
HyCTap/IplH e3apa KOMKepliyl (»kabblily) maprapblH i37ecTipy KesiHae KOJLJaHbLIIBL.

Kiam cesdep: dyHKIMOHAIIBI HOPMa, MOHOTOHIBI (DYHKITUSIIAP KOHYCHI, KEMIMeJI aIMaCTBIPBLIBIM/IBI KO-
HyCTap, KOHYyCTap/bIH PETTIK OypKeHyi.

H.A. Bokaes, M.JI. Tonmpaman, I.2K. Kapmbiruaa

HekoTopble nHTerpaJjJbHbie OIIEHKN HAa KOHYCaXx
dyukImii ¢ ycjioBUSIMU MOHOTOHHOCTH

B craTbe mosydensl mHTErpabHBIE OLEHKH JJisi MOHOTOHHBIX (DYHKIIMI, BOSHUKAIONME IIPU U3y YEeHUU Ha-
KPBIBAHWSI PA3JIMIHBIX KOHYCOB (DYHKIUI C YCJIOBUSIMH MOHOTOHHOCTH. VICIIOJIB30BaH METOJI, OTIEpaTOPHOTO
HaKpBIBaHUsI KOHYCOB C ITOMOINBIO 00OOIIEHHOro oneparopa Xapau. HalifeHbl TOYHBIE yC/IOBUS Ha SIpa
NIPEe/ICTaBJIEHUI KOHYCOB, 00EeCIIeunBAIOIINe CIIPABEIJIMBOCTL IIPUBEIEHHBIX OIeHOK. /lokazareabeTBa OCHO-
BAHBI HA PEIYKIMM MHTETPAJIBHBIX OIEHOK HA KOHYCAX MOHOTOHHBIX (PYHKIMI K OIEHKAM Ha CeMelCTBe
XapaKTePUCTUIeCKUX (PYHKIMI WHTEPBAJIOB. lloydeHHbIe pE3yIbTATHI MOTYT OBITH MPUMEHEHBI IIPU Ha-
XOXKJIEHUM YCJIOBUN B3aMMHOIO HAKPBIBAHUS KOHYCOB, CBS3AHHBIX C YOBIBAIOIIMMU II€PECTAaHOBKAMH 0000-
IIEHHBIX IToTeHIaaoB beccesst u Pucca.

Kmouesvie caosa: OyHKIMOHAIBHAST HOPMA, KOHYCHI (DYHKIIUN C YCIOBUSIMA MOHOTOHHOCTH, MTOPSIIKOBOE
HaKPBIBAHNE KOHYCOB.
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Pregeometry on the subsets of Jonsson theory’s semantic model

One of the interesting achievements among investigations from modern model theory is the implement of
local properties of the geometry of strongly minimal sets. In E. Hrushovski have proved remarkable results
under this ideas and this one had impacted an essential infuence for development of methods and ideas
of research for global properties of structures.These new model-theoretical features and approvals play an
important role in E. Hrushovski’s proof of the Mordell-Lang Conjecture for function fields.

In this article, we are trying to redefine the basic concepts of the above mentioned ideas on the formul
subsets of some extentional-closed model for some fixed Jonsson theory. With the help of new concepts in
the frame of Jonssoness features, pregeometry is given on all subsets of Jonsson theory’s semantic model.
Minimal structures and, correspondingly, pregeometry and geometry of minimal structures are determined.
‘We consider the concepts of dimension, independence, and basis in the Jonsson strongly minimal structures
for Jonsson theories.

Keywords: Jonsson theory, Jonsson set, semantic model, Jonsson minimal structure, Jonsson pregeometry,
Jonsson dimension, Jonsson basis, Jonsson independence, modularity.

In the paper [1, 2] strongly minimal Jonsson sets were studied. A natural generalization will be a consideration
of Jonsson analogs of strongly minimal arbitrary subsets of semantic model of some fixed Jonsson theory.

In order that we could transfer from the apparatus of Model theory of developed for complete theories the
basic concepts connected with the concept of strongly minimal for fixed formula subsets of semantic model of
the above Jonsson theory, we need the semantic model to be saturated in its power, that is, the theory must
be perfect. We note that similar approaches to the work with the transfer of basic model-theoretic concepts for
some fixed Jonsson theory and its semantic model were considered in the following works [3-5].

We recall the necessary definitions. We will assume everywhere that the language is always countable.

Definition 1 [6]. A theory T is called Jonsson if:

1) The theory T has an infinite models;

2) The theory T is inductive;

3) The theory T has the joint embedding property (JEP);

4) The theory T has the amalgamation property (AP).

Further, throughout this article, all considered theories will be an existential complete perfect Jonsson theory
in a countable language L.

In this paper, we redefine the basic concepts connected with strongly minimal for complete theories in the
framework of the study of some Jonsson theory. All main definitions belong to A. Yeshkeyev and they are taken
from the above sources. All results that are given without proof also belong to A. Yeshkeyev and they can be
extracted from [2].

Let M be some an existentially closed submodel of semantic model for fixed Jonsson theory in the language
L, ¢(v) is an L)y —formula, we will let ¢(M) denote the elements of M that satisfy ¢.

Definition 2. Let D C M™ be an infinite A-definable set, where A CL. As a rule, throughout this article
under A we shall consider the set of all existential formulas of the given language. We say that a set D is Jonsson
minimal in M if for any A-definable Y C D either Y is finite or D\Y is finite.

If ¢(v,a) is the formula that defines D, then we also say that ¢(7,a) is Jonsson minimal.

We say that D and ¢ are Jonsson strongly minimal if ¢ is Jonsson minimal in any existentially closed
extension A/ of M.

We say that a theory T is Jonsson strongly minimal if the formula v = v is Jonsson strongly minimal (i.e.,
if M € ModEr then M is Jonsson strongly minimal).

Let M be some an existentially closed submodel of semantic model for fixed Jonsson theory in the language
L and D C M be Jonsson strongly minimal.
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We will consider aclp, the algebraic closure relation restricted to D. Recall that b is Jonsson algebraic over A
if there is a formula ¢(z,a) € A with @ € A such that ¢(M,a) is finite.
For A C D, we let aclp(4) = {b€ D : bis Jonsson algebraic over A}.

The following properties of Jonsson algebraic closure are true for any subset D of semantic model for
theory T.

Lemma 1.

1) acl(acl(A)) = acl(A) D A.

2) If ACB, then acl(A)Cacl(B).

3)If a € acl(A), then a € acl(Ag) for some finite AoC A.

Lemma 2 (Exchange Principle) Suppose that D C M is Jonsson strongly minimal, A C D, and a,b € D.
Ifa € acl(A U{b}) \ acl(4), then b € acl(A U {a}).

In any Jonsson strongly minimal set, we can define a notion of independence. We fix M € ModEr and D
is Jonsson strongly minimal set in M.

Definition 3. We say that A CD is Jonsson independent if a € acl(4 \{a}) for alla €A. If C C D, we say
that A is Jonsson independent over C if a ¢ acl(C U (A \ {a})) for all a € A.

It is turn out that cardinality is the only one opportunity to distinguish independent subsets of D.

Definition 4. We say that A is a Jonsson basis for Y C D if A C Y is Jonsson independent and
acl(A) = acl(Y).

Clearly, any maximal Jonsson independent subset of Y is a Jonsson basis for Y.

Lemma 3. Let A, B C D be Jonsson independent with A C acl (B).

1) Suppose that A9 C A, By C B, AgU By is Jonsson basis for acl(B) and a € A\ Ag. Then, there isb € By
such that Ag U {a} U (Bo\ {b}) is Jonsson basis for acl(B).

2) 4] < |BI.

3) If A and B are Jonsson bases for Y C D, then |A| = |B].

Definition 5. If Y C D, then the Jonsson dimension of Y is the cardinality of a Jonsson basis for Y.

We denote the Jonsson dimension of Y through Jdim(Y).

Note that if D is uncountable, then Jdim(D) = |D| because our language is countable and acl(A4) is
countable for any countable A C D.

For Jonsson strongly minimal theories, every model is determined up to isomorphism by its Jonsson
dimension.

Theorem 1. Suppose T is a Jonsson strongly minimal theory.

M,N € ModEr then MEN if and only if Jdim (M) = Jdim(N).

Corollary 1. If T' is a Jonsson strongly minimal theory, then T is k -categorical for k > Rg and I(T,Rg) < N,
where T™* is the center of T and I(T,®;) denote the number of existentially closed countable models of T

Analogously to the Baldwin-Lachlan result, we obtain the following theorem.

Theorem 2. If T* is perfect existentially complete Jonsson theory, then I(T,Rg) = Rq.

In this article, we will use Jonsson strongly minimal sets and consider some properties of combinatorial
geometry of algebraic closure.

It is well known that in the proof of Morley’s theorem on uncountable categoricity, the properties of an
algebraic closure on strongly minimal sets are used in an essential way. In this article, we turn to Jonsson
strongly minimal sets and with their help we study the combinatorial geometry of algebraic closure.

We give the following definitions.

Definition 6. Let X be subset of semantic model of fixed Jonsson theory and let ¢l :P(X) — P(X) be an
operator on the power set of X. We say that (X,cl) is a Jonsson pregeometry if the following conditions are
satisfied.

1.If AC X, then A C cl(A) and cl(cl(A)) = cl(A).

2. If AC B C X, then cl(A4) C cl(B).

3. (Exchange) A C X, a,b € X, and a € cl(AU{b}), then a € cl(A)b € cl(AU {a}.

4. (Finite character) If A C X and a € cl(A), then there is a finite Ay C A such that a € cl(Ay).

We say that A C X is closed if cl(A) = A.

We may notice (By Lemmas 1 and 2) that if D is Jonsson strongly minimal, we can specify a Jonsson
pregeometry by defining cl(A) = acl(A) N D for A C D. We can generalize basic ideas about independence and
dimension from Jonsson strongly minimal sets to arbitrary Jonsson pregeometries.
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Definition 7. If (X, cl) is a Jonsson pregeometry, we say that A is Jonsson independent if a ¢ cl(A\{a}) for
all @ € A and that B is a J -basis for Y if B C Y is J-independent and Y C acl(B). The natural generalization
of Lemma 3 is true for all J-pregeometries.

Lemma 4. If (X,cl) is a J -pregeometry, Y C X,B;,Bs C Y, and each B; is a J -basis for Y, then
|B1| = [Ba|.

We call |B;| the J -dimension of ¥ and write J dim(Y") = |B;].

If AC X, we also consider the localization cla(B) = cl(AU B).

Lemma 5. If (X, cl) is a J -pregeometry, then (X, cl4) is a J -pregeometry.

If (X, cl) is a J -pregeometry, we say that Y C X is J -independent over A if Y is J -independent in (X, cla).
We let Jdim(Y/A) be the J -dimension of Y in the localization (X, cly). We call J dim(Y/A) the J -dimension
of Y over A.

Definition 8. We say that a J-pregeometry (X, ¢cl) is a J-geometry if cl(@) = @ and cl({z}) = {z} for any
rzeX.

If (X,cl) is a J-pregeometry, then we can naturally define a J-geometry. Let Xo = X/cl(®). Consider the
relation ~ on X given by a ~ b if and only if cl({a}) = cl({b}). By exchange, ~ is an equivalence relation. Let

A A
)A( be X/ ~. Define ¢l on )A( by cl(A) ~) ={b/ ~: b e cl(A)}.

Lemma 6. If (X, cl) is a J-pregeometry, then ()A(, é\l) is a J-geometry.

We distinguish some properties of J-pregeometries that will play an important role.

Definition 9. Let (X, cl) be J-pregeometry. We say that (X, cl) is trivial if cl(A) = Uzecacl({a}) for any
A C X. We say that (X, cl) is modular if for any finite-dimensional closed A, B C X

Jdim(A U B) = J dim(A) + J dim(B) — J dim(A N B).

We say that (X, cl) is locally modular if (X, cl,) is modular for some a € X.

Theorem 3. Let (X, cl) be J- pregeometry. The following are equivalent.

1. (X, cl) is modular.

2. If A C X is closed and nonempty, b € X, and z € cl(A,b), then there is a € A such that x € cl(a,b).

3. If A)B C X are closed and nonempty, and = € cl(A, B), then there are « € A and b € B such that
x € cl(a,b).

Proof. Let us prove 1) = 2). By the definition of the closure, we conclude that Jdim A is finite. There
are two cases z € cl(b) and x ¢ cl(b). The case z € cl(b) is proved trivially. It is sufficient for us to
consider the case when x ¢ cl(b). As consequence, from definition of modularity Jdim(A,b,z) = J dim A+
+Jdim(b, z) — Jdim(A N el(b,x)) and Jdim(A,b,z) = Jdim(A,b) = Jdim A + Jdimb — Jdim(A N ¢l(d)).
Since Jdim(b,z) = Jdim(b) + 1, then there exists a € A such that a € cl(b,x)\cl(b). Consequently, by the
Exchange Principle, we obtain = € cl(b, a).

Let us prove 2) = 3). Without loss of generality, we consider case, Jdim A < w and J dim B < w. Further
we will prove by induction on Jdim A. If Jdim A is zero, then the condition 3) is satisfied. Let A = c¢l(Ay, a)
where Jdim A = Jdim A — 1. Hence z € cl(Ao, B,a). From 2) it follows that, there is ¢ € ¢l(Ap, B) such that
z € cl(c,a). By induction, there is ag € Ag and b € B such that ¢ € ¢l(cg, b). Continuing further, by condition
2) there is a* € cl(ag,a) C A such that © € cl(b, a).

Let us prove 3) = 1). We may assume that A, B C X are finite-dimensional and closed. We will show
condition 1) by induction on Jdim A. If Jdim A = 0, then we are done. Assume that A = cl(Ap,a)), where
Jdim Ag = Jdim A — 1 and we suppose, by induction, that

J dim(Ag, B) = J dim Ay + J dim B — J dim(4y N B).

First of all, suppose that a € cl(Ag,B). Hence Jdim(Ap, B) = Jdim(A,B) and, since a ¢ Ao,
Jdim A = Jdim Ay + 1. Since a € cl(Ao, B), then by 3) there is ap € Ag and b € B such that a € cl(ap, b).
Because a ¢ cl(ag), by the Exchange Principle, b € cl(a,ap). So b € A. But b ¢ Ag, because otherwise a € Ay.
Therefore, J dim(A N B) = J dim(Ap, B) + 1, as we would like.

Further, assume that a ¢ cl(Ag, B). We must show that AN B = Ay N B. Suppose that b € B and
b € cl(Ap,a)\cl(Ap). Then, by the Exchange Principle, a € cl(Ag,b), we have obtained a contradiction.

All undefined concepts related to Jonsson theory can be found in [7].
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M.T. Kaceimerosa

oHcoHABIK TeOPUSHBIH, CEMAaHTUKAJBIK MOJEJJIHIH, 111K
>KUBIHAPBIH/IAFbI IIPpereoMeTpust

Kasipri mojiesibjiep T€OPUSICHIHBIH, HOTHUXKEJIEPi apachIHIArbl €H KbI3BIKTHI »KETiCTIKTepiHIH OipiHe KaTTbI
MUHUMAJIIBI YKUBIHIAP/IBIH, T€OMETPUSICHIHBIH JIOKAJIIbI KACUETTEPIH YKy3ere achipy »kartajabl. OChbl ujesi-
JIapFa KATBICTBI 2KYMBICBIHIA . XPYIIOBCKUIILIH, TaMala HoTmKegepre ue 6oaasl. Oap KypbLIbIMIAD-
JIbIH, FajlaMJIbl KACHETTEPIH 3ePTTey VIIH 9ICTEP/IH KOHE HJIesap/IblH JaMyblHa eJeysl BIKIIaJ eTes.
Byn Teopus-momenpaik epexmiesikTepi MeH MastiMzeMesnepl dyHKIpsIap epicrep yHiH XpPYIIOBCKUAIbIH
Mopgenn-Jlaur runore3acsiH mpaefeyiHge MaHBI3ABI PO aTkapaibl. Makamama aBTOp KOFapbiia KOp-
CeTiJIPeH UJIesJIap/IbIH, HEri3ri YPBIMJIAPBIH KeHOip OeKiTiIreH HOHCOHIBIK, TEOPHS YIITIH SK3UCTEHIIMOHAJIIbI-
TYHBIK, MOJIEJIbIEPiHIH (DOPMYJIAJIBIK, iK1 >KUBIHIAPBI aPKBLIbI AHBIKTAyFa THIPBICTHI. COHBIMEH KATAp *KaHA
YFBIM/IAP KOMETIMEH epeKIIeTiKTePIiH HOHCOHIbIIbLIBIFBIHBIH asChIHIA HOHCOHIBIK TEOPHUSHBIH CEMaHTH-
KaJIbIK, MOJIEJIIHIH OapJIbIK, iIKi KUbIHIaPbIH/a [TPereoMeTpusi YEbIMbI 0epiiai. MuHuMaIIbl KYPbLIBIMIAD
JKOHE COMKECIHIIIE IPEreOMEeTPHUST YKoHe MUHUMAJIBI CTPYKTYPATAP/IHIH TeOMETPHSICH AHBIKTAIIBI. VIOHCOH-
JBIK, TEOPUSIAP YIIiH HOHCOH/IBIK, KATTHI MUHIUMAJIIHI KYPBUIBIMIAPIA OJIIIEMIUTIK, TOYEICI3IiK KoHe 6a3nc
YFBIMIAPBI KAPACTBIPBLIIbI.

Kiam ce3dep: MOHCOHIBIK TEOPUsl, HOHCOHIBIK, YKUbIH, CEMAHTHUKAJIBIK MOJEJb, HOHCOHIBIK, MUHIMAJIIHI
KYPBLIBIM, HOHCOH/IBIK IIPEreoMeTpHsl, HOHCOHIBIK, OJIIIeM, HIOHCOHIBIK 0a3nc, HOHCOHIBIK, TOYEICI3 K, MO-
JIYJIAPJIIBIK.

M.T. Kacbimerosa

IIpeareomerpus Ha MOJIMHOXKECTBAX CEMAaHTUYECKOM
MO/deJI MOHCOHOBCKOI Teopumn

OfHUM U3 UHTEPECHBIX JOCTUKEHUHN Cpe/ii NCCIETOBAHNI COBPEMEHHON TEOPUH MOJIEIeH sIBJISIeTCS PeaTn3a-
1Ml JIOKAJIbHBIX CBOWCTB FeOMETPUU CUJIBHO MUHUMAJIbHBIX MHOXKeCTB. B pabore D. XpyHuioBCKOro noka3anbl
3amMedaTesbHbIe PE3YJIbTATHL 0 ITUM HEsIM, U 9TO OKA3aJ0 CYIIECTBEHHOE BIIMSIHUE Ha pa3pabOTKy MEeTO-
JIOB U WJIei UCCIeq0BaHNS TJI00ATBHBIX CBOUCTB CTPYKTYP. DTU HOBBIE TEOPETUKO-MOJIEIbHBIE OCOOEHHOCTH
U yTBEPXKJIEHUsI UI'PAIOT BaXKHYIO POJIb B JIOKa3aTebCTBE . XpyIoBcKoro runoressl Mopaesuia-Jlanra mist
byHKImit moJeii. B 9T0it cTaThe MBI IBITAEMCSI TIEPEOTTPEIETUTH OCHOBHBIE MIOHSITHUS YIIOMSTHY TBIX BBIIIIE UIEH
Ha (QOPMYJIBHBIX MOJMHOXKECTBAX HEKOTOPON 9K3MCTEHITMATHLHO-3aAMKHYTON MOJEIN JjIs HEKOTOPOi (buK-
CUPOBAHHON HOHCOHOBCKO# Teopun. C IOMOIIBIO HOBBIX IMOHSTHII B PaAMKaxX OCODEHHOCTEH HOHCOHOBOCTU
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MIpeIreoMeTpusl JaeTCsl Ha BCEX MOJMHOXKECTBaX CEMAaHTHYECKOM MO HOHCOHOBCKOM Teopun. Onpe/iesie-
HBbI MUHUMAJIbHbIE CTPYKTYPBI U, COOTBETCTBEHHO, IIPEATCOMETPUL, U T€OMEeTPUsI MUHUMAJIbHBIX CTPYKTYD.
PaccMmoTpenbl TOHATHST pa3sMEepHOCTH, HE3aBUCUMOCTH W 0a3uca B HOHCOHOBCKHUX CUJILHO MHHUMAJILHBIX
CTPYKTypax IJisi HOHCOHOBCKHUX TE€OPHUM.

Kmouesvie cro6a: HOHCOHOBCKAs TEOPHS, HOHCOHOBCKOE MHOYKECTBO, CEMAHTUIECKAST MO/IEJTb, HOHCOHOBCKAS
MUHHUMAJIbHAsI CTPYKTYypa, HOHCOHOBCKAsI IIPEJIreOMeTpHsI, HOHCOHOBCKAsI PA3MEPHOCTD, HOHCOHOBCKUM Oa-
3HUC, HTOHCOHOBCKasl HE3aBUCUMOCTb, MOYJISIPHOCTD.
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e-Approximation of the temperatures model of inhomogeneous
melts with allowance for energy dissipation

Accumulated facts and information about the Navier-Stokes equations, together with a large number of
experiments and approximate calculations, made it possible to reveal some discrepancies between the
mathematical model of a viscous melt and real phenomena in the nature of real molten systems. There
are many reasons for this. One of them is the nonlinearity of the Navier-Stokes equations. And for non-
linear equations it is known that in non-stationary problems, a solution satisfying it can exist not on
the entire interval ¢ > 0. Over a finite period of time, it can either go to infinity, or crumble.A solution
lose regularity and no satisfying the equations and begin branching. It is mathematically proved that if
this solution exists for ¢ > 0, then it may not seek to solve the stationary problem when stabilizing the
boundary conditions and external influences. The solutions of the nonstationary problem obtained even
with a smooth initial regime and smooth external influences can become less regular with time, and then
generally go into irregular or turbulent regimes. The actual implementation of this or that branch of
the solution depends on extraneous reasons not taken into account in the Navier-Stokes equations. In the
proposed paper, we constructed a numerical scheme with good convergence. The regularization of the initial
systems of differential equations by e-approximation is constructed. The Galerkin method is implemented
ensuring the correctness of boundary value problems for an incompressible viscous flow both numerically and
analytically. A splitting scheme for the Navier-Stokes equations with a weak approximation is constructed.
An approximation is constructed for stationary and nonstationary models of an incompressible melt, which
leads to nonlinear equations of hydrodynamics to a system of equations of Cauchy-Kovalevskaya type.

Keywords: energy dissipation, system approximation, Cauchy inequality, Galerkin method, a priori estimates.

It is known that the Navier-Stokes equations are analytically insoluble, and if they are solvable, then in
relatively simple cases.

To solve the Navier-Stokes equations, a nonconformal finite element method was proposed in [1]. It is based
on the modification of the Navier-Stokes equations with the introduction of weight functions. The solution of the
Navier-Stokes equations with respect to natural variables, from which pressure is excluded, is considered in [2].
This approach is already known. Thus, the Navier-Stokes equations system is integrated numerically using a
finite-difference method using splines. Other methods are also being sought. An attempt is made to derive the
Navier-Stokes equation itself using the variational method, as presented in [3].

We investigate the initial-boundary value problem for nonstationary Navier-Stokes equations in this section.
Let us consider the temperature model of an inhomogeneous melt [4] in the region Q C R2.

p((a;t)+(v-V)v):uAU—Vp+69p+pf; (1)
ap o
L (0 V) p=0; (2)
divv = 0; (3)
00 )
p ((% +(v-V) 0> = div (A (0) V) + po; (4)
2 fou v\
”:Z<a;-+a?> ; (5)
i,j=1 J v
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with initial-boundary conditions
Uli=o =vo (2),plt=0 = po (2),0|t=0 = b0 (2);

00
U|S :0,8—n|5 ZO,tE[O,T], (6)

where o— energy dissipation; v (x,t) — velocity vector; 6 (z,t)— temperature field; p (x,t) — density field;
p(x,t) — pressure field; f (z,t) — mass force vecto; p— melt viscosity; A (6) — thermal conductivity coefficient;
n is the outer normal to the boundary S, e = {0,1}.

Solvability of the problem (1)—(6) was studied in Sh.S. Smagulova and A.B. Kazhikhova [5, 6].

The system of equations (1)—(5) is non-evolutionary, therefore direct application of the method of fractional
steps is difficult. In connection with this we study the approximation of the system (1)—(5) by a system of
evolutionary type and study the existence theorem for the solution of the auxiliary problem. Let the motion of
the melt occur in a bounded region Q C R?with a sufficiently smooth boundary S. For simplicity we assume
that the boundary S is impermeable and there is no mass transfer between the melt and the external medium.

We consider a system of equations with a small parameter approximating the system of equations (1)—(5):

a 154 154
p° ( (;; + (v°- V) ’UE) = pAv® —Vp*+eb°p° +p°f — pa%divva; (7)
0% () o
o T V)T =0; (8)
ep® + divv® = 0; (9)
06° ‘
p° 5 T (v° - V)6 ) =div(X(0°) V%) + po; (10)

with initial-boundary conditions:

V° |1=0 = vo (), p° t=0 = po (x), 0 |=0 = b (x);

€
vy =0, % s~ o0t o), (12)

Before proceeding to the proof of the theorem, we formulate an important definition.

