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On the calculation of plates by the series representation of the
deflection function

In the article calculations of rectangular plates by the series representation of the deflection function are
presented. For the considered rectangular plate the investigation was determined by finding the minimum of
the potential energy of the plate by Ritz variation method and by direct substitution of series representation
of the deflection function in the equilibrium equation by Bubnov-Galerkin method. To illustrate the above
variation method, specific examples of the calculation were given for the square hinged bearing plate and
for the rectangle plate rigidly clamped along the whole contour and loaded by the uniformly distributed
load of the given intensity.
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Ritz variational method

Along with the exact methods of finding the plate deflection function by solving the equation (1)
DV*V*W = q(x1,22), (1)

where ¢ — the intensity of the external distributed load; V2V2W — Biharmonic operator, various
methods are applied. They are based on the fact that the problem of integrating the equation (1) can
be replaced by the task of finding the minimum of the potential energy of the plate.
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The first approximate method of determining the minimum value of the functional (2) was the Ritz
method. The essence of it is to provide the desired function, for example deflection function W (z,y) as
a series in a system known functions p;(x,y) with constant coefficients, the system of these functions
must be linearly independent and be complete. Thus, we construct a function

Wn(‘ra y) = al@l(x7y) + a2‘p2(x7y) + ...+ an@n(‘ray)' (3)

The function W, (x, y) matched to the expression for the potential energy of the plate, turn it into
a function of the unknown coefficients a,. The coefficients a,, are chosen so that the energy takes a
minimum value, and this is achieved with the values of the coefficients, which vanishes the first of its
derivatives
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Let us consider the choice of the functions ¢;(z,y) which according to Ritz were called coordinate.
Besides the above mentioned conditions of the linear independence and completeness, they must satisfy

=0, i=12,..,n. (4)
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the geometrical boundary conditions of the problem and preferably, but not necessarily, static boundary
conditions.

For example, for a plate with clamped edges coordinate functions must correspond both boundary
conditions of deflection and rotation angles equal to zero, and for plates with a hinged edges — they
must correspond the condition of equality to zero deflection on the plate circuit.

Another requirement for approximating functions — compliance within the meaning of the problem
being solved. For example, if from the physical considerations it is clear that the desired function is
even, then the approximating functions must be even too. Conversely, if the desired function is a
function of the general form, then the set of approximating functions should consist of even and odd
functions [1].

Let’s consider the problem of the thin plate bending, in some way supported along the contour and
loaded by arbitrary load ¢(x,y). The expression for the total potential energy in this case is
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In accordance with the idea of the Ritz method we define a desired function of deflection in the
form of the expansion (3) with unknown coefficients a;. Here ¢;(z,y) — coordinate functions selected
so as to satisfy the geometric boundary conditions on the plate circuit.

Substituting (3) into (5), we obtain an expression of the total potential energy of the plate, in the
form of the following positive definite quadratic form.

1 1 1
E = 5511&% + 5522&% + 5533&% + ... + d12a1a2 + d13a1a3 + ... + do3asa3 + ...—
—Alpal - Agpag - Agpag, T oeesy (6)
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As mentioned above, the expansion coefficients a; are determined from the condition of the plate
potential energy minimum. Consistently performing calculations according to the formula (4), we get
the system of linear algebraic equations for the unknown coefficients a;:

S11a1 + G12a2 + 61303 + ... + D1y = 0;
S91a1 + 0222 + dazaz + ... + Doy, = 0;
3101 + O32a2 + d33a3 + ... + D3y = 0; (8)

Op1a1 + Opoas + dp3a3 + ... + Anp =0.

The solution of system (8) gives all the coefficients a; and, therefore, determines the approximate
value of deflection function W,,(z,y) by the formula (3).
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As a first example, consider a plate with a hinged support on the contour loaded by uniform load

q. Let us construct an approximate solution of this problem, keeping in the expanding (3), only one
member of the series

Wn(xa y) = CLZ‘SOZ‘(«T, y)

The function o1 (z,y) must satisfy the boundary conditions on the contour of the plate for hinged
support

r=0,r=ay=0y=0b W(xy) =0;

2
z=0, z=a; aﬂa/if,y):o;
O*W (z,y)
y=0, y=b =0

Let us represent the function ¢;(z,y) as a product of two functions

1(z,y) = Y1(x)x1(y).

Moreover, the function must satisfy the boundary conditions when z = 0 and x* = a, and the
function ;(x) — for y = 0 and y = b. Then, according to the formula (7), we have

=D / /{1/}/1,2X% + 20 x1¥1X) + Yixg A

—(1 =) (2¢; xa¥1 X, — 202X 1) Ydwdy;

a b
Ny = //q¢1X1dxdy. (10)
0 0

Functions 91 (x) and x1(y) can take the form
1 (z) = 2t — 2023 + a3
xi(y) = y' —2by° + 6%y,
where a and b — the dimensions of the plate. Let us calculate the derivatives of these functions
Yy (x) = 42° — 6aa® + a®; @] (x) = 122% — 12ax;

X/l(y) = 4y — 6by? + b>; X/{ (y) = 1292 — 12by.

