Ш.Ш.Ибраев

Университет «Болашак», Кызылорда (E-mail: ibrayevsh@mail.ru)

${f O}$ третьих когомологиях простых SL_2 -модулей

Когомологии третьей степени простых модулей для простых односвязных алгебраических групп в положительной характеристике мало изучены. Они известны для некоторых простых модулей малых размерностей и для простых алгебраических групп ранга 2. Для группы SL_2 полное описание когомологии третьей степени простых модулей не получено. В статье вычислены когомологии третьей степени простых модулей для группы SL_2 над алгебраически замкнутым полем k характеристики p > 3.

Ключевые слова: алгебраическая группа, простой модуль, третья когомология.

Введение. Когомологии простых модулей алгебраических групп над полем положительной характеристики были исследованы в работах Дж.О'Хэллорана [1], Х.Андерсена [2], К.Бенделя, Д.Накано и К.Пиллена [3], А.С.Клещева и Дж.Шета [4, 5], Э.Клайна, Б.Паршаля и Л.Скотта [6, 7], Дж.МакНинча [8], Э.Клайна [9], С. Йехия [10], Дж.Йе [11], Дж.Лиу и Дж.Йе [12], Д.Стюарта [13, 14], А.С.Джумадильдаева и Ш.Ш.Ибраева [15], Ш.Ш.Ибраева [16–20] и группы американских алгебраистов VIGRE [21, 22].

В [1] были описаны когомологии простых модулей со старшими весами в области ограниченных весов. Эти модули являются простыми фактор-модулями модулей Вейля с простыми подмодулями.

Общая формула вычисления расширения двух простых модулей получена X.Андерсеном в [2]. Она была использована в работах [10–12] для вычисления расширения простых модулей простых алгебраических групп ранга 2. Формулы вычисления расширения простых модулей, полученные для алгебраических групп ранга 2 в [11–12], обобщены в работе [3] для больших характеристик $p \ge 3h-3$, где h— число Кокстера. Когомологии первой степени простых модулей над Sp_{2n} с фундаментальными старшими весами вычислены в работах [4, 5]. Кроме того, они вычислены и для простых модулей с минимальными доминантными старшими весами в [6] и [7]. Последний результат был расширен в [21] для всех доминантных старших весов, меньших или равных фиксированному фундаментальному весу, за исключением некоторых малых характеристик поля, зависящих от системы корней. Расширения простых модулей для SL_2 получены в [9], и когомологии первой степени простых модулей для SO_7 вычислены в [16]. Связь между первой когомологией алгебраической группы с неприводимой системой корней над алгебраически замкнутым полем характеристики p > 0 с коэффициентами в простом модуле и соответствующей первой когомологией ее алгебры Ли изучена в [20], и там же получены необходимые достаточные условия их изоморфности.

В работе МакНинча [8] вычислены вторые когомологии простых модулей, размерности которых не превышают характеристику поля. Развивая методику, примененную в [21], авторами работы [22] были получены аналогичные результаты для вторых групп когомологий простых модулей. Вторые когомологии простых модулей вычислены также для SL_2 [13], SL_3 [14], Sp_4 [19], G_2 [18], SO_7 [17].

Примеры одномерной нетривиальной третьей когомологии содержатся в [1]. В [15] получено полное описание третьих групп когомологий простых модулей для простых односвязных алгебраических групп ранга 2 в положительной характеристике при незначительном ограничении на характеристику поля, исключаются случаи p=2,3 для A_2 ; p=2,3,5 для B_2 ; p=2,3,5,7,11 для G_2 . Из основного результата этой работы следует, что размерности пространств когомологий не больше, чем ранг данной алгебраической группы, и существуют двумерные нетривиальные группы третьей когомологии в случаях A_2 и G_2 . Как известно, для группы SL_2 ранга 1 аналогичный результат о когомологии третьей степени простых модулей еще не получен. Данная работа посвящена решению этой задачи. Нами найдены все простые G -модули с нетривиальными 3-когомологиями. Согласно полученному нами результату во всех нетривиальных случаях группа третьей когомологии одномер-

на. Для доказательства основной теоремы (теорема 1) будем использовать методику вычисления, разработанную в [15].

Пусть G — простая односвязная алгебраическая группа SL_2 над алгебраически замкнутым полем k характеристики p>3. Будем считать, что G определена и расщепляется над простым подполем F_p поля k. Пусть $G_1 = Ker \, F$, где F — отображение Фробениуса на G.

