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On the time-optimal control problem for a fourth order parabolic
equation in a two-dimensional domain
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Previously, boundary control problems for the second order parabolic type equation in the bounded domain
were studied. In this paper, a boundary control problem associated with a fourth-order parabolic equation
in a bounded two-dimensional domain was considered. On the part of the considered domain’s boundary,
the value of the solution with control function is given. Restrictions on the control are given in such a
way that the average value of the solution in the considered domain gets a given value. By the method of
separation of variables the given problem is reduced to a Volterra integral equation of the first kind. The
existence of the control function was proved by the Laplace transform method and an estimate was found
for the minimal time at which the given average temperature in the domain is reached.
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Introduction

In this paper, we consider the fourth order parabolic equation in the domain Ω = {(x, y) : 0 < x <
π, 0 < y < π}

ut(x, y, t) + ∆2u(x, y, t) = 0, (x, y, t) ∈ ΩT := Ω× (0,∞), (1)

with boundary value conditions

u(0, y, t) = ψ(y) ν(t), ux(π, y, t) = 0, uxx(0, y, t) = 0, uxxx(π, y, t) = 0, (2)

u(x, 0, t) = 0, uy(x, π, t) = 0, uyy(x, 0, t) = 0, uyyy(x, π, t) = 0, (3)

and initial value condition
u(x, y, 0) = 0, 0 ≤ x, y ≤ π, (4)

where ∆2u(x, y, t) = uxxxx(x, y, t) + uyyyy(x, y, t), ψ(y) is a given function and ν(t) is the control
function.

Suppose M > 0 is a given constant. If the control function ν(t) ∈ W 1
2 (R+) satisfies the conditions

ν(0) = 0 and |ν(t)| ≤ M on the half-line t ≥ 0, we call it admissible control. We will prove later in
Section 2 that the function ν belongs to the class W 1

2 (R+).
Now we present the following minimum time problem.
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Time-Optimal Problem. Assume that θ > 0 is given constant. Then, find the minimal value of
T > 0 such that for t > 0 the solution u(x, y, t) of the problem (1)–(4) with a control function ν(t)
exists and for some T1 > T satisfies the equation

π∫
0

π∫
0

u(x, y, t) dy dx = θ, T ≤ t ≤ T1. (5)

It is known that fourth-order parabolic equations were introduced to describe the epitaxial growth
of nanoscale thin films [1]. Therefore, interest in materials science has been increasing in recent years.

Control problems related to second-order parabolic type equations were first studied by Fattorini
and Friedman [2,3]. Control problems for the infinite-dimensional case were studied by Egorov [4], who
generalized Pontryagin’s maximum principle to a class of equations in Banach space, and the proof of
a bang-bang principle was shown in the particular conditions.

The optimal time problem related to the second-order parabolic type equation in the bounded
n−dimensional domain was studied in a new method by Albeverio and Alimov [5] and the optimal
time’s estimate for achieving a given average temperature was found. In [6,7], mathematical models of
thermocontrol processes for the second order parabolic equation are considered. The control problem
for the second-order parabolic equation associated with the Neumann boundary condition in a bounded
three-dimensional domain is studied in [8]. In this work, an estimate of the optimal time was found
when the average temperature is close to the critical value.

In [9, 10], the control problems of the second-order parabolic type equation associated with the
Dirichlet boundary condition in the two-dimensional domain are studied. In these articles, an estimate
of the minimum time for achieving a given average temperature was found, and the existence of a
control function is proved by the Laplace transform method. The boundary control problem related to
the fast heating of the thin rod for the inhomogeneous heat conduction equation was studied in works
[11,12] and the existence of the admissible control function was proved.

The optimal time problem for the heat equation with the Neumann boundary condition in a one-
dimensional domain is studied in [13]. The difference of this work from the previous works is that the
required estimate for the minimum time is found with a non-negative definite weight function under
the integral condition. In [14], the control problem for a second-order parabolic type equation with
two control functions was studied and the existence of admissible control functions was proved by the
Laplace transform method.