It’s obvious that

¥1(0) = i(a) = ¢, (0) = ¢y (a);  x1(0) = xa(a) = x1(0) = x; (a).

That is, the selected function satisfies the geometrical and static boundary conditions. Here are
integral values in the formula (9)
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Now it is easy to get

24 31 17 17 31 24 a b\2
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515
Alp = %qa b°.
Since the problem is solved in a first approximation, only one equation is left from the system (8)

511@1 AV 0,

1p

from which

A1y 0.1695
a; = = )
1 511 Da2b2(%+g)2

If a = b, i.e. when the plate is square, we obtain

=0. 0424—
a*D

Thus, the solution to a first approximation for a given choice of approximating function for a square,
hinged supported plate is as follows

0.0424q
a*D
When we assume in this decision x = y = 0.5a, then the deflection at the center of the plate is
equal to:

W (z,y) = (2* — 2a2® + a®z)(y* — 2ay® + a®y) -

4

W(z,y) — 0.00411%.

Exact solution, obtained by the function expanding into double trigonometric series, gives the
following deflection value in the center of the plate:

4

— 0.00406 2%

W(z,y) o)

i.e. the error does not exceed 1.5%.
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In some way worse is the case with the values of the maximum bending moment and a maximum
reduced lateral force. Here calculations give the following results

M7 (x,y) = —Dai (¢ x, + v, X, ) = 0.0517ga’.
0.5a
0.5a

cion

T
Yy

Exact solution is
M, = 0.0479ga?,

error of 8%.

Qx(x,y) = —Da; (¢ x, + (2— )¢, X, ) = 0.375qa.

0
0.5a

Yy
Exact solution is Q% (z,y) = 0.420qa , inaccuracy is 10,7%.
We see that even the first approximation allows to get almost exact solution for deflections. For
more accurate values of internal forces of the plate in the decomposition (3) a greater number of
members should be hold.

Bubnov-Galerkin method

At investigation of the approximate solution by Ritz method we found a minimum potential energy
of a plate instead of the solution of the differential equation (1). However, as I.G.Bubnov specified,
it is possible to solve directly the differential equation of a bend of a plate (1), substituting in it
decomposition of a deflection function in a row on other known coordinate functions with constant
coefficients. This method differs from Ritz method in the fact that coefficient of decomposition are
found from conditions of orthogonality of coordinate functions. Besides, these functions have to meet
not only geometrical boundary conditions, but also static. Otherwise, they must be linearly independent
and form a complete system. Later V.G. Galerkin refused demands orthogonal coordinate functions |2].

Let us now consider the application of Bubnov-Galerkin method to the problem of bending of
rectangular plates. At the solution of the equation of a bend of a plate (1) we will set required function
as follows W (x,y):

W(x,y) :ZaiSDi(l‘,y), (11)
=1

where @;(x,y) — the approximating functions meeting all kinematic and static conditions on a plate
contour. Substituting (11) in (1), we will multiply both sides by ¢k (x,y) and integrate the resulting
expression of the entire surface of the plate. As a result we will get:

// [Dzaivvw(w,y)} ~or(@, y)dady = // q(x,y)or(z, y)dzdy; (12)

Oik = O =/ VV@i(z,y)] - oz, y)drdy;

‘/L"
Aqu// q(Dy)sok(m,y)dxdy;
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S11a1 + S12a2 + d13a3 + ... + D1g = 0;
9101 + G22a2 + G23a3 + ... + Nagg = 0;
d31a1 + 032a2 + 033a3 + ... + Agzq = 0; (13)

Op1a1 + Op2as + 0p3a3 + ... + Anq = 0.

\

The reciprocity of d; and §x; coefficients is also easily proved by integration in parts provided that
@; functions meet all boundary statements of the problem. The decision of system (13) gives all a;
unknown numbers and defines, thus, the approximate solution of the allowing equation (1). It should
be noted that equation (12) can be given a clear mechanical meaning when functions g (z,y) are
viewed as possible movements. In this case each of the equations of system (12) can be interpreted as
a result of the principle of possible movements [3].

As an example we will consider the rectangular plate of ABCB jammed on all contour and loaded
with uniform loading of q.

The boundary conditions in this case are:

xr==xa; W(x,y) = a;;/ =0; (14)
ow
y = +b; W(w,y)—a—y—o.