Обозначим через B и T соответственно подгруппу Бореля и максимальный тор группы G. Если R — система корней группы G, то действие группы Вейля W системы R на группу характера X(T) максимального тора T определяется по формуле $S_{\alpha}(\lambda) = \lambda - \langle \lambda, \alpha^{\vee} \rangle \alpha$, где $s_{\alpha} \in W$, $\alpha \in R$, и α^{\vee} — дуальный к α корень. Напомним, что X(T) может быть идентифицирована со множеством целых чисел Z. Тогда множеством доминантных весов будет Z_{+} . Точечное действие группы Вейля определяется через полусуммы всех положительных корней $\rho = 1/2\alpha_1 = \lambda_1$ по формуле $w \cdot \lambda = w(\lambda + \rho) - \rho$, где $w \in W$, $\lambda \in X(T)$; α_1 — единственный положительный корень системы R; λ_1 — фундаментальный вес.

Аффинная группа Вейля W_p порождается отражениями вида $s_{\alpha,np}$ для всех $\alpha \in R_+ = \{\alpha_1\}$ и $n \in Z$. Обычно используется точечное действие $s_{\alpha,np} \cdot \lambda = \lambda - \langle \lambda + \rho, \alpha^\vee \rangle \alpha + np\alpha$ аффинной группы Вейля.

Пусть $X_+(T) = \{\lambda \in X(T) \, \big| \, \langle \lambda, \alpha^{\vee} \rangle \geq 0$ для всех $\alpha \in S\} \approx Z_+$ — множество доминантных весов и $X_1(T) = \{\lambda \in X(T) \, \big| \, 0 \leq \langle \lambda, \alpha^{\vee} \rangle < p$ для всех $\alpha \in S\} \approx Z_p$ — множество ограниченных весов.

Для любого $\lambda \in X(T)$ существует одномерный B -модуль k_{λ} и индуцированный G -модуль $H^0(\lambda) = Ind_B^G(k_{\lambda})$. Известно, что $H^0(\lambda) \neq 0$ тогда и только тогда, когда $\lambda \in X_+(T)$. Если $V(\lambda)$ — модуль Вейля со старшим весом λ , то $H^0(\lambda) \approx V(-w_0(\lambda))^*$. Пусть $L(\lambda)$ — простой G -модуль со старшим весом λ . Его можно определить через $H^0(\lambda)$ или через $V(\lambda)$. С одной стороны, он простой цоколь $H^0(\lambda)$, а с другой — единственный простой фактор-модуль $V(\lambda)$ по максимальному подмодулю. Все три G -модуля, введенные выше, могут быть рассмотрены как G_1 -модули, причем $L(\lambda)$ остается простым при переходе к G_1 .

Пусть L — рациональный G -модуль. Через $L^{(d)}$ обозначим скручивание Фробениуса степени d для L. Тогда существует рациональный G -модуль V, такой что $V^{(d)} = L$, обозначим его через $L^{(-d)}$.

Предварительные сведения. При доказательстве основной теоремы мы используем следующие известные факты.

Теорема Стейнберга о тензорном произведении. Для любого $\lambda = \lambda^0 + p\lambda^1 + \dots + p^m \lambda^m \in X_+(T)$, где $\lambda^i \in X_1(T)$, простой G -модуль $L(\lambda)$ со старшим весом λ разлагается в виде следующего тензорного произведения:

$$L(\lambda) = L(\lambda^0) \otimes L(\lambda^1)^{(1)} \otimes \dots \otimes L(\lambda^m)^{(m)}. \tag{1}$$

Принцип связанности и структура индуцированных модулей. Пусть $\lambda, \mu \in X(T)$. Назовем λ G_1 -связанным (G-связанным) с μ , если $\lambda \in W_p \cdot \mu + pX(T)$ ($\lambda \in W_p \cdot \mu$). Если $H^i(G_1, L(\lambda)) \neq 0$, то λ G_1 -связан с нулевым весом [23], II.9.19. Аналогично, если $H^i(G, L(\lambda)) \neq 0$, то λ G-связан с нулевым весом [23], II.6.17.

