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On the time-optimal control problem for a fourth order parabolic
equation in a two-dimensional domain
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Previously, boundary control problems for the second order parabolic type equation in the bounded domain
were studied. In this paper, a boundary control problem associated with a fourth-order parabolic equation
in a bounded two-dimensional domain was considered. On the part of the considered domain’s boundary,
the value of the solution with control function is given. Restrictions on the control are given in such a
way that the average value of the solution in the considered domain gets a given value. By the method of
separation of variables the given problem is reduced to a Volterra integral equation of the first kind. The
existence of the control function was proved by the Laplace transform method and an estimate was found
for the minimal time at which the given average temperature in the domain is reached.
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Introduction

In this paper, we consider the fourth order parabolic equation in the domain Q2 = {(z,y) : 0 < x <
T, 0<y<m}

Ut(%y,t) =+ AQ’U,(.%":%t) = 07 (x7y7t) € QT =0 x <O7OO)7 (1)

with boundary value conditions
U(O, Y, t) = w(y) V(t)a ux(w, Y, t) = 0, urr(ov Y, t) = 0, U:pmm(ﬂ—y Y, t) = 0, (2)

uw(z,0,t) = 0, wuy(z,m,t) = 0, uy(x,0,t) = 0, wuyyy(z,m,t) =0, (3)

and initial value condition
u(z,y,0) = 0, 0<uzy<m, (4)

where A%u(z,y,t) = Upzax(T, Y, ) + Uyyyy (7,9, 1), ¥(y) is a given function and v(t) is the control
function.

Suppose M > 0 is a given constant. If the control function v(t) € W4 (R, ) satisfies the conditions
v(0) = 0 and |v(t)] < M on the half-line ¢t > 0, we call it admissible control. We will prove later in
Section 2 that the function v belongs to the class W3 (R,).

Now we present the following minimum time problem.
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Time-Optimal Problem. Assume that # > 0 is given constant. Then, find the minimal value of
T > 0 such that for ¢ > 0 the solution u(x,y,t) of the problem (1)—(4) with a control function v(t)
exists and for some 77 > T satisfies the equation

[ [uwyvayaz=o. T<e<m (5)
0 0

It is known that fourth-order parabolic equations were introduced to describe the epitaxial growth
of nanoscale thin films [1]. Therefore, interest in materials science has been increasing in recent years.

Control problems related to second-order parabolic type equations were first studied by Fattorini
and Friedman [2,3]. Control problems for the infinite-dimensional case were studied by Egorov [4], who
generalized Pontryagin’s maximum principle to a class of equations in Banach space, and the proof of
a bang-bang principle was shown in the particular conditions.

The optimal time problem related to the second-order parabolic type equation in the bounded
n—dimensional domain was studied in a new method by Albeverio and Alimov [5] and the optimal
time’s estimate for achieving a given average temperature was found. In [6,7], mathematical models of
thermocontrol processes for the second order parabolic equation are considered. The control problem
for the second-order parabolic equation associated with the Neumann boundary condition in a bounded
three-dimensional domain is studied in [8]. In this work, an estimate of the optimal time was found
when the average temperature is close to the critical value.

In |9, 10], the control problems of the second-order parabolic type equation associated with the
Dirichlet boundary condition in the two-dimensional domain are studied. In these articles, an estimate
of the minimum time for achieving a given average temperature was found, and the existence of a
control function is proved by the Laplace transform method. The boundary control problem related to
the fast heating of the thin rod for the inhomogeneous heat conduction equation was studied in works
[11,12] and the existence of the admissible control function was proved.

The optimal time problem for the heat equation with the Neumann boundary condition in a one-
dimensional domain is studied in [13]. The difference of this work from the previous works is that the
required estimate for the minimum time is found with a non-negative definite weight function under
the integral condition. In [14], the control problem for a second-order parabolic type equation with
two control functions was studied and the existence of admissible control functions was proved by the
Laplace transform method.

A lot of information on the optimal control problems was given in detail in the monographs of Lions
and Fursikov [15,16]. Practical approaches to general numerical optimization and optimal control for
equations of the second order parabolic type are studied in works such as [17,18].