We will take the following decomposition for W (x,y) function, taking into account symmetry of a
task:
W(z,y) = ar(@® — a®)*(y* — b*)? + az(a? — a®)2 (4 — 0?)>+
+az(z® — a®)(y® — b*)? + as(2? — a®)*(y* — b%)° + ..,

where g1 (2,y) = (2% = a®)*(y* = 0°)%;  a(z,y) = (a® — a®)?(y® — b%)%; ... et
We can make sure that at such choice of y;(z,y) functions boundary conditions (14) are satisfied
precisely. For creation of the approximate solution we will be limited to the first approach, i.e.

W(z,y) = a1(a? — a®)*(y* — 0*)*.
Then the only one equation will be left from the system (13)

a

b
511(11 = Alq, (511 = / V4g01<p1d:cdy, Alq =
b

—a —

a b
//lq)goldxdy. (15)
b

2o
Further we have

84801
ozt

84901
oyt

84@1

_ 2 12)2,
- 24(y b ) ) 8.%'2(92/2

= 24(y* — a*)?; =16(32% — a®(3y* — b?).
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Hence

a b
84901 8 2
511—// 8x4 8x28y 84cp1dxdy—4//24x—a (2 — b2+
00

+32(32% — a®)(3y* — b*) (2% — a®)?(y? — b*)% + 24(2® — a®)*(y? — V*)?|dady =
4128 - 64 4

— b4 = 2b2

9.7-5-5 b7+ 7

a4)a5b5;

q 64 &b
Aig = - —b? =4—
la //Dx Py — V) dady D25t U
From the first equation (15) we find that

A1q _ 7(]
(511 128(@4 + 4/7a2b2 + b4)D

a)p =

and, therefore,

7q 2 2N2..2 1242
J— _ b .
8@t 1 a7 T )D& )W )

The greatest deflection in the middle when x = 0, y = 0 and a = b, i.e. for a square plate is

W(z,y) = a1p1 =

4
a
Wiaw = 0.0213%.

The exact solution obtained using the series gives

4
qa
W = 0.0202j.
We receive the greatest bending moment in the middle of side of a square from the following formula
o*wW 0*wW
r==xa; y=0, ]\4m,m:—D<8$2 +U0y2)

Mmae = —0.171qa.

Exact solution is

M = —0.205qa>.

max
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A.C.Axanosa, [''A.Ecenbaesa, H.K.Typcoiaranues

Maiibicy (pyHKIUAIaApbIH KaTapJjiapra >KiKTey apKbLJIbI
MJIaCTUHAJIAp/Ibl ecenTey

Maxkasaga nmacTuHAHBIH, MafbICy DYHKITHUSCHIH KATAPFa XKIKTEY apKbLIBI TIKTOPTOYPHIIITHI IIJIACTHHATIAD-
JIBl ecenTey KopceTiireH. KapacToIpbuirad TIKTOPTOYPBIINITHL IIJIACTHHAJIAP YVIIH PUTII BapraIusibK *KoHe
Tanepkun-By6HOB 9micTepi KomanbLFan. bepiaren 3eprreyiepIiH HOTUKEIEPIH KOPCETY YIMiH GipKaJIbIII-
THI TapaJifal »KYKTeMe 9Cep eTeTiH 0apJIblK »Karbl KATTHI OEKITIJIPeH >K9HE TOICAJIbI TipeJIreH TiKTepTOy-
PBILITHI K9HE KBa/IpaT IJIACTUHAJIAD eceli IIBIFapbLIFaH.

A.C.Axanosa, [''A.Ecenbaesa, H.K.Typcoiarannes

O pacyere mIacTUH pa3JioXKeHNEM B psJ (PYHKIIINA MPOTNOOB

B crarbe mpeacraBiieHbl pacdyeThl MPsIMOYTOJIBHBIX TIJIACTUH PA3JIOYKEHUEM B Psijl PYHKIMY TPOTruba Ijia-
crunbl. Jl7s1 paccMaTpuBaeMoil MPsSIMOYTOJIBHOM IJIACTUHBI TPOBEIEHO HUCCJIEIOBAHUE IIyTEM OTBICKAHUST
MHHUMYMa HOTEHIMAJIbHON SHEPIUHU IIACTUHBI 110 BAPUAIMOHHOMY MeToqy PuTiia um HemocpeacTBEHHOM
MOJICTAHOBKOM pas3iioKeHusi (PYHKIUU MPOrMOOB B ypaBHEHNE paBHOBECUs IJIACTUHBI MO0 MeToy ByGHOBa-
Tanepkuna. st myumrocTpammy U3/I0:KEHHOTO MCCJIEIOBAHNS TTPUBEJIEHBI KOHKPETHBIE MPUMEPHI PacueTa
14 KBa/IPATHOMN MIAPHUPHO-OIIEPTON IJIACTUHBI U IIPAMOYTOJIbHON IJIACTUHBI, 3allleMJIEHHOI 110 BCEMY KOH-
TYpy U Harpy>Ke€HHOU DPaBHOMEDHOI Harpy3KOi 3aJaHHOU MHTEHCUBHOCTH.
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