Definition.A function (v, p, p, 8) ,that is summable together with the derivatives entering into the system of
equations (1)—(6) satisfying (1)—(5) almost everywhere in the corresponding measure is called a strong solution
of the problem (1)—(6).

The definition of the strong solution of the problem (7)—(12) is defined similarly.

Theorem 1. Let f € L, (Q),Q C E?vo (x) € W, (2),0 < m < po(x) < M < o0,A(f) — is continuously
differentiable with respect to

0,00 (x) € Wy (2),p > 2,A(0) ~ 6,atd — 00,00 (x) € Lo, (Q),00 € Ly (), > 0,5 € C?, pu>0.

Then a unique strong solution of problem (7)—(12) exists and we have the estimate for the solution, where
C — the constant does not depend on

ove
ot

.
oz, 0wz + 2 vl o L) T 10 Twar @) + 16wz ) < € < oo

L,(0,T,L,(2))

The proof of the theorem is constructed from three stages: obtaining a priori estimates, applying Galerkin’s
method for constructing approximate solutions and limiting the transition.

A priori estimates.

We have by the maximum principle:

0<m<pg(r) <M < .
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We multiply equation (7) scalarly in v¢ (x, t) space and integrate by parts. Applying the Cauchy inequality:

/Q/f(f,ve)dfv < </Qp€|v€2dfl7>é (/Q,fJ'glJ”QdiL“>é

We have the estimate on the basis of imbedding theorems:

(> 1 N g
lozllz, 0.2, @) + 2 ldivvZlly, om @) < € < oo (13)
We obtain further multiplying (10) by 6%, integrating by parts :

1d e 52 552 o

1 2
:/ 7{)\/(95)9; -Hf}dx—i—/uUEQfdx—/pa (v® - V) 6° - 07 du.
Q2 Q Q

We estimate the integrals on the right-hand side and integrate with respect to the variable t:

e112 c112
orgntagXT ||0xH2,Q + 10 ||2,Q <C.

We will write down the energy equation:

P05 — (A (0°) AG7) = po® — p© (v° - V) 0F + N (6°) - 0
and multiply it by lAQE. We have After integration €:

€ 5 € _ €. e _ ! (peN pE? 1 e
th/e dm+/ () = (AH)dx—/Q{p(U V)0 — po A(H)Gm}prde.

We find after integrating over the variable ¢, estimating the integrals on the right-hand side:

£ 154
0r<nta<x [ ||QQ+||A9 Hz,Q

<C.

We conclude as a result:
HHEHng(Q) < C < o0. (14)

We obtain multiplying equation (8) by u, integrating by parts Q:
1d
2dt

/ (v® - V) p*ApSdz = 0.
Q
With allowance for the estimate (13) by virtue of the maximum principle it follows that:
16y < € < . (15)
We have estimating p® from the negative norm, as in [7]:
Ip°ll < CIVP®|| < oo. (16)

It is known that if v¢, p®—solution of the following linear Stokes problem:

pAvE — Vp® = f; (17)
ep® + divv® = 0;
ap*
€ —_n = 0’ B = 0’
v° |s5=0 o |s
then provided that f € L, (Q)the following inequality holds:
Hvellwgm% +pllw,, < Cllfl, - (18)
P
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We take the function as a function f in problem (17):

f=-r (5;; + (v* - V) U€> —00°p° — p°f — ps%divaE.

We estimate the right side by the Cauchy inequality using the maximum principle:
191,y < € (107 + [ (107107 4 1524 01657) ). (19)

We have the following estimate taking into account the inequalities of the embedding and the obtained
estimates (13)—(14):

2 2 2 2 2
PVt de < P VP de < |of ; V| <
R e S o N PP O
< led o2 Cs vfl% 20
P (20)

We multiply equation (7) scalarly by v® (t)in space Lo (€2) . Then we estimate the integrals in absolute value
from above and, applying the inequalities of imbedding theorems, we obtain the following estimate:

19 e d < C IV mic ] 3 0 <

1 1

< Cllve]|? ve||? V¢ v < 21

e Y A (L P PR @1
pl P

2

2
< Olvgllz, @ +oll7l, 2 (O W(Q)
P pl

+ Cs [[v°]%
w

1

(DN

P

We finally get an estimate following the evaluation methodology in the works [8, 9]:

el 0.1, Lo T IV, (0 mwzi)) T IVP Nz, 072, < € < o0 (22)

where C' does not depend on the value of the small ¢.

We establish one more estimate of the global time character, the constant in which depends only on the data
of the problem. This estimate in the future guarantees compactness in space Lo (Q)sequences of approximate
solutions, which are built according to the Galerkin method.

Lemma. For any §, such that the following condition holds 0 < § < T', the inequality holds:

T—6 .
/ 0% (t+8) — o° ()2 dt < C5%.
0

Evidence. We fix 4, in such a way that inequality 0 < ¢ < T — §. Consider equations (7)—(11) on the time
interval 7 € (¢,t + ) .We multiply equation (7) scalarly by ®an arbitrary function in spaceLs (2) .
We arrive at the inequality after simple transformations:

1,
7 P05 @),y = (07 (V7 V) @,0%) 1, g) + 5 (PP divr™ - 0%, @), ) +

+ (0, @) py0) = L0, ), 0) — LV, @) 1,0 + (P, div®) 1 (o)

where ® =v (t+ ) —v (¢).

We integrate this identity with respect to the variable 7 ranging from t before ¢+ §, and then put
S =0(t+9)—v°(¢).

We write expression p (t + §) v° (t + ) — p° (¢) v (t) in the following form p° (¢t + §) (v° (t + &) — v (t)) +
+(p° (t+9) — p° () v° (t) and then we find the difference between p° (t + ) — p° (t) by integrating equation
(8) in the range fromtbefore ¢ 4+ 0.The resulting relation is integrated with respect to the variable tfrom 0
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beforet + dand for each term on the right-hand side, we use estimates from [10, 11], on the basis of which we
derive the estimate of the lemma.
We now turn to the construction of approximate solutions by the Galerkin method.

0
Let {¢; };)';1 — orthonormal basis in space Ly (Q2) of W2(Q2) (W (£2) and the following is true:
pl

(@jma"‘%)Lz(Q) = (‘Pj7WJ)L2(Q) ‘

Approximate solution v™>¢ (¢) looking for in the form:

CY (t) e,

M=

vNoE (t) =
k=1

where CY (t) € C1[0,T] .Densityp™ ¢ (t) —there is a classical solution of the problem:

ap™= (t)

o+ (M) V) e () = 0; (23)

pN’S |t:0 = pg)\/[ (I)a

where p)! (x) —smooth initial function [12].
Sequence p)f (z), M = 1,2... converge to p,(z) in the norms L, (Q), Wk(Q), pd! (z) € C?(Q).
Pressure p™-¢ () — there is a classical solution of the problem:

divo™E = ep™Ve; (24)

/ pNedx = 0.
Q

Temperature V¢ (t) —is defined as the classical solution of the problem:

00N = (t
pNE <3t() + (Ve (t) - V) N F (t)) = div (A (0VF (t)) VOV= (1)) + po™ s (25)
00N = (¢
OV lsmo =0 (@), 25 D) =0t o),
on
where 6} (z) — an initial smooth function satisfying the equation:
905" (t)

—— s =0,t€(0,T].

on ‘S NS [ ) ]
Functions CY (t), k = 1,2,..., Nare determined by a system of ordinary differential equations with

coefficients that depend in an operator way on p™V:¢ (t) ,p™¢ (¢) :

ot
+VPNE () = 007 (8) p"F () + ™7 () f105 ) i) = O-
We can select subsequences for which we have based on the Schauder principle, using the obtained a priori
estimates, from the sequences{v™<}, {p™=}, {p™<}, {67<}:
ve — veweaklyatL, (07T’ W;? (Q))7
HN,E — waeaklyatWI?’l (Q) 5
pN,E — ps *weak]yathl’l (Q) 5
oNe vestrongatL, (0,7, L, ());
6N:e — 0°strongat Ly, (0, T, L, (2));
v — viweaklyat Ly, (0, T, Ly, ());
pN® — pPweaklyatLy, (0,7, W, ().

(pN’E (t) <8UN’€ (t) + (UN’E (t) - V) vle (t) + %UN’E (t) diva’€> — ,uAvN’E (t)+

Cepust «Maremarukas. Ne 2(90)/2018 97



S.Sh. Kazhikenova, M.I. Ramazanov et al.

This completes the proof of Theorem 1.

The following is valid.

Theorem 2. Suppose that all the conditions of Theorem 1 are satisfied. Then the strong solution of problem
(7)—(12) converges to the strong solution of problem (1)—(6) for ¢ — 0.

Evidence. Because of the a priori estimates obtained earlier, we have:

v® — v weakly at Ly, (0,7, W2 (Q));

0° — 6 weakly at W' (Q);

p° — p weakly at W' (Q); v° — v strong at Ly, (0, T, Ly, (Q));

6° — 0 strong at L, (0,T, L, (2)),

vi = v,weakly at L, (0,7, L, (Q));

p® — pweakly at L, (0,7, W} (Q)).

Passing to the limit as € — 0 in the corresponding identities, we establish that the limit functions
v, p, p, — there is a strong solution of problem (1)—(6).

Theorem 2 is proved.
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DHepPTUugHbI AUCCUTIAIUSIAYFa apHAJFAH »KOJIMEH OipTEeKTiI emec
OaJKblJIaMaJap/IblH, TEMIIEPATYPAJILIK, MOJIEJIH £-)KYBIKTaY bl

YkeH caHIapMeH ToXKipube KoHe XKYBIKTay ecemnTeysiep »Kacayra Gaitnanbictel HaBbe-CTOKC TeHeyl Ty-
pasbl KUHAKTAJIFAH MOJIMETTEPACH TabUFaTTarbl HAKTHI KYOBLIBICTADABIH HAKTHI OajKbIMaap Kyieci
MeH TYTKBIp OaIKbIMaJIapAbIH MaTeMaTHKAJIbIK MOJE apachblHIAFbl COUKECTIKTI Oailkayra MyMKIHIIK Oe-
peni. Byn yrin kenreren cebenrep 6ap. OmapabiH 6ipi — cb3bIkThl eMec HaBbe-Croke TeHeyi. ChI3bIKThI
eMec TeHJIeyJiep YIIIiH CTaIlMOHaPJIbl eMeC ecenTep/li KAaHAFaTTaHIbIPATHIH memiMaepi ¢ > 0 mHTepBaJIbIHIA
GapJIBIFBIH I8 O0Maybl MYMKiH ekeHi Genrii. COHFBI yaKbIT apaJjbIFbIHIa IIEKCI3IIKKe YMTBLIYBl MYMKIiH
HeMece KYJIIbIPAii/ibl, SFHU TYPAKTBLIBIFBIH YKOFAJITA/ Ibl, TEHJIEY/l KaHAFATTAHIbIPMA/IbI XKOHE TapMaKTa-
Ja Gacraiizpl. Erep ocer memtim ¢ > 0 Gosranma, OHZA OJI CHIPTKBI 9CEp MEH IMEKAPAJIBIK, IapPTTAP/IbI
TYPaKTaHIBIPY Ke3iHJe CTAIMOHAPJIbI €CENTIH IIenliMiHe YMTBIIMAYbl MaTeMATHKAJIBIK TYPFbIIA J1JIEJIeH-
Ji. AJbIHFAH CTAIMOHAPJIBI EMEeC €CENTIiH IIeNTiMi Teric 6acTalmKbl TOPTIIITE XKOHE TETIC CBIPTKBI 9cepepie
VaKBIT ©T€ TYPAaKTBUIBIFBIH a3aiita 6epemi. Coman KeifiH TypakChbi3 HeMece TYPOYJIEHTTI peXKuMre KeOIei.
ITemimuiy 6ip HEMece GipHelIe TapMarblH HaKThI icKe acklpy HaBbe-CTOKC TeHJeyiH/e eCKepiiMereH Ke3
KeJIreH cebenTepre 6ailIaHBICTHI. Y CHIHBIJIFAH MAKAJIa1a YKAKChl XKYBIKTay apPKBIIbI CAHIBIK CXeMa KYPbLI-
el e-2KybIKTaybl apKbUIbl AuddOepeHIInaIIbIK, TEHIEYIEP/IiH OACTAIKEI Ky HeIepl Peryisipu3aliisIaH/Ibl.
CaHJIbIK YKOHE aHAJUTUKAJIBIK TYP/Ie ChIFbUIMANTHIH TYTKBIP aFbIM YIIIH [IEKAPAJIBbIK, €CEIITEP/IIH Iy PhICThI-
FBIH 3epTTeyAl KaMTaMach3 ereTin amepkun omici eHrisisai. Ouici3 xkysikraysl 6ap Hasbe-CrTokc Tenzeyi
yiria 66y cxeMachl Kypbuiibl. ['maponnHaMuKaHbIH ChI3BIKTEL eMec TeHaeyin Komm-KoBameBckmit TunTi
TeHJeyJIep XKyiieciHe KeTipyre O0aThIHAAN CHIFBIIMANTHIH OATKBIMAHBIH, CTAIMOHAPJIBI YKOHE CTAIMOHAD-
JIBI eMeC MOJIEJIJIEPIH »KYBIKTAY KOJITAHBLIIbI.

Kiam ce3dep: sHEPTUSIHBI TUCCUTIANIUSIAY, XKYileH] KakbIHIaTy, Kommu TeHcizairi, [amepkun oici, ampuop-
JILIK, OaraJsiay.

C.III. Kaxxuxenosa, M.I. Pamazanos, A.A. Xaiipkymosa, [.C. [Ilauxosa

8-AHHpOKCPIMa.I_II/I$I TeMHepaTypHOﬁ MoAdeJIn HeOJHOPOAHbIX
PacCIilJiaBOB C y49e€TOM JUCCHUIIaAIIN dHEeprumn

Haxkonennsie dakTe! u cBeennst 06 ypapuerusx Hasbe-CTokca, HApsiy ¢ GOJIBIIIMM 9UCIOM IKCIIEPUMEH-
TOB U PUOJIMKEHHBIX PACYETOB, TO3BOJIUIN BbISIBUTH HEKOTOPbIE HECOOTBETCTBUS MEXKIY MaTEeMaTHIECKON
MOJEJIBIO BSI3KOT'O PACILIABA M PeabHBIMU SBJIEHUSIMUA B IPUPOJIE PeaIbHBIX PACILIABIEHHBIX cucTeM. U aTo-
My ecTb MHOrO npuaunt. OHa U3 HUX — HeJIUHeHHOCTh ypaBHenuilt Hasbe-Crokca. A jijist HeJTMHEHHBIX ypaB-
HEHUI U3BECTHO, YTO B HECTAI[MOHAPHBIX 33/1a4aX yJ/IOBJIETBOPSIONIEE MM PEIleHUEe MOYKeT CYIIeCTBOBATDH HE
Ha BceM mHTepBaje t > 0. 3a KOHEUHBIH MPOMEXKYTOK BPEMEHU OHO MOXKET JIMOO YHTH B GECKOHEUYHOCTD,
00 PACCHITIATHCS, T.€. MOTEPITh PETYIAPHOCTh W HMEPECTATH YAOBJIETBOPITH YPABHEHUSIM W HAYATH BET-
BUTBHCsA. MareMaTH4ecKn JI0Ka3aHO, YTO €CJIU Ke 9TO pelleHue cyiecrsyer upu ¢ > 0, TO OHO MOXKET He
CTPEMUTHCS K PEIIEHUIO CTAIMOHAPHOM 3a1a4y TPU CTaOMIM3aIlii KPAaeBbIX yYCJIOBUI M BHEIIHUX BO3JIEli-
crBuit. [Tosyuennbie penieHus HeCTAIMOHAPHON 3aJ]a9U JIaxKe MPU IVIAJKOM HAYaJIbHOM PEXKUME U TJIAKUX
BHEIIHUX BO3JEHCTBUIX MOI'YT CO BPEMEHEM CTAHOBUTLCSI MEHEe DEryJIsipHbIMU, a 3aTeM BooOIle repeiTu
B HeEperyJIsipHble WX TypOy/IeHTHbIe pekuMbl. PakTUIecKasl pean3aliisi TOW WM WHON BETBU pEITeHUsT
3aBUCHUT OT IIOCTOPOHHMX IIPUYMH, HEYUTEHHbIX B ypaBHeHusx Hasbe-Crokca. B mpeiaraemoii crarbe mo-
CTpOeHa YHCJIEHHAsl cxeMa, obJiajaroliasi Xopolreil cxomuMmocTbio. [locTpoena perysisipusaliusi UCXOHBIX
cucreMm uddepeHInaIbHBIX YPABHEHUN TyTeM e-anmpokcumanun. Peanmmsosan meron [anepkuna, obecie-
YMBAIONIUI U3yYeHNEe KOPPEKTHOCTH KPAEBBIX 3aJad [JIs HECXKUMAEMOrO BI3KOT'O MOTOKA KAaK YHCJIECHHO,
Tak ¥ anajuTudecku. [locrpoena cxema paciemuienus st ypapaenuiit Hasbe-Crokca co csraboit annpokcu-
marmeit. [locTpoena anmpokcumarysi CTaIlMOHAPHON U HECTAIMOHAPHON MOJIe/Iell HeCXKMMaeMOr'o pacIliaBa,
YTO MPUBOIUT HEJIMHEHHBbIE YyPaBHEHUs IUIPOJUHAMUKN K cucreMe ypasaennii Tuna Komu-KosaseBckoii.

Kmouesvie carosa: quccunanys SHEPTUH, AIIIPOKCUMAIIAsT CUCTeMBI, HepaBeHCTBO Koru, metosn [anepkuna,
allpUOPHBIE OIEHKU.
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On structures in hypergraphs of models of a theory

Hypergraphs of models of a theory are derived objects allowing toobtain an essential structural information
about both giventheories and related semantic objects including graph ones. In the present paper we define
and study structural properties of hypergraphs of modelsof a theory including lattice ones. Characterizations
for thelattice properties of hypergraphs of models of a theory, as wellas for structures on sets of isomorphism
types of models of atheory, are given.

Keywords: hypergraph of models, elementary theory, elementarily substructural set, lattice structure.

Hypergraphs of models of a theory are derived objects allowing to obtain an essential structural information
about both given theories and related semantic objects including graph ones [1-9]. Studying of hypergraphs of
models of a theory is closely related with a series of papers on description of lattices of substructures [10-22].

In the presented paper we define and study structural properties of hypergraphs of models of a theory
including lattice ones. Characterizations for the lattice properties of hypergraphs of models of a theory as well
as for structures on sets of isomorphism types of models of a theory are given.

Preliminaries

Recall that a hypergraph is a pair of sets (X,Y), where Y is some subset of the Boolean P(X) of the set X.

Let M be some model of a complete theory T'. Following [5], we denote by H (M) a family of all subsets N of
the universe M of M that are universes of elementary submodels N of the model M: H(M) = {N | N g M}.
The pair (M, H(M)) is called the hypergraph of elementary submodels of the model M and denoted by H(M).

Definition [8]. Let M be a model of a theory T with a hypergraph H = (M, H(M)) of elementary submodels,
A be an infinite definable set in M, of arity n: A C M™. The set A is called H-free if for any infinite set A’ C A,
A= AN Z™ for some Z € H(M) containing parameters for A. Two H-free sets A and B of arities m and n
respectively are called H-independent if for any infinite A” C A and B’ C B there is Z € H(M) containing
parameters for A and B and such that A’ = ANZ™ and B’ = BN Z".

Note the following properties [8].

1. Any two tuples of a H-free set A, whose distinct tuples do not have common coordinates, have same type.

Indeed, if there are tuples @,b € A with tp(a) # tp(b) then for some formula ¢(Z) the sets of solutions of
that formula and of the formula —¢(Z) divide the set A into two nonempty parts A; and Ag, where at least one
part, say Aj, is infinite. Taking A; for A" we have A; = AN Z" for appropriate Z € H(M) and n. Then by
the condition for tuples in A we have A N Z™ = () that is impossible since Z is the universe of an elementary
submodel of M.

Thus the formula ¢(Z), defining A, implies some complete type in S™(0), and if A is (-definable then (Z)
is a principal formula.

In particular, if the set A is H-free and A C M, then the formula, defining A, implies some complete type
in S*(0).

2. If A C M is a H-free set, then A does not have nontrivial definable subsets, with parameters in A4, i.e.,
subsets distinct to subsets defined by equalities and inequalities with elements in A.

Indeed, if B C A is a nontrivial definable subset then B is defined by a tuple a of parameters in A, forming
a finite set Ag C A, and B is distinct to subsets of Ay and to A\ C, where C C Ay. Then removing from A a
set B\ Ag or (A\ B) \ Ay, we obtain some Z € H (M) violating the satisfiability for B or its complement. It
contradicts the condition that Z is the universe of an elementary submode of M.

3. If A and B are two H-independent sets, where A U B does not have distinct tuples with common
coordinates, then AN B = 0.
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Indeed, if AN B contains a tuple @, then, choosing infinite sets A’ C A and B’ C B witha € A’ and a ¢ B/,
we obtain a € A’ = AN Z™ for appropriate Z € H(M) and n, as so a € BN Z"™ = B’. This contradiction means
that AN B = 0.

Definition [6]. The complete union of hypergraphs (X;,Y;), ¢ € I, is the hypergraph (U XZ-,Y>, where

il
Y = { UZ|Ze YZ}. If the sets X; are disjoint, the complete union is called disjoint too. If the set X; form
i€l
a g—chaein, then the complete union is called chain.

By Property 3 we have the following theorem on decomposition of restrictions of hypergraphs H, representable
by unions of families of H-independent sets.

Theorem 1.1[8]. A restriction of hypergraph H = (M, H(M)) to a union of a family of H-free H-independent
sets A; C M is represented as a disjoint complete union of restrictions H; of the hypergraph H to the sets A;.

Proof. Consider a family of H-independent sets A; C M. By Property 3 these sets are disjoint, and using
the definition of H-independence we immediately obtain that the union of restrictions H; of H to the sets A; is
complete.

Recall that a subset A of a linearly ordered structure M is called convez if for any a,b € A and ¢ € M
whenever a < ¢ < b we have ¢ € A. A weakly o-minimal structure is a linearly ordered structure
M = (M,=,<,...) such that any definable (with parameters) subset of the structure M is a union of finitely
many convex sets in M.

In the following definitions M is a weakly o-minimal structure, A, B C M, M be | A|*-saturated, p, q € S1(A)
be non-algebraic types.

Definition. [23]. We say that p is not weakly orthogonal to q¢ (p L™ q) if there exist an A-definable formula
H(z,y), o € p(M) and By, B2 € ¢(M) such that 8; € H(M,«) and By &€ H(M, «).

Definition. [24]. We say that p is not quite orthogonal to q (p L7 q) if there exists an A-definable bijection
fip(M) — q(M). We say that a weakly o-minimal theory is quite o-minimal if the notions of weak and quite
orthogonality of 1-types coincide.

In the work [25] the countable spectrum for quite o-minimal theories with non-maximal number of countable
models has been described:

Theorem 1.2. Let T be a quite o-minimal theory with non-mazximal number of countable models. Then T has
exactly 3F - 65 countable models, where k and s are natural numbers. Moreover, for any k,s € w there exists a
quite o-minimal theory T having exactly 3 - 6° countable models.

Realizations of these theories with a finite number of countable models are natural generalizations
of Ehrenfeucht examples obtained by expansions of dense linear orderings by a countable set of constants,
and they are called theories of Ehrenfeucht type. Moreover, these realizations are representative examples for
hypergraphs of prime models [1, 3, 5]. We consider operators for hypergraphs allowing on one hand to describe
the decomposition of hypergraphs of prime models for quite o-minimal theories with few countable models, and
on the other hand pointing out constructions leading to the building of required hypergraphs by some simplest
ones.

Having nontrivial structures like structures with some orders it is assumed that «complete» decompositions
are considered modulo additional conditions guaranteing the elementarity for substructures with considered
universes. So we use the conditional completeness taking unions with the properties of density, linearity etc.

Below we illustrate this conditional completeness for structures with dense linear orders.

Denote by (M, Haqio(M)) the hypergraph of (prime) elementary submodels of a countable model M of the
theory of dense linear order without endpoints.

Remark 1.3. The class of hypergraphs (M, Hqio(M)) is closed under countable chain complete unions,
modulo density and having an encompassing dense linear order without endpoints. Thus, any hypergraph
(M, Hq1o(M)) is represented as a countable chain complete, modulo density, union of some its proper subhyper-
graphs. The notion of weak o-minimality was originally studied by D. Machpherson, D. Marker and C. Steinhorn
in [26].