Boundary control problems related to the second-order pseudo-parabolic equation in a bounded
domain are studied in detail in works [19-21]. In these works, the existence of the control function is
proved using the method of Laplace transform.

In [22], Guo considered the null boundary control problem for a fourth order parabolic equation
in one-dimensional bounded domain by the method reducing the control problem to the well-posed
problems, proposed by Guo and Littman [23]. In [24], the null interior controllability for a fourth order
parabolic equation was studied. The method that they used is based on Lebeau-Rabbiano inequality.
The initial boundary value problem for equations from a class of fourth order semilinear parabolic
equations was studied by Xu, et al. [25], and the global existence and nonexistence of solutions with
initial data in the potential well are derived. Further research results on the global dynamic behavior
of solutions associated with fourth-order parabolic equations for the epitaxial thin film model were
studied by Chen [26].

In this work, the boundary control problem for the fourth-order parabolic equation is considered.
The difference between this work and the previous works is that in this problem, the control problem
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associated with the fourth order parabolic type equation is studied. In Section 1, the boundary control
problem studied is reduced to the Volterra integral equation of the first kind by the Fourier method.
In Section 2, the existence of a solution to the Volterra integral equation is proved using the Laplace
transform method. Section 3 gives an estimate of the minimum time required to reach a given average
temperature of the plate.

We now consider the eigenvalue problem

A’X(z,y) = A X(z,y), (z,9) €9,
with the boundary value conditions
X(07 y) = XIZE(Ov y) = 01 X$(7T7 y) = XﬁEfﬂiE(”? y) = Oa

and
X(2,0) = Xyy(2,0) =0, Xy(z,7)=Xyyy(z,7)=0, (x,y)€ 0.

Then we have the eigenvalue and eigenfunctions defined as follows

2om+1\*  [/2n+1\* 2m+1 2n+1
)\mn:< m2+ > +< n2+ >, Xy (z,y) = sin m2+ z sin n2+ y, m,n=0,1,...

Suppose that the function 1 € H*() satisfies the following conditions
¥(0) = W (m) = (0) =@ (n) =0, ¥ >0,

where 9, is the Fourier coefficient of the function 1 (y) and as follows

2 7 o+l
wn:ﬂ_/w(y) s 9 ydya n:(),l,... (6)
0
We set ( )2
1 (2m+ 1)% 4,
mn — — ,n=01,...,
p T 2n+1 m,n =0 (M)
where 1, is defined by (6).
Theorem 1. Let be M
O<9<B0 .
Ao
Set, ) o)
To = ——1In(1- 229 ).
0 Ao n< 50M>

Then a solution T,,;, of the time-optimal problem exists and the estimate T}, < Tp is valid.

1 Main integral equation

In this section, we consider how the given control problem can be reduced to a Volterra integral
equation of the first kind.

By the solution of the initial-boundary problem (1)—(4), we mean the function u(z,y,t), which is
expressed in the following form

u(:v,y,t) = ¢(y) V(t) - w(x,y, t)? (8)
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where the function w(x,y,t) with the regularity w(z,y,t) € 04 " 1(QT) NC(Qr) and Wy, wy, € C(Q)
is the solution to the initial-boundary problem

wi(@,y,t) + A%w(z,y,t) = d(y) V(1) + D (y) v(t),
with the boundary value conditions
w(0,y,t) = we(0,y,t) = 0, wy(my,t) = Wepe(m,y,t) = 0,

w(z,0,t) = wyy(x,0,t) = 0, wy(z,m,t) = wyyy(z,7,t) = 0,

and the initial condition
w(z,y,0) =0.

