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The article focuses on the initial problem for a third-order linear integro-differential equation with a small
parameter at the higher derivatives, assuming that the roots of the additional characteristic equation have
opposite signs. This paper presents a fundamental set of solutions and initial functions for a singularly
perturbed homogeneous differential equation. The solution to the singularly perturbed initial integro-
differential problem employs analytical formulas. A theorem concerning asymptotic estimates of the solution
is established.
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Introduction

Vasil’eva A.B. and Butuzov V.F. introduced the theory of singularly perturbed equations in their
work [1]. Kassymov K.A. [2] investigated the most common cases of the Cauchy problem for singularly
perturbed nonlinear systems of ordinary differential and integro-differential equations, as well as partial
differential equations of hyperbolic type. Subsequently, singularly perturbed initial and boundary value
problems with initial jumps were studied in [3,4]. Mirzakulova A.E. [5] extensively examines boundary
value problems, particularly when the roots of the additional characteristic equation have opposing
signs. While linear integro-differential equations are presented in [6], numerous papers have been
dedicated to singularly perturbed integro-differential equations [7–12]. This article also provides an
asymptotic solution for a singularly perturbed differential equation in a boundary value problem where
the roots of the characteristic equation are opposite [13]. In addition, in recent years, significant work
has been done on the numerical solution of integro-differential problems [14–17].

In this paper, we consider the initial problem for third-order linear integral-differential equations
with a small parameter, where the roots of the corresponding characteristic equation have opposite
signs. It is well known that there is no solution to a third-order linear differential equation with a
small parameter (where the roots of the corresponding characteristic equation have opposite signs).
However, we demonstrate that adding an integral term to the right-hand side yields an asymptotic
formula for the solution. This article presents the findings of this research, which include an analytical
formula and asymptotic estimates for solving a singularly perturbed integral-differential equation with
a small parameter and initial conditions. Furthermore, a theorem on asymptotic estimation of these
equations’ solutions is proven.
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1 Statement of the problem

Consider the singularly perturbed integro-differential equation with a small parameter

Lεy ≡ ε2y′′′ + εA2(t)y
′′ +A1(t)y

′ +A0(t)y = F (t) +

1∫
0

2∑
i=0

Hi(t, x)y
(i)(x, ε) dx, (1)

in the initial conditions
y(i)(0, ε) = αi, i = 0, 2. (2)

ε is a small parameter, while αi are known constants.
Assume the following conditions hold:
I. Functions Ai(t), i = 0, 2 and F (t) are continuously differentiable on a segment 0 ≤ t ≤ 1, and

functions Hi(t, x), i = 0, 2 are continuously differentiable on a domain D = {0 ≤ t ≤ 1, 0 ≤ x ≤ 1}.
II. Roots of “additional characteristic equation” µ2 + A2(t)µ + A1(t) = 0 satisfy the following

inequalities µ1(t) 6= µ2(t) and µ1(t) < −γ1 < 0, µ2(t) > γ2 > 0.
To construct the solution, we first identify auxiliary functions. This article [13] serves as a reference.

From the third formula to the seventh, we obtained the required results.
We look for the solution to equation (1) with conditions (2) in the form

y(t, ε) =

3∑
i=1

Ciyi(t, ε) +
1

ε2

t∫
0

K0(t, s, ε)z(s, ε)ds−
1

ε2

1∫
t

K1(t, s, ε)z(s, ε)ds; (3)

here the fundamental solutions are yi(t, ε), i = 1, 3. K0(t, s, ε), K1(t, s, ε) are auxiliary functions
expressed by article [13], Ci, i = 1, 3 are unknown constants.

We now denote the right side of equation (1) as follows

z(t, ε) = F (t) +

1∫
0

2∑
i=0

Hi(t, x)y
(i)(x, ε)dx.

Instead of y(x, ε), we apply formula (3) to obtain the formula for z(t, ε)

z(t, ε) = f(t, ε) +
1

ε2

1∫
0

[ 1∫
s

( 2∑
i=0

Hi(t, x)K
(i)
0 (x, s, ε)dx

]
z(s, ε)ds−

− 1

ε2

1∫
0

[ s∫
0

( 2∑
i=0

Hi(t, x)K
(i)
1 (x, s, ε)dx

]
z(s, ε)ds,

here

f(t, ε) = F (t) + C1

1∫
0

( 2∑
i=0

Hi(t, x)y1(x, ε)
)
dx+ C2

1∫
0

( 2∑
i=0

Hi(t, x)y2(x, ε)
)
dx+

+C3

1∫
0

( 2∑
i=0

Hi(t, x)y3(x, ε)
)
dx = F (t) + C1φ1(t, ε) + C2φ2(t, ε) + C3φ3(t, ε),
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φi(t, ε) =

1∫
0

(
H0(t, x)yi(x, ε) +H1(t, x)y

′
i(x, ε) +H2(t, x)y

′′
i (x, ε)

)
dx, i = 1, 3. (4)

Now, we provide the following notation

H(t, s, ε) =
1

ε2

1∫
s

( 2∑
i=0

Hi(t, x)K
(i)
0 (x, s, ε)

)
dx− 1

ε2

s∫
0

( 2∑
i=0

Hi(t, x)K
(i)
1 (x, s, ε)

)
dx.