Для $\lambda = a\lambda_1 \in X(T)$ мы будем использовать сокращенное обозначение a. Очевидно, что для G $W_p \cdot 0 + pX(T) \cap X_1(T) = \{0, p-2\}$. Согласно [23], II.8.20, $H^0(\lambda) \approx L(\lambda)$, если $\lambda \in X_1(T)$. В частности, $H^0(0) = L(0) \approx k$ и $H^0(p-2) = L(p-2)$.

Когомологии простых модулей для G_1 .

Лемма 1 ([13, предложение 2.2.]). Пусть $\lambda \in X_1(T)$, тогда $H^i(G_1, L(\lambda)) = 0$, кроме следующих случаев:

(i)
$$H^{2i}(G_1,k)^{(-1)} \approx H^0(2i)$$
;

(ii)
$$H^{2i+1}(G_1, L(p-2))^{(-1)} \approx H^0(2i+1)$$
.

Расширения модулей для G. Все расширения двух простых модулей для G найдены в [9]. Пусть

$$M(\lambda^0) = \{L(\lambda) \mid \lambda \in X_+(T), Ext_G^1(L(\lambda^0), L(\lambda)) \neq 0\}, \quad \lambda^0 \in X_1(T).$$

$$M(0) = \{L(p-2)^{(r)} \otimes L(1)^{(r+1)}, r \ge 0\};$$

$$M(1) = \{L(p-3) \otimes L(1)^{(1)}, L(1) \otimes L(p-2)^{(r)} \otimes L(1)^{(r+1)}, r > 0\};$$

$$M(2) = \{L(p-4) \otimes L(1)^{(1)}, L(2) \otimes L(p-2)^{(r)} \otimes L(1)^{(r+1)}, r > 0\}.$$

Во всех перечисленных случаях $Ext_G^1(L(\mu), L(\lambda)) \approx k$.

Вторые когомологии простых модулей для G. Все нетривиальные вторые когомологии найдены в [13, теорема 1]. Пусть

$$M_{i} = \{L(\lambda^{0} + p\mu) \mid E_{2}^{2-i,i} = H^{2-i}(G, H^{i}(G_{1}, L(\lambda^{0} + p\mu)^{(-1)}) \neq 0, \lambda^{0} \in X_{1}(T), \mu \in X_{+}(T)\}, i = 0, 1, 2.$$

(i)
$$M_2 = \{L(2)^{(1)}\};$$

$$M_1 = \{ L(p-2) \otimes L(p-3)^{(1)} \otimes L(1)^{(2)}, L(p-2) \otimes L(1)^{(1)} \otimes L(p-2)^{(r+1)} \otimes L(1)^{(r+2)}, r > 0 \};$$

$$M_0 = \{ L(\mu)^{(d)} | L(\mu) \in M_2 \cup M_1, d > 0 \};$$

$$(ii) \ \, H^2(G,L(\lambda)) = \begin{cases} k, \, \text{если } L(\lambda) \in \bigcup_{i=0}^2 M_i; \\ 0 \, \text{в остальных случаях}. \end{cases}$$

O композиционном факторе двух модулей Вейля. Пусть $\lambda = a \in X_1(T)$, тогда очевидно, что $V(1) = L(1), \ V(a) = L(a)$, и согласно [24]

$$L(1) \otimes L(a) \longleftrightarrow V(a+1) \oplus V(a-1).$$
 (2)

Здесь знак \longleftrightarrow_G означает, что обе стороны этого знака имеют одинаковые G -композиционные факторы.

Предварительные результаты. В дальнейшем нам понадобится информация о структурах цоколя тензорного произведения двух простых модулей. Сначала докажем несколько вспомогательных утверждений. Пусть $\mu^0 \in X_1(T)$ и $\Gamma(\mu^0) = \{\phi \big| L(\phi) \subset Soc_G L(1) \otimes L(\mu^0)\}$ — множество старших весов разложимых компонент $Soc_G L(1) \otimes L(\mu^0)$.

Лемма 4. Пусть p > 3 и $0 ∈ \Gamma(\mu^0)$. Тогда

$$\Gamma(\mu^0) = \begin{cases} \{0, 2\}, \, \text{если} \quad \mu^0 = 1; \\ \varnothing \quad \text{в остальных случаях}. \end{cases}$$

Лемма 5. Пусть p > 3 и $p - 2 ∈ \Gamma(\mu^0)$. Тогда

$$\Gamma(\mu^0) = \begin{cases} \{p-2, \, p-4\}, \, \text{если} & \mu^0 = p-3; \\ \varnothing & \text{в остальных случаях}. \end{cases}$$

Доказательство аналогично лемме 4.