A lot of information on the optimal control problems was given in detail in the monographs of Lions
and Fursikov [15, 16]. Practical approaches to general numerical optimization and optimal control for
equations of the second order parabolic type are studied in works such as [17,18].

Boundary control problems related to the second-order pseudo-parabolic equation in a bounded
domain are studied in detail in works [19–21]. In these works, the existence of the control function is
proved using the method of Laplace transform.

In [22], Guo considered the null boundary control problem for a fourth order parabolic equation
in one-dimensional bounded domain by the method reducing the control problem to the well-posed
problems, proposed by Guo and Littman [23]. In [24], the null interior controllability for a fourth order
parabolic equation was studied. The method that they used is based on Lebeau-Rabbiano inequality.
The initial boundary value problem for equations from a class of fourth order semilinear parabolic
equations was studied by Xu, et al. [25], and the global existence and nonexistence of solutions with
initial data in the potential well are derived. Further research results on the global dynamic behavior
of solutions associated with fourth-order parabolic equations for the epitaxial thin film model were
studied by Chen [26].

In this work, the boundary control problem for the fourth-order parabolic equation is considered.
The difference between this work and the previous works is that in this problem, the control problem
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associated with the fourth order parabolic type equation is studied. In Section 1, the boundary control
problem studied is reduced to the Volterra integral equation of the first kind by the Fourier method.
In Section 2, the existence of a solution to the Volterra integral equation is proved using the Laplace
transform method. Section 3 gives an estimate of the minimum time required to reach a given average
temperature of the plate.

We now consider the eigenvalue problem

∆2X(x, y) = λX(x, y), (x, y) ∈ Ω,

with the boundary value conditions

X(0, y) = Xxx(0, y) = 0, Xx(π, y) = Xxxx(π, y) = 0,

and
X(x, 0) = Xyy(x, 0) = 0, Xy(x, π) = Xyyy(x, π) = 0, (x, y) ∈ ∂Ω.

Then we have the eigenvalue and eigenfunctions defined as follows

λmn =

(
2m+ 1

2

)4

+

(
2n+ 1

2

)4

, Xmn(x, y) = sin
2m+ 1

2
x sin

2n+ 1

2
y, m, n = 0, 1, . . .

Suppose that the function ψ ∈ H4(Ω) satisfies the following conditions

ψ(0) = ψ(1)(π) = ψ(2)(0) = ψ(3)(π) = 0, ψn ≥ 0,

where ψn is the Fourier coefficient of the function ψ(y) and as follows

ψn =
2

π

π∫
0

ψ(y) sin
2n+ 1

2
y dy, n = 0, 1, . . . (6)

We set

βmn =
1

π

(2m+ 1)2 ψn
2n+ 1

, m, n = 0, 1, . . . , (7)

where ψn is defined by (6).

Theorem 1. Let be
0 < θ <

β0M

λ0
.

Set
T0 = − 1

λ0
ln

(
1− θ λ0

β0M

)
.

Then a solution Tmin of the time-optimal problem exists and the estimate Tmin ≤ T0 is valid.

1 Main integral equation

In this section, we consider how the given control problem can be reduced to a Volterra integral
equation of the first kind.

By the solution of the initial-boundary problem (1)–(4), we mean the function u(x, y, t), which is
expressed in the following form

u(x, y, t) = ψ(y) ν(t)− w(x, y, t), (8)
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where the function w(x, y, t) with the regularity w(x, y, t) ∈ C4,4,1
x,y,t (ΩT ) ∩C(Ω̄T ) and wxx, wyy ∈ C(Ω̄)

is the solution to the initial-boundary problem

wt(x, y, t) + ∆2w(x, y, t) = ψ(y) ν ′(t) + ψ(4)(y) ν(t),

with the boundary value conditions

w(0, y, t) = wxx(0, y, t) = 0, wx(π, y, t) = wxxx(π, y, t) = 0,

w(x, 0, t) = wyy(x, 0, t) = 0, wy(x, π, t) = wyyy(x, π, t) = 0,

and the initial condition
w(x, y, 0) = 0.