III. The kernel H(t, s, ε) does not have an eigenvalue with the value 1.
We get the Fredholm equation of the second type

z(t, ε) = f(t, ε) +

1∫
0

H(t, s, ε)z(s, ε)ds. (5)

If condition III is satisfied, the solution of integral equation (5) is the only one and it is written

z(t, ε) = f(t, ε) +

1∫
0

R(t, s, ε)z(s, ε)ds, (6)

where R(t, s, ε) represents the resolvent of the kernel H(t, s, ε).
Formula (6) is substituted for z(s, ε) in formula (3), then formula (3) is written

y(t, ε) =

3∑
i=1

Ciyi(t, ε)+
1

ε2

t∫
0

K0(t, s, ε)
[
F (s)+

3∑
i=1

Ciφi(t, ε)+

1∫
0

R(s, p, ε)
(
F (p)+

3∑
i=1

Ciφi(p, ε)
)
dp
]
ds−

− 1

ε2

1∫
t

K1(t, s, ε)
[
F (s) +

3∑
i=1

Ciφi(t, ε) +

1∫
0

R(s, p, ε)
(
F (p) +

3∑
i=1

Ciφi(p, ε)
)
dp
]
ds.

Now, we provide the following notations:

Qi(t, ε) = yi(t, ε) +
1

ε2

t∫
0

K0(t, s, ε)φi(s, ε)ds−
1

ε2

1∫
t

K1(t, s, ε)φi(s, ε)ds, i = 1, 3, (7)

P (t, ε) =
1

ε2

t∫
0

K0(t, s, ε)F (s, ε)ds−
1

ε2

1∫
t

K1(t, s, ε)F (s, ε)ds, (8)

then the formulas for y(t, ε) are abbreviated

y(j)(t, ε) = C1Q
(j)
1 (t, ε) + C2Q

(j)
2 (t, ε) + C3Q

(j)
3 (t, ε) + P (j)(t, ε), j = 0, 2. (9)

Substituting equation (9) into condition (2) yields the algebraic system for calculating Ci, where
i = 1, 3: 

C1Q1(0, ε) + C2Q2(0, ε) + C3Q3(0, ε) + P (0, ε) = α0,

C1Q
′
1(0, ε) + C2Q

′
2(0, ε) + C3Q

′
3(0, ε) + P

′
(0, ε) = α1,

C1Q
′′
1(0, ε) + C2Q

′′
2(0, ε) + C3Q

′′
3(0, ε) + P

′′
(0, ε) = α2.

(10)
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As ε → 0, the asymptotic behavior of Ci, i = 1, 3, is obtained when the main determinant of system
(10) is δ(ε) 6= 0.

C1(ε) = −ε
µ2(0)(α0y

′
30(0)− α1)

µ1(0)(µ2(0)− µ1(0))
+O(ε2),

C2(ε) = −ε
α0

φ2(0)

(
φ3(0) + y′30(0)µ1(0)µ2(0)− (11)

−y′30(0)
µ2(0)φ1(0)

µ1(0)(µ2(0)− µ1(0))

)
+ ε

α1

φ2(0)

(
µ1(0)µ2(0)−

− µ2(0)φ1(0)

µ1(0)(µ2(0)− µ1(0))

)
− ε F (0)

φ2(0)
+O(ε2),

C3(ε) = α0 +O(ε).

By formula (4) φi(t, ε), i = 1, 3 are found

φ1(s, ε) =
1

ε

(
−H2(s, 0)µ1(0)y10(0) +O(ε)

)
=

1

ε

(
φ1(s) +O(ε)

)
,

φ2(s, ε) =
1

ε

(
H2(s, 1)µ2(1)y20(1) +O(ε)

)
=

1

ε

(
φ2(s) +O(ε)

)
,

φ3(s, ε) =

1∫
0

2∑
j=0

Hj(s, x)y
(j)
30 (x)dx+O(ε) = φ3(s) +O(ε).

Given formulas (7) and (8), we obtain the asymptotic behaviors of Q(j)
i (t, ε) and P (j)(t, ε), j = 0, 2,

i = 1, 3 :

Q
(j)
1 (t, ε) =

1

ε

t∫
0

y
(j)
30 (t)φ1(s)

µ1(s)µ2(s)y30(s)
ds+

1

εj
e

1

ε

t∫
0

µ1(x)dx
(
y10(t)µ

j
1(t)−

φ1(0)y10(t)µ
j
1(t)

y10(0)µ21(0)(µ2(0)− µ1(0))

)
+

+
1

εj
e
−
1

ε

1∫
t
µ2(x)dx φ1(1)y20(t)µ

j
2(t)

y20(1)µ22(1)(µ2(1)− µ1(1))
+

1

εj
φ1(t)

(µ2(t)− µ1(t))

(
µj1(t)

