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H. Olǧar1,∗, F. Muhtarov2, O. Mukhtarov1,2

1Department of Mathematics, Faculty of Science, Tokat Gaziosmanpaşa University, Tokat, Turkey;
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This paper is devoted to a new type of boundary-value problems for Sturm-Liouville equations defined
on three disjoint intervals (−π,−π + d), (−π + d, π − d) and (π − d, π) together with eigenparameter
dependent boundary conditions and with additional transmission conditions specified at the common end
points −π + d and π − d, where 0 < d < π. The considered problem cannot be treated by known
techniques within the usual framework of classical Sturm-Liouville theory. To establish some important
spectral characteristics we introduced the polynomial-operator formulation of the problem. Moreover, we
develop a new modification of the Rayleigh method to obtain lower bound of eigenvalues.
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Introduction

This work is motivated by the problem of understanding the nature of the spectral characteris-
tics of the class of boundary-value problems (BVPs) for Sturm-Liouville equations (SLEs) defined of
finite number of nonintersecting intervals together with additional interaction conditions specified at
the common endpoints of these intervals. Moreover, the spectral parameter appears linearly in both
differential equation and boundary conditions (BCs). Such type of BVPs (the so-called many-interval
boundary value transmission problems (MIBVTPs)) are encountered in solving various transfer prob-
lems of mathematical physics. For example, some MIBVTPs arise in heat transfer problems, mass
transfer problems, diffraction problems, seismic behavior of the Earth’s, waves in the atmosphere,
etc. (see, [1–7]). Its solutions are determined by different special functions, such as Bessel functions,
Chebyshev polynomials, Legendre polynomials, Hypergeometric functions etc. Important studies have
been carried out recently regarding MIBVTPs [8–24].

The aim of this work is to investigate the following MIBVTP, consisting of three-interval SLE

− g′′(x) + q(x)g(x) = λr(x)g(x) (1)

defined on three-interval (−π,−π + d) ∪ (−π + d, π − d) ∪ (π − d, π), together with the λ-dependent
BCs given by

cosϕ g(−π + d) + sinϕ g′(−π + d) = 0 , 0 < ϕ < π, (2)

αg(π) − α
′
g′(π) + λ

(
βg(π) − β

′
g′(π)

)
= 0 (3)
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and with the additional transmission conditions (TCs) at the points of interaction −π + d and π − d
given by

T−π+d(g) = 0 , T−π+d(g
′) = θ1 g(−π + d), (4)

Tπ−d(g) = 0 , Tπ−d(g
′) = θ2 g(π − d), (5)

where 0 < d < π, Tx(g) is the linear form defined by Tx(g) = limδ→0 g(x + |δ|) − limδ→0 g(x − |δ|),
α, α

′
, β, β

′
, θ1, θ2 are real numbers, q(x) is a real-valued function, q ∈ L2(−π, π). Everywhere we shall

assume that

θ3 :=

∣∣∣∣ α′ α

β
′
β

∣∣∣∣ > 0.

To study some important spectral characteristic of the considered MIBVTP (1)-(5) we introduced a
corresponding operator-polynomial in appropriate Hilbert space. Note that, MIBVTPs have been an
important research in recent years [25–31].

1 Operator-pencil treatment of the problem

To study some spectral characteristics of the MIBVTP (1)–(5) we shall use the operator-pencil
theory and Rayleigh theory. Let us formulate some definitions and facts, which is needed for further
consideration.

Let k ≥ 0 be an integer. The Sobolev space W k
2 (a, b) is defined to be the linear space consisting

of all functions g ∈ L2(a, b) having generalized derivatives g′, g′′, ..., g(k) ∈ L2(a, b) equipped with the
inner product

〈g, h〉Wk
2 (a,b) :=

k∑
j=0

〈g(j), h
(j)〉L2(a,b)

and corresponding norm ‖g‖2
Wk

2 (a,b)
= 〈g, g〉Wk

2 (a,b). Here, L2(a, b) denotes the space of all complex-

valued functions g, such that
∫ b
a |g

2(x)|dx <∞, equipped with the inner product

〈g, h〉L2(a,b) :=

∫ b

a
g(x) h(x)dx.