As a result, we get the following solution

t

2 1 2 1
w(z,y,t) = Z Z o + 1 </e>‘m"(t3) V(s) ds> sin m2+ x sin n2+ y+
0
¢
1 o= o (2n+1)* 2m+1 2n+1
T Ar Z Z W(/e)‘m”(ts) v(s) ds) sin m2+ x sin n2+ Y. 9)
m=0n=0 0

By (8) and (9), we have the solution of the initial-boundary problem (1)—(4) (see, [27]):

'LL((IZ, y7t) - 1/1(y) V(t)_

t
2 1 2 1
/_)‘m”t )/ (s)ds | sin m x sin nt y—
2 2
0

4 o0
WmZ 2m+1

o
On=

2n+1 A (t—5) . 2m+1 . 2n+1
ZZ Sy </e *Jv(s)ds | sin 5 L sin———y.
0

Using condition (5) and the solution to problem (1)—(4), we can write

= /TF]u(w,y,t)dxdyzy(t)]]¢(y)d$dy—
0 0 00

t

o0 oo
EDID [ s
m 2m+1 2n+1

mOnO 0

t

Cn+1%%n [ 3 -
§ § mn (¢=) : 1
(2m+1)2 /e v(s) ds (10)
0

From the definition of the function v(¢) and from (10), we may write

— yt)o/o/@/}(y)dwdy—V mznz o2m + 1 2n+ Dl
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t
1 2m —|— 1 —Amn(t—s)
+WZZ T /e v(s) ds. (11)
0

m=0n=0

Note that

16 oo oo
//w Jdvdy = ?ZZ 2m+1 2n+1)' (12)
0 m= 7’L

Then, from (11) and (12), we obtain

t

1 = (2m +1)? B B
23 B [
m=0n=0 0
We set
o o
= D ) Bume M >0, (13)
m=0n=0

where (5, is defined by (7).
Let there exist My > 0 constant. Denote by W (Mp) the set of function h € W3 (—o0, +00), which
satisfies the condition
Ihllwzr,) < Mo, h(t) =0 forall t<0.

Thus, we have the following Volterra integral equation
¢
/B (t—s)v(s)ds = h(t), t>0, (14)
0

where h(t) =0 for T <t < T7.

Theorem 2. Assume that My > 0 exists. Then, for any function h € W (M) the solution v(t) of
integral equation (14) exists and satisfies the condition

()] < M.

2 Proof of Theorem 2

Proposition 1. Suppose that o € (2,1). Then for the function B(t) defined by (13) the following
estimate

0<B(t) < Cut™™, 0<t<1, (15)
is valid.

Proof. Using the definition (13) and A, = (2"57“)4 + (2”2+1)4, we may write

1 s 2m+1 4 2n+1v4
bl (2 1)2e” )h e~ (F5)0
; met Z TS

:1

We set

5D 150
ZQn—i—l ’ ’
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Clearly, for any 0 < ¢t < T', this function satisfies the following inequality

0 < A(T) < A(t) < A(0).

Let § > 0 be constant. We know the maximum value of the function ¢(t,§) = t“e

the point ¢ = § and this value is equal to ?—ze

As a result, for any a € (3, 1), we have the following estimate

-

IN

oo oo
Z (2m +1) 2o-(H az (2m +1) 2 po o= (351
m=0 m=0

_ 16%a%e® > (2m +1)?
- te (2m + 1) —

m=0

< Cut™,

where
o o

(2m+1)? 1
Z (2m+ 1)4a - Z (2m+ 1)4@—2 < +00.
m=0 m=0

Then the required estimate (15) follows from (16) and (17).
Proposition 1 is proved.
As we know, the Laplace transform of the function v(t) is defined as follows

o0
= /epty(t)dt, where p=oc+i7, oc>0, T€R.
0
We rewrite integral equation (14) as follows

t
/Bt—s Vs = h(t), t>0.
0

Then we use Laplace transform and obtain the following equation

o0

t
Hm:/éﬂﬁ/MrwW@@:é@ﬂm
0 0

Thus, we have

~ \ h(p)
v(p) = =,
(p)
and
O'+ZOO~
p / U +1 T (O’-‘riT)t dr.
B (p) (oc+1iT)

Then we can write

= / B(t)e P dt =
0

/an
Z /an/ (oA )i Z p+)\mn

m,n=0

—6t

(16)

is reached at

(17)
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where B(t) is defined by (13) and

E . — mn mn o mn
(o +i7) mzn:00+)\mn+17 Z; (0 4 Amn)? + 72 ' Z;o (04 Amn)? + 72
=ReB(o +i7)+ilmB(o +iT1),
where
[o.¢] o
+ Amn) ~ 15}
RB Brman U mn ImB _ mn .
eB(o+1iT) mzn: (0 + Ao 2+ 727 mB(o +1iT) T Z (0 A 2 £ 72