Any countable model of a theory of Ehrenfeucht type is a disjoint union of some intervals, which are ordered
both themselves and between them, and of some singletons. Dense subsets of the intervals form universes of
elementary substructures. So, in view of Remark 1.3, we have:

Theorem 1.4 [6]. A hypergraph of prime models of a countable model of a theory of Ehrenfeucht type
is represented as a disjoint complete, modulo density, union of some hypergraphs in the form (M, Hqo(M)) as
well as singleton hypergraphs of the form ({c},{{c}}).
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Remark 1.5. Taking into consideration links between sets of realizations of 1-types, which are not weakly
orthogonal, as well as definable equivalence relations, the construction for the proof of Theorem 1.4 admits
a natural generalization for an arbitrary quite o-minimal theory with few countable models. Here conditional
complete unions should be additionally coordinated, i.e., considering definable bijections between sets of realizat-
ions of 1-types, which are not quite orthogonal.

Elementarily substructural sets

Let M be a model of theory T, (M, H(M)) be a hypergraph of elementary submodels of M. The sets
N € H(M) are called elementarily submodel or elementarily substructural in M.

Elementarily substructural sets in M are characterized by the following well-known Tarski—Vaught Theorem,
which is called the Tarski-Vaught test.

Theorem 2.1. Let A and B be structures in a language ¥, A C B. The following are equivalent:

(1) A< B;

(2) for any formula @(xg,x1,...,2,) in the language ¥ and for any elements ay, ..., a, € A,
if B = 3xoo(x0,a1,...,a,) then there is an element ag € A such that B = ¢(ag, a1, ..., an).

Corollary 2.2. A set N C M is elementarily substructural in M if and only if for any formula
o(zo,z1,...,2Ty) in the language (M) and for any elements aq,...,a, € N, if M |E Jzo (o, a1, ..., ay)
then there is an element ag € N such that M |= ¢(ag,a1,...,an,).

Proposition 2.3. Let A be a definable set in an wy-saturated model M of a countable complete theory T.
Then exactly one of the following conditions is satisfied:

(1) A is finite and contained in any elementarily substructural set in M;

(2) A is infinite and has infinitely many distinct intersections with elementarily substructural sets in M,
and all these intersections are infinite; these intersections can be chosen forming an infinite chain/antichain by
inclusion.

Proof. If |A| < w then A is contained in acl((}), and so it is contained in any elementary submodel of M.

If A = p(M,a) is infinite, we construct a countable submodel Ny < M containing parameters in a. Since
A is infinite, the set A N Ny is countable. By compactness, since M is wi-saturated, the set A\ Ny is infinite.
Adding to Ng new elements of A we construct a countable model N such that Ny < N7 < M. Continuing the
process we build an elementary chain of models NV}, k € w, such that A}, < M and ANN, C ANNpi1, k € w.

Constructing the required antichain of intersections AN N with elementarily substructural sets IV, it suffices
to use |9, Theorem 2.10| allowing to separate disjoint finite sets, whose elements do not belong to acl(().

The arguments for the proof of Proposition 2.3 stay valid for a countable saturated model M. Thus, we
have the following

Proposition 2.4. Let A be a definable set in a countable saturated model M of a small theory T'. Then exactly
one of the following conditions is satisfied:

(1) A is finite and contained in any elementarily substructural set in M;

(2) A is infinite and has infinitely many distinct intersections with elementarily substructural sets in M,
and all these intersections are infinite; these intersections can be chosen forming an infinite chain/antichain by
inclusion.

The following example illustrates that if M is not saturated then the conclusions of assertions 2.3 and 2.4
can fail.

Example 2.5. Let a set A is defined by a unary predicate P and includes infinitely many language constants
¢i, © € I. Then there is, in the language {P} U {c¢; | i € I}, a structure M having only finite set Ay of elements
in A, which are not interpreted by constants. Since elementarily substructural sets N take all constants, there
are only finitely many possibilities for intersections A N N.

In view of aforesaid arguments it is interesting to describe possible cardinalities both for sets H(M) and
their restrictions HM) | A= {ANN | N € H(M)} on definable sets A C M.

Since in Example 2.5 intersections A N N, taking all constants ¢;, can include an arbitrary subset of Ay,
then for this example we have |[H (M) | A| = 2/40l. The same formula holds for infinite sets Ay, but in such a
case the set H(M) | A is transformed from finite one directly to a set with continuum many elements.

Note that for H-free sets A C M, modulo acl(()) (i.e., for sets A, whose each subset B C A\ acl(()) has a
representation B U (acl()) N A) = AN N for some N € H(M)), the equality |H(M) | A| = 24\l holds.
Thus, we have the following dichotomy theorem.

Theorem 2.6. For any H-free, modulo acl(()), set A C M its restriction to any elementary submodel My < M
satisfies either |[H(My) | A| = 2" for some n € w, or |H(My) | Al =2* form some A > w.

Cepust «Maremarukas. Ne 2(90)/2018 103



B.Sh. Kulpeshov, S.V. Sudoplatov

Similar to Example 2.5, the following example illustrates the dichotomy for hypergraphs of elementary
submodels.

Example 2.7. Consider the structure M of rational numbers, (Q,<,¢;)qeq, in which every element
is interpreted by a constant. This structure does not have proper elementary substructures, therefore
|[H(M)| = 1 = 2°. Extending M to a structure M; by addition of n elements for pairwise distinct 1-types,
defined by cuts, we have |H(M;)| = 2™. If M is extended till a structure My by addition of at least two
elements of fixed cut or of infinitely many elements for distinct cuts, then by density the summarized number
of added elements occurs infinite and |H(Ma)| = 2* holds for some A > w.

At the same time there are examples of hypergraphs of elementary submodels, for which the conclusion of
Theorem 2.6 fails. For instance, as shown in [13], there are hypergraphs for the theory of arithmetic of natural
numbers such that |H(M)| =5 and the lattice of elementary submodels is isomorphic to the lattice Ps.

Lattice structures associated with hypergraphs of models of a theory

For given structure M we define the structure L(M) = (H(M);A,V) by the following relations for
My, Mo < M: My AMy =My N Mg and M1V My = M(M1 U Mz).

Consider the following question: when the structure L(M) is a lattice?

Clearly, answering this question we have to characterize the conditions M; N Ms < M  and
M(M; U M) < M. Assuming that M is infinite, the structures M; N My should be infinite too, in particular,
M N My # 0. By |5, Theorem 3.2|, assuming that M is A-saturated, it can not contain separated sets A and B
of cardinalities < A, such that acl(A) Nacl(B) = 0.

By Theorem 2.1 we have the following theorems characterizing the elementarity of substructures.

Theorem 3.1. Let M1 and My be elementary substructures of structure M in a language 3, My N My # .
The following are equivalent:

(1) (M1 NMsy) < M;

(2) for any formula p(xg,x1,...,2,) of the language ¥ and for any elements aq,...,a, € M; N My if
M 3z p(xo,a1,...,a,) then there is an element ag € My N My such that M; = p(ag,a1,...,a,), i =1,2.

Theorem 3.2. Let M1 and My be elementary substructures of structure M in o language ¥. The following
are equivalent:

(1) M(M; U M) < M;

(2) for any formula @(xo,x1,...,2,) of the language ¥ and for any elements ai,...,a, € My N My if
M E Jzg o(z0, a1, ..., a,) then there is an element ag € M (M1UMa) such that M(M1UMs) | p(ag, a1, ..., a,).

The following examples illustrate valuations of the conditions (2) in Theorems 3.1 and 3.2.

Ezample 3.3. Consider a structure M in a graph language {R(Q)} with a symmetric irreflexive relation R
and elements a1, as, as, as such that

R= {[al,ag], [al,a4], [a27a3]; [a27a4]}~

The substructures M; C M and My C M with the universes {a1,aq, a3} and {a;, as, a4} respectively satisfy
the formula (a1, a2) = Fx(R(a1, x) AR(az, ) whereas MMMz does not satisfy that formula since appropriate
elements for x belong to My & Ms.

Ezample 3.4. Consider a structure M of graph language {R(®)} with symmetric irreflexive relation R and
with elements aq,as,ag such that R = {[a1, as], [az,as]}. The substructures M; C M and My C M with the
universes {a1} and {ag} form the substructure M(M; U M3) with the universe {a1, a2} and it does not satisfy
the formula ¢(a1, a2) in Example 3.3. At the same time the structure M satisfies this formula.

Since in some cases elementary substructures of given structure M form the lattice with respect to the
operations Mj; A My = M1 N My and My V My = M(M; U My), the study of hypergraphs H (M), for these
cases, is reduced to study of the lattices L(M). As Example in [13] shows, the lattices L(M) can be non-
distributive unlike the description in Theorem 2.6, where correspondent lattices are distributive, and for finite
H(My) even form Boolean algebras.

In the given context hypergraphs/lattices with minimal, i.e. least structures play an important role. These
structures can be obtained from an arbitrary structure by addition of constants interpreted by all elements of
the structure. Besides, these minimal structures exist for finite sets H(M).

In [27], the following theorem on dichotomy for minimal structures is proved.

Theorem 8.5. Let Mg be a minimal structure, M be its saturated elementary extension and p € S1(My) be
unique non-algebraic 1-type. Then exactly one of the following conditions holds:
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(I) the structure (p(M), Sem,) is a pregeometry, where Sem,, is the relation of semi-isolation on the set of
realizations of the type p, i.e. the following conditions are satisfied:

(S1) Monotony: if A C B then A C Sem,(A) C Sem,(B);

(S2) Finite character: Semy,(A) = [ J{Sem,(Ao) | Ao is a finite subset of A};
(S3) Transitivity: Sem,(A) = Sem,,(Sem,(A));
(S4) Ezchange property (Symmetry): if a € Sem, (AU {b}) \ Sem,(A) then b € Sem,(A U {a});

(I1) for some finite A C M there exists an infinite set Cy C dcl(AU My) and a definable quasi-order < on
M such that Cy orders a type over A:

(D1) for any ¢ € Cy the set {x € Cy | ¢ < x} is a cofinite subset of Co;

(D2) Cy is an initial segment of M: if c € Cy and m < ¢, then m € Cy.

Basic examples illustrating Theorem 3.5 are represented by ordered structures (w, <) and (w + w*, <). The
conclusion of Theorem 2.6 holds for both structures. Moreover, for M; = (w, <) and My = (w + w*, <) the
structures L(M;) and L(Mz) form atomic Boolean algebras, whose atoms are defined by equivalence classes,
being closures of singletons, not in w + w*, taking all predecessors and successors.

Return to Example 2.7. It is known that the intersection of convex sets is convex, whereas the intersection
of dense orders can be not dense. For instance, any interval [a,b] contains countable dense subsets X,Y
such that X NY = {a,b}. It means that for the structure M’ = (Q, <,¢,)qeq the structure L(M’) forms
a lattice, moreover, a Boolean algebra, if and only if each type in S;(Th(M’)) has at most one realization in
M. Tf M, with the lattice L(M’), realizes A non-principal 1-types, then |L(M’)| = 2*. Thus, the following
proposition holds.

Proposition 3.6. For the structure L(M’) the following are equivalent:

(1) L(M') is a lattice;

(2) L(M’) forms an atomic Boolean algebra;

(3) each type in S1(Th(M”)) has at most one realization in M’, and if M’ realizes A non-principal 1-types,
then |L(M')| = 2.

Proposition 3.6 admits natural modifications for a series of theories with minimal models, for instance, for
models, obtained by replacement of elements in M’ with finite antichains of fixed cardinality marked by unary
predicates P, instead of constants c,. Note that admitting replacement of constants ¢, by infinite antichains P,
the structure L(M’) is not a lattice since P, can be divided by some elementary substructures M}, M5 < M’
into two disjoint parts, whence M} N M, A M.

Clearly, as above, in the general case if there are separable elements in definable sets A C M of structure
M then L(M) is not closed under intersections, i.e., L(M) is not even a lower semilattice. Thus, the following
proposition holds.

Proposition 3.7. If L(M) is a lattice then M does not have definable sets A C M containing elements
separable each other, in particular, M does not contain H-free sets A C M.

In view of Proposition 3.7 it is natural, for given structure M, along with L(M) to consider for sets X C M
the following relative structures Lx (M). Denote by Hx (M the family of all sets in H(M containing the set X.
Then Lx (M) = (Hx(M; A, V), where for structures My, My < M containing X, My A My = M; N Ms and
M1V My = M(M1 U Mg).

Note that if X is a universe of some elementary substructure of structure M then definable sets A C M
already do not contain elements separable by sets in Lx (M). Then, in any case, M; A Ms is a substructure of
M and the elementarity of that substructure is characterized by Theorem 3.1.

The following example illustrates that apart from the density there are other reasons preventing to consider
L(M) as a lattice.

Ezample 3.8 |28]. Let M = (M; <, P*,U? ¢;)ic., be a linearly ordered structure such that M is a disjoint
union of interpretations of unary predicates P and =P, where -P(M) < P(M). We identify interpretations of
P and —P with the set Q of rational numbers with the natural order.

The symbol U interprets the binary relation defined as follows: for any a € P(M),b € =P(M) U(a,b) <
sSb<a+ V2.

The constants ¢; interpret an infinite strictly increasing sequence on P(M) as follows: ¢; =i € Q.

Clearly that Th(M) is a weakly o-minimal theory. Let

p(x) = {z > ¢ |icwiU{P(a)};

q(y) == A{vt(U(ei,t) =t <y) | i € w}U{=P(y)}.
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Obviously, p,q € S1() are nonisolated types and p /* q. Since there are no (-definable bijections from
p(M’) onto ¢g(M’), where M’ is a model of Th(M) realizing some of these types then Th(M) is not quite
o-minimal.

As shown in [28], Th(M) has exactly 4 pairwise non-isomorphic countable models: the prime model M,
Le., with p(M) = 0 and g(M) = 0; the model M; such that p(M;) has the ordering type [0,1) N Q, ¢(M;)
has the ordering type (0,1) N Q; the model My such that p(Mz) has the ordering type (0,1) NQ, g(M2) has the
ordering type [0,1) N Q; and the countable saturated model Ms.

Therefore M;NMqy A Maj. By this reason as well as by the possibility of violation of density in intersections,
the structure L(M3) does not form a lower semilattice.

Remark 3.9. Along with Example if we consider the known Ehrenfeucht’s example with three models: a
prime model My, a weakly saturated model M;, and a countable saturated model Moy, then the structure
L(Ms) is not a lattice in view of presence of dense definable intervals but includes the three-element linearly
ordered lattice consisting of the universes My, My, Ms.

Lattice structures on sets of isomorphism types of models of a theory

Following Example 3.8 and Remark 3.9 we consider a question on existence of natural lattices associated
with hypergraphs (M, H(M)) which a distinct to L(M). Related lattices are lattices represented by Rudin-
Keisler preorders RK(T') [1] for isomorphism types of prime models of a theory T, over finite sets, or their lattice
fragments.

The description [29] of structures RK(7T') for Ehrenfeucht quite o-minimal theories T' implies that these
structures, for the considered theories, form finite lattices LRK (7)) consisting of 2¥ - 3% elements and, in view of
the main result of the paper [25], the number I(T,w) of pairwise non-isomorphic countable models of T equals
3k.6% k,s € w.

The Hasse diagrams illustrating these lattices LRK(T') are represented in Figures 1-9 for the following values
k and s:

1) k=1,s=0;
Nk=0,s5=1;
N k=2 s=0;
4) k=3, s=0;
5) k=0, s=2;
6) k=0,s=3;
Nk=1s=1;
8) k=2,s=1;
9 k=1,s=2.

l

Figure 1. k=1,s =0 Figure 2. k=0,s =1
ﬁo
Figure 3. k=2,s =0 Figure 4. k=3,5s =0
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Theorem 4.1. Let T be an Ehrenfeucht quite o-minimal theory, I(T,w) = 3% - 6%, k,s € w. Then:

(1) LRK(T) is a lattice;

(2) LRK(T) is a Boolean algebra < k > 1 and s = 0; in such a case the Boolean lattice LRK(T) has a
cardinality 2% ;

(3) LRK(T) is linearly ordered < k+ s < 1.

Proof. Let I' = 'y UT'5 be a maximal independent set of nonisolated types in S1(T"), where realizations of
each type in I'; generate three models, with prime one, and realizations of each type in I's generate six models,
with prime one, [I'1| =k, T3] = s.

(1) We argue to show that LRK(T) is a lattice. Indeed, for isomorphism types M; and My of prime
model M; and My over some finite sets A and B, respectively, we define sets X, Y C T x {0,1} defining
these isomorphism types such that X = {(p,0) | M; [ p(a) for some a € A, and |[p(M;)| =1orp e I'1} U
{(p,1) | My = p(a) for some a € A,/ |p(M1)] > w,p € T2} and Y = {(q,0) | Mz |= ¢q(b) for some b €
B, and |g(M2)| = lorg € T1} U{(¢g,1) | M2 | q(b) for some b € B,[q(Mz)| > w,q € I'2}. Then the
isomorphism type for M; A M corresponds to the set U C I" x {0,1} consisting of all common pairs of X
and Y, as well as all possible pairs (p,0), if (p,0) € X and (p,1) € Y, or (p,1) € X and (p,0) € Y. And the
isomorphism type for //\/lvl Vv .//\/lvg corresponds to the set VC T x {0,1} consisting of the following pairs:

i) all common pairs of X and Y,

ii) all pairs (p,i) € X such that Y N {(p,0), (p,1)}0,

iii) all pairs (p,i) € Y such that X N {(p,0), (p,1)}9,

iv) all pairs (p, 1) such that (p,0) € X and (p,1) € Y, or (p,1) € X and (p,0) €Y.

Figure 5. k =0,s =2 Figure 6. k =0,s =3

The defined correspondence witnesses that LRK(T) is a lattice.

(2) If s # 0 then LRK(T) is not a Boolean algebra by Stone Theorem, since the cardinality of each finite
Boolean algebra equals 2" for some n € w whereas [LRK(T)| = 2¥ - 3°. If s = 0 then LRK(T) is a Boolean
algebra of a cardinality 2* such that for isomorphism types M and /\r/\g of prime models M; and M5 over some
finite sets A and B, respectively, and for sets X, Y C T such that X = {p(z) € T | M; = p(a) for some a € A}
and Y = {q(z) € T | My = q(b) for some b € B}, the isomorphism type M; A Mj corresponds to the set
X NY, and the isomorphism type ./f\/lvl \Y, /,\/E corresponds to the set X UY.

(3) If k+ s <1 then LRK(T) is linearly ordered as shown in Figures 1 and 2. If £k + s > 1 then |T'| > 1 and
for distinct types p,¢ € I' the isomorphism types of models M,, and M, are incomparable in LRK(T).

The description for distributions of disjoint unions of Ehrenfeucht theories and the arguments for the proof
of Theorem 4.1 allow to formulate the following theorem modifying Theorem 4.1.

Theorem 4.2. Let T be a disjoint union of theories Ty and Ty in disjoint languages and having finite numbers
I(Th,w) and I(T,w) of countable models. Then:

(1) LRK(T) is a (Boolean) lattice < LRK(T1) and LRK(T%) are (Boolean) lattices;

(2) LRK(T) is linearly ordered < LRK(T1) and LRK(T») are linearly ordered, and

min{I(T},w), I[(T,w)} = 1.

Proof. (1) If LRK(T) is a (Boolean) lattice, then LRK(7};) and LRK(7%) are (Boolean) lattices, since
LRK(T}) and LRK(T?) are isomorphic to sublattices L and Ly of the lattice LRK(T'), and elements,/complements
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of elements in LRK(T) are represented as pairs of elements/complements of elements in L; and Lo. If LRK(T})
and LRK(7%) are (Boolean) lattices, then LRK(T) is a (Boolean) lattice again in view of aforesaid representation.

Figure 7. k=1,s =1 Figure 8. k =2,5s =1

Figure 9. k=1,s =2

Figure 10. 6-Element diagram Figure 11. 9-Element diagram

(2) If LRK(T) is linearly ordered then LRK(7}) and LRK(7%) are linearly ordered, being isomorphic to
substructures of LRK(T'). Here T7 or T5 should be w-categorical, since otherwise prime models over pairs
(p1,q1) and (p2,q2) occur LRK(T)-incomparable, where p1,p2 € S1(T1), ¢1,q2 € S1(T2), p1,q2 are isolated,
P2, q1 are nonisolated.

If structures LRK(T}) and LRK(7%) linearly ordered, and min{I(71,w), I(T2,w)} = 1, then LRK(T) is
linearly ordered, since LRK(T) ~ LRK(T}) for I(T3,w) =1, and LRK(T) ~ LRK(T3) for I(T,w) = 1.

In Figures 10 and 11 we illustrate Theorem by structures LRK(T) in [30], for disjoint unions of theories,
which are not lattices.
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B.1II. Kynnemos, C.B. Cynomiaros

Teopus monenbaepidiH, runeprpadTapblHAAFbl KYPBLIBIMIAP TYPAJIbI

110

Teopusi Mogenbaepiniy runeprpaduscbl TEOPUIAP/Ibl, COHbBIMEH Oipre rpaduKasblK 00bEeKTiIepal Koca,
CEMaHTHUKAJBIK 00bEKTIIED TypPaJibl MAHBI3AbI KYPBLIBIM/IBIK, AKIAPATThI aJIyFa MYMKIH/IIK OepeTiH 00bek-
Tisepre x)artajbl. Ocbl MaKaaa KyPbLUIbIMJIBIK, OHBIH iIIiHJI€ TOPJIbI, MOJIEJIb/IIK TEOPUAHbIH Tureprpad-
Tap/IbIH, KACUETTEP] aHBIKTAJIBIN 3epTTesai. Teopus yirijepini runeprpadThbl TOPBIH CUIIATTAY, COHIAN-aK
Teopusi TYPJIEPiHiH n30MOpdU3M TYypJepiHeri KypbLibiMaap 6epiireH.

Kiam cosdep: monmenbiep runeprpadbl, 3JIEMEHTAPJIBIK, TEOPUST, SJEMEHTAPJIBIK, IMITKI KYPBLIBIMIBIK, XKIbIH,
TOP KYPBLIBIMBI.

B.1II. Kynmnemos, C.B. Cymomiaros

O crpyKTypax B runeprpadax Mojejeil Teopuu

I'unteprpadsr Mozesieit Teopun OTHOCATCS K MPOU3BOIHBIM O0bEKTaM, IO3BOJIAIONINM TOJIYYaTh CyIeCTBEH-
HYIO CTPYKTYPHYIO HH(MOPMAIUIO KaK O CAMUX TEOPUSIX, TAK U O COMYTCTBYIOIIMNX CEMAHTUIECKUX O0BbEKTAX,
BKJIIO4Yast rpadoBble O0BLEKTHI. B cTaThe ompesesieHbl U UCCIIEI0OBAHBI CTPYKTYPHBIE, B TOM YHCJIE PEIeTOq-
HbIe CBOIicTBa rureprpadoB Moestei Teopun. Jlana xapakTepu3alins PereToIHOCTH runeprpadoB Moieseit
TEOpUH, & TaK¥Ke CTPYKTYP HAa MHOXKECTBAX THIIOB M30MOP(MhU3Ma TEOPUH.

Karouesvie crosa: runeprpad Mojesieil, sjeMeHTapHas TEOPHsI, JIEMEHTAPHO IOJICTPYKTYPHOE MHOXKECTBO,
pelreTovYHas CTPYKTypa.
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Forking and independence for fragments of Jonsson sets

The concept of independence plays a very important role in Model Theory for classification of a fixed
complete theory. In this paper, we study the Jonsson theories, which, generally speaking, are not complete.
For such theories, the concept of forking is introduced axiomatically in the framework of the study of the
Jonsson subsets of the semantic model of this theory. Equivalence of forking by Shelah, by Laskar-Poizat and
an axiomatically given forking for existential types over subsets of the semantic model of the Jonsson theory
is given. Further, as and for complete theories, independence is defined through the notion of non-forking.

Keywords: Jonsson theory, semantic model, existential type, Jonsson set, a fragment of the Jonsson set,
forking, independence.

One of the most important concepts of modern Model Theory is the concept of forking. With the help of this
concept, we can evaluate the dependence of the properties of an element on each other in a first-order language.
It should be noted that this concept was introduced by S. Shelah [1] to solve a very important problem of the
spectrum of an arbitrary complete theory. Over time, experts in the theory of models, evaluating the depth
and significance of the concept of forking, began to seek new approaches for its simpler explanation. One of the
well-known sources in this direction is the well-known work of French mathematicians D.Laskar and B.Poizat [2],
in which the concept of forking was redefined in the framework of a certain order. Later, other mathematicians
observed that it is possible to consider the abstract properties of the independence of the model elements from
each other and to associate this with the properties of the first order of the types of these elements for the
subject of non-forking. In particular, as an example, we can cite the following monograph by D. Baldwin [3],
where he considered a system of axioms that defines an abstract property of independence.

The study of Jonsson theories is inherently back to the tasks of the so-called «eastern» Model Theory,
founded by Abraham Robinson, who lived on the eastern coast of the United States, unlike Alfred Tarski, who
lived on the west coast of the United States. And accordingly, the tasks that were determined at the time by
A.Tarsky’s theoretical-model problems became the basis for the so-called «Westerns> Model Theory. All the main
differences between these two trunk directions of Model Theory of that time can be found in the well-known
book by J. Barwise [4].