Denote Ω1 = (−π,−π+d), Ω2 = (−π+d, π−d), Ω3 = (π−d, π) and Ω = Ω1∪Ω2∪Ω3. For investigation
of the BVTP (1)–(5) we shall use the discret sum space ⊕L2 := L2(Ω1) ⊕ L2(Ω2) ⊕ L2(Ω3) with the
inner-product

〈g, h〉0 :=
3∑
i=1

∫
Ωi

g(x)h(x)dx

and direct sum space

⊕W 1
2 =

{
g ∈ ⊕L2

∣∣g ∈W 1
2(Ωi)(i = 1, 2, 3), g(−π + d+ 0) = g(−π + d− 0),
g(π − d+ 0) = g(π − d− 0)

}

with the inner-product

〈g, h〉1 :=
3∑
i=1

∫
Ωi

(
g′(x)h

′
(x) + g(x)h(x)

)
dx.

We can show that the inner-product spaces ⊕L2 and ⊕W 1
2 are Hilbert spaces.
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In the Hilbert space ⊕W 1
2 we define a new inner-product by

〈g, h〉2 :=

3∑
i=1

∫
Ωi

{
g′(x)h

′
(x) + q(x)g(x)h(x)

}
dx

with the corresponding norm ‖g‖22 = 〈g, g〉2. Obviously, there are positive constants m and M, such
that

m ‖g‖1 < ‖g‖2 < M ‖g‖1
for all g ∈ ⊕W 1

2 .
Using the well-known embedding properties for Sobolev spaces (see [20]) we can show that

|g(xj)|2 ≤ ` ||g′||20 +
2

`
||g||20, (6)

|g(ξ)| ≤ C(ξ) ||g||2 (7)

for any g ∈ ⊕W 1
2 where j = 1, 2, 3, 4, x1 = −π, x2 = −π+d∓0, x3 = π−d∓0, x4 = π, ` is a positive

number (small enough), ξ ∈ Ω, the constant C(ξ) is independent of the function g and dependent only
of ξ. Let us introduce to the consideration the Hilbert space H, consisting of all vector-functions(
χ(x), χ1

)
∈ ⊕W 1

2 ⊕C := H equipped with the inner product

〈Γ,Ψ〉H := 〈χ, ϕ〉1 + χ1 ϕ1,

where Γ = (χ, χ1) and Ψ = (ϕ, ϕ1) ∈ H.
The concept of weak eigenfunction is based on the weak solutions of the problem (1)–(5), which we

shall define by the following procedure. By multiplying the differential equation (1) by the conjugate
of an arbitrary h ∈ ⊕W 1

2 satisfying the conditions h(π − d+ 0) = h(π − d− 0) and h(−π + d+ 0) =
h(−π + d− 0) and then integrating by parts over the intervals Ωi (i = 1, 2, 3) we have

3∑
i=1

∫
Ωi

{
g′(x)h

′
(x) + q(x)g(x)h(x)

}
dx− β

β′
g(π)h(π)− cosϕ

sinϕ
g(−π)h(−π) +

+ θ1g(−π + d)h(−π + d) + θ2g(π − d)h(π − d) +
κ

β′
h(π) = λ

3∑
i=1

∫
Ωi

ghdx, (8)

and

g(π)

β′
− α

′

β′
κ

θ3
= λ

κ

θ3
, (9)

where κ := βg(π)− β′g′(π). Thus the BVTP (1)–(5) is transformed into the system of equalities (8)
and (9), all terms of which are defined for the g, h ∈ ⊕W 1

2 .

Definition 1. The element Γ = (g(x), κ) ∈ ⊕W 1
2 is said to be a weak solution of the BVTP (1)–(5)

if the equations (8)-(9) are satisfied for any h ∈ ⊕W 1
2 .

Let us introduce to the consideration the following bilinear forms:

τ0(g, h) := − β

β′
g(π)h(π)− cosϕ

sinϕ
g(−π)h(−π) + θ1g(−π + d)h(−π + d) +

+ θ2g(π − d)h(π − d), (10)
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τ1(g, h) :=
3∑
i=1

∫
Ωi

r(x)g(x) h(x)dx, (11)

and
τ2(κ, h) :=

κ

β′
h(π). (12)

The reduction of identities (8)-(9) to an operator equation is based on the following result.