As a result, we get the following solution

w(x, y, t) =
4

π

∞∑
m=0

∞∑
n=0

ψn
2m+ 1

( t∫
0

e−λmn(t−s) ν ′(s) ds

)
sin

2m+ 1

2
x sin

2n+ 1

2
y+

+
1

4π

∞∑
m=0

∞∑
n=0

(2n+ 1)4 ψn
2m+ 1

( t∫
0

e−λmn(t−s) ν(s) ds

)
sin

2m+ 1

2
x sin

2n+ 1

2
y. (9)

By (8) and (9), we have the solution of the initial-boundary problem (1)–(4) (see, [27]):

u(x, y, t) = ψ(y) ν(t)−

− 4

π

∞∑
m=0

∞∑
n=0

ψn
2m+ 1

( t∫
0

e−λmn(t−s) ν ′(s) ds

)
sin

2m+ 1

2
x sin

2n+ 1

2
y−

− 1

4π

∞∑
m=0

∞∑
n=0

(2n+ 1)4 ψn
2m+ 1

( t∫
0

e−λmn(t−s) ν(s) ds

)
sin

2m+ 1

2
x sin

2n+ 1

2
y.

Using condition (5) and the solution to problem (1)–(4), we can write

h(t) =

π∫
0

π∫
0

u(x, y, t) dx dy = ν(t)

π∫
0

π∫
0

ψ(y) dx dy−

−16

π

∞∑
m=0

∞∑
n=0

ψn
(2m+ 1)2 (2n+ 1)

t∫
0

e−λmn(t−s) ν ′(s) ds−

− 1

π

∞∑
m=0

∞∑
n=0

(2n+ 1)3 ψn
(2m+ 1)2

t∫
0

e−λmn(t−s) ν(s) ds. (10)

From the definition of the function ν(t) and from (10), we may write

h(t) = ν(t)

π∫
0

π∫
0

ψ(y) dx dy − ν(t)
16

π

∞∑
m=0

∞∑
n=0

ψn
(2m+ 1)2 (2n+ 1)

+
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+
1

π

∞∑
m=0

∞∑
n=0

(2m+ 1)2 ψn
2n+ 1

t∫
0

e−λmn(t−s) ν(s) ds. (11)

Note that
π∫

0

π∫
0

ψ(y) dx dy =
16

π

∞∑
m=0

∞∑
n=0

ψn
(2m+ 1)2 (2n+ 1)

. (12)

Then, from (11) and (12), we obtain

h(t) =
1

π

∞∑
m=0

∞∑
n=0

(2m+ 1)2 ψn
2n+ 1

t∫
0

e−λmn(t−s) ν(s) ds.

We set

B(t) =
∞∑
m=0

∞∑
n=0

βmn e
−λmnt, t > 0, (13)

where βmn is defined by (7).
Let there exist M0 > 0 constant. Denote by W (M0) the set of function h ∈ W 2

2 (−∞,+∞), which
satisfies the condition

‖h‖W 2
2 (R+) ≤M0, h(t) = 0 for all t ≤ 0.

Thus, we have the following Volterra integral equation

t∫
0

B(t− s) ν(s) ds = h(t), t > 0, (14)

where h(t) = θ for T ≤ t ≤ T1.

Theorem 2. Assume that M0 > 0 exists. Then, for any function h ∈ W (M0) the solution ν(t) of
integral equation (14) exists and satisfies the condition

|ν(t)| ≤ M.

2 Proof of Theorem 2

Proposition 1. Suppose that α ∈ (34 , 1). Then for the function B(t) defined by (13) the following
estimate

0 < B(t) ≤ Cα t
−α, 0 < t ≤ 1, (15)

is valid.