Obviously, the following inequality holds
(0 4+ Amn)? + 72 < (04 An)? + 1] (1 + 72),

and we further have
1 1 1

> :
(C+Amn)2+72 7 1+72 (0+ Apn)? + 1

Thus, due to (19), we can obtain the following estimates

Nt ﬁmn (U + Amn)

IReB(o +i7)| = Z 55 =
m,n=0 (U+)\mn) T

> Bmn (G + )\mn) . Cl,g

1
> E =
1472 (0 4+ Amn)?+1 1477
m,n=0

and
_ o0 B
ImB(oc +i7)| = |7 mn >
mB(o +i7)| = | m§,n2:0<0+ JW
GRS Bun _ _ Caolrl

BERES m;:0(0+>‘mn)2+1 IR

where (' ,, Ca,; are defined as follows

Crp= 3 Donl0F ) gy o5 Do
P S M P DY

From (20) and (21), we have the following estimate
B 5 ~ min(C? , C2
|B(c+i7)]*>=|ReB(c +i7)|? + |[ImB(o +i7)]> > (1_1:’22"’)7
-

and
Co

B(o+iT >
ploiml=

Proceeding to the limit as o — 0 from (18), we have

where C, = min(C 4, Ca0).

“+o00 ~

_ 1 h(ZT) 17t
z/(t)—%/é(“_)e dr.
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Proposition 2. [20] Assume that h(t) € W(My). Then for the imaginary part of the Laplace
transform of function h(t) the inequality

+oo
/ RGNV + 2 dr < Cy hlhwaa,)

is valid, where C'; > 0 is a constant.

Proof of the Theorem 2. Now we prove that v € W4 (Ry). By (22) and (23), we obtain

—+o0
/|1/ 1+\T|)dT: /

Co = min(C1 o, Ca9) which is defined by (22). Further,

~ 2
(i)

+0o0
2 T 2 2\2 _ 2
mﬂuﬂmm<%ﬁwmwwwm—%www

t

t) - v = | [V©de| < W ]ialt—5)"

s

From (22), (23) and Proposition 2, we have the estimate

w(t)] < — UGl Il /hzr]md7<

- 27r \B( ) 27rC
Cl Cl MO
< < =M
— 2wCy 3(Ry) = 27CYy ’
where o
mCo
My = M.
0 ol

Theorem 2 is proved.

8 Estimate for the Minimal Time

Now we introduce the following integral equation
t
/B(t—s)y(s)ds =0, T<t<T,
0

where B(t) is defined by (13).
We set

Bo = Boo, Ao = Moo,
where B, defined by (7).

Proposition 3. The following estimate is valid:
B(t) 2 BO 6_>\0t7

where the function B(t) is defined by Eq. (13).
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The proof of this proposition follows from the fact that the functional series defined by (13) is
positive for all ¢ > 0.
We introduce the following function

—/tB(t—s)ds—/tB(s)ds
0 0

It is known that the physical meaning of this function is the average temperature in a bounded
domain  (see, [5]). It is known H(0) = 0 and H'(t) = B(t) > 0.
We set

oo
= lim H(¢ / B(s
t—o00

0

The average temperature in the bounded domain does not exceed H*. Clearly, H* is finite. Indeed,

/ B(s f:: < oo,

m,n=0

where B,y is defined by (7) and Ay, = (2m+1) n (2n2+1)4.

Proposition 4. Assume that 0 < § < M H*. Then there exist T > 0 and a control function v(¢) and
the following equality

T
/B(T —s)v(s)ds =6 (24)
0

is valid.

Proof. The proof of this follows directly from the properties of the function H. Indeed, if we set
v(t) = M then
t
/Bt—s M/ (t—s)ds =M H(t),
0

and because of (24) there exists T' > 0 so that M H(T) = 6.
Proposition 4 is proved.

