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The Ginzburg-Landau equation with rapidly oscillating terms in the equation and boundary conditions in a
perforated domain was considered. Proof was given that the trajectory attractors of this equation converge
weakly to the trajectory attractors of the homogenized Ginzburg-Landau equation. To do this, we use the
approach from the articles and monographs of V.V. Chepyzhov and M.I. Vishik about trajectory attractors
of evolutionary equations, and we also use homogenization methods that appeared at the end of the 20th
century. First, we use asymptotic methods to construct asymptotics formally, and then we justify the form
of the main terms of the asymptotic series using functional analysis and integral estimates. By defining the
corresponding auxiliary function spaces with weak topology, we derive a limit (homogenized) equation and
prove the existence of a trajectory attractor for this equation. Then, we formulate the main theorems and
prove them by using auxiliary lemmas. We prove that the trajectory attractors of this equation tend in a
weak sense to the trajectory attractors of the homogenized Ginzburg-Landau equation in the subcritical
case, and they disappear in the supercritical case.

Keywords: attractors, homogenization, Ginzburg-Landau equations, nonlinear equations, weak convergence,
perforated domain, porous medium.
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Introduction

This work is devoted to investigating boundary value initial problems in the perforated domain.
Assuming Robin (Fourier) type of boundary conditions to be set on the boundary of holes, we write
down the homogenized (limit) problem and prove the Hausdorff convergence of attractors (Fig.) as the
small parameter tends to zero. Thus, we define the homogenized attractor and prove the convergence
of the initial attractors to the attractor of the homogenized problem. The asymptotic behaviour of
attractors to an initial boundary value problem for complex Ginzburg-Landau equations in perforated
domains for the critical case (appearance of additional potential in the homogenized equation) is studied
in [1]. In this paper, we investigate subcritical and supercritical cases. For the asymptotic analysis of
problems in perforated domains, see, for instance, [2,3| and [4-7].
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Figure. Attractor of the Ginzburg-Landau equation

About attractors, see, for example, monographs [8-10] and the references therein. Homogenization
of attractors were studied in [9,11-16] (see also [17,18]).

In the paper, we prove that the trajectory attractor 2, of the Ginzburg-Landau equation in the
perforated domain converges in a weak sense as  — 0 to the trajectory attractor 2 of the homogenized
equation in an appropriate functional space. Here, u characterizes the diameter of cavities and the
distance between them in the perforated medium.

The results are announced in [19].

1 Statement of the problem

First, we define a perforated domain. Let @ C R d > 2 be a smooth bounded domain. Denote

1 1
Tu:{jeZd : dist(uj,aQ)zM\/&}, Dz{gz—2<§j<2, jzl,...,d}.

Given a 1-periodic in & smooth function F(x,&) such that F($,§)‘§ - > const > 0, F(z,0) = —1,
€
VeF # 0 as £ € O\{0}, we set

Dt ={een@+i) |F@ 2 <ol
and introduce the perforated domain as follows:

0, =9\ (J DY
JEYT

Denote by w the set {§ eR? | F(x,€) < O}, and by S the set {§ eR? | F(x, &) = 0}.
Afterwards, we will often interprete 1-periodic in £ functions as functions defined on d-dimensional
torus T¢ = {5 € e Rd/Zd} .

According to the above construction, the boundary 0f2,, consists of 92 and the boundary of the
cavities S, C Q, S, = (0Q,) N Q.
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We study the asymptotic behaviour of attractors to the problem

(O
% = (1+ od)Auy, + R(z, %) Uy — (1 + B(z, z)l> ]uHPu# +g(x), ze€Q,,
0
(1+ ai)% + 12q(x, %)“u =0, reS,,t>0, (1)
uy, =0, x € 09,
u, = Ulx), xeQ,t=0,

where 6 > 1 (subcritical case) and 0 < @ < 1 (supercritical case). Here « is a real constant, v is the
outward unit vector to the boundary, u = uy + iug € C, g(z) € CY(Q;C), q(x,&) € CHQ;RY) and
q(x,€) is a nonnegative 1-periodic in & function. We assume that