Proof. Using the definition (13) and λmn =
(
2m+1

2

)4
+
(
2n+1

2

)4, we may write

B(t) =
1

π

∞∑
m=0

(2m+ 1)2 e−(
2m+1

2
)4 t

∞∑
n=0

ψn
2n+ 1

e−(
2n+1

2
)4 t.

We set

A(t) =
∞∑
n=0

ψn
2n+ 1

e−(
2n+1

2
)4 t, t > 0.
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Clearly, for any 0 < t ≤ T , this function satisfies the following inequality

0 < A(T ) ≤ A(t) < A(0). (16)

Let δ > 0 be constant. We know the maximum value of the function g(t, δ) = tαe−δt is reached at
the point t = α

δ and this value is equal to αα

δα e
−α.

As a result, for any α ∈ (34 , 1), we have the following estimate

∞∑
m=0

(2m+ 1)2 e−(
2m+1

2
)4 t = t−α

∞∑
m=0

(2m+ 1)2 tα e−(
2m+1

2
)4 t ≤

≤ 16α αα e−α

tα

∞∑
m=0

(2m+ 1)2

(2m+ 1)4α
≤ Cα t−α, (17)

where
∞∑
m=0

(2m+ 1)2

(2m+ 1)4α
=

∞∑
m=0

1

(2m+ 1)4α−2
< +∞.

Then the required estimate (15) follows from (16) and (17).
Proposition 1 is proved.
As we know, the Laplace transform of the function ν(t) is defined as follows

ν̃(p) =

∞∫
0

e−pt ν(t) dt, where p = σ + i τ, σ > 0, τ ∈ R.

We rewrite integral equation (14) as follows

t∫
0

B(t− s) ν(s)ds = h(t), t > 0.

Then we use Laplace transform and obtain the following equation

h̃(p) =

∞∫
0

e−pt dt

t∫
0

B(t− s) ν(s)ds = B̃(p) ν̃(p).

Thus, we have

ν̃(p) =
h̃(p)

B̃(p)
,

and

ν(t) =
1

2πi

σ+i∞∫
σ−i∞

h̃(p)

B̃(p)
eptdp =

1

2π

+∞∫
−∞

h̃(σ + i τ)

B̃(σ + i τ)
e(σ+i τ)t dτ. (18)

Then we can write

B̃(p) =

∞∫
0

B(t) e−pt dt =
∞∑

m,n=0

βmn

∞∫
0

e−(p+λmn)t dt =
∞∑

m,n=0

βmn
p+ λmn

,
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where B(t) is defined by (13) and

B̃(σ + i τ) =
∞∑

m,n=0

βmn
σ + λmn + i τ

=
∞∑

m,n=0

βmn (σ + λmn)

(σ + λmn)2 + τ2
− i τ

∞∑
m,n=0

βmn
(σ + λmn)2 + τ2

= ReB̃(σ + i τ) + i ImB̃(σ + i τ),

where

ReB̃(σ + i τ) =
∞∑

m,n=0

βmn (σ + λmn)

(σ + λmn)2 + τ2
, ImB̃(σ + i τ) = −τ

∞∑
m,n=0

βmn
(σ + λmn)2 + τ2

.

Obviously, the following inequality holds

(σ + λmn)2 + τ2 ≤ [(σ + λmn)2 + 1](1 + τ2),

and we further have
1

(σ + λmn)2 + τ2
≥ 1

1 + τ2
1

(σ + λmn)2 + 1
. (19)

Thus, due to (19), we can obtain the following estimates

|ReB̃(σ + i τ)| =
∞∑

m,n=0

βmn (σ + λmn)

(σ + λmn)2 + τ2
≥

≥ 1

1 + τ2

∞∑
m,n=0

βmn (σ + λmn)

(σ + λmn)2 + 1
=

C1,σ

1 + τ2
, (20)

and

|ImB̃(σ + i τ)| = |τ |
∞∑

m,n=0

βmn
(σ + λmn)2 + τ2

≥

≥ |τ |
1 + τ2

∞∑
m,n=0

βmn
(σ + λmn)2 + 1

=
C2,σ |τ |
1 + τ2

, (21)

where C1,σ, C2,σ are defined as follows

C1,σ =

∞∑
m,n=0

βmn (σ + λmn)

(σ + λmn)2 + 1
, C2,σ =

∞∑
m,n=0

βmn
(σ + λmn)2 + 1

.