The Jonsson theories, generally speaking, are not complete and the morphisms that serve them, as a rule, are
isomorphic embeddings and homomorphisms. At the same time, the semantic aspect of these theories, in view
of certain theoretical-model circumstances, reflects the class of existential-closed models of the Jonsson theory
under consideration. In [5], homomorphisms in positive Model Theory were defined. In [6], a variant of the
study of the Jonsson theories was proposed in the framework of the positive Model Theory. In an earlier work,
A R. Yeshkeyev [7] considered positive analogs of Jonsson theories and their particular cases - the Robinson
theories.

Let’s give the basic definitions necessary to understand the content of this article.

Definition 1 [4]. The theory T is called Jonsson if:

1) T has an infinite model;

2) T is inductive, i.e. T is equivalent to the set V3-propositions;

3) T has the joint embedding property (JEP), that is, any two models 2 = T and B |= T are isomorphically
embedded in a certain model € = T

4) T has the property of amalgamation (AP), that is, if for any 2,B,¢ = T such that f; : 2 — B,
f2 : A — € are isomorphic embeddings, exist D = T and isomorphic embeddings g1 : B — D, g2 : € — D such
that g1 f1 = g2 fo.

Definition 2 [8]. Let £ > w. The model M of theory T is said to be k-universal for T if every model T of
cardinality is strictly less than x is isomorphically embedded in 9.

Definition 3 [8]. Let k > w. The model M of theory T is said to be xk-homogeneous for T if for any two
models 2l and 2(; of T, which are submodels of 9, the cardinality is strictly less than k, and the isomorphism
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f 2 — Ay, for each extension B of the model 2, which is a submodel of 9 and a model T of cardinality
strictly less than k, there exists an extension 87 of the model 2(;, which is a submodel of 91, and an isomorphism
g B — B, that extends f.

A homogeneous-universal model for T" is a x-homogeneous-universal model for T of cardinality x, where
K2 Ww.

Definition 4 [8]. The semantic model C' of Jonsson theory T is the w'-homogeneous-universal model of
theory T'.

Definition 5 [8]. The Jonsson theory T is said to be perfect if its semantic model C' is saturated.

The central concept of this paper is the notion of a fragment of the Jonsson set that was defined in [9] and
some of its model-theoretic properties were considered in [10-12]. In this paper we carry over the main results
from [13, 14|, and, as can be seen from the following definition, the concept of the Jonsson set is very well
coordinated with the concept of a basis of a linear space. We note that linear spaces are a particular case of
modules, and the theory of modules is a Jonsson theory.

In definition 6 we changed the point a), in contrast to the definition of the Jonsson set in [15]. In the original
definition there was a requirement of the existential definability of this set, now we require simply definability.

Definition 6 [8]. The set X is called the Jonsson set in the theory T if it satisfies the following properties:

a) X is a definable subset of C, where C is the semantic model of the theory T;

b) del(X) is the carrier of some existentially closed submodel of C, where dcl(X) is the definable closure of
the set X.

Definition 7 [5]. We say that all V3-consequences of an arbitrary theory create a Jonsson fragment of this
theory if the deductive closure of these V3-consequences is a Jonsson theory.

Consider the countable language L, complete for existential sentences the perfect Jonsson theory 7' in the
language L and its semantic model C. Let X be the Jonsson set in 1" and M an existentially closed submodel of
the semantic model C, where dcl(X) = M. Then let Thy3(M) = Fr(X), where F'r(X) is the Jonsson fragment
of the Jonsson set X.

Since the concept of forking is central to stability theory, it is natural to want to study it from different
points of view. For this purpose, we first describe forking axiomatically. We recall the definition of forking.

Definition 8. a) It is said that formula ((Z,b) divide over A, if there exists a sequence (b, : n < w) and a
number k < w, satisfying the following conditions: 1) b, =4 b, n < w; 2) {¢(F,b,) : n < w} k-inconsistent.

b) It is said that the type p (not necessarily complete) forks over A, if there exists a finite set 3 of formulas
that are divisible over A such that pF V{p:p € X};

Let T be Jonsson theory, S”(X) be the set of all existential complete n-types over X, that are compatible
with T, for each finite n.

Definition 9. We say that the Jonsson theory T is J-A-stable if for any T-existentially closed model A, for
any subset X of the set 4, | X| < A = |S/(X)| < \. We will call the Jonsson theory J-stable if it is J-A-stable
for some A.

Let A be the class of all subsets of the semantic model 9, P be the class of all existential complete types,
JNF C P x A is some binary relation. We write in the form of axioms some conditions imposed on JNF.

Aziom 1. If (p, A) € JNF, f: A — B are isomorphic embeddings, then (f(p), f(4)) € JNF.

Aziom 2. If (p, A) € JNF, q C p, then (¢,A) € JNF.

Aziom 8. f ACBCC,pe S7(C), then (p,A) € JNF < (p,B) € JNF & (p| B,A) € JNF.

Aziom 4. If AC B, dom(p) C B, (p,A) € JNF, then 3¢ € S'(B) (p C q & (¢, A) € JNF).

Aziom 5. There exists a cardinal p such that if A C B C C, p € S/(B), (p,A) € JNF, then
{q € S/ (C):pCq& (¢, A) € INF}| < p.

Aziom 6. There exists a cardinal s such that Vp € P, A € A if (p,A) € JNF, then 3A; C A,
(|A1‘ <& (p,Al) S JNF)

Aziom 7. If p € S7(A), then (p, A) € JNF.

Let F' be the fragment of some Jonsson set D, where D is a subset of the semantic model 9t of some Jonsson
theory T, i.e. F = Thys(dcl(D)), dcl(D) = M’ € Er.

Theorem 1. The following conditions are equivalent:

1. In the theory I, the relation JNF satisfies axioms 1-7.

2. T* is stable for any p € P, A€ A ((p,A) € JNF < p does not fork over A), where T* = Th(M').

Proof. It follows from Theorem 10 [14].

Consider the strengthening of Lemma 19.7 from [13|. For this we give the following known definitions.
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Definition 10. f AC M NN, pe S(M), g€ S(N), then p >4 ¢ means that Vo(Z,7) € L(A)
GmeMp>sp@,m)=3IneN q3p(@,n));p~aqmeans that p >4 ¢ & ¢ >4 p.

P  ={¢:3IN=T, g S(N), p~aq}.

It is easy to understand that the relation >4 induces an analogous relation between classes, which is a partial
order relation. If A = @&, then the index A for >4 and ~4 will be omitted. Each equivalence class in ~4 is
uniquely determined by the set of formulas from L(A), representable in each type of this class.

Definition 11. The formula ¢(Z,5) € L(A) is said to be representable in p € S(M), A C M ecom Im € M
(p F @(&,mm)). Obviously, in this way, the number of equivalence classes in ~ 4 is at most 214! = 2lLI-A],

The equivalence classes with respect to ~4 will be denoted by 4. If p € S(A), then €, denotes the partially
ordered set ({€*:3M 2 A, p1 € S(M), pCp1, pr € £} 2).

The following results are known, their proof can be extracted from [13].

Lemma 1. In €, there is a maximal element.

Lemma 2. If T is stable, p € S(M), M C B, p’ € S(B) is the successor of p, then p ~j; p'.

Lemma 8. If T is stable, p € S(M), M C B, g € S(B), p C q and p ~s g, then ¢ is the successor of p.

Lemma 4. fACMNN,pe S(M),qe S(N), plA=q[A and p, q do not fork over A, then p ~4 gq.

Lemma 5. If T is stable, p € S(A), then Q, has a unique maximal (i.e., greatest) element.

The following definition belongs to A.E.Yeshkeyev.

If T is a J-stable, existentially complete Jonsson theory, p € S7(A), then 87 (p) is the largest element of €2,,.

Now we can introduce the following relation JNFLP (Jonsson non-forking by Lascar-Poizat) on P x A.

Definition 12. Let T be a J-stable, existentially complete Jonsson theory.

1.Ifpe S/(B), AC B, then (p,A) € INFLP < 37(p) = 8/ (p A).

2. If p is an arbitrary existential type, then (p, A) € JNFLP < there exists a p’ € S7(A U dom(p)) such
that p C p’ and (p’, A) € JNFLP.

Theorem 2. In the J-stable existentially complete Johnson theory, the relation JNFLP satisfies axioms 1-7.

The axioms 1, 2, 3, 4, 7 are trivially verified. Axiom 6 is satisfied for sc = |L|*. Suppose the contrary. Let
p € S7(A) and VA; C A, if |A1] < s, then (p, A1) ¢ JNFLP. Obviously, |A| > 3 = |L|*. There exists a
sequence (A, : < |L|T) such that |A,| < |L|, Ap C Ag for a« < 8 < |L|" and (p| Aa+1,An) € JNFLP. Let
M D |J A, be an arbitrary existentially closed submodel of the semantic model of the theory T of cardinality

IT|, pa 2 | Aq such that p, € S7(M) and [pa]*= is the largest element in Qy4,). Then ({po : o < [L[T};>)
is strictly decreasing sequence. Hence, there exist the formulas ¢, (Z, 9,) € L, a < |L|™ such that ¢, (Z, Jo) is
representable in p,, but is not representable in pq1. It is clear that for o # v 9o (Z, Ja) # ©~(Z, J,) since there
is no power set > |L| of formulas of the language L. Contradiction.

Axiom 5 is satisfied for p = (2|T|)+. In fact, let p € S7(B), (p,A) € JNFLP, A C B C C. By axiom 6,
there exists is A9 C A such that |Ag| < |L]|, (p, 4o) € JNFLP.

1 case: Let C' be an existentially closed submodel of the semantic model 9 of the theory T. C |=T.
Let Ay € My <p, C. If p' € S/(C), p C 9, (p/,B) € JNFLP, then (p',Ay) € JNFLP. Therefore,
(p',My) € JNFLP . Hence p’ is the successor of p’ | My. There are no more such types than |S7(Mp)| < 2!71.

2 case: C £ T. Then we take N € Ep such that N2 C. [{g€ S/ (C):pCq& (¢,A) € INFLP}| <
<|{q € S/(N):pCq& (q,A) € INFLP}| <2171,

The following theorem is an extension of Theorem 19.8 of [13] and is the main result of this paper.

Theorem 8. If F is J-stable, then the concepts of JNF and JNFLP are the same.

The proof follows from Theorem 1 and Theorem 2.

Next, we define the concept of independence. Non-forking extensions will in some sense be «frees, i.e.
independent. So in what follows we will talk about the concept of forking when we are dealing with some type
in the Jonsson theory, which satisfies the relation JNF. We will follow the following definition.

Definition 13. We say that a does not depend on B over A if tp(a/A) does not fork over A(J B. We denote
this fact by al 4 B.

In particular, one can note that the concept of independence for Jonsson sets has many good properties:
monotonicity, transitivity, finite basis, symmetry, etc., similarly to complete theories.

Forking, as in Theorem 1, can be used to give the notion of independence in J-w-stable theories [§].

Summarizing, we note that in [14] was obtained a result, where for the Jonsson theories the binary relation
JNF was determined and it was proved that the notion JNF in the class of J-stable theories coincides with
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the concept of non-forking in stable theories in the sense of S. Shelah. In this paper we obtain the following
result: for a fixed fragment of a certain Jonsson subset of the semantic model of some fixed J-stable existentially
complete Jonsson theory, we prove both equivalences of the binary relations JNF and JNFLP. Moreover, for
JNF in this class of theories, we have obtained a more detailed version of Theorem 10 [14]. Namely, we get the
assertion that the binary relation JNF is also equivalent to the condition obtained in [13] with respect to some
definable closure of the Jonsson subset of the semantic model of the Jonsson theory under consideration. The
results obtained with these binary relations provide an additional opportunity to characterize the behavior of
existential types in the framework of the study of the examined fragment of the Jonsson subset of the semantic
model of this Jonsson theory.
All concepts that are not defined here can be extracted from [8].
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O.1. Vubpuxr

oHcoHABIK >KUBIHAAPABIH, (pparMeHTTepl YIIiH
dopKuHT neH ToyeJiCci3aiK

Toyencismik yFbIMBI GEKITIITEH TOJBIK TEOPUSIHBIH MOJEIbIAEPIl KIACCU(MUKAIUIIAY TEOPUSICHIHIA ©Te
MaHBI3IbI POJIiH aTkapaiabl. MakaJaia HOHCOHIBIK TEOPHSIAp KAPACTBIPBLIILI, OJIap, »KaJIlbl alTKAHIA,
TOJIBIK, eMec 6oJIbI TabbLIaabl. MyH i Teopusiiap yiiniH GOPKUHT YFBIMBI OEPIiIreH TEOPUSHBIH, CEMaHTH-
KaJIbIK, MOJEJIiHIH, HOHCOH/IBIK, IMKi >KUBIHIAPBIHBIH, 3€PTTEY AsChIHIa aKCMOMATHUKAJIBIK, TYPAE EHTi3iaei.
[lenax, Jlackap-Ilyasa ¢dpopKuHTI KoHE HOHCOHIBIK, TEOPUSTHBIH, CEMAHTHKAJIBIK, MOJIE/IiHIH, HOHCOH/IBIK, 1I11-
Ki YKUBIHIAPBIHBIH 9K3UCTEHINAJIIBI TYPJIEP] VIIIIH aKCHOMATUKAJBIK Typie 6epiireH pOpKUHTIHIH SKBUBaA-
JIEHTTLIIr KeaTipiami. Opi Kapail, TOJBIK TeOpUsIapAaFbIIail, TOyeICi3miK (POPKUHT eTe aaIMaidThIHIBLIbI-
JIBIK, YFBIMBI aPKbBLIbI aHBIKTAJIAIbI.

Kiam cesdep: MOHCOHMBIK, TEOPUsl, CEMAHTUKAJIBIK, MOJIE/Th, S9K3UCTEHIINAIbI TYDP, HOHCOHIBIK, XKIbIH, HOH-
COHJIBIK, 2KUBIHHBIH, (DparMeHTi, (GOPKUHT, TOYEICI3IiK.

O.1. Vubpuxr

DopKUHT 1 HE3aBUCUMOCTD JIJIsI (pparMeHTOB
MTOHCOHOBCKUX MHOXKECTB

IlonsiTne He3aBHUCMMOCTH UI'DaeT OYE€Hb BasKHYIO POJIb B TEOPUHU KJIacCUMUKAIUN Mojesieil (DUKCHPOBAHHOMN
MOJTHOM Teopuu. B cTaThbe M3ydeHbl HOHCOHOBCKME TEOPUM, KOTOPBIE, BOOOIIE TOBOPsI, HE TMOIHBI. {151 Takux
Teopuit AKCMOMATUIeCKN BBOJIUTCS MTOHATHE (POPKUHTA B pAMKAX M3y UeHUsI HOHCOHOBCKUX ITOAMHOXKECTB Ce-
MaHTHYEeCKOI MoJiesin faHHoil Teopun. [IpuBeena sksuBaseHTHOCTH popkunra 1o Ilenaxy, Jlackapa-Ilyaza
W aKCHOMATUYIECKU 3aJAHHOTO (DOPKUHTA, JIJIsT SK3UCTEHIINAIBLHBIX TUIIOB HAJ MOAMHOXKECTBAMHU CEMAHTU-
9eCKOM MOJeIn HOHCOHOBCKOM Teopuu. Jlajee, KaK W JjIsl MIOJIHBIX TEOPHil, OIPEIEIsIeTCs HE3aBUCUMOCTD
4Jepe3 NOHATHE HEDOPKYEMOCTH.

Karouesvie cao6a: HOHCOHOBCKAasI TEOPUs, CEMAHTHIECKAT MOJEJb, 9K3UCTEHIIMAILHBIN THUII, HTOHCOHOBCKOE
MHOXKeCTBO, (pparMeHT HOHCOHOBCKOTO MHOYXKECTBA, (POPKUHT, HE3ABUCHMOCTD.
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Syntactic similarity of definable closures of Jonsson sets

In the framework of the classification of the Jonsson theories concept of interpretability and admissibility in
the language of the semantic triple of the Jonsson theory was considered. A description of the syntactic and
semantic similarity of perfect fragments of Jonsson subsets of the semantic model of the existential-prime
convex Jonsson theory was obtained. Some model-theoretic properties for Jonsson’s theories are considered.
Such theories, as group theory, the theory of Abelian groups, the theory of Boolean algebra, the theory of
ordered sets, the theory of polygons, and many others satisfies Jonsson’s properties.

Keywords: Jonsson theory, perfect Jonsson theory, semantic model, Jonsson set, fragment of Jonsson set,
syntactic and semantic similarity, existentially prime model.

The study of Jonsson theories is one of the interesting problems of the classical model theory. In the works
[1, 2] you can find the main aspects of this type of research. One of the important concepts of model theory
is the concept of definability (interpretability) of one algebraic system in another. It is said that the algebraic
system B =< B, R;, i € I > is definable on A =< A, P;, j € J >, if exists such formular relations ®; i € 1
in language 2 that < A; ®;, i € I > is an isomorphic < B; R;, i € I >. In the course of the development
of model theory, this notion was generalized, and the most general (at present) definition can be formulated
as follows. If 2 algebraic system, n < w, B C A™, X is the cardinal then B is called 7)-subset if exists such
n-type p(z1, ..., ) over () of language of system 2, such |p(xy, ..., z,)| < A and B consists of all n of A",
realising p(z1, ..., x,) in A. Obviously, 7)-subsets are invariant relatively automorphisms. Therefore, 7 it can
be considered as a way of isolating a certain class of invariant subsets of algebraic systems. If 2, 8 - algebraic
systems G = Aut( A), then we say that B is 7, — interpreted in 2/, if 93, is ), — interpreted in pure pair (A4, G).
If A = w then usually instead of 7\ — interpretability says formally (or elementarily) interpreted (definable).
The problem of interpretability can be considered through other similar concepts, for example, syntactic and
semantic similarity.

Definition 1. A theory T is called Jonsson if:

1) the theory T has an infinite model;

2) the theory T is inductive;

3) the theory T has the joint embedding property JFEP;

4) the theory T has the amalgamation property AP.

Definition 2. The set X is said to be Jonsson in theory T, if it satisfied to following properties:

1) X is definable subset of C, where C' is semantic model of theory T

2) dcl(X) is support of some existentially closed submodel C, where dcl(X) is definable closure of X.

Definition 3. We say that all V3 consequences of an arbitrary theory form the Jonsson fragment if the
deductive closure of these V3 consequences is the Jonsson theory.

Let T is an arbitrary Jonsson theory, then E(T') = U<, E,(T), where E,,(T) is a lattice of 3 formulas with
n free variables, T is a center of Jonsson theory T, i.e. T* = Th(C) , where C is semantic model of Jonsson
theory T in the sense of [3].

Definition 4 [4]. Let T} and Ty are Jonsson theories. We say, that 77 and T, are Jonsson’s syntactically
similar, if exists a bijection f : E(T}) — E(T») such that:

1) restriction f to E,(T1) is an isomorphism of lattices E,,(T1) and E,(T2), n < w;

2) f(ElvTLJrl(p) = Elvn+1f(§0)a p e EnJrl(T)a n < w;

3) f(’l)l = ’1)2) = (1)1 = ’UQ).

We would like to give some examples of syntactic similarity of certain algebraic examples. For this, we recall
the basic definitions associated with these examples following denotions from B. Poizat [5].

A Boolean ring is an associative ring with identity, in which 22 = x for any x is called a Boolean ring;
then, we have also (x + y)2 = 22 +ay +yr + Y% = v + 2y + yx + y and besides (x + y)2 = x + y; therefore
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zy + yx = 0 for an arbitrary z, y; 22 + 22 = 0 means,  + = = 0, for any = or £ = —z; hence the Boolean ring
has characteristic 2 and, since xy = —yx = yz, it is commutative.

To axiomatize this concept, we introduce a language containing two symbols of constants 0 and 1, two
symbols of binary relations + and -

We write down some universal axioms, expressing, that A is the Boolean ring, without forgetting thus 0 # 1.
In the Boolean ring we will define two binary operations A and V, and unary operation — as follows: t Ay = x-y;
rVy=c+y+azy;, v=1+4+=z.

It is easy to verify, that the following are true for all x,y and z:

— (de Morgan’s laws or duality): =(—z) =z, ~(x Ay) =~z V -y—(z Vy) = -x A —y;

—zVr=x Nz =1

— (associativity A): (x Ay) Az =1z A (yAz);

— (associativity V): (xVy)Vz=1zV (yV z);

— (distributivity A over V):z A (yV z) = (z Ay)V (z A 2);

— (distributivity V over A): zV (yAz) = (xVy) A (zV 2);

— (commutativityA over V): x Ay =yAz,axVy=yVuz;

-z AN—-x=0,zV-z=1

—xzAN0=0,zV0=x2AN1=z,2V1=1;

-0#1,-0=1,-1=0.

A structure in language 0,1, -, A, V satisfying to these universal axioms is called a Boolean algebra.

Fact 1 [5]. In each Boolean ring one can interpret a certain Boolean algebra.

Proof. With the Boolean ring A we have connected some Boolean algebra b(A); the converse is also true:
r-y=xAy,x+y=(xVy) A(-zV-y), then we receive the Boolean ring a (B); and besides a (b(A)) = A,
b(a(B)) = B. Thus we see, that up to a language, the Boolean ring and Boolean algebras have the same
structures, the Boolean ring canonically is transformed into a Boolean algebra and vice versa, transformations
in both directions are carried out using quantifier free formulas.

The following example connects Boolean algebras with Abelian groups. In work [6], conditions were found
for the cosemanticness of Abelian groups.

Fact 2 [7]. In each Boolean algebra one can interpret an Abelian group.

Proof. In Boolean algebra A we suppose a+b = (a AY)V (¢’ AD).

[A, 4] is Abelian group, in which each not unit element has an order 2.

The element 0 is group unit in G, and each element z is reciprocal to itself: x + 2 = 0 for all x € A.

We state the obtained results.

Let’s denote through Tga,Tsr, Tac accordingly theories in their signatures (they are different) of Boolean
algebras, Boolean rings and Abelian groups.

Lemma 1. Tga, TR, Taq are examples of Jonsson theories.

Proof. Tga and Tggr from [4], Tag from [6].

Theorem 1. Theories T4 and Tgr are syntactically similar, and mutually interpreted among themselves,
as for complete theories and for Jonsson theories.

Proof. Follows from the fact 1.

Theorem 2. Theory T4 is interpreted in theory T4, as for complete theories and for the Jonsson theories.

Proof. Follows from Fact 2 and Theorem 1.

Let L be a countable first-order language and T is some inductive theory in this language, Fr and APy are
denoting correspondingly the following classes of this theory: class of all existentially closed models and class of
all algebraically prime models.

Definition 5. The inductive theory T called existential-prime (EP), if it has a algebraically prime model
and APTﬁET 75[2)

Definition 6. The theory T is called convex (C) if for any model 2 and any family {B;|i € I} of its
substructures, which are models of the theory T', the intersection (,.; ®B; is a model theory T'. It is assumed
that this intersection is not empty. If this intersection is never empty, then the theory is called the strongly
convex (SC).

An inductive theory is called an existentially prime strongly convex theory if it satisfies the above definitions
simultaneously and is denoted by EPSC.

Let X be the Jonsson set in the theory 7" and M is existentially closed submodel semantic model €, where
dcl(X) = M. Then let Thys(M) = Fr(X), Fr(X) is Jonsson fragment of Jonsson set X. Let A; and A,
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are Jonsson subset of the semantic model the some of Jonsson EPSC-theory. Where F'r(A;) and Fr(As) are
fragments of Jonsson sets A; and As.

In the work [8] was obtained the result on syntactically similarity in the frame of EPPCJ theories in some
enrichment. The class of EPPCJ theories is the subclass of class of all Jonsson theories. Now we are considering
the following result for Jonsson theoreis without any enrichment. We have the following result.

Let T be 3 -complete perfect Jonsson theory and Fr(A;) and Fr(As) be fragments of A; and Ay correspon-
dingly, where A; and A5 are Jonsson subset of the semantic model for theory T.

Even if given theory is 9 -complete perfect Jonsson theory, its fragments can be not perfect.So we will be
demand perfectness for fragments of the following theorem.

Theorem 3. Let Fr(A;) and Fr(As) are 3-complete perfect Jonsson theories. Then following conditions are
equivalent:

1) Fr(A;) and Fr(Asg) are J-syntactically similar as Jonsson theories [9];

2) (Fr(Ay))* and (Fr(Az))* are syntactically similar as the complete theories [9], where (Fr(A;))* and
(Fr(Az))* respectively be the centers of fragments of considered sets A, As.

Proof. We also need the following facts.

Fact 3 [10]. For any complete for the existential sentences Jonsson’s theory T' the following conditions are
equivalent:

1) T is perfect;

2) T* model-complete.

Fact 4 [10]. For any complete for the existential sentences Jonsson’s theory T the following conditions are
equivalent: are equivalent:

1) T* model-complete;

2) For each n < w, E,(T) is a Boolean algebra, where E,,(T) is a lattice of existential formulas with n free
variables.

We note that by the perfectness of Fr(Ay) and Fr(As) implies that (F'r(A4;))* and (Fr(Asz))* are J Jonsson’s
theory.