Remark 1. 1t is clear that the value T', which was found in Proposition 4, gives a solution to the
problem. That is T" is the root of the following equation

0
H(T) = —. 2
(T) =+ (25)
Lemma 1. Let 5
0 0
0<O< )\0

Then there exists T' > 0 so that

and Eq. (25) is fulfilled.
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Proof. Using Proposition 3, we can write the following inequality

¢ t
H(t) = /B(s) ds > ﬁo/e_)‘osds =
0 0

Bo — ot
=—(1—e 70" ). 2
ol1-e (20)
To determine Ty, we consider the following equation:
Ho N0 T, 4
—([1—e 00 ) = —. 2
" e Y (27)
Then we get
1 0 Ao
To=——1In(1- .
DY n( fo M >

In accordance with (26) and (27) we have
0< —< H(T )
Z‘ ( J— 0 .

Then obviously there exists T, 0 < T' < T, which is a solution to equation (25).
Lemma 1 is proved.
The proof of Theorem 1 follows from Lemma 1.
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OHTAMJIBI YaKBbITTHI ODacKapy MoceJieci TypaJibl

@ .H. Jlexxkonon

Hamarearn memaexemmir ynusepcumems, Hamarean, ©3bexcman

Bypbin mekresren obsbicTarsl eKiHmi peTTi HapabosIaJIblK, TUITI TeHJEY YIIH IIeKapaJblk, OaKblIay ecer-
Tepi 3eprrenai. Bya KymbicTa mmekTesreH ekiesmmeMal 0bJIBICTaFbl TOPTIHIN PeTTi mapabosIaiblK TeHJIe-
yMeH OailJIaHBICTHI IIEKapPaJIbIK OaKbLIay ecebi KapacThIpbLIFaH. KapacThIpbLIaThIH OOJIBIC IIEKAPACHIHBIH
Geuiringe 6ackapy dyHKImsICH 6ap mremimMHig MoHi 6episirer. Bakpuiaysars! mekreyiep KapacTbIPbLIATHIH
0BJIBICTAFBI MIENTIMHIH OPTAIla MOHI HAKTHI MOHJII AJIaThIHAAMN eTin Gepiiai. AfHbIMaIbLIAPABI 6Ty diciMen
Oepisiren ecen G6ipinii TekTi BosbTreppa nHTErpasIbiK, TeHAeyiHe KeaTipiieni. Backapy dpyHKIUSACHIHBIH 6ap
6osysl Jlamrac Typaesaipy o/iciMen Jpiesier i »xKoHe 0bJibicTa GepilireH opralia TemMieparypara XKeTy 1iH
€H a3 yaKbITBIHBIH 0arachl TAOBLIIbI.

Kiam cesdep: GacTanmkbI-IIeKapaJsblK, €Cell, TOPTIHII peTTi NapaboJasiblK, TEHJIEY, €H a3 YaKbIT, PYKcaT
erinren 6akpuiay, BosbTeppa MHTErpaablK, TeHeYi, JlammacTblH TypIeHaipy OIici.

O 3asade ObIcTpoOAeiicTBIA MAapabOJIMIEeCKOro yYpaBHEHMSI
4eTBEePTOro Iopsigka B AByMEpPHOI obJjacTu

®.H. exkoHon

Hamanzanckut 2ocydapecmeernnvill ynusepcumem, Hamanean, Ysbexucman

Panee 6bn ucciieioBanbl 33/ IPAHUYHOTO YIIPABJICHUs Jjid yPaBHEHUs NapaboJIMuecKOro THUIla BTO-
poro mopsijika B orpaHudeHHoil obsacru. B nannoii pabore paccMoTpeHa 3a/iada IPAHUYHOTO YIIPABIIEHUS,
CBsI3aHHAs C MAapabOIMIECKUM YpaBHEHIEM YeTBEPTOrO MOPsIKa B OIPAHUYEHHON AByMepHOit obmactu. Ha
YaCTH PAHUIBI pAacCMaTpPUBaeMoil obJacTu JaHo 3HadeHue pelnenus ¢ GpyHKued ymnpasienus. Orpanu-
YeHUsI Ha YIPaBJEHHe 33J1al0TCsS TaKUM 00pa30M, ITOOBI CpeJlHee 3HAUEHUE DEIIeHUs] B PacCMaTpUBaeMOn
obJracTy TOJIydasio 3aJlaHHOe 3HadYeHme. 3ajada, 3ajJaHHasi METOJOM pa3esieHus TepeMEeHHBIX, CBOIUTCS
K MHTerpaJibHOMY ypaBHeHHIO Bosbreppa mepBoro pozma. Meromom mpeobpasoBamnus Jlamraca mokazaHo
cylecTBoBaHue (DyHKIMH YIIPABJIEHUs ¥ HaliIeHa OIleHKAa MUHUMAJIHLHOIO BPEMEHU JIOCTHKEHUsI 33 IaHHON
CpeJiHell TeMIepaTypbl B 00JIaCTH.