From (20) and (21), we have the following estimate

|B̃(σ + i τ)|2 = |ReB̃(σ + i τ)|2 + |ImB̃(σ + i τ)|2 ≥
min(C2

1,σ, C
2
2,σ)

1 + τ2
,

and
|B̃(σ + i τ)| ≥ Cσ√

1 + τ2
, where Cσ = min(C1,σ, C2,σ). (22)

Proceeding to the limit as σ → 0 from (18), we have

ν(t) =
1

2π

+∞∫
−∞

h̃(i τ)

B̃(i τ)
ei τt dτ. (23)
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Proposition 2. [20] Assume that h(t) ∈ W (M0). Then for the imaginary part of the Laplace
transform of function h(t) the inequality

+∞∫
−∞

|h̃(i τ)|
√

1 + τ2 dτ ≤ C1 ‖h‖W 2
2 (R+)

is valid, where C1 > 0 is a constant.

Proof of the Theorem 2. Now we prove that ν ∈W 1
2 (R+). By (22) and (23), we obtain

+∞∫
−∞

|ν̃(τ)|2(1 + |τ |2) dτ =

+∞∫
−∞

∣∣∣∣∣ h̃(i τ)

B̃(i τ)

∣∣∣∣∣
2

(1 + |τ |2) dτ ≤ C0

+∞∫
−∞

|h̃(i τ)|2(1 + |τ |2)2 dτ = C0‖h‖2W 2
2 (R)

,

C0 = min(C1,0, C2,0) which is defined by (22). Further,

|ν(t)− ν(s)| =

∣∣∣∣∣∣
t∫
s

ν ′(ξ) dξ

∣∣∣∣∣∣ ≤ ‖ν ′‖L2(t− s)1/2.

From (22), (23) and Proposition 2, we have the estimate

|ν(t)| ≤ 1

2π

+∞∫
−∞

|h̃(i τ)|
|B̃(i τ)|

dτ ≤ 1

2πC0

+∞∫
−∞

|h̃(i τ)|
√

1 + τ2dτ ≤

≤ C1

2πC0
‖h‖W 2

2 (R+) ≤
C1M0

2πC0
= M,

where
M0 =

2πC0

C1
M.

Theorem 2 is proved.

3 Estimate for the Minimal Time

Now we introduce the following integral equation

t∫
0

B(t− s) ν(s) ds = θ, T ≤ t ≤ T1,

where B(t) is defined by (13).
We set

β0 = β00, λ0 = λ00,

where βmn defined by (7).

Proposition 3. The following estimate is valid:

B(t) ≥ β0 e−λ0t,

where the function B(t) is defined by Eq. (13).
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The proof of this proposition follows from the fact that the functional series defined by (13) is
positive for all t ≥ 0.

We introduce the following function

H(t) =

t∫
0

B(t− s) ds =

t∫
0

B(s) ds.

It is known that the physical meaning of this function is the average temperature in a bounded
domain Ω (see, [5]). It is known H(0) = 0 and H ′(t) = B(t) > 0.

We set

H∗ = lim
t→∞

H(t) =

∞∫
0

B(s)ds.

The average temperature in the bounded domain does not exceed H∗. Clearly, H∗ is finite. Indeed,

H∗ =

∞∫
0

B(s) ds =
∞∑

m,n=0

βmn
λmn

< +∞,

where βmn is defined by (7) and λmn =
(
2m+1

2

)4
+
(
2n+1

2

)4.
Proposition 4. Assume that 0 < θ < MH∗. Then there exist T > 0 and a control function ν(t) and

the following equality
T∫
0

B(T − s) ν(s)ds = θ (24)

is valid.