We will show 1) = 2). We have that for every n < w, E,(Fr(A;)) is an isomorphic to E, (Fr(Asz)). Let
this is an isomorphism of fi,,.By the hypothesis of the theorem and facts 3, 4 for every n < w, E,,(Fr(4;)) and
E,(Fr(As)) are a Boolean algebras. But due to the perfection Fr(A;) and Fr(As;) follow that (Fr(A;))* and
(Fr(As))* are model-complete by virtue of fact 3, and so for each n < w, for any formula ¢(Z) of F,,((Fr(A1))*)
by Corollary 1 there is a formula ¥ (Z) of E,((Fr(A1))*) so that in (Fr(A1))* & ¢ < 1. Because the theory of
Fr(A,) is complete for existential sentences and E,,(Fr(A;1)) C E,((Fr(41))*) (as Fr(A;) C (Fr(41))*), follow
that E,(Fr(A1)) = E,((Fr(A;7))*). Due to the fact that theory of Fr(As) is complete for existential proposals
and E, (Fr(Az2)) C E,((Fr(42))*) (as Fr(As) C (Fr(Az))*), follow that E,(Fr(Az2)) = E,((Fr(A4s2))*). For
each n < w, for each ¢1(Z) of F,((Fr(A41))*), we define the following mapping between the F,((Fr(A1))*)
and F,((Fr(A2))"): fan(p1(Z)) = fin(1(T)), where (Fr(A1))" |= ¢1 > o1, 1 € En(Fr(Ar)). It is easy to
understand, that by virtue of properties of f1,, and above what has been said, fs,, is a bijection, an isomorphism
between F),((Fr(A1))*) and F,((Fr(Az))*). Consequently, (F'r(A1))* and (Fr(Az))* are syntactically similar
(in the sense of [6]).

We show 2) = 1). Is trivial, since F,((Fr(A1))*) an isomorphic to F, ((Fr(Az))*) for each n < w, and by
the hypothesis of the theorem and the facts 3, 4 this an isomorphism extends to all subalgebras.

All concepts that are not defined in this article can be extracted from [4].

Lemma 2. Any two cosemantic Jonsson’s theories are J — semantically similar.

Proof. Follows from the definitions.

Lemma 3. If two perfect 3 — complete of Jonsson’s theories are J — syntactically similar, then they are
J — semantically similar.

Proof. It follows from [9, Prop. 1] and above what was said.

Definition 7. A property (or a notion) of theories (or models, or elements of models) is called semantic if
and if it is invariant relative to semantic similarity.

Let us recall the definition of polygon.

Definition 8. By polygon over monoid S we mean a structure with only unary functions (A; fo.aecs) such
that:

(i) fe(a) = a,Va € A, where e is the unit of S;

(i) fas(a) = fa(f5(a)), Yo, B € S,Va € A,

And now we can formulate the main result of this job.

Cepust «Maremarukas. Ne 2(90)/2018 121



G.A. Urken

Theorem 4. For each 3 - complete perfect Jonsson J theory there exists a J syntactically similar 3 - complete

perfect Jonsson’s J theory of polygons, such that its center is model complete.

Proof. It follows from theorems [11, Th.7, Th.8] and [9, Th.4, Th.5].
As we know from [9] the following Proposition 1 is true for any complete theory, so we will be intrested

such properties from this Proposition 1 in the frame of Jonsson theories and to research the notion of semantic
similarity of Jonsson’s theories. Recall the content of the Proposition 1.

Proposition 1 [9]. The following properties and notions are semantic:
1) type;

2) forking;

) A-stability;

) Lascar rank;

) Strong type;

) Morley sequence;

) Orthogonality, regularity of types;

(8) I(N4,T) — the spectrum function.

Finally we can note that all above properties from Proposition 1 will be semantic also in the frame of Jonsson

(
(
(3
(4
(5
(6
(7

theory. The proof trivial follows from Proposition 1 using Jonsson analogues of Proposition’ main notions.
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['A. Ypken

HoncoHabIK >KUbIHAAP/AbIH, AHBIKTAJFAH TYNBIKTaMAaJIAPIbIH,
CUHTAKCUCTIK YKCACTBLIBIFBI

MOHCOHIBIK TEOPHSHBIH AsCHIHA HHTEPIPETALNIAY KOHE PYKCATHUIBIK YFHIMBI HOHCOHIBIK, TEOPUSIHBIH
CEMaHTHUKAJIBIK, VIITIK TLTIH/E KAPACTHIPBLIILI. JK3UCTEHIIMOHAIbI-2Kall TIOHEC HOHCOHIBIK, TEOPUSTHBIH, Ce-
MAHTHUKAJIBIK, MOJIEJIHIH KeMeJl HOHCOHIBIK iIMKi »KUBIHAAP (PparMeHTIHIH CHHTAKCUCTIK YKOHE CEeMaHTH-
KAJIbIK, YKCACTBLIBIK, CHIIATTAMACHI AJIbIHIbL. VIOHCOHIBIK TEOPUAHBIH, KEABIp TeopHs-MONebIiK KacHeTTep]
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zeprrenai. VIOHCOHBIK TEOPUSTHBIH KACHETTEP I TPYIIIaIap TeOPUIChl abesIiK rpyInaaap TEOPUsICHI, OYIb-
HiK ajaredpa TeOPHUsChl, PETTEreH IPYIIAJIap TEOPUACHI, IIOJUTOHIAD TEOPUSICHI YKOHE Tarbl 6aCKa TEOPHSsI-
Jap KaHaraTTaHIbIPAIbI.

Kiam cesdep: MOHCOHIBIK, TEOPUSI, KEMEJ HOHCOHJIBIK, TEOPHSsI, CEMAHTUKAJBIK, MOJIE/Ib, HOHCOH/IBIK, >KUBIH,
MOHCOH/IBIK, YKUBIHHBIH, (DPATMEHTI, CEMAHTUKAJIBIK, YKOHE CHHTAKCUCTIK YKCACTBLIBIK, 9K3UCTEHIIMOHAJIIbI-
Kail MOJ1eJb.

["A. Ypken

CuHTakcudeckoe HO,Z[O6I/Ie o1peae/JiInMbIX 3aMbIKaAHUI
MOHCOHOBCKNX MHOXKECTB

B pamkax kmaccuduranum HOHCOHOBCKUX TEOPHIl PACCMOTPEHO IMOHSTHE WHTEPIPETUPYEMOCTHA M JIOIY-
CTUMOCTH Ha SI3bIKE CEMAHTUYIECKOI TPOWKM HOHCOHOBCKOM Teopun. [losydeno onmcanne CHHTAKCHIECKOTO
U CEMAHTUYECKOrO II0/I00MI COBEPIIEHHBIX (DPArMEHTOB HOHCOHOBCKHUX IIOJIMHOXKECTB CEMAHTUYIECKON MO-
JIeJIA 9K3UCTEHIMAJIBHO-IIPOCTOM BBIIIYKJION HOHCOHOBCKOM Teopuu. PaccMOTpeHBI HEKOTOPBIE TEOPETUKO-
MO/IeJIbHbIE CBOMCTBA /11 HOHCOHOBCKUX TEOPUIi. HMouconoBekuM cBoiicTBaM YAOBJIETBOPAIOT TaKUE TEOPUH,
KaK TeOpHs I'DYIII, TeOpus abeJIeBBIX IPYII, TeOpUs OyJIeBOil aIredpbl, TEOPUs YIOPI0UEHHBIX MHOXKECTB,
TeOpHUs IIOJIUTOHOB U ApyTHeE.

Kmouesvie cr06a: HOHCOHOBCKasI TEOPHsi, COBEPIIIEHHAST HOHCOHOBCKAST TEOPUS, CEMAHTUIECKAsT MOJIEJh, OH-
COHOBCKOE MHOKECTBO, (pparMeHT HOHCOHOBCKOTO MHOYKECTBA, CEMAHTUIECKOE M CUHTAKCUIECKOe T1000ue,
9K3WUCTEHINAJIBHO-TIPOCTAS MOJEITh.
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Automation research of thermal and physical characteristics
of particulate-filled epoxy composites

Thermal-physical characteristics of filled epoxy composites were investigated by means of the developed
device which allowed to do computer-aided research within defined temperature range. Forward and reverse
run of relative linear elongation factor of the sample €(T,q)=Al/1 at heating rate 1,5-2 K/min. and cooling
rate 2,5-3 K/min. for the composites with particulate filler has been studied. Laplacian operator to scalar
field eu and ed was used, which enables to derive stationarity or quasi-stationarity 2D areas of relaxation
of macromolecular stress. Automation research will allow to determine the parameters of temperatures
and filler content corresponding to minimal stress values. In the first approximation these are the following
areas: 30<q<50, 385<T<395 K and 60<q<90, 340<T<380 K. Relaxation processes at the above-mentioned
parameters are the most intensive in the composite. Such composites have the lowest residual stress.

Keywords: composite, epoxy matrix, thermal coefficient of linear expansion, relaxation processes, automation
research.

Introduction

Nowadays, composite polymer materials are used not only as constructional materials but as coatings of
various functions as well [1]. For the latter an important indicator of operational characteristics of composition
coatings is thermal coefficient of linear expansion (TCLE). In most epoxy binders-based materials particulate
fillers of various nature, shape and size are used [2]. Mechanism of particulate fillers influence on heat characteri-
stics of polymer composites hasn’t been investigated properly. A particulate filler when being put into epoxy
composite causes the structural change due to the external surface layer formation between the filler hard surface
and the binder [3]. It results in change of thermal-physical characteristics of epoxy binders-based heterogeneous
systems, including thermal coefficient of linear expansion, thermal resistance and heat conductivity. While the
material is being formed the filler hard surface (it depends how active it is with the binder) makes a big difference
in structure and volume of external surface layers. When a composite material is being heated the particulate
filler restrains its expansion that is important in operation under thermal cyclic load conditions. The relationship
between physical nature of a filler in a composite material and TCLE value has been proved [4]. Taking into
consideration the difference in thermal-physical characteristics of matrix and filler and activity coefficient of
particulate fillers, it’s possible to control the whole heat- physical characteristics of composites to change the
volume and structure of surface layers. According to modern beliefs of some authors, boundary inlays may
redistribute the stress in the system «matrix-filler> [5, 6]. Stress state formation of meta-polymer systems on
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the phase division boundary both during and after the composite formation affects heat- physical characteristics
of the material. High heat load in such layers may cause micro cracks in the material [5]. While using particles
of the same dispersion the probability of cracks spread under performance conditions is increasing. Stress on
the crack top can be lower due to plasticizers use. As we know, matrix-filler relation increase provides the
improvement of physical-mechanical materials, including the case when dispersed magnetic fillers are added [6].

Thus, reasonable choice of plasticizers and structurally active filler (ferromagnetic, paramagnetic, diamagnetic
materials) is one of the most efficient ways to solve the problem of properties of polymer composite materials
being used as coatings. The use of epoxy binders of high adhesive strength to metal base, physical-mechanical
characteristics and workability at coatings forming on long surfaces of complex contour is a promising direction
for the development of epoxy composites of various functions operating under thermal scraping conditions.

Results and discussion

Low molecular epoxide resin E/I-16 (I'OCT 10687-76) was used as a binder for polymer composites formation.
Aliphatic resin JTET-1 (TV 6-05-1645-73) was added into the binder as a plasticizer to improve physical-chemical
and technological properties of the matrix. Polyethylene polyamine (TV 6-02-594-73) was used as a hardener
enabling to form the material at room temperature. Dispersed ferromagnetic (red mud), paramagnetic (TiC)
and diamagnetic (AlyO3) powders were used at polymer systems filling. Polymer composites formation was
taking place at temperature 293+2 K for 24 hours followed by further thermal processing at 433+2 K for 2
hours. After that the samples were kept for 48 hours at temperature 293+2 K. Then the study of thermal
properties of composite materials was conducted.

Dilatometer investigation of polymer composites has demonstrated that TCLE value of composite material
depends on the filler concentration and nature. It was determined that at temperature rise the relaxation of
residual stress in materials is taking place due to the change of macromolecules conformation set in the composite
during surface layers’ formation near the filler hard surface. Relaxation behavior of the composite at thermal
expansion corresponds to hysteresis form at heating and cooling cycle. In this way redistribution of internal
stress has been determined which takes place in the system «epoxide matrix-particulate filler> that is in accord
with the results of work [7, 8].

TCLE was studied by means of the developed device which allowed to do computer-aided research within
defined temperature range (Fig. 1). Thermal-physical characteristics of epoxy composites were determined accor-
ding to the sample length change at temperature variation under stationary conditions (GOST 15173-70). The
device consists of heater (1). In the heating area of the sample (2) the temperature was regulated by temperature
controller (3), which provided the defined heating rate. The sample stretching was recorded by motion sensor (4).
The temperature in the heater was measured by thermocouple (5) and was sent by analog-to-number converter
(ANC) to PC (7). Heating control signal was transmitted to the thermal regulator by input/output port (8).
The operation of the whole input/output board of discrete signals (9) was synchronized by the timer (10).

thermore input/% :
|> gulator e utput ||
v | L] port :

4
\ 4

L | | PC

Y

A 4

1 — heater; 2 — sample; 8 — sample stretching meter; 4 — displacement transducer; 5 — thermocouple; 6 — analog-to-number

converter; 7 — personal computer; 8 — input/output port; 9 — timer; 10 — input/output board of discrete signals

Figure 1. Device design for the TCLE samples study
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According to modern views on physics and chemistry of polymers, active dispersed particles adding whilst
epoxy composites formation resulted in rigid surface layers building on the phase boundary. The parameters
of such layers depend on the number of physical nodes, i.e. physical joining level [9, 10]. If temperature rises
higher the vitrification temperature, physical nodes are ruined [11]. It should be admitted that in this case
macromolecules which are near the hard surface of the filler may form migrating physical nodes. Flexibility
increase of the latter takes place due to the change of macromolecules conformation set of the binder. According
to Sperling research the above-mentioned nodes failure has been observed between transversal links of macro-
molecular chains. Such nodes are restored when being cooled at the temperature lower vitrification matrix
temperature. It should be noted that material generation is taking place thanks to physical joints formation
with catalytically-active centers on the dispersed fillers surface due to macromolecules recombination in the
binder material. Thus, polymer cross-linking yield is increasing [12].

Forward and reverse run of relative linear elongation factor of the sample ¢(T,q)=Al/l at heating rate
1,5-2 OK/min and cooling rate 2,5-3 OK/min for the composites with particulate filler TiC has been studied.
Time variation of temperature T most probably can be considered steady (quasi-steady). That’s why variable
T is time like. Factor q is a priori considered the one that is subjected to steady trend, in case of dispersions
equal distribution on the matrix volume.

Relaxation behavior of thermal expansion was observed at continuous cyclic heating and cooling of composite
material. As a result of discrete measurements the table dependencies of relative linear elongation of the sample
were observed (see Table). Such dependencies in reality due to well-known statements of mathematical analysis
are of two-dimensional continuous smooth character for the set of all possible degrees of composite q filling
with dispersions (Fig. 2). For each one-dimensional cross-section for q=const they are in the form of hysteresis
loops. An irreversible component of the sample relative elongation is determined to be available. The reason
of this phenomena is viscoelasticity of composites causing internal residual stress in the system which avoided
relaxation due to their significant deviations from steady features of transient processes at composites formation.

Table

Dilatometer investigation of forward () and reversed (/) run of the samples
relative elongation of composites filled with titanium carbide dispersions
(parameter q is a value of filling per 100 resin mass fraction)

q=30 mass fraction q=>50 mass fraction
TK " [e "[TK,/ e/ [ TK " ]e /[ TK, | e,/
317 0,05 397 0,95 323 0,12 423 0,94
324 0,18 386 0,68 333 0,20 410 0,83
327 0,44 378 0,54 343 0,24 397 0,75
335 0,39 370 0,39 352 0,27 386 0,64
346 0,52 352 0,30 366 0,30 375 0,52
360 0,70 340 0,27 381 0,39 359 0,34
366 0,81 327 0,24 395 0,54 352 0,27
377 0,90 314 0,20 407 0,68 344 0,15
396 0,95 308 0,12 423 0,94 336 0,02

q=380 mass fraction q=100 mass fraction
TK | e 7| TK,/ | e/ | TK " | e & | T°K, | e/
347 0,01 423 0,67 353 0,01 423 0,60
354 0,13 416 0,56 362 0,14 418 0,52
357 0,17 408 0,42 370 0,22 413 0,45
365 0,30 399 0,32 377 0,29 406 0,32
376 0,43 381 0,24 381 0,31 397 0,23
389 0,51 370 0,21 393 0,40 382 0,16
396 0,55 357 0,17 400 0,45 363 0,14
408 0,61 344 0,12 415 0,54 347 0,11
423 0,67 324 0,06 423 0,60 324 0,08
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Sloping zones of trend response (Fig. 2) of two-dimensional dependencies graph ¢(T,q) change indicates the
stationarity areas of residual stress relation. The necessary condition of extreme value of the function f=A(x, y)
first derivative in a random point is that the second derivative is equal to zero in the same point, in this case
the second derivative must have different signs on the opposite sides of the point.

For the two-dimensional option the analogue of the second derivative A(x, y) is Laplacian (1) — scalar
operator like , ,

+x 0% +y

We use Laplacian operator to scalar field eu and ed (Fig. 2), which enables to derive stationarity or quasi-
stationarity 2D areas [13], which are characterized by constant trend (mathematical expectation) and deviation
(dispersion). Hysteresis dependence characterizes the rate of relaxation of macromolecular stress [14, 15]. This
relaxation rate provides the residual stress minimization. The most optimal process of the composite hardening
must have some features of stationarity to provide the least residual internal stress. Using numerical calculation
methods of Laplacian operator (1) (listing 1) for discrete fields of measurements eu and ed of tests results
(Fig. 2), we’ll pay attention to the areas where the values of calculation are close to zero (Fig. 3). We must
admit that the calculated field of Laplacian values lu and 1d is smaller than the initial field due to specific discrete
calculations. We build the field of vector product lu and 1d (Fig. 3) to guarantee the stationarity of forward
and reverse run. The obtained results prove the relaxation processes stationarity of forward and reverse run of
dilatometer measurements for the composites filled with titanium carbide dispersions [16, 17]. Non stationary
areas are found to be the ones close to those which satisfy the ratio: {340<T<350, 30<q<55} Ta {400<T<420,
30<q<40}.

20 45 0 95 q, m.fr.
ed

Figure 2. Two-dimensional dependencies graph ¢(T,q) for forward (eu) and
reverse (ed) run of dilatometer measurements of relative linear elongation of the sample
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Figure 3. Result of Laplacian operator to the fields of forward (lu) and
reverse (ld) run of dilatometer investigation

Listing 1. Calculation with the help of MathCAD-14 program of two-dimensional Laplacian operator for
the field of dilatometer measurements of dependencies €(T,q) for forward (eu) and reverse (ed) run:

g =1.18 7:=1..18

edg; ;= 0.25- (ediy1,j41 — edi—1j41 +edip1j—1 —edi_1j-1);
edt; j = 0.25 - (edit1,j4+1 — edit1j—1 +edi—1 j41 — edi—1,j-1);
euq;; = 0.25 - (6U¢+1,j+1 — €U;—1 41 T €Uyl j—1 — 6U¢—1,j—1);
eutij = 0.25 - (€Ujy1 j41 — €Uiy1,j—1 + €Ui—1 j+1 — €Ui—1j—1);
cols(euq) =19 rows(euq) = 19;
edq := submatrixz(edq,1,18,1,18) edt := submatriz(edt,1, 18,1, 18);
euq := submatriz(euq,1,18,1,18) eut := submatrixz(eut,1,18,1,18);
cols(euq) =18 rows(euq) = 18;
7:=1.16 1 :=1..16;
euq2; ; = 0.25 - (eugit1,j+1 — €uUgi—1,j+1 + €UGit1,j—1 — €UGi—1,j—1);
eut2; ; = 0.25 - (eut;y1,j41 — €utip1j—1 + euti—1 j41 — euti—q1,j-1);
euq2;; = 0.25 - (eugit1,j+1 — €UGi—1,j+1 + €UGi+1,j—1 — €UGi—1,j—1);
edt2; ; = 0.25 - (edit1,j4+1 — edit1j—1 +edi—1 j41 — edi—1j-1);
cols(euq2) =17 rows(euq2) = 17,
euq2 := submatriz(euq 2,1,16,1,16) eut2 := submatriz(eut 2,1,16,1,16);
edq2 := submatrixz(edq 2,1,16,1,16) edt2 := submatriz(edt 2,1,16,1,16);
cols(euq2) =16 rows(euq2) = 16;
lu = euq2 + eut2 ld := edq2 + edt2.

By means of the program MathCAD-14 we determine the stationarity fields of hysteresis loops passing
(forward and reverse) forming the operators of vector product lu*ld for sampling investigation (at least one
of them) and the sum of simultaneous study (the both). In the sum lu-ld the sign «-» appears due to the

temperature countdown (Fig. 4).
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0.001

30 5 80 q, m.fr.

Figure 4. Fields of characteristics of sampling lu ld and simultaneous lu-ld stationarity performance
of forward and reverse run of relaxation processes of epoxy composite filled with titanium carbide

Conclusions

Automation research will allow to determine the parameters of temperatures and filler content corresponding
to minimal stress values. In the first approximation these are the following areas: 30<q<50, 385<T<395 K Ta
60<q<90, 340<T<380 K. Relaxation processes at the above-mentioned parameters are the most intensive in
the composite. Such composites have the lowest residual stress. To make more accurate recommendations one
must turn to the theory of higher orders operators and the theory of pattern recognition that will be the matter
of further research [18]. The research method of composites dilatometer properties under discussion can be used
for another composition of composite materials.
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N.I". Jo6porsop, JL.II. Cryxngak, A.B. Bykeros,
A.T". Mukwrummun, P.3. 3omoruit, O.B. Torocko

JlucnepcTi TOMTHIPBIIFaH SNOKCUKOMIIO3UTTEPAIH, 2KbLTY-(PU3NKAJIBIK,

130

CUllaTTaMaJiapbIH 3epTTey,ui aBTOMAaTHU3alInudJjiay

ABTOMATTaHIBIPBLIFAH PEKUM/Ie OEPLITeH TeMIIEPATY paJIap/IblH JUAIA30HBIH 1A 36PTTEYJIED KYPri3yre MyM-
KiHAIK OepeTiH, 93ipJIeHTeH KYPBLIFbI KOMETriMEeH TOJITBIPBIIFAH TMOKCUKOMIIO3UTTEPIH KbLITY-(OU3UKAIIBIK,
cunarraMajapsl 3eprresred. Jlucnepcri tosreipbuiran kommosurrep ymie (T, q) = Al/1 cambicTbip-
MaJIbl CBI3BIKTHIK, y3apTy yiricinig 1,5-2 K /MuH KpI3y »KoHE CAJIKBIHIATY KblIIaMAbIKTapbiMet 2,5-3 K /MuH
TiKesell yKoHE Kepi OpeKeTiHIH ToyesIiIiri KapacTeIpbuFal. Jlamrac omepaTopbl MeH ey KoHe ed CKaJsip
OpiciH KOJIJlaHy apKbLIbBI MAKPOMOJIEKYJIAJIBIK KePHEYJIEP/IiH PeJIaKCAIUsIBIK ITPOIIECTEPIHIH CTAIMOHAPJIbI
HeMece KBa3WUCTaIMOHAPJIBIK afiMaKTapbiH 661yre 60/1aIbl. 3epTTEY aBTOMATTAHIBIPY KEPHEYIIH MUHUMAJI-
bl MOHJIEPiHE COfKeC KEeJIETIH TEeMIIEPATYPAHBIH, YJKOHE TOJITHIPFBINITHIH TapaMeTPJIepiH aHbIKTayFa MYKiH-
nik Gepeni. Bipinmi xybsikTayma 6y komakTap 30 < q < 50, 385 < T < 395 K xone 60 < q < 90,
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340 < T < 380 K. Penmakcarust mporectepi oCbl KOPCETKIIITEPIE KOMIIO3UTTE KAPKBIHIBI >Kypeai. MyHmaii
KOMIIO3UTTED TOMEH KAJIABIKTHI KEpHEYJ GoJraIb.

Kiam cesdep: KOMIIO3UT, STIOKCU/ITI MATPHIIA, CHI3BIKTHIK, KEHEUTYIIH TepMaAbl KOIMDDUITHEHTI, 3epTTEy Il
aBTOMAaTHU3AIUIIIAY.