Theorem 1. There are bounded linear operators S0, S1 : ⊕W 1
2 → ⊕W 1

2 and S2 : C → ⊕W 1
2 such

that

τn(g, h) = 〈Sng, h〉2 for n = 0, 1 and
τn(κ, h) = 〈Snκ, h〉2 for n = 2. (13)

Proof. τn(g, h), n = 0, 1, are linear functionals in h ∈ ⊕W 1
2 for any given g ∈ ⊕W 1

2 and that
τ2(κ, h) is a linear functional in h ∈ ⊕W 1

2 for any given κ ∈ C.
Let g ∈ ⊕W 1

2 be any function. From (10)–(12), it follows immediately that

|τ0(g, h)| ≤ C1 {|g(π)||h(π)|+ |g(−π)||h(−π)|+ |g(−π + d)||h(−π + d)| +

+|g(π − d)||h(π − d)|} ,

|τ1(g, h)| ≤ C2‖g‖‖h‖,

|τ2(κ, h)| ≤ C3|κ| |h(π)|.

Here and below, the symbols Ck, for k = 1, 2, . . . denote different positive constants whose exact values
are not important for the proof.

The interpolation inequalities (6)-(7) imply

‖g‖ ≤ C4‖g‖2 and |g(ξ)| ≤ C5‖g‖2 for any ξ ∈ Ω.

Hence, the functionals τn (n = 0, 1, 2) allow the following estimates:

|τ0(g, h)| ≤ C6 ‖g‖2 ‖h‖2,
|τ1(g, h)| ≤ C7 ‖g‖2 ‖h‖2,
|τ2(κ, h)| ≤ C8 |κ| ‖h‖2.

Therefore, τn (n = 0, 1, 2) are linear continuous functionals in h ∈ ⊕W 1
2 for any given g ∈ ⊕W 1

2 ,
n = 0, 1, and κ ∈ C, n = 2, respectively. Then, the existence of linear bounded operators S0, S1 and S2

follows immediately from the well-known Riesz representation theorem (see, for example, [25]).

Theorem 2. The operators S0, S1 : ⊕W 1
2 → ⊕W 1

2 are self-adjoint and the operator S1 is positive.

Proof. Let g, h ∈ ⊕W 1
2 be arbitrary functions. By (10) and (13), we have that

〈g, S0h〉⊕W 1
2

= 〈S0h, g〉⊕W 1
2

= τ0(h, g) = τ0(g, h) = 〈S0g, h〉⊕W 1
2
.

Hence, the operator S0 is self-adjoint in ⊕W 1
2 . The proof of the self-adjointness of S1 is totaly similar.

The positivity of S1 follows immediately from the fact that the function r(x) is positive definitely.

Theorem 3. The operators Si : ⊕W 1
2 → ⊕W 1

2 (i = 0, 1), S2 : C→ ⊕W 1
2 and S∗2 : ⊕W 1

2 → C are
compact, where S∗2 is the adjoint of S2.
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Proof. To prove the compactness of the operator S0 it is sufficient to show that any weakly con-
vergent sequence {gk}(k = 1, 2, ...) in ⊕W 1

2 is transformed by S0 into a strongly convergent sequence
{S0gk} in the same space. The boundedness of S0 implies the weakly convergence of {S0gk} to S0g
in ⊕W 1

2 , where g(x) is the weak limit of {gk}. Since the embedding operator J : ⊕W 1
2 ↪→ ⊕L2

is compact [20], the sequences (gk) and (S0gk) converge strongly to g and S0g in ⊕ L2 respectively.
In addition, since for each bounded interval I ⊂ R the embedding operator J : W 1

2 (I) ↪→ C(I)
is compact and the sequences {gk} and {S0gk} are bounded in ⊕W 1

2 it follows that these sequences
converge in C(Ω1)⊕ C(Ω2)⊕ C(Ω3).

Further, the compactness of the embedding operator J : ⊕W 1
2 ↪→ C(Ω1)⊕ C(Ω2)⊕ C(Ω3) (see,

for example, [20]) implies that the sequences {gk(di)} and {(S0gk)(di)} converge in C to g(di) and
(S0g)(di) (i = 1, 2, 3, 4) with d1 = −π or d2 = −π+ d ∓ 0 or d3 = π− d ∓ 0 or d4 = π, respectively.
The representations (10)–(12) and inequalities (6) imply

‖ S0(gk − gm)‖22 = 〈S0(gk − gm), S0(gk − gm)〉2 = τ0

(
gk − gm, S0(gk − gm)

)
≤ C1 {|(gk(π)− gm(π))|+ |(gk(−π)− gm(−π))|}
+ C1 {|(gk(−π + d+ 0)− gm(−π + d− 0))|+ |(gk(π − d+ 0)− gm(π − d− 0))|} .