Для простого G-модуля $L(\lambda)$ спектральная последовательность Линдона-Хохшильда-Серра имеет вид [23], I.6.6.(3)

$$E_2^{nm} = H^n \left(G, H^m (G_1, L(\lambda))^{(-1)} \right) \Rightarrow H^{n+m} (G, L(\lambda)).$$
 (3)

Если E_{∞}^{nm} — стабилизированное значение точек предыдущей спектральной последовательности, то

$$H^{i}(G, L(\lambda)) = \bigoplus_{n+m=i} E_{\infty}^{nm}.$$
 (4)

Пусть $\lambda = \lambda^0 + p\mu$, тогда согласно [15, (1.3)]

$$E_2^{nm} \cong H^n(G, H^m(G_1, L(\lambda^0))^{(-1)} \otimes L(\mu)). \tag{5}$$

Используя формулы (5.15)–(5.20) работы [15], формулу (4) и лемму 1, получим

$$H^{3}(G, L(\lambda)) = E_{2}^{03} \oplus E_{2}^{12} \oplus E_{2}^{21} \oplus E_{2}^{30}.$$
(6)

Пусть $N_i = \{L(\lambda^0 + p\mu) | E_2^{3-i,i} = H^{3-i}(G, H^i(G_1, L(\lambda^0 + p\mu))^{(-1)}) \neq 0\}, \quad i = 0,1,2,3.$

- (i) $N_3 = \{L(p-2) \otimes L(3)^{(1)}\};$
- (ii) $N_2 = \{L(p-4)^{(1)} \otimes L(1)^{(2)}, L(2)^{(1)} \otimes L(p-2)^{(r+2)} \otimes L(1)^{(r+3)}, r \ge 0\};$
- (iii) $N_1 = \{L(p-2) \otimes L(1)^{(1)} \otimes L(2)^{(2)}, L(p-2) \otimes L(p-3)^{(1)} \otimes L(p-3)^{(2)} \otimes L(1)^{(3)}\}$

$$L(p-2) \otimes L(p-3)^{(1)} \otimes L(1)^{(2)} \otimes L(p-2)^{(r+3)} \otimes L(1)^{(r+4)}, r \geq 0 \} \bigcup \Big\{ L(p-2) \otimes L(\mu)^{(s)} \, \Big| \, L(\mu) \in M_1 \bigcup M_2, s \geq 1 \Big\}.$$

Доказательство. (i) Используя определение N_3 и формулу (1), имеем:

$$N_3 = \{ L(p-2) \otimes L(\mu)^{(1)} \mid E_2^{03} = H^0(G, H^3(G_1, L(p-2) \otimes L(\mu)^{(1)})^{(-1)}) \neq 0, \mu \in X_+(T) \}.$$

По формуле (5) и лемме 1

$$N_3 = \{ L(p-2) \otimes L(\mu)^{(1)} \mid H^0(G, L(3) \otimes L(\mu)) \neq 0, \mu \in X_+(T) \} = \{ L(p-2) \otimes L(3)^{(1)} \};$$
 (ii)

$$\begin{split} N_2 &= \{ L(\mu)^{(1)} \, \middle| \, L(\mu) \in M(2) \} = \{ L(\mu)^{(1)} \, \middle| \, L(\mu) \in \{ L(p-4) \otimes L(1)^{(1)}, L(2) \otimes L(p-2)^{(r+1)} \otimes L(1)^{(r+2)}, r \geq 0 \} \} = \\ &= \{ L(p-4)^{(1)} \otimes L(1)^{(2)}, L(2)^{(1)} \otimes L(p-2)^{(r+2)} \otimes L(1)^{(r+3)}, r \geq 0 \} \,. \end{split}$$

Во втором равенстве была использована лемма 2.