Karouesvie croea: HagaIbHO-KPaeBas 33,1298, 1apaboJIndecKoe ypaBHEHNE Y€TBEPTOrO MOPSIIKA, MUHIMAJIb-
HOe BpeMsl, JOIIyCTUMOE YIIpaBJIeHne, HHTerpajabHoe ypaBaenue Bosbreppa, MeTos npeobpasoanus Jlamia-
ca.

Bulletin of the Karaganda University



On the time-optimal control problem ...

References

1 King B.B., Stein O., & Winkler M. (2003). A fourth-order parabolic equation modeling epitaxial
thin film growth. J. Math. Anal. Appl., 286(2), 459-490. https://doi.org/10.1016 /S0022-247X(03)
00474-8

2 Fattorini, H.O. (1964). Time-Optimal control of solutions of operational differential equations.
SIAM J. Control., (2), 49-65.

3 Friedman, A. (1964). Differential equations of parabolic type. XVI. Englewood Cliffs, New Jersey.
https://doi.org/10.1016/0022-247X(67)90040-6

4 Egorov, Yu.V. (1963). Optimalnoe upravlenie v banakhovom prostranstve |Optimal control in
Banach spaces|. Doklady Akademii nauk SSSR — Report Acad. Science USSR, 150(2), 241-244
[in Russian].

5 Albeverio, S., & Alimov, Sh.A. (2008). On one time-optimal control problem associated with the
heat exchange process. Applied Mathematics and Optimization, 47(1), 58-68. https://doi.org/
10.1007/s00245-007-9008-7

6 Alimov, Sh.A. (2010). On a control problem associated with the heat transfer process. Eurasian
mathematical journal, 1, 17-30.

7 Alimov, Sh.A. (2011). On the null-controllability of the heat exchange process. Eurasian mathema-
tical journal, 2, 5-19.

8 Dekhkonov, F.N. (2022). On the control problem associated with the heating process. Mathematical
notes of NEFU, 29(4), 62-71. https://doi.org/10.25587/SVFU.2023.82.41.005

9 Fayazova, Z.K. (2019). Boundary control of the heat transfer process in the space. I[zvestiia
vysshikh uchebenykh zavedenii. Matematika. 63(12), 82-90. https://doi.org/10.26907/0021-3446-
2019-12-82-90

10 Dekhkonov, F.N. (2022). On a time-optimal control of thermal processes in a boundary value
problem. Lobachevskii Journal of Mathematics, 43(1), 192-198. https://doi.org/10.1134/S19950-
80222040096

11 Dekhkonov, F.N., & Kuchkorov, E.I. (2023). On the time-optimal control problem associated
with the heating process of a thin rod. Lobachevskii Journal of Mathematics, 44(3), 1134-1144.
https://doi.org/10.1134/51995080223030101

12 Dekhkonov, F.N. (2024). Boundary control associated with a parabolic equation. Journal of
Mathematics and Computer Science, 33, 146-154. https://doi.org/10.22436 /jmcs.033.02.03

13 Dekhkonov, F.N. (2023). Boundary control problem for the heat transfer equation associated
with heating process of a rod. Bulletin of the Karaganda University. Mathematics Series, 2(110),
63-71. https://doi.org/10.31489/2023M2/63-71

14 Dekhkonov, F.N. (2023). On the time-optimal control problem for a heat equation. Bulletin of the
Karaganda University. Mathematics Series, 3(111), 28-38. https://doi.org/10.31489/2023m3/
28-38

15 Lions, J.L. (1968). Contrdle optimal de systémes gouvernés par des équations aux dérivées partielles.
Dunod Gauthier-Villars, Paris.