Therefore, ‖S0(gk − gm) ‖2 → 0 as k, m→∞. Hence, the sequence {S0gk} is the Cauchy sequence in
the space ⊕W 1

2 and therefore converges strongly in ⊕W 1
2 . Thus the compactness of the operator S0

is proven. The proof of the compactness of the operator S1 is totally similar.
It is easy to show that the adjoint operator S∗2 is defined by the equality S∗2g = g(π)

β′
, from which

it follows that this operator is compact. Then by virtue of well-known theorem of Functional Analysis
the operator S2 is also compact. The proof is complete.

2 Positiveness of the operator-pencil

It is evident that the BVTP (1)–(5) can be written as the operator-pencil equation in H, given by

A(λ) Γ = 0 , A(λ) = ∆− λ Λ, (14)

where the operators ∆ and Λ are defined by

∆(g, κ) =

(
g + S0g + S2κ , S∗2g −

α
′

β′
κ

θ3

)
, (15)

Λ(g, κ) =

(
S1g ,

κ

θ3

)
, (16)

respectively.

Lemma 1. For all real λ0, the operator A(−λ0) = ∆ + λ0 Λ is self-adjoint in the Hilbert space H.

Proof. Using Theorem 2, it is easy to show that the linear operators ∆ and Λ are self-adjoint.
Therefore, the operator-pencil A(−λ0) = ∆ + λ0 Λ is also self-adjoint in the Hilbert space H.

Lemma 2. The operator-polynomial A(−λ0) is positive definite for sufficiently large positive values
of λ0.

Proof. Taking in view the equality

A(−λ0)Γ =
(
g(x) + S0g(x) + S2κ+ λ0S1g(x) , S∗2g(x)− α

′

β′
κ
θ3

+ λ0
κ
θ3

)
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for Γ = (g(x), κ), we get

〈A(−λ0)Γ,Γ〉H = 〈g(x), g(x)〉2 + 〈S0g(x), g(x)〉2 + 〈S2κ, g(x)〉2 + (S∗2g(x))κ−

− α
′

β′ θ3
|κ|2 + λ0

{
〈S1g(x), g(x)〉2 +

1

θ3
|κ|2
}
. (17)

Let us define the following functionals

P (g) := 〈g′, g′〉0, Q(g) := 〈qg, g〉0, R(g) := 〈rg, g〉0. (18)

From the well-known embedding theorems for Sobolev spaces it follows easily that the inequalities

|g(xj)|2 ≤ Cj1εjP (g) +
Cj2
εj
Q(g) (19)

hold for sufficiently small positive εj , where g ∈ ⊕W 1
2 (j = 1, 2, 3, 4), Cjk (k = 1, 2) are positive

constants; x1 = −π, x2 = −π + d∓ 0, x3 = π − d∓ 0, x4 = π.
Using (18) and (19) and applying the well-known Young inequality, we have the following estimates

〈S0g(x), g(x)〉2 = − β

β′
|g(π)|2 − cosϕ

sinϕ
|g(−π)|2 + θ1|g(−π + d)|2 + θ2|g(π − d)|2

≥
(
−cosϕ

sinϕ
C11ε1 + θ1C21ε2 + θ2C31ε3 −

β

β′
C41ε4

)
P (g)

+

(
−cosϕ

sinϕ

C12

ε1
+ θ1

C22

ε2
+ θ2

C32

ε3
− β

β′
C42

ε4

)
Q(g). (20)

〈S2κ, g(x)〉2 + (S∗2g(x))κ =
2

β′
Re(κ g(π))

≥ − 1

|β′ | γ
|g(π)|2 − γ

|β′ |
|κ|2

≥ − 1

|β′ | γ

{
C41ε4P (g) +

C42

ε4
Q(g)

}
− γ

|β′ |
|κ|2 (21)

for arbitrary γ > 0. It is easy to see that,

〈S1g, g〉2 = R(g) ≥M1Q(g) (22)

for some M1 > 0.
Taking in view the equality

‖g‖22 = P (g) +Q(g) , g ∈ ⊕W 1
2 (23)

and substituting (20)–(23) into (17) we have

〈A(−λ0)Γ,Γ〉H ≥ Φ1P (g) + Φ2(λ0)Q(g) + Φ3(λ0)|κ|2, (24)
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where