N.T". To6porsop, A.I1. Cryxisik, A.B. Bykeros,
A.T". Mukururmms, P.3. 3omoruii, O.B. Torocko

ABTOMaTI/IBaI_II/ISI I/ICCJIe,Z[OBaHI/Iﬁ TeH.J'IO(I)I/I3I/I“IeCKI/IX XapaKTepucCcTuK
AUCIIEPCHO-HAIIO/JIHEHHbBIX JIIOKCUMKOMIIO3UTOB

VccenenoBanbl Terodusnyeckue XapaKTEePUCTUKI HAIIOJHEHHBIX SITOKCHKOMIIO3UTOB C IIOMOIIBIO pa3pa-
GOTAHHOI'O yCTPOICTBa, KOTOPOE IMIO3BOJISIET B ABTOMATU3UPOBAHHOM PEXKUME IIPOBOJIUTH HCCJIEI0OBAHUS
B 33JIJaHHOM JIMAIIa30He TeMIeparyp. M3y4ueHbl 3aBUCHMOCTH IPSIMOIO U 0HPATHOIO X0/ IOKA3ATEJIs] OTHO-
CUTEBHOTO JuHelHOro yammaenns obpasna € (T, q) = Al / 1 co ckopocrbio marpesa 1,5-2 K/mun n cko-
pocThIo oxyaxaenus 2,5-3 K/MuH [J1s1 KOMIIO3UTOB C AUCIIEPCHBIM HanoHuTeseM. Vcnonp3oBanue onepa-
Topa Jlamnaca U CKaJsIPHOTO MOJIst ey U ed TIO3BOJIMIIO BBIJEIUTh NJIOCKHAE OBJACTU CTAIMOHAPHOCTH MJIA
KBa3UCTAIMOHAPHOCTH ITPOIIECCOB PEJIAKCAIIMY MAKPOMOJIEKYJISIPHBIX HAIPSI)KeHU. ABTOMATH3AIUS HCCIe-
JIOBAHMIi TIO3BOJIUT OIPEJIE/IUTD IIapAMETPbl TEMIIEPATYD U COJEPKAHUS HAIIOJHUTEJIS, COOTBETCTBYIOIIIE
MHUHHAMAJIBHBIM 3HA4YeHUsIM HallpsKeHusi. B nepBom npubsmkenunu 3ro 3086 30 <q <50, 385 <T <395 K
u 60 <q <90, 340 <T < 380 K. PenakcanuoHHbIe IIPOIECCHI IIPU JAHHBIX HapaMeTPaX MPOXOIAT B KOMIIO-
3ure HanbojIee MHTEHCUBHO. TaKkue KOMIIO3UTHI UMEIOT HU3KHUE OCTATOYHBIE HAIIDSYKEHUS.

Kmouesvie ca06a: KOMIIO3UT, SIMOKCUIHAST MATPUIA, TEPMUIECKII KOIDDHUIMEHT JIUHEHHOTO PACIINPEHNSI,
aBTOMATHU3AINASA UCCJICTOBAHUN.
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Stress-strain state horizontal coal seam of finite length

As the result of work, analytical expressions for calculation of tension in coal stratum of terminating
length, which is under the influence of overlying breeds and is between two drifts are received. The decision
is presented in the form of the sum of a polynom and a convergent series. For determination of coefficients
of a row it is not required to solve the infinite systems of the algebraic equations. It promotes fast numerical
finding of the required sizes with an accuracy, sufficient for practice. The given decision can be used for
interpretation of data of geomechanical monitoring at combinegouge of coal in the conditions of real time
and for monitoring of tension in the developed coal layer for the purpose of prediction of a possibility of
mountain emission that still is very relevant problem of safety of mining operations.

Keywords: stress, plane problem of the theory of elasticity, biharmonic equation, coal bed, model of coal
layer.

1 Introduction

The paper deals with the plane problem of the deformation of a horizontal coal bed of finite length that is
under the influence of overlying rocks and lies between two drifts. An analytical solution in the form of a series
is constructed. It takes a small amount of time to calculate it. To calculate ita small amount of time is needed.
The method is specifically designed for monitoring of geomechanical fields during the development of coal seams
in real time.

Conveyor technologies for coal extraction are increasingly used for underground mining. In this connection,
the security problems associated with the increase in the likelihood of occurrence of mountain impacts and
sudden gas releases are exacerbated [1]. In mines and mining camps the passivesystemsof monitoring of environ-
ment are used. They record microseismic emission (ITU), which occurs due to deformation of the rock mass
caused by a quasistatic change in stresses during cleaning operations [2, 3]. Interpretation of the received data on
the spot is carried out locally by statistical methods [4, 5]. On the other hand, there are significant correlations
between the characteristics of the ITU and the integral parameters of the stress-strain state of rocks [6]. However,
their use in practice is difficult, because the currently available numerical methods for calculating stress and
strain fields in geo-environments [7-9] and, in particular, of carbonaceous massifs [10], despite the universality
and existence of many commercial codes (ANSYS, ABACUS, FLAC, etc.), it is very difficult to use for the
rapid estimation of geomechanical fields with the purpose of making decisions over times of the order of tens
of seconds, which is required when forecasting technogenic dynamic events [2]. Therefore, the development of
analytical methods for calculating geomechanical fields remains relevant. These methods allow obtaining the
required solution for the minimum time required in practice.

The mathematically stated problem reduces to solving a two-dimensional homogeneous biharmonic equation.
Numerous methods have been proposed to solve it. It is necessary to mention solutions in the form of polynomials,
solutions of Fileon and Ribier. However, these solutions are not suitable for any kind of boundary conditions.
There is an approach of the so-called nonclosed solution, when the solution is represented as the sums of several
series, when the coefficient of one series is expressed in terms of all the coefficients of the second series, i.e.
an infinite system of linear algebraic equations is obtained for finding coefficients. If it is possible to prove
its completely regularity, then it is possible to use the simple reduction method. However, this approach is
associated with a great deal of computation. It is possible to find a solution with the help of fundamental beam
functions A.N. Krylov, but among them there are hyperbolic sines and cosines, which can lead to large errors
during computationin large domains. To solve the biharmonic equation, there are other approaches (see, for
example, [11-14]), which compare solutions obtained by various methods (they can be found in the work) [15].
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In our opinion, the most promising approach seems to be S.A. Khalilov’s approach. They were offered and
studied special basis functions [16, 17], which allow, first, to obtain a solution in the form of a series; secondly,
simple actions are performed to search for the coeflicients of this series; it is not necessary to solve infinite systems
of linear algebraic equations. This approach was proposed to solve the applied problems of aircraft building (see,
for example [15-24]). It was shown that the numerical solution of the biharmonic equation, constructed with the
help of proposed functions, is calculated very accurately. The maximum deviation is localized near the corner
points of the domain (see, for example, [15-20], etc.) and is small (about 1.2 %), the largest error is achieved
for a square area, the more the rectangular domain differs from the square, the less the calculation error.

We used the experience of S.A. Khalilov and his disciples for the construction of an algorithm for the rapid
calculation of stresses in a coal-rock massif. This algorithm will be used in the future to interpret geological
information in order to predict the possibility of mining, which is still a very urgent task of ensuring the safety
of mining operations. The first attempts in this direction were made in [25, 26].

2 Formulation of the task

It is necessary to calculate stress fields in a coal seam of finite length lying between two drifts. Due to
the long length of the reservoir compared to its thickness and distance between the drifts, we assume that the
model of a flat deformed state is applicable [27]. In this case, the Navier equilibrium equation is written in the
following form:

0o, + 0Ty -0, 0Ty T do,
oz 0z ox 0z

The stress state in the reservoir is described by the equation of continuity of deformation of Saint-Venant

= 0. (1)

D%, 0%, 0Py

022 + or2  0x0z (2)

and Hooke’s law

1 1 2(1 !
E/ (Ux - V/Uz) 5 €z = F (Uz - V/Uz) P Yrz = %Tm@ (3)
Here E’ and v/ are the Young’s modulus and the Paussson coefficient for the plane problem of the deformed
state [27].

We assume that the boundary conditions hold

Oclomti. = { @) Tozle=sl, = { 91() (4)

Ex =

fa(x)” 92()
and the matching conditions at the corner points: g;(£l,) =0 (j = 1, 2).
In the simple case, we can assume: f1(z) = fo(x), g1(z) = —gao(2).
rocks : /
|
= &= -1, | I,
- - 3| ——————————_——_—_—_e_—e——e— e —_———_—_—_—_—_E—E—_——_———-
= = | L
|
rocks I
I -t

Figure. Coal layer model and coordinate system adopted in the paper

We counsider that the considered system is balanced (the coal seam, being under the influence of forces on
it, is stationary) (see. Fig.). In this case, the moment of forces and the sum of the forces acting on the layer
must be zero. That is, the following equations must be satisfied:

lac _la:
/ [xaz(x, 1) — LTez (2, lz)]dx + / [maz(a?, =)+ LTwe (2, —lz)]dx =0; (5)
_lz la‘
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ly la Lo ly

/az(x,lz)dxz /az(a:,—lz)dm, /sz(x,lz)da:: /sz(a?,—lz)dx

—l —lz —lg —l

or, taking into account (4),

lo lo

ly
(/ x fi(x) dx — / z folx)dx | =1, [ g1(x)dx; (6)
ly

—ly —la

N —

L, L L .
l/Ifl(:E) dx :l/1f2(93) de, /zgl(z) da 21/192(17) da.

Following the well-known approach for calculating stresses (see, for example, [27]), we introduce the Erie
function and obtain the differential equation to which it satisfies.
A consequence of relations (2)—(3) is the equation

62 82 2
/ / /
g(amfuaz)Jr@(azfvam):2(1+1/)me2. (7)
It follows from (1)—(3), (7) that
A (o, +0.)=0. (8)
We introduce the Erie function ¢ so that equations (1) are satisfied automatically
D & D?p
= 4.9 Oz = 5 5> Tez = — )
022 Ox? 00z

then from (8) for the Erie ¢ function the biharmonic equation will take place:

Og

A?p = 0. (10)

To solve equation (10), from (4) and (9) follow the boundary conditions:

_ | h(@) _ 9z
(pwz|z:ilz - {f2(1') ’ (pa:z|z:ilz - {QQ(I’) B (11)

(pzz‘z:ﬂ:lw = 07 (p$z|:c::|:lz =0.

Thus, in order to find the stresses o,, 0., and 7, in the domain [—I,,[,] x [—(,,1,] it is necessary to find
the solution of the problem (10)—(11), and then use the representations (9).

To apply the mathematical technique (as in the case of using the solutions of Fileon or Ribiere), it is
necessary that for the basis functions H,, (z) on the interval [—I,, ;] the following conditions exist at the ends:
H,,(£l,) =0, H] (£l,) = 0. The functions sin(mz/l,;) or cos(mx/l,) do not satisfy such conditions.

3 Selection of basic functions

S.A. Khalilov proposed to use the basis functions H,, (z) [16, 17] for the solution of the biharmonic equation
of the following form:
Hm(li):P4+4(CC), m:O7172a"'7

m
where P}, ,(x) are normalized adjoint Legendre polynomials. The system of functions { H,, (z)}5°_ is complete
and orthonormal on the interval [—1, 1].
A continuous function s(z) with boundary values s(£1) = 0, s’(+1) = 0 can be decomposed into the Fourier
series in the system of functions {H,,(x)}5%, the series converges absolutely and uniformly.
The presentation takes place [16, 17]

/2] i
_ 22 Z W ok _(=1)* [ml(2m +9) (2m — 2k + 7)!
Hn(@) = (1 =) ; e & kT gmt3 2(m +8)! (m —k + 3)k!(m — 2k)!’
=0
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([] is the integer part of a number), the recurrence formula

Hm(x) = fmme—l( ) Cm m— 2( ) m = 1727 ey H—l(x) = 03 Ho(ﬂf) = WOO(]- - .%2)27

6 = @2m+9)(2m+7) G = (m—=1)(m+T7)(2m +9)
" m(m+8) 7 " m(m + 8)(2m + 5)

and the following equalities [17,18]:

| H,, H —1,1] = T5(2n+ 9)(712 +9n +5);

JH = 1(2n+9) ((n+2)(n+7) [1+610n(n+2)(n+7)(n+9)} _

—n(n+9) [3+ ! (n— 1)(n—|—4)(n+5)(n—|—10)]) .

84

S.A. Khalilov and his co-authors have been shown and shown on numerical examples [15-20] that the

functions H,,(z) and H] (z) are quasi-orthogonal in the sense of the following conditions:

(HP (), B (2))
1H ()| | ()]

=6, |0|=0, m#n, k=1,2,

This remarkable property of these functions made it possible to apply the Bubnov-Galerkin procedure to
the search for the solution of the biharmonic equation and greatly simplify it.

In this paper, the functions X,,(z; L) = (1/v/L)H,,(x/L) will be used. These functions are orthonormal on
the interval [—L, L]. For their derivatives, the equalities

||X7/nH[2—L,L] = L72HH7In||[2—1,1]7 ‘|X7/7/1||[2—L,L] = L74HH7/7/1||[2—1,1]-

Below we need expansions of functions in a series in the derivatives of the functions X,,(x, L).
The expansion of the continuous function s(z) (s(=L) = 0) in a series in the functions X, (z; L) has the

form
s(z) = fL_/LLs(y)dy- <1— ) Zcm

The expansion of the continuous function s(z) (|s(z)| < o0) in a series in the functions H}/(z; L) has the
form

L L
3 1
S(x):—ﬁ/ys( )dy - $+* s( dy+Zc X! (x; L).
_L 7L

The decomposition data were obtained in [28].
4 Construction of the solution of the biharmonic equation

First of all, we introduce some notation. Let the functions f; (z) u g; (z)(j = 1,2) be representable in the
form of series

le le

fi(@) = fyat f 1+Z BXnwl), =g [ s Py=—g [ sps
—1 z

@ —l

gj(z) = ¢ (1—) Zgﬁ X).( 9]41:% /gj(s)ds.
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From conditions (6) it follows that:
1
fil = le =F, 91—1 = 931 =G, i(flz - fzz) = *ZTG-
We denote by
1
§(f12 +125) =
We seek the solution of the biharmonic equation in the form

p(x,2) = p1(r, 2) + @a(, 2).

The function ¢1(x, z) is a solution of the biharmonic equation (10) and satisfies the boundary conditions

82901 o fiz 82@1 !E2 .
Ox? 2=+l B {f32 } ok 0x0z|,_4, ¢ (1 - l%) ’
%1 B 9%py _0
022 ol b 020z|,_ '

Using the method of undetermined coefficients, it is not difficult to obtain ¢;(z, z) as a polynomial:

H F G
v1(z,z) = Ex + 5.%2 - 3?.% 32+ Guz.

Obviously, the function ¢;(z,z) is found up to linear functions of z and z, since the above-mentioned
boundary conditions do not ensure the uniqueness of the solution of the biharmonic equation.
The function @a(x, z) is a solution of the biharmonic equation (10) and satisfies the boundary conditions

62(,02 > 82(,02 g
X// l — m X/ l
89:2 z==l, mz_o{ } )7 0x0z 2=, Z { Tn} x )
2 2
072 ~0, 0% —0
02% |, 0202 | ,_ 4y

These boundary conditions automatically satisfy the relations (6) by the properties of the functions X, (x; ;)
(Ym).

An approximate analytic solution @2 (z, z) will be sought in the form

xz:iRm m (5 1lz).

m=0

The Bubnov-Galerkin procedure applied to the solution of the homogeneous biharmonic equation (10) leads to
an infinite system of ordinary differential equations

> (R (X0, XYY = 2R (X, X1) + R 6ms] =0, 5=0,1,2..., (12)
m=0

here §,,s — is the Kronecker symbol.
We use the property of quasiorthogonality of the first and second derivatives of the functions X,,(z;1;),
from (12) we obtain the problems

1 1
R”N —2c TVLR’/V/VL + d4 m = 07 Rm(ilx) = { L;Zl ’ 7n(:|:l ) {ggl ) m = 07 1’ 2’ ) (13)

where ¢, = [ X7, (-; 1)|* and dy,, = [ X],(- 1 1)1
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Since d,, > ¢, for all m [17], the four roots of the characteristic equation can be found in the form:
+b,,etm  where 20, = arctg\/m. Consequently, the solutions of problems (13) have the form

R.(2) = Lo bln(ﬁmz) sh(dmz)ﬁ—f(m cos(V 2) ch(dpy,z) +
+ Ly sin(9,2) ch(dmz) + K cos(9,,2) sh(dp,2);
- Y, sin(,,1,) ch(d,, 1) —d,y, cos(9,,1,) sh(d,,l, cos(V,l,) ch
by = IS Al le) 2 SOl ) Mnle) oy g Sml) Rl (1 2 ),
Al A1
. U cos(Oml,) shid,, 1) +d,y, sin(d,,10,) ch(d,,l, sin(9,,1,) sh
K, — (Vml-) sh(dml:) (V=) ch( )(fl 2y (Vml-) sh(dm )(93,1—931);
Al Al
~ G sin(9,,0, ) sh(d, 1) —dy, cos(V,,15) ch(d,,l, cos
£y = oSl ) k) o OSUnle) Wnle) 1 gy L) Mnle) 1 g,
Ay Ay
- Uy, cos(O,,1,) ch(dl,) +d,, sin(d,,0,) sh(d,,l, sin(%,,1,) ch(d,, 1,
R = Lo O le) W) o SO ) M) g1 g Sl ) L) 4 ),

Ay =9y sh(2dil,) +di sin(29,,0,),  As = Yy, sh(2d,1,) —dp, sin(209,,1,).
5 The resulting expressions for stresses

Summarizing the above expressions, we arrive at the expression

H F G —
oz, z) = Em + 23: - 3?33 324 Gaz + Z R (2) X (251,),

m=0

where all the necessary quantities are obtained above. From the definition (9) for the stresses, we obtain the
following equalities:

oo(2,2) = Y R (2) X (23 12);
m=0

o.(x,z) = He + F — 2gxz+ZR )X (251,);

m=0

Toa(,2) = (1 - ) Z R, (2)X], (2;15).

Conclusion

Analytic expressions are constructed for the approximate calculation of stresses in a coal seam of finite
length that are under the influence of overlying rocks and lie between two drifts. For acceptable accuracy, 20-40
series members are required for the expansion of the functions f; and g;, so the stress distribution used to
interpret the geomechanical monitoring data for the combine harvesting of stocks can be determined in real
time.
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M.K. Kynaitbeprenos, A.JI. Kapuaescknii, K.T. Nckakos

KeseHeH »XaTkaH KoMip KaOATBIHBIH, IEKTIK Y3bIHIbIFBIHIATbI
KepHeyJIi- 1edpopManusjaaHral Kyiii

Maxkasnama »Korapbl >KATKAH JKBIHBICTAP/IBIH, 9CEPiH/IE TYPFAH 2KOHE €Ki IITPEeK apachblH/a YKATKAH IIEeK-
TiK Y3BIHABIFBI 6ap KeMip KabaTTapblHIAFbl KEPHEYJIEPi ecenTeyre apHAJFaH aHAJIUTUKAJIBIK ODHEKTED
aJbIHFaH. Byut menrimaep aarebpasiblK, TeHIEYIeP/IiH, MeKCi3 XKyWeIepiH eyl TaJamn eTImedTiH MOJTnHOM
KOCBIHBLIAPEI MEH »KMHAKTBI KaTap Typinmge kepcerinren. Ocol omic Toxkipmbeneri »KeTKIIIKTI JoaiKIIeH,
caHIBI TYpAe Te3 apaja KakeTTi mamajapibl Tabyra bIKHAIbIH Turizeni. KoMbalHIBIK TOciiMeH KeMip
Ka3y Ke3iHJe TeOMEeXaHUKAJBIK, MOHUTOPWHT JIePEKTEPIH WHTEPIPETAIMSIAY/IA KOHE MYMKIH OOJIATBIH Tay
COKKBICBIH OOJI?Kay VIIH OHIENIN »KATKAaH KOMIp KaOaTbIHIarbl KepHEyIepre MOHUTOPUHT XKYprisyzae Oy
HIenriM/ i KOJIJAHYbIMbI3Fa 60J1a ibl. Tay-KeH >KyMBICTapbIH XKYPri3y Ke3iHjie Kayilci3aikTi KaMTaMachl3 eTy
VIIH OCBI KYHJIEri ©3eKTi Macesesnepin 6ipi 60bin TabbLIAIbL.

Kiam cesdep: cepliMIIIIK TEOPUSICHIHBIH, KA3bIKTHIK, €cebi, OUrapMOHUKAJBIK, TEHIEYIEDP, KEPHEY, KOMID
KabaTbl.

M.K. Kynaitbeprenos, A.JI. Kapuaescknit, K.T. Uckakos

HanpszkenHno-nedpopMupoBaHHOE COCTOSTHUE TOPU30HTAJIBHOTO
YTOJIbHOT'O TIJIACTAa KOHEYHOU JIJIMHBI

B crarbe mosydenbl aHAJUTHYECKUE BBIPDAXKEHUS JJIsi BLIYMCJIECHUS HAIPSYKEHUH B YTOJIBHOM ILJIACTE KO-
HEYHOMW JIJIMHBI, KOTOPBII HAXOAWTCH II0J JAEHCTBHEM JIEXKAIIUX BBIIIE HOPOJl U MEXK/Iy JIBYMs IITPEKAMH.
Permrenne npeicraBiieno B Buie CyMMBI IOJIMHOMA M CXOJSIIErocs psia. s onpemenenust K03 UImeHToB
pdna He TpebyeTrcd perarh GECKOHEYHBIX CUCTEM aaredpandecKux ypaBHEHHUH. DTO criocob6CTByeT GLICTPOMY
YUCJIEHHOMY HaXOXKJIEHUIO TPeOYEeMbIX BEJIUYNH C JOCTATOYHOMN /Il HIPAKTUKK TOYHOCTBIO. /laHHoe perenne
MOKeT OBITh MCIIOJIb30BAHO JjIsi MHTEPIIPETAIUN JAHHBIX TeOMEXaHNIECKOr0 MOHUTOPUHTA TpU KOMOaitHO-
BOIl BBIEMKE yIJIsi B PEKUME PeajibHOTO BPEMEHM U HAIPsI?KeHUI B pa3pabaThbIBAEMOM YTOJIbHOM ILJIACTE C
LIEJIBIO IPOTHO3UPOBAHUST BO3MOYKHOCTH MOPHOI'O BBIOPOCA, YTO JIO CUX IIOP SIBJISIETCS BECbMa aKTYaJIbHON
3ajaveit obecrnedennst 6€30MaCHOCTA TOPHBIX PAOOT.

Kmouesvie caosa: TI0CKas 3aa9a TEOPUHU YIPYTNOCTH, OUTapMOHUYECKOE YpaBHEHUE, HAIIPSXKEHUE, YIOJIb-
HBIN TLJIACT.
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Mathematical modeling of the roller-rope coupling
operation in misalignment conditions

The article deals with the results of construction and mathematical modeling of rope-roller coupling in
condition of radial misalignment. As a result of modeling, the operation of coupling is revealed in the
presence of misalignment of the shafts connected by it. Formulas are obtained that allow to determine the
elongation of the rope depending on the magnitude of misalignment, as well as the design parameters of
the coupling. The results of the investigations also allow determining the radial load from the coupling on
the shafts at any angle of rotation of the coupling. Numerical simulation by the obtained formulas made
it possible to establish that coupling is characterized by high compensating ability and low radial stiffness.
So, with a radial displacement of 0.5 mm (for a prototype coupling with elastic star allow only 0.25 mm),
the rope-roller coupling creates a load of only 5 N on the shafts, with a rope elongation of 5.5 ym. The
dependencies obtained are approved during the design of the coupling, and the results of the calculations
on them are checked by comparison with the results of the construction and showed a coincidence. The
obtained results can be used in the design of rope-roller couplings.

Keywords: mathematical model, misalignment, coupling, rope, load, tightening.

Introduction

For the declared prospects of any design, a specific input can be obtained by performing an experimental
or calculated study of its parameters and characteristics. For couplings, the most important indicator is the
compensating capacity, which is characterized by the force of the coupling on the shafts - the radial load, which
connects the radial stiffness of the coupling and the radial misalignmentA,.. Therefore, the estimation of the
radial load on the shafts from the coupling during its operation under misalignment conditions is an actual
task. Determination of the load from the coupling to the shafts, in turn, is impossible without determining the
deformation of the elastic link of the coupling.

Statement of the research task

Researching coupling shown on Figure 1. It contains two half-couplings - the external (1) and the internal
(2), which are joined by a segment of the rope (3), which may be several, both ends (4) and (5) of the rope (3)
are fixed in the pins (6), which are installed in the external half-coupling (1), and the internal half-coupling (2)
contains the rollers (8) installed with the possibility of turning on the axes (7), between which there is a rope
(3) that covers the rollers (8).

The coupling works as follows. When rotating by the actuator of the external half-coupling (1), with it,
the pins (6) are rotated causing the tension of the rope (3). The tensioned rope (3), covering the rollers (8),
is actually presses on them and on the axis (7), creating a torque on the driven internal half-coupling (2) and
rotating it. In the event of misalignment of the half couplings (1) and (2), the rollers 8 of the driven half-coupling
(2) shall be rolled up along the rope (3), due to which the compensation of misalignment will occur. In the case
of in-line arrangement of the half-coupling the rollers (8) will not rotate along the rope (3).

The rope 3 of the coupling is blown by air when the coupling is rotated, and when the rope is destroyed, half-
couplings have the possibility of a non-impact relative rotation due to the difference in their outer diameters.
The coupling parts have simple configuration and do not require precise machining, they can be made on a
lathe, even in ship conditions. Replacing the rope (3) is not a problem - just unscrew the two screws that fix
its ends (4) and in (5) in the pins (6).