Proof. The proof of this follows directly from the properties of the function H. Indeed, if we set
ν(t) = M then

t∫
0

B(t− s) ν(s)ds = M

t∫
0

B(t− s)ds = M H(t),

and because of (24) there exists T > 0 so that M H(T ) = θ.
Proposition 4 is proved.

Remark 1. It is clear that the value T , which was found in Proposition 4, gives a solution to the
problem. That is T is the root of the following equation

H(T ) =
θ

M
. (25)

Lemma 1. Let
0 < θ <

β0M

λ0
.

Then there exists T > 0 so that

T < − 1

λ0
ln

(
1− θ λ0

β0M

)
,

and Eq. (25) is fulfilled.
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Proof. Using Proposition 3, we can write the following inequality

H(t) =

t∫
0

B(s) ds ≥ β0

t∫
0

e−λ0sds =

=
β0
λ0

(
1− e−λ0t

)
. (26)

To determine T0, we consider the following equation:

β0
λ0

(
1− e−λ0 T0

)
=

θ

M
. (27)

Then we get

T0 = − 1

λ0
ln

(
1− θ λ0

β0M

)
.

In accordance with (26) and (27) we have

0 <
θ

M
≤ H(T0).

Then obviously there exists T , 0 < T < T0, which is a solution to equation (25).
Lemma 1 is proved.
The proof of Theorem 1 follows from Lemma 1.
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Екiөлшемдi облыстағы төртiншi реттi параболалық теңдеу үшiн
оңтайлы уақытты басқару мәселесi туралы

Ф.Н. Дехконов

Наманган мемлекеттiк университетi, Наманган, Өзбекстан

Бұрын шектелген облыстағы екiншi реттi параболалық типтi теңдеу үшiн шекаралық бақылау есеп-
терi зерттелдi. Бұл жұмыста шектелген екiөлшемдi облыстағы төртiншi реттi параболалық теңде-
умен байланысты шекаралық бақылау есебi қарастырылған. Қарастырылатын облыс шекарасының
бөлiгiнде басқару функциясы бар шешiмнiң мәнi берiлген. Бақылаудағы шектеулер қарастырылатын
облыстағы шешiмнiң орташа мәнi нақты мәндi алатындай етiп берiлдi. Айнымалыларды бөлу әдiсiмен
берiлген есеп бiрiншi тектi Вольтерра интегралдық теңдеуiне келтiрiледi. Басқару функциясының бар
болуы Лаплас түрлендiру әдiсiмен дәлелдендi және облыста берiлген орташа температураға жетудiң
ең аз уақытының бағасы табылды.

Кiлт сөздер: бастапқы-шекаралық есеп, төртiншi реттi параболалық теңдеу, ең аз уақыт, рұқсат
етiлген бақылау, Вольтерра интегралдық теңдеуi, Лапластың түрлендiру әдiсi.

О задаче быстродействия параболического уравнения
четвертого порядка в двумерной области

Ф.Н. Дехконов

Наманганский государственный университет, Наманган, Узбекистан

Ранее были исследованы задачи граничного управления для уравнения параболического типа вто-
рого порядка в ограниченной области. В данной работе рассмотрена задача граничного управления,
связанная с параболическим уравнением четвертого порядка в ограниченной двумерной области. На
части границы рассматриваемой области дано значение решения с функцией управления. Ограни-
чения на управление задаются таким образом, чтобы среднее значение решения в рассматриваемой
области получало заданное значение. Задача, заданная методом разделения переменных, сводится
к интегральному уравнению Вольтерра первого рода. Методом преобразования Лапласа доказано
существование функции управления и найдена оценка минимального времени достижения заданной
средней температуры в области.

Ключевые слова: начально-краевая задача, параболическое уравнение четвертого порядка, минималь-
ное время, допустимое управление, интегральное уравнение Вольтерра, метод преобразования Лапла-
са.
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