µ21(t)
− µj2(t)

µ22(t)

)
, j = 0, 2, (12.a)

Q
(j)
2 (t, ε) =

1

ε

t∫
0

y
(j)
30 (t)φ2(s)

µ1(s)µ2(s)y30(s)
ds− 1

εj
e

1

ε

t∫
0

µ1(x)dx φ2(0)y10(t)µ
j
1(t)

y10(0)µ21(0)(µ2(0)− µ1(0))
+

+
1

εj
e
−
1

ε

1∫
t
µ2(x)dx

(
y20(t)µ

(j)
2 (t) +

φ2(1)y20(t)µ
j
2(t)

y20(1)µ22(1)(µ2(1)− µ1(1))

)
+

+
1

εj
φ2(t)

(µ2(t)− µ1(t))

(
µj1(t)

µ21(t)
− µj2(t)

µ22(t)

)
, j = 0, 2, (12.b)

Q
(j)
3 (t, ε) = y

(j)
30 (t) +

t∫
0

y
(j)
30 (t)φ3(s)

µ1(s)µ2(s)y30(s)
ds− 1

εj−1
e

1

ε

t∫
0

µ1(x)dx φ3(0)y10(t)µ
j
1(t)

y10(0)µ21(0)(µ2(0)− µ1(0))
+
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+
1

εj−1
e
−
1

ε

1∫
t
µ2(x)dx φ3(1)y20(t)µ

j
2(t)

y20(1)µ22(1)(µ2(1)− µ1(1))
+

1

εj−1
φ3(t)

(µ2(t)− µ1(t))

(
µj1(t)

µ21(t)
− µj2(t)

µ22(t)

)
, j = 0, 2,

(12.c)

P (j)(t, ε) =

t∫
0

y
(j)
30 (t)F (s)

µ1(s)µ2(s)y30(s)
ds− 1

εj−1
e

1

ε

t∫
0

µ1(x)dx F (0)y10(t)µ
j
1(t)

y10(0)µ21(0)(µ2(0)− µ1(0))
+

+
1

εj−1
e
−
1

ε

1∫
t
µ2(x)dx F (s)y20(t)µ

j
2(t)

y20(1)µ22(1)(µ2(1)− µ1(1))
+

1

εj−1
F (t)

(µ2(t)− µ1(t))

(
µj1(t)

µ21(t)
− µj2(t)

µ22(t)

)
, j = 0, 2.

(12.d)
Theorem 1. If conditions I-III are valid, then the solution for integro-differential equation (1) and

(2) holds the following asymptotic estimates as ε→ 0 :

|y(j)(t, ε)| ≤ C
(
|α0|+ ε|α1|+ ε2|α2|+ max

0≤t≤1
|F (t)|

)
+

+
C

εj−1
e
−
t

ε
γ1
(
|α0|+ |α1|+ ε2|α2|+ max

0≤t≤1
|F (t)|

)
+ (13)

+
C

εj−1
e
−
1− t
ε

γ2
(
|α0|+ |α1|+ ε2|α2|+ max

0≤t≤1
|F (t)|

)
, j = 0, 1, 2,

where C > 0 is a constant independent of ε.
Proof. Asymptotic estimates of Ci, i = 1, 3 and Q

(j)
i (t, ε), P (j)(t, ε) are obtained by applying

formulas (11)-(12.a-12.d):

|Ci| ≤ Cε
(
|α0|+ |α1|

)
, i = 1, 2,

|C3| ≤ C
(
|α0|+ ε2|α2|

)
,

|Q(j)
1 (t, ε)| ≤ C

(
1 +

1

εj
e
−
t

ε
γ1

+
1

εj
e
−
1− t
ε

γ2
)
, j = 0, 2,

|Q(j)
2 (t, ε)| ≤ C

(
1 +

1

εj
e
−
t

ε
γ1

+
1

εj
e
−
1− t
ε

γ2
)
, j = 0, 2, (14)

|Q(j)
3 (t, ε)| ≤ C

(
1 +

1

εj−1
e
−
t

ε
γ1

+
1

εj−1
e
−
1− t
ε

γ2
)
, j = 0, 2,

|P (j)(t, ε) ≤ C max
0≤t≤1

|F (t)|
(
1 +

1

εj−1
e
−
t

ε
γ1

+
1

εj−1
e
−
1− t
ε

γ2
)
, j = 0, 2.

We derive asymptotic estimations (13) from asymptotic behaviors (14). Theorem 1 has been proved.
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Conclusion

This article examines the initial problem for a third-order linear integro-differential equation with
a small parameter at the higher derivatives, assuming that the roots of the additional characteristic
equation have opposite signs. This paper presents the construction of a fundamental system of solutions
and a Cauchy function for a singularly perturbed homogeneous differential equation. The functions
Qi(t, ε), P (t, ε), i = 1, 3, and constants Ci, i = 1, 3 exhibit asymptotic behaviors and estimates.
Furthermore, the article provides an analytical formula for solving this singularly perturbed initial
problem. A theorem on asymptotic estimates of the solution is proven.
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