Φ1 := 1−
∣∣∣∣cosϕ

sinϕ

∣∣∣∣C11ε1 + θ1 C21 ε2 + θ2 C31 ε3

−
(∣∣∣∣ ββ′

∣∣∣∣+
1

γ |β′ |

)
C41ε4, (25)

Φ2(λ0) := 1−
∣∣∣∣cosϕ

sinϕ

∣∣∣∣ C12

ε1
+ θ1

C22

ε2
+ θ2

C32

ε3

−
(∣∣∣∣ ββ′

∣∣∣∣+
1

γ|β′ |

)
C42

ε4
+ λ0M, (26)

Φ3(λ0) = −

∣∣∣∣∣α
′

β′

∣∣∣∣∣ 1

θ3
− γ

|β′ |
+
λ0

θ3
. (27)

Since θ3 > 0, it is possible to choose the positive parameters γ, ε1, ε2, ε3 and ε4 so small and the
positive parameter λ0 so large that Φ1 > 0, Φ2(λ0) > 0, Φ3(λ0) > 0. Now denoting

Φ(λ0) := min (Φ1 , Φ2(λ0) , Φ3(λ0)) ,

we have

〈A(− λ0)Γ,Γ〉H ≥ Φ(λ0) ‖Γ‖2H

for all Γ ∈ H. Consequently the operator pencil A(−λ0) is positive definite for sufficiently large
λ0 > 0. The proof is complete.

3 Modified Rayleigh quotient and estimation of the eigenvalues

For finding lower bound estimation for eigenvalues we shall introduce a new spectral parameter
µ = λ+ λ0, where λ0 is the parameter from Lemma 2. Then the operator pencil equation A(λ) Γ = 0
is transformed to the spectral problem

A(−λ0) Γ − µΛΓ = 0 (28)

with the new spectral parameter µ. This problem can be rewritten as

µ =
〈
(
∆ + λ0 Λ

)
Γ , Γ〉H

〈ΛΓ , Γ〉H
. (29)

Let h = g in (8). Then equation (8) is converted into the form

〈g, g〉2 + 〈S0g, g〉2 + 〈S2κ, g〉2 = λ〈S1g, g〉2. (30)

Using (30), we have the following Rayleigh quotient

µ =
〈g, g〉2 + 〈S0g, g〉2 + 〈S2κ, g〉2 + (S∗2g)κ− α

′

β′θ3
|κ|2 + λ0

{
〈S1g, g〉2 + 1

θ3
|κ|2
}

〈S1g, g〉2 + 1
θ3
|κ|2

.

(31)

Using (14)–(16), (20)–(27) and (28)–(31) we have the following inequality

µ ≥ Φ1P (g) + Φ2(λ0)Q(g) + λ0R(g) + Φ3(λ0)|κ|2

|κ|2 + 1
θ3
|κ|2

. (32)
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It is easy to show that there are M2 > 0 and M3 > 0, such that

R(g) ≤M2Q(g) ≤ M3‖g‖2

for all g.
Then from inequality (32) we get

µ ≥ min (M2Φ2(λ0) + λ0 , θ3Φ3(λ0)) .

Thus, we have the lower bound estimation for eigenvalues of the BVTP (1)–(5) given by

λk ≥ −λ0 + min (M2Φ2(λ0) + λ0 , θ3Φ3(λ0)) .

Conclusion

In this work, we investigated a new type of boundary value problems (BVPs) for Sturm-Liouville
equations. The problem addressed in our study is different from standard Sturm-Liouville problems
in the sense that the differential equation is defined on three non-overlapping intervals (−π,−π + d),
(−π+d, π−d) and (π−d, π) and the boundary conditions are included four additional conditions at the
interaction points x = −π+d and x = π−d, so-called transmission conditions. Spectral analysis, such
type of multi-interval boundary value transmission problems (MIBVTPs), is much more complicated
to analyze than BVPs. It is not obvious how to apply the known classical methods to such MIBVTPs.
To establish some important spectral characteristics, we introduced a new type polynomial-operator
formulation of the considered MIBVTP. We then proved that this polynomial-operator is self-adjoint
and positive definite for sufficiently large positive values of the spectral parameter λ. Moreover, we
have been developed a new modification of the Rayleigh method to obtain a lower bound for the
eigenvalues.
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