16 Fursikov, A.V. (2000). Optimal control of distributed systems. Theory and applications, Transla-
tions of Math. Monographs, 187. Amer. Math. Soc., Providence. https://doi.org/10.1090 /mmono/
187

17 Altmiiller, A., & Griine, L. (2012). Distributed and boundary model predictive control for the heat
equation. Technical report, University of Bayreuth, Department of Mathematics. https://doi.org/
10.1002/gamm.201210010

Mathematics Series. No.2(114),/2024 69


https://doi.org/10.1016/S0022-247X(03)00474-8
https://doi.org/10.1016/S0022-247X(03)00474-8
https://doi.org/10.1134/S1995080222040096
https://doi.org/10.1134/S1995080222040096

F.N. Dekhkonov

18

19

20

21

22

23

24

25

26

27

Dubljevic, S., & Christofides, P.D. (2006). Predictive control of parabolic PDEs with boundary
control actuation. Chemical Engineering Science, 61, 6239-6248. https://doi.org/10.1016/j.ces.
2006.05.041

Fayazova, Z.K. (2018). Granichnoe upravlenie dlia psevdoparabolicheskogo uravneniia [Boundary
control for a Pseudo-Parabolic equation|. Matematicheskie zametki SVFU — Mathematical notes
of NEFU, 25(2), 40-45 |in Russian|. https://doi.org/10.25587 /SVFU.2019.20.57.008
Dekhkonov, F.N. (2023). On a boundary control problem for a pseudo-parabolic equation. Commu-
nications in Analysis and Mechanics, 15(2), 289-299. https://doi.org/10.3934/cam.2023015
Dekhkonov, F.N. (2023). Boundary control problem associated with a pseudo-parabolic equation.
Stochastic Modelling and Computational Sciences, 3(1), 117-128. https://doi.org/10.61485/SMCS.
27523829 /v3n1P9

Guo, Y.J.L. (2002). Null boundary controllability for a fourth order parabolic equation. Taiwanese
J. Math. 6, 421-431. https://doi.org/10.11650 /twjm /1500558308

Guo, Y.J.L., & Littman, W. (1995). Null boundary controllability for semilinear heat equations.
Appl. Math. Opt., 32, 281-316. https://doi.org/10.1007/BF01187903

Yu, H. (2009). Null controllability for a fourth order parabolic equation. Sci. China Ser. F-Inf.
Seci. 52, 2127-2132. https://doi.org/10.1007/s11432-009-0203-9

Xu, R., Chen, T., Liu, C., & Ding, Y. (2015). Global well-posedness and global attractor of
fourth order semilinear parabolic equation. Mathematical Methods in the Applied Sciences, 38,
1515-1529. https://doi.org/10.1002/mma.3165

Chen, Y. (2023). Global dynamical behavior of solutions for finite degenerate fourth-order parabolic
equations with mean curvature nonlinearity. Communications in Analysis and Mechanics, 15,
658-694. https://doi.org/10.3934/cam.2023033

Tikhonov, A.N., & Samarsky, A.A. (1966). Uravneniia matematicheskoi fiziki [Equations of
mathematical physics|. Moscow: Nauka [in Russian].

Author Information*

Farrukh Nuriddin ogli Dekhkonov — PhD (Physical and Mathematical Sciences), Associate
Professor, Namangan State University, 316 Uychi street, Namangan, 160136, Uzbekistan; e-mail:
f-n.dehqonov@mail.ru; https: //orcid.org/0000-0003-4747-8557

*The author’s name is presented in the order: First, Middle and Last Names.

70

Bulletin of the Karaganda University


https://doi.org/10.1016/j.ces.2006.05.041
https://doi.org/10.1016/j.ces.2006.05.041
https://doi.org/10.61485/SMCS.27523829/v3n1P9
https://doi.org/10.61485/SMCS.27523829/v3n1P9