Determination of the deformation of the elastic link of the rope-roller coupling for calculating the radial
load from the coupling to the shafts when operating under misalignment is the purpose of this article.
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Figure 1. General scheme of roller-rope coupling
Statement of the main material

Lets consider the operation of the coupling in the conditions of radial misalignment A... In this the centre
of driven half-coupling in which fixed the centre of the rollers (Fig. 2) will shift by A, from point O to point
O;. In this while coupling rotating range of distances are changing — AB, SA, arc SR by changing the articles
3a paxXyHOK 3MiHu KyTiB (3, By, 5, — B; and the angle of the mounting displacement of the half-couplings £.

Points on the calculating scheme, which are relate to roller and rope and lays over radial displacement plane
(plane in which both axes of displaced shafts lay) are denoted by an index 1, and those points, which lays under
the plane of radial displacement — by an index 2. Respectively angles are denoted by one and two dashes. In
this way rope section O; R 5141,

which situated over the radial displacement plane, became longer than section O; RS As under those
plane by increasing the length of section S;A4; in comparison with 3 Sy As and arc R;S; in comparison with
Ry S5 (increasing the roller reach angle 54 in comparison with angle ﬁé / ).

For rope elongation determination and respectively load on shafts from coupling in present of radial
misalignment A, it necessary to determinate rope length in that conditions. This task is reducing to determination
of mentioned sections O;R;S1A; and O R2S2As length and respectively angles ,Bé = ﬂé + ﬁé + ﬂ; and
By =B + 8y + 8y

To find this angles we need to determinate also reduced mounting displacement angles f{ and 54 It is
necessary to determinate all parameters depending of coupling rotation angle relatively of radial displacement
plane.

144 Bectnuk Kaparanmauickoro yHuBepcuTeTa



Mathematical modeling of the roller-rope coupling operation...

Figure 2. Scheme to geometric calculation coupling

On the firs stage we will show connection with rotation angles ¢, of driving half-coupling and ¢,,, of driven
half-coupling when operation of radial displacement conditions. For this let’s consider the scheme shown on
Figure 3.

Let’s consider coupling position in which sections AB are parallel to radial displacement plane (Fig. 3).
Triangles OA;C; and O; B Csare giving the opportunity to obtain formulas for angle coordinates the roller
centre point B and the point A of rope end anchoring in this position.

0,05 h

= = 1
oS X O1B1  0,5D;p¢’ S

where h — triangle OA; C; height.

Figure 3. Scheme to calculation of angle coordinate coupling elements
Withal, writing formula for triangle OA; C; like a half of area parallelogram, built on sides OA; and OCi:
28
= 220401 _

2x0,5x0A; x OCy xsin§  0,25D 44 Dipt sin§
B Alcl B L’K}O N L’K}O ’

(2)
where Lo — the original rope length without radial displacement influence.
With considering (1) and (2) we obtain:

0,5D,; sin &

cosy = To
K
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Than expressions for obtaining angle coordinates in that position will have the form:

0,5D i
wdg1=z+x+£=z+arccosﬂ+€; (4)

2 2 Lag

0,5D¢,+ si
s@dm:g—i-x:g—l—arccos’T;mg; (5)
Pdgi — Pdni :f (6)

The problem of finding section AB length in each position we shall solve by method closed vector circuits
of prof. V.A. Zinoviev [1, 2]|. For obtaining further calculation lets imagine kinematic scheme of replacement
mechanism in the form of a closed vector circuit AOO; B (Fig. 4), for which we can write vector equation:

714-72 273+74, (7)

where 71 = OA — driving half coupling radius; 72 = L — distance between A and B points; 73 = A, —
radial misalignment; V4 = Oy B — driven half coupling radius.

Y

Figure 4. Scheme of closed vector circuit replacement mechanism
The resulting equation (7) I projections on coordinate axes will have the form of a equation system (8):

{ X : Vi cosagi + Vacos By = Vacos 0+ Vi cos Qan;

Y 1 Visinpags + Vasin By = Vasin0 4 Vi sin @gn;. (8)

After the transformation we obtain:

{ Vo c08 i = Va + Vi €08 @ani — Vi €08 Pugi o)

Vasin Byi = Vasin pgn; — Vi sinpqgg
Square both equations (9) and add them, where after transformation we obtain:

Vi (cos® i 4510 @) = (V3 + Vi €08 @i — Vi €08 Qagi) > +(Va sin 9ani — Vi sin ag:)?; (10)

Vy = \/(Vg + Vi €08 ani — Vi €08 9agi)? + (Vasin @an; — Vi singgg;)?. (11)

Whence distance AB in any coupling position will be:

Ly, = \/[AT. +0,5D¢z1(cO8 Qgni — cos @dgi)]2 + [0, 5Dt (sin @gp; — sin @dgi)]2. (12)

Returning to the Figure 3, from triangle OA; O; we can wrote:

A0 = \/OO% + OA? — 2 x 0071 x OA; cos pag1;
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La,0, = \/A2 +0,25D2,, — A, Dyt co5 pugi; (13)

Lao, = \/ A2 40,2502, — Ay Doyt OS Gagi.
From triangle O; A1 B, by the cosine theorem we have:
A|B? = A10% + 0,B% — 2 x A10, x OB, cos&], (14)

whence we obtain:

)

A10% + 0, B2 — A, B?
2 x AlOl X OlBl
(13,0, +0,25D%, — L4 5 |

LAlolDGH 7

5{ = arccos [

f{ = arccos

(15)

or in general form

'Liioi +0,25D2

2
int LAiBi

fi/ = arccos

LAiOi D,

Next we can use obtained earlier equations (16), (17), (19)—(21) substituting in place of angle ¢ reduced
mounting displacement angle 51/ .

By =€l + B+ B + By =

_ ./ oy o (05D i/ o[ 0.5d, (16)
= ¢} + arcsin Dt + arcsin ( L, 51n£i> + arcsin (LAi z) ,
By =180 — By, (17)
where d, — roller diameter.
Respectively rope length in each position of coupling will be:
LTA = Lrl + Lr2a (18)
where L1 = S1A7 + R1S1 + O1R; — the length of a rope section under radial displacement plane;
L.o = S5As + RySs + O3 Ry — the length of a rope section over radial displacement plane, where
. 0,5d,
S;A; = A;Bjcos By = L, cos | arcsin ——— | ; (19)
iB; LAL Bl
wd, .
RiSl' = r 7'; 20
T g4 (20)
d,
O1R1 = O3R5 = 0,5D;y; cos B3 = 0, 5Djy, cos <arcsin ) . (21)
int
Rope elongation AL, in relatively with rope length L,in coupling without radial displacement:
AL, =LA — L,; (22)
7d,
L,.=2 <0, 5Djng cos B3 + %52 + L ap cos 57) . (23)
Radial load on shafts for rope elongation will be:
AL,
Froa = AZET ; (24)
L,

where Ay, — total area of wires cross section in rope; E, = 1,0x10°> MPa — rope tensile modulus |3].
For illustration of obtained results modeling of real coupling operation done. The parameters of coupling were
following: D¢y = 120 mm, D,y = 65 mm, d, = 20 mm, & = 45°. Rope length in absence radial displacement,
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calculated with obtained earlier equation is L,, = 184, 37 mm. Force calculation, made with methodic, developed
earlier, show that strength condition corresponds rope with construction 6 x 7(1+6) GOST 3069 with diameter
dr = 2,2 mm with total area of wires cross section in Ay, = 1,64 mm?. Radial misalignment for clarity A, = 0,5
mm — twice as much as allowed radial displacement for prototype coupling ROTEX SIZE 28 [A,] = 0,25 mm.
Angle of rotation Jp. varied in range 0...360° across 30°, respectively angles of location coupling elements were
calculate of formulas:

Pdgli = Pi; (25)

Pan1i = pi — &; (26)

Pdg2i = Pdgli + ; (27)

Pdn2i = Pdn2i T T (28)

Whence with equation (12) determinate in each position distances L, p and L,,p , with equation (13)

distances La,0, and La,0,, that with equation (15) reduced mounting displacement angles §1/ Ta fé, and also
angles 52/, 4/ , 51/ , {/ , and respectively rope length L, for coaxial (23) and desaxial L,.a (18) coupling, rope
elongation AL, (22), and radial load F).q from coupling on shafts (24).

Results of modeling are illustrated by Figure 5. From this figure we can make following conclusions. Rope
elongation and radial load changing occurs under the asymmetric constant-sign law. In this maximal rope
elongation is 0.0055 mm which is 9 times less than radial misalignment A, in modeling. Calculated radial load
in this conditions is only 5 N, which illustrating high compensating ability of new proposed coupling. Therefore
in modeling misalignment of 0.5 mm radial stiffness of new coupling will be nearly 10 N/mm. The other types
of couplings with elastic elements have much higher radial stiffness and making higher radial loads on shafts
connected with coupling.

¥ -"\\ ALr  Frad / "'\\

5 PN PR Y

AEREIA
AR

LN TN
AVARERAVS

0 30 60 90 120 150 180 210 240 270 300 330 360

Radial load IFrad. N

Rope elongation ALk 1000, mm
[

Couple rotation angle ¢, deg
Figure 5. Graph of rope elongation and radial load changing from couple angle of coupling rotation

Done analytical researches allows to make following conclusions:

1. Mathematic model of roller-rope coupling in condition of misalignment made. It allows to calculate rope
elongation and radial load on shafts from rope deformation depending on angle of coupling rotation.

2. Rope elongation and radial load changing occurs under the asymmetric constant-sign law and reaches a
maximum in position when rope axe R; Rs approaching to radial displacement vector OO;.

3. Roller-rope coupling construction provides minimal rope elongation and respectively radial load from
coupling on shafts. Modeled coupling, for example, in radial misalignment of 0.5 mm have maximum elongation
nearly 0.0055 mm and making radial load of only 5 N.
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Coiikecci3 mapTThl apKaH/IbI-POJUKTI My@dTaHbIH »KYMbICHIH
MaTeMaTUKAJIbIK, MOAEJLJIEY

Maxkasazma paananabl Coffkecci3 ik KarmailblHAa apKAHIbI-POIUKTI My(DTaHBIH KOHCTPYKITHSICHI, COHBIMEH
KATap OHBIH MaTeMaTHUKAJBIK, MOJEJiHIH >KYMBICEI YCHIHBLIFAH. Monenbaey HoTHKeciHze GaillaHBICTBIPa-
TBIH OLTIKTEp/IiH cofikeccis 6oaran arel MydTa KYMBICHIHBIH IIpoOIieci aHbIKTaIbl. ColKecci3 ik maMachbiHa
Kapail apKaHHBIH y3apyblH, COHMAN-aK MyQTaHbIH KOCTPYKTHBTI ITapaMeTpJIepiH aHBIKTAUTHIH (HOPMYyIa-
Jlap aJIblHFaH. 3epTTey HoTHKeJiepi MydTaHbl Ke3 KejreH O6ypbinka Oyparanga mydraian Olaikrepre pa-
JUAJIIBl YXKYKTEMEHI aHBIKTayFa MYMKIHIIK Oepemi. AsbiHFaH (hOpPMYIaIapAblH, CAHIBIK, MOIEIbIEY1 Myd-
TaHBIH YKOFapbl KOMIIEHCAIIUSJIBIK KACHETIMEH YKOHE TOMEH DaIHaJIIbl KATTHLIBIFBIMEH CHUMATTAJATHIHBIH
aHbIKTayFa MyMKIHAIK Gepai. Pammanast 0,5 MM KbUDKyIa (pe3eHKe *KYIIbI3IAchl 6ap MydTa-IpoTOTHII
yutin 0,25 MM Gostybl KesliciiireH) apKaHHBIH y3apybl 5,5 MKM GosIFaHaa apKaHIb-pOIUKT] Mydra GitikTep-
re 5 H xxykreme kacaiifpl. Asiblarad Toyesaiikrep MydTanbl kKobajayaa anpobalusiJIaHFaH, ajl eCernTey
HOTHKeJIEPl oJIap/ibl CAJIBICTHIPY APKbLIbI TEKCEepijle/i »KoHe CONKeCTIK KepceTTi. AJIbIHFaH HOTHXKeJep/ii
apPKAHIBI-POJTUKTI MydTaIapIbl Kobajayra maiaaanyra 60Ia 6.

Kiam cesdep: MaTeMaTHKAJBIK, MOJIENIb, COMKECCI3IiK, MydTa, apKaH, )KYKTED, KepHEY.

B.A. Ilponenko, M.B. Bab6wuii, B.A. Hacracenko

MaremaTndeckoe MoAeINPOBaHNE PabOTHI
KaHATHO-POJIMKOBOI My(ThI B YCJIOBUSAX HECOOCHOCTH

B craTbe npencrapieHa KOHCTPYKIIS KAHATHO-POJIMKOBOI MydTHI, & TaKXKe pa3pabdoTaHa MaTeMaTUIecKast
MOJIeJIb ee PabOTHI B YyCJIOBHUSIX PaJUaibHOM HECOOCHOCTH. B pesysibrare MOmEInpOBaHUs PACKPBIT IPOIECC
paboTbl MydTHI IIPU HAJIAYIUUA HECOOCHOCTU COEJIMHSIEMBIX €0 BaJsioB. [losrydeHbl (hopMyIIbl, TO3BOJISIONINAE
OIIpPEeNeNINTh y/JINHEHNE KaHATa B 3aBUCHMOCTU OT BEJIMYMHBI HECOOCHOCTH, & TAK»Ke KOHCTPYKTHBHBIX IIa-
pamMeTpoB MydTHI. Pe3ynbrarsl mccieIoBaHUil MO3BOJISIIOT TaKKe OMPEIETUTh PAANAIbHYI0 HATPY3KY OT
MydTBI Ha BaJIbl IIPH JIIOOOM 3HAYEHUU yTJjia MOBOpOTa MydThI. YncjaeHHOe MOJIeJITMPOBAHUE IO ITOJTYYeH-
HBIM (OpPMyJIaM JAJIO BO3MOXKHOCTBH YCTAHOBHUTH, YTO My(dTa XapaKTepU3yeTCsl BBICOKON KOMIIEHCHUDYIOIEei
CTIIOCOGHOCTBIO M HU3KOH pasMaIbHON 2KeCTKOCThIo. Tak, mpn pagmanbaoMm cvemernn 0,5 My (m1s My dThI-
IPOTOTHUIIA C PE3MHOBOM 3BE370UKOI momyckaercs 0,25 MM) KaHATHO-POIMKOBasg MydTa CO31aeT Ha BAJIbI
Harpysky Bcero 5 H npu yyimaennn kanara B 5,5 MkM. [losrydyeHHBIe 32aBUCHUMOCTH alIpOOUPOBAHBI IIPH ITPO-
E€KTUPOBAHUY MYQTHI, 8 PE3yJIbTATHI PAcUeTa [0 HUM CPABHEHBI C PE3yIbTaTaMU ITOCTPOECHUS U COBITAJIN.
Pesynbprarsr MoryT 6bITH HCIIOIB30BAHBI TP TPOEKTUPOBAHUN KAHATHO-POJIUKOBBIX MYdT.

Karuesvie caosa: MmareMaTndecKasi MO/1e€JIb, HECOOCHOCTD, My(i)Ta,7 KaHaT, HaI'PY3KU, HaTAKEHHUE.
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On the calculation of the rectangular finite element of the plate

The article is devoted to the study of the thin plate bending by the finite element method. The application
of the finite element method to solving the problem of the plate bending leads to the necessity of studying
the rectangular finite element of the plate. All deformation and statics characteristics of the plate are
functions of the displacement in the direction of the normal to the middle surface of the plate, which
is determined by the deflection function. In the article, the formation of the plate deflection function in
explicit form is carried out. The ways for finding the deflection function by division of the variables in
the equilibrium equation of the plate, through an incomplete fourth-degree polynomial and in the form of
Hermite polynomials are presented. The article is focused mainly on mechanics, engineers and scientific
employees of technical specialties.

Keywords: finite element method, rectangular finite element, deflection function, angular displacements,
Hermite polynomials

Introduction. Thin-walled structures are encountered in many branches of technology, such as civil, mechani-
cal, aeronautical, marine, and chemical engineering. Such a widespread use of plate and shell structures arises
from their intrinsic properties. When suitably designed, even very thin plates, and especially shells, can support
large loads. Thus, they are utilized in structures such as aerospace vehicles in which light weight is essential.

One of the elements of thin-walled structures is a plate, which has an independent and wide application.
Plates represent principal elements of aerospace structures, including fuselages of planes and missiles, control
surfaces, bulkheads, helicopter blades, and others. In construction, the plates are widely used in the form of
decking and panels, reinforced concrete slabs for coating industrial and residential buildings, slabs for foundations
of massive structures and etc.

Mathematical models of calculating plates, closely related to the study of applied problems, have acquired
special relevance in connection with the expanding volume of their applications in various fields of science and
technology. The multiple applications, shapes, and materials found in plate structures dictate the necessity of a
comprehensive approach to their analysis reflected in relevant theories and methodologies. Therefore, questions
related to theoretical studies of the work of plates remain significant and relevant [1].

At calculation of plates by analytical methods in the most general formulation (with arbitrary contour
supports (including elastic supports), with different types of loading) one has to face big mathematical difficulties,
and in the majority of cases it is not possible to receive the analytical solution. It is possible to solve such a
problem using a very efficient finite element method, which for plates is a numerical approximate method, but
gives a sufficiently high accuracy of solutions.

The finite element method usually abbreviated as FEM is a numerical technique to obtain approximate
solution to physical problems. FEM was originally developed to study stresses in complex aircraft structures;
it has since been extended and applied to the broad field of continuum mechanics, including fluid mechanics
and heat transfer and also mechanics of deformable solids and structural mechanics. Because of its capability to
handle complex problems and its flexibility as an analysis tool, FEM has gained a prominent role in engineering
analysis and design.

The name of this method to some extent predetermines its essence: when using the finite element method,
the calculated design is mentally divided into separate elements, the stress-strain state of which is previously
studied in detail and can be considered known. It is supposed that the elements are connected to each other at a
finite number of points, called nodes. At these points, forces characterizing the interaction of individual elements,
or displacements, through which, ultimately, the stresses and displacements of each element are calculated, are
determined. Thus, the problem is discretized and reduced to solving a system of algebraic equations with respect
to unknown forces or node displacements. FEM is characterized by a variational formulation, a discretization
strategy, one or more solution algorithms and post-processing procedures [2].
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According to the method of obtaining the basic resolving equations, the finite element method has four
main types: the direct method, the variational method, the weighted residual method and the energy balance
method.

Depending on what values are taken as unknown, there are three classical approaches used in FEM: the
force method, the displacement method and the mixed method. We note that due to a number of advantages,
the approach based on the idea of the displacement method is the most widespread in the FEM [3].

Replacement of the original construction by a set of discrete elements makes it possible to simplify the
calculation of various construction objects: rod systems, thin-walled and massive structures and real structures
in which rods, plates, shells, arrays are combined. This circumstance makes the finite element method very
universal and explains its increased popularity.

Moreover, the advantage of the finite element method is a comparatively simple implementation on a PC
with the help of a software package. At the same time, it is easy to set any boundary conditions of the plate on
the contour, including elastic ones, and various types of load.

Depending on the type of the considered construction, the type of the finite element is determined. So for
rod systems rods with different supports at the ends, representing the nodes of the element, can be taken as a
finite element. Thin-walled spatial systems consisting of plates and shells are divided into triangular, rectangular
or elements of any other shape with nodes at angular points. Next, we focus on the consideration of rectangular
finite elements and their application in the calculations of plates.

Bending of thin plates. We consider the problem of calculating thin rigid plates. Their thickness should
not exceed the % of smallest side of the plate, and the deflection in bending should not exceed the thickness h
(Fig. 1, a). On the basis of Kirchhoff-Lyava’s hypotheses about the smallness of the normal stresses, perpendicular
to the middle surface of a plate, and the smallness of direct normals to the same surface the technical theory of
a bending of thin plates is constructed [4].

The assumptions derived from accepted hypotheses can be formulated as follows:

1. Normal stresses o, and also tangential stresses 7., 7y, are negligibly small in comparison with stresses
which are considered as the main: o, oy, 7oy (Fig. 1, b). Therefore, we accept 0, = 75, = 7,, = 0.

dy ’

Figure 1. The thin plate

2. The displacements in the direction of the axis z are constant along the thickness of the plate and are
equal to the deflections of the middle surface, which does not deform in its plane. At the same time the external
load must be perpendicular to the plate surface, that is, to the xy coordinate plane.

These assumptions simplify the mathematical model of plate bending, reducing it to a two-dimensional
problem. All deformation and statics quantities of the plate are functions of only one unknown, namely the
displacement in the direction of the normal to the middle surface of the plate.

However, unlike a plane problem, as a classical two-dimensional problem, the deflections of a plate are
described by a fourth order differential equation, but not of the second order, deformations are derivatives
of displacements of the second, but not of the first order. Thus, in the expression for the potential energy
functional, second-order derivatives also appear. When using the finite element method, this leads to some
difficulties related to the approximation of the deflection function w(z,y) .

Firstly, the approximating polynomials used in the bending of plates are much more complicated than for
the plane problem of the theory of elasticity, besides, their form is not unique for a particular finite element.
For example, for a deflection function, a fourth-degree polynomial with twelve indefinite coefficients can contain
different terms, which in turn leads to different stiffness matrices for the elements.

Secondly, the conditions of compatibility between adjacent elements must be fulfilled not only for the
function of deflections, but also for its first derivatives. Nevertheless, in practice incompatible finite elements,
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in which continuity on the boundaries between elements is performed only for deflections, are often applied.
For example, such an element is a four-node rectangular finite element with twelve degrees of freedom, which
provides acceptable accuracy of the solution and is used to calculation of plates having a rectangular shape [3].

The deflection function of a finite rectangular element. We select a rectangular finite element 0 < z; < a,
0 < xg < b from the plate and consider it in the local coordinate system (z1,x2 ).

We number knots of a rectangular final element consistently (clockwise, starting from the upper left node)
and introduce new coordinates x,y so that x = #L, y = 2. The deformed state is completely determined by
nodal displacements. In each node ¢ (i = 1,2, 3,4) of the finite element, there are three displacements: w; is a
deflection, ¢,; is an angle of rotation along the axis x, ¢,; is an angle of rotation along the axis y (Fig. 2).

3
: __ , 5

6
—>p p—ss
1 4

P | ) 1%/|Vm 5/‘1’7

Figure 2. Displacements of the finite element in the nodes

o

Angular displacements are defined in terms of partial derivatives of the deflection function as follows
ow ow
= —, -, 1

To determine the deflection function of the finite element, we use the equation of plate equilibrium in the
absence of a transverse external load

V2V2w = 0. (2)
We search the solution of equation (2) in the form
w(z,y) = X(2)Y (y). 3)

Substituting (3) into (2) we obtain an equation which is divided into three independent equations
XV =0 XxX"Y"=0, YV=0 (4)

The first and the third equations are the bending equations for mutually perpendicular beams. The solutions
of the first and the third equations (4) in the coordinate functions have the form

X(z) = fi(x)zi + f2(2)0; + f3(x)25 + fa(2)0;;
Y(y) = 91(v)zr + 92(y)0k + g3(y) 21 + 94(y)01, (5)

0, 9 6n 6

where i, j, k,l — are beam nodes; the values z,, (m = i,j,k,[) are vertical displacements; L, L, 3, ¢ — are

angular displacements of the given beam. The beam coordinate functions for transverse bending have the values
filz) =22 —32° + 1, fo(z) = 2% — 227 + 2,
fa(x) = =22 + 327, fu(x) = 2® — 2% (6)
The functions g, (y) (n = 1,2, 3,4) are obtained from the expressions (6) by replacing x by y
ay) =2y =3y" +1, gy) =y’ - 20" +y;
93(y) = —2° +3y°,  galy) =y* — > (7)

Substituting (5) into (3), we write down the deflection function of the finite element in the following form

4

U)(I’,y) = Z Cijgij(xvy% (8)

2,j=1

where arbitrary constants ¢;; and functions &;;(z, y) have the form
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c11 = %iZg, C12 = zibg, c13 = 2z, cua =z,
co1 = 2pbi, oo = 00k, co3 = 20;, coa = 0;0;,

c31 = Zj2k, C32 = 20k, c33 =20, c34 = 22,

cqy1 = zply, car = 0;0k, cu3 =205, caa = 0;0;; 9)
€i7j(x7y) = fl(x)gj(y)ﬂ Za] = 1a2,374' (10)

At the nodes of the finite element, we have the following boundary conditions
w(aiaﬂi) = Wi, @z(azaﬂl) :Aia @y(az,ﬂl) = M, 1=1,2,3,4, (11)

ar=a1=0, am=az=1 p1=p5=0, B3=p=1
The values w; — w4 — are the linear displacements of the finite element; Ay — A4 — are angular displacements of
nodes of a finite element along the axis x; 1 — iy — are the angular displacements of the nodes of the element
along the axis y.
Defining the derivatives (1) of the function (8) and substituting them and the function (8) in turn into the
boundary conditions (11), we obtain the values of the arbitrary constants (9) in the form

Cming = Wi, Cpyn, = NG, Cmyp, = Mib,  ©=1,2,3,4; (12)

my=my=n1=ng=1 pr=ps=2, me=mg=ng=ng=3, pr=ps=4
Thus, twelve of the sixteen arbitrary constants from the boundary conditions (11) are calculated.
To determine the remaining four arbitrary constants, we use the second equation in (4) and introduce the
denotation
n(x,y) = X" (2)Y"(y). (13)
For the function n(z,y), from (4) we have the following boundary conditions at the nodes of the finite
element
n(ai718i) = Oa 1= 1727374' (14)
Having determined the second derivatives of (5) and computing their products by (13), and then substituting
in (14) we obtain the following system of equations.
We calculate the second derivatives of (5) and their products by (13). Then substituting these expressions
into (14), we obtain the following system of equations

4cgg + 2c04 + 2¢42 + agq = —dy;
2¢22 + Co4 + 4cao 4 244 = dy;

(15)
2¢2 + 424 + ca2 + 2a44 = d;
o2 + 2¢24 + 2c42 + dagy = —dy;
where the free terms expressed in terms of the known coefficients (12) take the following values
di = 9c11 + 612 — 9c13 + 314 + 6c21 — 6oz — 9e31 + 63z 4+ 9e33 — 3e3a + 3ca1 — 3cas;
da = —9¢c11 — 6¢12 + 9c13 — 3c1a — 31 + 3cag + 9cz1 + 632 — 9Icgs + 3cza — 6car + 6cas; (16)
ds = —9c¢11 — 3c12 + 9¢13 — 6¢14 — 6ca1 + 6ca3 + 9cs1 + 3caa — 9caz + 6¢34 — 3ca1 + 3cas;
dy =9c11 + 3c12 — 913 + 614 + 321 — 323 — 9ez1 + 3ez2 + 9ez3 — 6ezq + 6cqn — 6eys.
Solving the system of equations (15) and considering (16), we find the remaining arbitrary constants
C22 = —C11 — C12 + €13 — €21 + C23 + €31 + €32 — €33
C24 = —C11 + €13 — C14 — C21 + C23 + €31 — €33 + C34; (17)
C42 = —C11 — C12 + €13 + €31 + €32 — €33 — C41 + €43;
C44 = —C11 + €13 — C14 + €31 — €33 + C34 — C41 + C43.
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Taking into account the values of the beam functions (6), (7) and the values of the arbitrary constants (12),
(17), we write the deflection function of the finite element (8) with regard to (10) in the following form

7l's, (18)

T .
o= [7”1 T2 T3 T4 Ts Te 't T8 T9g T10 T11 7’12},

§F=lwir A1 1 wa Ao pio w3 A3 i3 Wy Ay fa] .