(iii) Используя определение N_1 и (1), имеем:

$$N_1 = \{ L(p-2) \otimes L(\mu)^{(1)} \mid E_2^{21} = H^2(G, H^1(G_1, L(p-2) \otimes L(\mu)^{(1)})^{(-1)}) \neq 0, \mu \in X_+(T) \}.$$

По формуле (5) и лемме 1

$$\begin{split} N_1 &= \{ L(p-2) \otimes L(\mu)^{(1)} \, \Big| \, H^2(G,L(1) \otimes L(\mu)) \neq 0, \, \mu \in X_+(T) \} = \\ &= \{ L(p-2) \otimes L(\mu^0 + p \nu)^{(1)} \, \Big| H^2(G,L(1) \otimes L(\mu^0 + p \nu)) \neq 0, \, \mu^0 \in X_1(T), \, \nu \in X_+(T) \} = \\ &= \{ L(p-2) \otimes L(\mu^0)^{(1)} \otimes L(\nu)^{(2)} \, \Big| H^2(G,L(1) \otimes (L(\mu^0) \otimes L(\nu)^{(1)})) \neq 0, \, \mu^0 \in X_1(T), \, \, \nu \in X_+(T) \} = \\ &= \{ L(p-2) \otimes L(\mu^0)^{(1)} \otimes L(\nu)^{(2)} \, \Big| H^2(G,Soc_GL(1) \otimes (L(\mu^0) \otimes L(\nu)^{(1)})) \neq 0, \, \, \mu^0 \in X_1(T), \, \, \nu \in X_+(T) \}. \end{split}$$

Согласно предложению 4.4 [11]

$$N_1 = \{ L(p-2) \otimes L(\mu^0)^{(1)} \otimes L(\nu)^{(2)} \mid H^2(G, (Soc_G L(1) \otimes L(\mu^0)) \otimes L(\nu)^{(1)}) \neq 0, \ \mu^0 \in X_1(T), \nu \in X_+(T) \}.$$

Наконец, используя леммы 3-5, получим:

$$N_{1} = \{L(p-2) \otimes L(1)^{(1)} \otimes L(2)^{(2)}, L(p-2) \otimes L(p-3)^{(1)} \otimes L(p-3)^{(2)} \otimes L(1)^{(3)};$$

$$L(p-2) \otimes L(p-3)^{(1)} \otimes L(1)^{(2)} \otimes L(p-2)^{(r+3)} \otimes L(1)^{(r+4)}, r \geq 0\} \cup \Big\{ L(p-2) \otimes L(\mu)^{(s)} \, \Big| \, L(\mu) \in M_1 \cup M_2, \, s \geq 1 \Big\}.$$

Лемма 7. Пусть p > 3. Тогда $N_0 = \{L(\mu)^{(s)} \mid \mu \in N_3 \cup N_2 \cup N_1, s > 0\}.$

Доказательство.

$$\begin{split} N_0 = & \{L(0) \otimes L(\mu)^{(1)} \, \Big| \, H^3(G, H^0(G_1, L(0) \otimes L(\mu)^{(1)})^{(-1)}) \neq 0, \, \mu \in X_+(T) \} = \\ = & \{L(\mu)^{(1)} \, \Big| \, H^3(G, L(0) \otimes L(\mu)) \neq 0, \, \mu \in X_+(T) \} = \{L(\mu)^{(1)} \, \Big| \, H^3(G, L(\mu)) \neq 0, \, \mu \in X_+(T) \} \,. \end{split}$$

Согласно лемме 6 $H^3(G, L(\mu)) \neq 0$, если

$$\begin{split} L(\mu) &\in \{L(\mu^0 + p\gamma) \, \Big| \, E_2^{03} = H^0(G, H^3(G_1, L(\mu^0)^{(-1)} \otimes L(\gamma)) \neq 0\} \,; \\ & \cup \{L(\mu^0 + p\gamma) \, \Big| \, E_2^{12} = H^1(G, H^2(G_1, L(\mu^0)^{(-1)} \otimes L(\gamma)) \neq 0\} \,; \\ & \cup \{L(\mu^0 + p\gamma) \, \Big| \, E_2^{21} = H^2(G, H^1(G_1, L(\mu^0)^{(-1)} \otimes L(\gamma)) \neq 0\} = N_3 \cup N_2 \cup N_1. \end{split}$$

Следовательно, $N_0 = \{L(\mu)^{(s)} \mid \mu \in N_3 \cup N_2 \cup N_1, \quad s > 0\}.$

Сформулируем и докажем основную теорему. Сохраняем все обозначения предыдущего пункта. *Теорема 1. П*усть $G = SL_2$, p > 3 и $L(\lambda)$ — простой G -модуль. Тогда

$$H^3(G,L(\lambda)) \approx \begin{cases} k, \text{ если } L(\lambda) \in \bigcup_{i=0}^3 N_i; \\ 0 \text{ в остальных случаях}. \end{cases}$$

Доказательство. Согласно лемме 1 кратность вхождения данного неприводимого модуля (при наличии) к соответствующим когомологиям $H^i(G_1,L(\mu))^{(-1)},\ i=1,2,3$, равна единице. Следовательно, во всех нетривиальных случаях $E_2^{nm}\approx k$.