Here 77 is the transposed vector of the coordinate functions of the plate; §is the vector of nodal displacements
of a rectangular finite element.
The coordinate functions of the plate have the form

ri(z,y) = filzx)(1—y)+ (1 —2)o1(y) — (1 —z)(1 —y), 7r2z,y) =afo(z)(1-y), r3(z,y)="0(1~—2)ga2(y);

ra(z,y) = fs(@)(1 —y) —2g3(y) +zy, 75(2,y) = afa(z)(1 —y), 7r6(z,y) = brga(y); (19)
rr(x,y) = fs(@)y +xgs(y) + =, rs(x,y) = afa(x)y, ro(x,y) = brga(y);
7"10(93,9) = (1 - x)gg(y) - f3($)y + 2y, T11(I, ?J) = an(I)% 7’12(177y) = b(1 - $)94(y)a

where 1 — z, z, 1 — y, y are the coordinate functions of the linear element (the rod) when the torsion is made
in the direction of coordinate axes.

The same form (18) for the deflection function can be obtained if the solution of the equilibrium equation
for plates (2) is sought in a more particular form

4

w(z,y) =Y e fi(x)g; (v), (20)

ij=1

where ¢;; are arbitrary constants to be determined; f;(z) and g;(y) are the beam coordinate functions for
bending along the axes directions and , respectively. Arbitrary constants are defined in a manner similar to that
described above. A complete calculation on finding the deflection function in the form (20) is presented in [5].

The proposed classical method of determining the deflection function allows to obtain this function in
explicit form and to give a physical meaning for it. The analysis of the formulas (19) shows that the coordinate
functions of the finite element of the plate are equal to the product of the coordinate function of the beam
when it is bent to the coordinate function of the rod during torsion. Each coordinate function describes a
finite element deformation caused by a single nodal displacement value. The final form of the defined deflection
function depends on the coordinate beam functions in bending and on the coordinate functions of the rod (linear
element) in torsion.

Thus, the method based on the General solution of the biharmonic equation (2) allows us to obtain the
deflection function of a rectangular finite element in explicit form and to give it a vivid physical meaning: the
deformation of the finite element of the plate is representable through deformations of the beam and the rod.

In the traditional approach, the deflection function is given as an incomplete fourth-degree polynomial. The
following expression of the deflection function

w(z,y) = a1 + azx + azy + aur® + aszy + agy? + arr® + agz’y + agry® + aroy® + anady + arpay?

has certain advantages. In particular, along any line = const or y = const the displacement w(z, y) will change
by cubic law. All external boundaries and boundaries between elements consist precisely of such lines. Since the
third degree polynomial is uniquely determined by four constants, the displacements along the boundary are
uniquely determined by the values of displacements and angles of inclination at the nodal points at the ends of
this boundary. And since for adjacent elements the values at the ends of the boundary are the same, then along
any boundary between finite elements the function w(z,y) will be continuous.

Constants aq, ..., @12 are determined from a system of twelve equations relating the values w(x, y) and angles
of inclination at the node points, which are obtained as a result of substituting the coordinates of these points.
Arbitrary constants are determined (is founded) by inversion of the twelfth order matrix or by other linear
algebra methods [6].

As possible states, deflection functions can be adopted on the basis of Hermite polynomials, sometimes
used in calculations by the finite element method in displacements. For example, in the case of a rectangular
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plate under arbitrary lateral load, the deflection function of a rectangular finite element can be represented as
a polynomial of the fourth degree. Such a deflection function w(x,y) can be obtained in the form of Hermite
polynomials [1]

w(z,y) = 21Ho1 () Ho1(y) — 22H11(2)Ho1 (y) + 23Hoy () H11(y) + 24 Hoz(2) Hoy (y) —

—z5Hio(2)Ho1 (y) + zeHoo () Hi1(y) + 27 Hoo2 () Hoo (y) + 2zsHi2(x) Ho2(y)+
+29Hoz(x)Hi2(y) + z10Hoz2(x)Hoz (y) + 211 Hi2(x)Ho2(y) + z12Hoz () Hi2(y),

where the values of the nodal displacements z1, ..., 212 are equal to the followig values

ow ow

Z23n—2 = w(%ﬁn% Z3n—1 = _7(V7L7wn)7 Z3n = aiy(pann)a n=1,234

ox

M=70=01=04 =V =Vi] =Wy =Ws =p3 =pi12 =73 =T = 0;
V4= =Vs =V =psg =Py =a, O7=2010=ws=wi =Ty =Ti2=D.

Conclusion. The deflection function of a rectangular finite element determines uniquely the deformed state
of an element by means of its nodal displacements. As it was said above, on the basis of the explicit shape of
the deflection function, all necessary matrices (deformation, stress, stiffness and load) can be obtained. Note
that the deflection function of the finite element forms the basis for calculating the plate by the finite element
method. On its basis it is not difficult to develop an algorithm for calculation with the implementation on a PC.
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I"A. Ecenbaena, JI.H. Ecbaesa, T.X. MakaxxkaroBa

IInacTuHaHBIH, TIKOYPBINITHI COHFBI 3JIEMEHTIH €CenTey TYPaJibl

MakaJta COHFBI 3JIEMEHTTED OJIiCiMeH >KiHIIKe IJIACTUHAHBIH UiJIyiH 3epTTeyre apHaJrad. [lmacTuHaHbIH ni-
JIy ecebiH IIerryre COHFBI 3JIEMEHTTED OIICIHIH KOJIIAHBLIYEI TIJIACTUHAHBIH, TIKOYPBIIITH COHFBI 9JIEMEHTIH
3epTTey KaxKeTTimirine okesemni. AybITKyaap (QyHKIUMAMEH aHBIKTAJIATHIH, [IACTUHAHBIH, 0apJblK, gedop-
MAIHAACH] KOHE CTATHKAJBIK MOHJIEPI KAJIBIITHI OArbITTa IJIACTHHAHBIH OPTa OeTiHJle »KBbLIKY (DYyHKIHA-
cbl 6ostbilt TabbLTa b, Makaaamga mIacTUHAIAPBIH aybITKY/IAp (DYHKIUSICHI affKbIH TYPE KAJBIITACTHIPY
KapacThIPbULIbL. AyBITKynap (QyHKIUACH [JIACTUHAHBIH, Tele-TeH K TeHEYIHIeri afHbIMAaIbl MOHIAEP/I
TOPTIHI JPPEXKEJI TOJBIK eMeC ITOJIMHOM/IBIK, YKoHe DPMHUT HOJMHOMBI TYPiHje 6eJly apKbLIbl Taby omici
Gepinren. MakaJsia HeriziHeH MeXaHUKTepre, WHXKEHepJIep MEH TEXHUKAJIBIK, KbI3MeTKepJiepre 6arbITTaIFaH.

Kiam cesdep: COHFBI 37IEMEHTTED 9/iCi, TIKOYPBIIITHI COHFBI 9JIEMEHT, aybITKY/Iap (DYHKIUICHI, OYPHIMITHIK,
JKBUDKY, DPMUT HOJUHOMBI.
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["'A. Ecenbaena, JI.H. Ecbaesa, T.X. Makaxxkanosa

O pacdere NnpaMOyIroJIbHOT'O KOHETHOI'O 3JIeMEHTa IIJIaCTHUHDbI

CraTbst TIOCBSINEHA UCCIEOBAHUIO N3TNHa TOHKOM TJIACTUHBI METOJOM KOHEUYHBIX 3/1eMeHTOB. [Ipuioxkenne
MeTO/Ia KOHEYHBIX 3JIEMEHTOB K PEIIeHUI0 3a/1a9u 00 n3rube MIACTUHBI IIPUBOIUT K HEOOXOIAUMOCTHU UCCIIe-
JIOBaHMS IIPSIMOYTOJILHOIO KOHEYHOT'O JIEMEHTa, IIACTHHBL. Bee nedopmalinoHHble 1 CTaTHIeCKe BeJIUINHbI
ITACTHUHBI SIBJISTFOTCS (DYHKITUSIMU TIEPEMEIEHUs] B HAIIPABJIEHUYN HOPMAJIU K CPEINHHON MOBEPXHOCTHU TIJIa-
CTHHBI, KOTOpPOE ompeieigercs (pyHkIimen mporubos. B crarbe npusesieHo nocrpoenune (pyHKIUA IPOruboB
IJIACTHH B IBHOM Bu/ie. [IpuBeieHbI criocobbl HaX0XK 1eHust (DYHKIMY [IPOrnbOB pas3/ieJIeHueM [I€PEMEHHBIX B
YPaBHEHUU PABHOBECHS TJIACTHHBI, Y€PE3 HEMOJHBIN TTOJIMHOM Y€TBEPTOM CTENEHN U B BHUJIE TIOJJMHOMOB Jp-
muta. CTaTbsi OPpUEHTUPOBAHA, IJIABHBIM 00pa30M, HA MEXAHUKOB, HHXKEHEPOB M COTPY/IHUKOB TEXHUYECKUX
CHEIUAIbHOCTEI.

Karoueswie c068a: METON KOHEIHBIX 3JIEMEHTOB, IIPSIMOYTOJIbHBIN KOHEUHBIN 9JIEMEHT, (DYHKIHs IPOruboB,
YIVIOBBIE II€PEMEIIEHNsI, IIOJIMHOMBI DPMUTA.
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On the automorphism groups of relatively free groups
of infinite rank: a survey

The paper is intended to be a survey on some topics within the framework of automorphisms of a relatively
free groups of infinite rank. We discuss such properties as tameness, primitivity, small index, Bergman
property, and so on.

Key words: variety of groups, relatively free group, countably infinite rank, automorphism group, tame
automorphism, small index property, cofinality, Bergman property.

Introduction

Let F, be a free group of infinite rank, in particular, let F,, be a free group of countably infinite rank. In
further of the paper X, = {z1, ..., x;, ...} be a basis of F,, and X,, = {z1,...,z,} be a basis of a free group F,, of
any finite rank n. Thus F,, is naturally embedded into F,,, and F,, is naturally embedded into every group F,,
where m > n. More generally, let A be a set (finite or infinite) and Fy be the free group of rank |A| with basis
XA ={x: A € A}. Then for each subset = of A free group Fx is a subgroup of Fi, and for every ¥, = C ¥ C A,
free group Fx= is a subgroup of Fy.

For any variety of groups C, let V' = C(F}) denote the verbal subgroup of F corresponding to C (see [1] for
information on varieties and related concepts.). Then Gy = Fy/V is the free group of rank |A| in C. In particular,
G,, is the free group of countably infinite rank in C. Write z; = x;V fori = 1,...,4,... . Then Xy = {Z1, ..., Ty, ...}
is a basis of GG,. For each A there is the standard homomorphism of F onto GGp. Then for each subset = of A
free group G= is a subgroup of Gy, and for every W, = C W C A, free group Gz is a subgroup of Gy.

If o is an automorphism of G then {a(Z,) : A € A} is also a basis of G, and every basis of G has this
form.

Any automorphism ¢ of F)y induces an automorphism ¢ of Gp. Thus every basis of F induces a basis of G .
The converse however is not always true; in general, there are automorphisms of G5 which are not induced by
automorphisms of Fj. See [2, 3] for relevant results.

An automorphism of Gz which is induced by an automorphism of Fj is called tame. If {ge : £ € E} are
distinct elements of G such that {ge : { € =} is contained in a basis of G then {g¢ : £ € Z} is called a
primitive system of Gy .

Any primitive system {fe : £ € =} of F) induces a primitive system of G, that is called tame. But, in
general, not every primitive system of GG is induced by a primitive system of F,. We observe different tameness
properties in the following Section 2.
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An other topic of this paper is small index property. A countable first-order structure M is said to have
the small index property if every subgroup of the automorphism group Aut(M) of index less than 2% contains
the pointwise stabilizer C(U) of a finite subset U of the domain of M. In Section 3, we give results about small
index property for relatively free groups of countably infinite rank.

Further in the paper, A denotes the variety of all abelian groups, N} means the variety of all nilpotent
groups of class < k, and A? stands for the variety of all metabelian groups (for any varieties C and D, CD
denotes the variety of all groups with a normal subgroup in C and factor group in D, thus A? = AA). We
also denote by A, Nk oo and M, the free groups of the countably infinite rank in the varieties A, Ny and A2,
respectively. For any group H and each positive integer k we denote by v (H) the kth member of the low central
series in H. In particular, v, (H) = H and v2(H) = H’, the derived subgroup of H.

Tameness

In this section, we present known results about tame automorphisms of relatively free groups of infinite
rank. It is well known that every automorphism of A, can be lifted to an automorphism of F., thus is tame.
The following results also belong to this direction.

Theorem 1 (Bryant and Macedonska [4]). Let Fi, be a free group of infinite rank and let V' be a characteristic
subgroup of Fi, such that Fi,/V is nilpotent. Then G, = F/V is relatively free group of infinite rank in a
nilpotent variety and every automorphism of G is induced by an automorphism of F,, thus is tame.

If Fiw and V are as in the statement of the theorem then V' contains v4(F) for some positive integer k.
Since V is characteristic in F, it follows by a result of Cohen [5] that V is fully characteristic in F. Thus V
defines nilpotent variety A of groups, then V = N(F,,) is the corresponding verbal subgroup of F.,. Hence
F,/V is a relatively free group in .

To prove Theorem 1 the authors defined a property called the finitary lifting property (see details below)
and obtained the following two results.

Proposition 1. Every nilpotent variety of groups has the finitary lifting property.

Proposition 2. If C is any variety of groups with the finitary lifting property and F, is a free group of infinite
rank then every automorphism of F,,/C(F) is induced by an automorphism of Fi.

Let F be a free group of infinite rank and let {x) : A € A} be a basis of Fi,. An automorphism ¢ of
F, will be called finitary if there is a finite subset U of this basis such that ¢(x) = z for each free generator
x ¢ U. Let C be a variety of groups and write V = C(F). Suppose that I" and A are subsets of A such that
I'NA =0, Ais finite, and A \ (I’ U A) is infinite. Let o be automorphism of F..,/V such that a(z) V) = z,V
for all A € T'. We say that the triple (T, A, @) can be lifted if there exists a finitary automorphism ¢ of F, such
that £(zx) = x for all A in " and {(zAV) = a(x,\V) for all A € A. Such a finitary automorphism ¢ is called a
lifting of (I, A, ). We say that C has the finitary lifting property if, for every F., of infinite rank, every triple
(T, A, «) can be lifted.

The theorem generalises some previously known results. The case where V = ~9(F) is a result of Swan
(see [6]). A closely related result had been obtained a few years earlier by Burns and Farouqi [7] who proved
that if A, (p) is a free abelian of exponent p group of countably infinite rank and p is a prime number then
every automorphism of A, (p) is induced by an automorphism of A,. In [8], Gawron and Macedonska proved
the discussed property in the cases V = ~;(F,) for i = 3, 4.

For each positive integer m, we denote by A(m) the variety of all abelian groups of exponent dividing m.
Also we denote by A(0) the variety of all abelian groups A.

Theorem 2 (Bryant and Groves [9]). Let m and n be non-negative integers. Every automorphism a free
group of infinite rank in the metabelian product variety A(m).A(n) is tame. In particular, every automorphism
of M, is tame.

Theorem 8 (Bryant and Gupta [10]). Let C be a variety such that A? C C C N.A for some k, and G, be a
free group of infinite rank in C. Then every automorphism of G, is tame.

The following result generalizes Theorems 1, 2 and 3.

Theorem 4 (Bryant and Roman’kov [11]). Let C be a subvariety of Nj.A for some k. Let G be a free group
of infinite rank in C. Then every automorphism of G, is tame.

The main ingredient in the proof of this theorem are the following result that has its own interest.

Theorem 5 (Bryant and Roman’kov [11]). Let C be a subvariety of N3.A, where k > 1. Let n be a positive
integer and write | = 2"(n + 1) + 2k. Then every primitive system of F,,/C(F},) is induced by some primitive
system of Fj.
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Above we presented some positive results about tameness of the automorphisms of relatively free groups of
infinite rank. However, there are negative results for other varieties.

Theorem 6 (Bryant and Groves [12]). Let £ = var(K) be the variety generated by a non-abelian finite
simple group K, and G, is the free group of the countable infinite rank in K. Then there is an automorphism
of G which is not induced by an automorphism of Fj,.

Small index property

Hodges, Hodkinson, Lascar and Shelah established in [13] that w-categorical and w-stable structures, and
so called random graph have the small index property. In [14], Bryant and Evans use the methods of the paper
[13] to show that the free group of countably infinite rank and certain relatively free groups of countably infinite
rank have the small index property.

Theorem 7 has some immediate consequences through the results of [14] and [15].

Theorem 8 (Bryant and Roman’kov [11]). Let F,, be a free group of countably infinite rank and let C
be a subvariety of Ny.A, where k > 1. Then F,,/C(F, has the basis cofinality property and the small index
property. The automorphism group Aut(F,,/C(F,) is not the union of a countable chain of proper subgroups.
Also, Aut(F,/C(F,) has no proper normal subgrou of index less than 2% and it is a perfect group.

Recall that a group is called perfect if it equals its derived subgroup.

Other properties

Completeness. A group G is said to be complete if G is centreless and every automorphism of G is inner.
By the Burnside’s criterion for a centerless group G its the automorphism group Aut(G) is complete if and only
if the subgroup Inn(G) of all inner automorphisms of G is a characteristic subgroup of the group Aut(G) (that
is, preserved under the action of all automorphisms of the group Aut(G)).

Theorem 9 (Tolstykh [16]. The automorphism group Aut(F.,) of any free group of infinite rank is complete.

This statement was derived from the following assertions:

e The family of all inner automorphisms of F,, determined by powers of primitive elements of F,, is
first-order definable in Aut(F ), hence Inn(F,) is a characteristic subgroup of Aut(F).

e The subgroup Inn(Fy) is then first-order definable in Aut(F,,).

Theorem 10 (Tolstykh [17, 18]). For any k > 2, the automorphism group Aut(Ne ) of any free nilpotent
group N 1 of infinite rank is complete.

Note, that Inn(Aut(As)) = Aut(Aut(A)) ([19], [20]). Anyway Aut(A ) is not complete because it contains
a non-central the inverting authomorphism.

In [17], this statement was proved for the case k = 2, and in [18], for the general case.

Theorem 11 (Tolstykh [21]). Let F., be an infinitely generated free group, R < F!_ a fully characteristic
subgroup of F., such that the quotient group F.,/R is residually torsion-free nilpotent. Then the group
Aut(F/R) is complete.

Corollary. Let G be a free abelian-by-nilpotent (in particular metabelian or free solvable of class > 3)
relatively free group of infinite rank. Then the group Aut(G,) is complete.

Generalized small index property. Let F' be a relatively free algebra of infinite rank «. We say that F' has the
generalized small index property if any subgroup of Aut(F') of index at most x contains the pointwise stabilizer
C(U) of a subset U of the domain of F of cardinality less than .

Theorem 12 (Tolstykh [22] Every infinitely generated free nilpotent (in particular free abelian) group Noo
has the generalized small index property.

Bergman property. A group G is said to have the Bergman property (the property of uniformity of finite
width) if given any generating X with X = X! of G, we have that G = X! for some natural [, that is, every
element of G is a product of at most [ elements of X. The property is named after Bergman, who found in [23]
that it is satisfied by all infinite symmetric groups. The first example of an infinite group with the Bergman
property was apparently found by Shelah in the 1980s.

Theorem 13 (Tolstykh [24]). The automorphism group Aut(F,,) of the free group F,, of countably infinite
rank has the Bergman property.

Theorem 14 (Tolstykh [24]). For any positive integer k, the automorphism group Aut(N. ) of any free
nilpotent group N of infinite rank has the Bergman property.

Some other discussion on the automorphism groups of free relatively free groups can be found in survey [25].
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25 Toscreix B.A. Tpymmsl aBroMOpdU3MOB OTHOCHTEJILHO CBOOOIHBIX TIPYNI OECKOHEYHOrO paHra /
B.A. Toncreix // Becrn. HoBocubupckor roc. yu-ta. — 2006. — T. 6. — C. 77-101.

B.A. PomanbkoB

IMTekci3 panrTi epkin rpynnajiapra KaTbICTbl aBTOMOP(dU3IM/Iep
rpynnajiapbl »KalblHA: ITOJLy

MaxkaJyianblH MakCcaThl IIEKCi3 PAHITI €pKiH Ipynnajapra KAThICTBI aBTOMOPMU3MIEP TOOBIH 3€pPTTEYIiH
Keibip Mocesiesiepin mosry 6okl Tabbutaabl. ABTOMOPMU3MHIH «HYCKAYJIBI» OOJIYBI, KapaballbIPJIbIK, Kili
uHJeKC, Beprman KacueTi »KoHe Tarbl bacKalail KacueTTepi »KaH->KaKThl TAJIKbIIAHAIbI.

Kiam cesdep: rpynnanap/iblH KONOeHHETIr, CAJTBICTHIPMAJIBI €PKIiH TOT, CAHAMAJIBI [IIEKCI3 paHT, aBTOMOP-
dusMIep rpynmnachl, «HyCKayIbl» aBTOMOPMU3M, Killli MHIEKC KaCHeTi, KOPUHAIBLIBIK, BeprMan Kacueri.

B.A. PomanbkoB

O rpynnax aBToOMOpP(pPU3MOB OTHOCUTEJHBHO CBOOO/IHBIX T'PYIIII
OeCcKOHeYHOro paHra: 0030p
]_[eJIBIO CTaTbU ABJIAETCA O630p HEKOTOPbIX BOIIPOCOB HCCJIQLLOBa.HHI’I I'pynIn a.BTOMOp(l:)I/I3MOB OTHOCHUTEJIbHO

CBOOOIHBIX TPy 6€CKOHETHOTO paHra. OOCYKIAIOTCS TAKNe CBOWCTBA, KAK OBITH «PYIHBIM» aBTOMOPMU3-
MOM, IIPUMHUTUBHOCTH, CBOICTBa MaJjOro MHIEKCa, beprmana u T.II.

Karoweswie caosa: MHOroobpasme IpyIll, OTHOCHTEIBHO CBOOO/HAsI I'PYIA, CYETHLIH OECKOHEUYHBIN DaHT,
rpyIna aBTOMOP(MU3IMOB, «PYIHOI» aBTOMOP(MU3M, CBOWCTBO MAJIOTO WHIEKCA, KOPUHATIBHOCTH, CBOMCTBO
Beprmana.
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