Согласно лемме 6 множества N_3 , N_2 , N_1 попарно не пересекаются. Тогда утверждение теоремы следует из формулы (6) и лемм 6 и 7. Доказательство теоремы 1 завершено.

Список литературы

- 1 O'Halloran J. Weyl modules and the cohomology of Chevalley groups // Amer. J. Math. 1981. Vol. 103. P. 399–410.
- 2 Andersen H.H. Extensions of modules for algebraic groups // Amer. J. Math. 1984. Vol. 106. P. 489–504.
- 3 Bendel C.P., Nakano D.K., Pillen C. Extensions for finite Chevalley groups II // Trans. AMS. 2002. Vol. 354. № 11. P. 4421–4454.
- 4 *Kleshchev A.S., Shet J.* On extensions of simple modules over symmetric and algebraic groups // J. Algebra. 1999. Vol. 221. P. 705–722.
- 5 *Kleshchev A.S., Shet J.* Corrigendum: On extensions of simple modules over symmetric and algebraic groups // J. Algebra. 2001. Vol. 238. P. 843–844.
- 6 Cline E., Parshal B., Scott L. Cohomology of finite groups of Lie type. I // IHES Publ. Math. 1975. Vol. 45. P. 169–191.
 - 7 Cline E., Parshal B., Scott L. Cohomology of finite groups of Lie type. II // J. Algebra. 1977. Vol. 45. P. 182–198.
- 8 *McNinch G.J.* The second cohomology of small irreducible modules for simple algebraic group // Pacific. J. Math. 2002. Vol. 204. № 2. P. 459–472.
 - 9 Cline E. Ext1 for SL₂ // Commun. Algebra. 1979. Vol. 7. P. 107–111.
- 10 Yehia S. El. Extensions of simple modules for the universal Chevalley group and parabolic subgroup: PhD Thesis. Warwick, 1982.
 - 11 Ye Jia-chen. Extensions of simple modules for the group Sp (4,K) // J. London Math. Soc. 1990. Vol. 2 (41). P. 51–62.
- 12 Liu Jia-chun, Ye Jia-chen. Extensions of simple modules for the algebraic group of type G2 // Commun. Algebra. 1993. Vol. 21. P. 1909–1946.
 - 13 Stewart D.I. The second cohomology of simple SL₂-modules // Proc. Amer. Math. Soc. 2010. Vol. 138. P. 427–434.
 - 14 Stewart D.I. The second cohomology of simple SL₃-modules // Commun. Algebra. 2012. Vol. 40. P. 4702–4716.
- 15 Джумадильдаев А.С., Ибраев Ш.Ш. О третьих когомологиях алгебраических групп ранга 2 в положительной характеристике // Матем. сб. 2014. 1.205. 1.205. 1.205. 1.205. 1.205. 1.205. 1.205. 1.205. 1.205. 1.205.
- 16 *Ибраев Ш.Ш.* Первые группы когомологии простых модулей над алгебраической группой типа B_3 в положительной характеристике // Молодой ученый. 2011. Т. 2 № 2 (25). С. 6–10.
- 17 *Ибраев Ш.Ш.* Вторые группы когомологии простых модулей над $SO_7(k)$ в положительной характеристике // Вестн. Караганд. ун-та. Сер. Математика. 2011. № 3 (63). С. 16–21.
- 18 *Ibrayev Sh.Sh.* The second cohomology groups of simple modules for G_2 // Сиб. электрон. матем. изв. 2011. Т. 8. С. 381–396.

- 19 *Ibrayev Sh.Sh.* The second cohomology groups of simple modules over $Sp_4(k)$ // Commun. Algebra. 2012. Vol. 40. P. 1122–1130.
- 20 *Ибраев Ш.Ш.* О первой когомологии алгебраической группы и ее алгебры Ли в положительной характеристике // Матем. заметки. 2014. 1000. 10000 100
- 21 University of Georgia VIGRE Algebra Group. First cohomology for finite groups of Lie type: simple modules with small dominant weights // Trans. Amer. Math. Soc. 2013. Vol. 365. P. 1025–1050.
- 22 University of Georgia VIGRE Algebra Group. Second cohomology for finite groups of Lie type // J. Algebra. 2012. Vol. 360. P. 21–52.
 - 23 Jantzen J.C. Representations of algebraic groups. Vol. 131. Boston: Pure and Applied Mathematics, 1987.
 - 24 Винберг Е.Б., Оницик А.Л. Семинар по группам Ли и алгебраическим группам. М.: Наука, 1988.

Ш.Ш.Ыбыраев

Жай SL_2 -модульдердің үшінші когомологиялары туралы

Оң сипаттамалы жай бір байланысқан алгебралық группалар үшін жай модульдердің үшінші когомологиялары аз зерттелген. Олар кейбір өлшемі кіші жай модульдер үшін және рангы 2-ге тең жай алгебралық группалар үшін белгілі. SL_2 группасы үшін жай модульдердің үшінші когомологияларының толық сипаттамасы әлі алынбаған. Мақалада сипаттамасы p>3 алгебралық тұйық k өрісіндегі SL_2 , группасы үшін жай модульдердің үшінші когомологиялары есептелген.

Sh.Sh.Ibrayev

On the third cohomology of simple SL₂-modules

The third cohomology groups of simple modules for the simple and simply connected algebraic groups in the positive characteristic are only a few investigated. They are well-known for some simple modules of small dimension and for the simple algebraic groups of rank 2. The third cohomology groups of simple modules for SL_2 has not studied yet. In this paper the third cohomology groups of simple modules for SL_2 over algebraically closed field k of characteristic p > 3 are calculated.

References

- 1 O'Halloran J. Amer. J. Math., 1981, 103, p. 399–410.
- 2 Andersen H.H. Amer. J. Math., 1984, 106, p. 489–504.
- 3 Bendel C.P., Nakano D.K., Pillen C. Trans. Amer. Math. Soc., 2002, 354, 11, p. 4421–4454.
- 4 Kleshchev A.S., Shet J. J. Algebra, 1999, 221, p. 705–722.
- 5 Kleshchev A.S., Shet J. J. Algebra, 2001, 238, p. 843–844.
- 6 Cline E., Parshal B., Scott L. IHES Publ. Math., 1975, 45, p. 169–191.
- 7 Cline E., Parshal B., Scott L. J. Algebra, 1977, 45, p. 182–198.
- 8 McNinch G.J. Pacific. J. Math, 2002, 204, 2, p. 459-472.
- 9 Cline E. Extl for SL₂, Commun. Algebra, 1979, 7, p. 107–111.
- 10 Yehia S.El. Extensions of simple modules for the universal Chevalley group and parabolic subgroup, Warwick: PhD Thesis, 1982.
- 11 Ye Jia-chen. J. London Math. Soc., 1990, 2 (41), p. 51-62.
- 12 Liu Jia-chun, Ye Jia-chen. Commun. Algebra, 1993, 21, p. 1909–1946.
- 13 Stewart D.I. Proc. Amer. Math. Soc, 2010, 138, p. 427-434.
- 14 Stewart D.I. Commun. Algebra, 2012, 40, p. 4702-4716.
- 15 Dzhumadil'dayev A.S., Ibrayev Sh.Sh. Matem. Sbornic, 2014, 205, 3, p. 41–82.
- 16 Ibrayev Sh.Sh. Young scientist, 2011, 2, 2 (25), p. 6-10.
- 17 Ibrayev Sh.Sh. Bull. Karagand. un-ta Ser. Matematics, 2011, 3 (63), p. 16–21.
- 18 Ibrayev Sh.Sh. Sib. Electron. Matem. Izv., 2011, 8, p. 381–396.
- 19 Ibrayev Sh.Sh. Commun. Algebra, 2012, 40, p. 1122-1130.
- 20 Ibrayev Sh.Sh. Matem. Zametki, 2014, 96, 4, p. 512-521.
- 21 Trans. Amer. Math. Soc., 2013, 365, p. 1025-1050.

- 22 J. Algebra, 2012, 360, p. 21-52.
- 23 Jantzen J.C. Representations of algebraic groups, Boston, Pure and Applied Mathematics, 131, 1987.
- 24 Vinberg Ye.B., Onishchik A.L. Seminar po gruppam Li i algebraicheskim gruppam, Moscow: Nauka, 1988.