— Ri < R(x,§) < Ry, —f1 < B(x,€) < B2 (Ro, Ri, B, B2 > 0), (2)

for x € , ¢ € R? and the functions R (x, &) and 3 (x, &) have the averages R(z) and B(z) in Log wuw(£2)
respectively, i.e.,

/Q(wé)wl dw—>/ z)e1(x dw/ﬂwﬁwl dm—>/ﬁ )1 (z)dz

as it — 0+ for any function ¢;(x) € L1(€2), where { = z

We denote the spaces H := Lo(€;C), H,, := L2(Q,;C), V := H}(Q;C), V, = 1(QM;(C;aQ) -
set of functions from H'(,;C) with zero trace on 92, and Ly, := L,(%;C), Ly, , := L,(Q,; C). The
norms in these spaces are denoted, respectively, by

ol? = / fo(a)|2dz, [o]]2 = / fo(@)Pda, [o]]2 = / Vo) d,
Q Q Q

n

ol i= [ IVo@Pde, ol = [ lo@)Pdz, ol = [ o)
Q Q Q

Recall that V/ := H~1(2; C) and L, are the dual spaces of V and L, respectively, where ¢ = p/(p—1),
moreover, VL and L, , are the dual spaces for V, and Ly ,.
As in [9], we study weak solutions of the initial boundary value problem (1), that is, the functions

up(,8) € L (Ry; Hy) 0 LY(R 15 V,) N LY (Ry; Ly )

which satisfy the problem (1) in the distributional sense, i.e.

—/OOO/QHuH?;f dzdt + (1 + ai) /Ooo/m Vu, Vi dxdt—
[ L))o
+u /+Oo/s ( >uuwd0dt / / 2 dedt (3)

for any function ¥ € Cg°(R1;V, MLy ).
If uy(x,t) € Ly(0,M;Ly,,), then it follows that

R (x u) waz,t) - (1 3 <x Z’) i) (s 8) P (1) € Laja(0, M L)
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At the same time, if u,(2,t) € L2(0, M; V), then (1+ai)Aw,(z,t)+g (x) € L2(0, M; V},). Therefore,
for an arbitrary weak solution u,(z, s) of the problem (1) we have
Ouy(x,t)
ot
The Sobolev embedding theorem implies that

€ Ly3(0, M;Ly3,,) + La(0, M; V),).

Ly/3(0, M;Lyy3,,) + La(0, M;V),) C Lyys (0, M;H,T)

where the space H," := H~"(Q,;C) and r = max {1,d/4}. Hence, for any weak solution w,(z,t) of
(1) we have M“T(f’t) € Ly (0,M; H;’")

Remark 1.1. The existence of weak solution u(x, s) to the problem (1) for every U € H,, and fixed
w, such that u(x,0) = U(z) can be proved by standard approach (see for instance [8]).

The following key Lemma can be proved similar to Proposition 3 from [17].

Lemma 1.1. Let uy(z,t) € LY“(R4;V,) N LP¢(Ry; Ly ,) be a weak solution to the problem (1).
Then
(i) uwe C(R; Hy);

(i) the function [Ju,(-,t)||% is absolutely continuous on R, and, moreover,

1d 2 2 4 T 2
3 371 O + IV O + O, — [ R (M) (2, ) P+

n

+ ue/ q <x ””) |up(z,t)[*do = / Re (g(2)a,(z,t)) dz,
Iz H Qu
for almost every t € Ry.

Let us fix p. In further analysis, we shall omit the index p in the notation of the spaces, where it
is natural. We now apply the scheme described in [1; Section 2| to construct the trajectory attractor
for the problem (1), which has the form from the scheme, if we set £y =L, NV, Eg=H™", E=H
and A(u) = (1 4+ cd)Au+ R(-)u — (1 + B()i) |u?u + g(-).

To describe the trajectory space IC;r for the problem (1), we follow the general framework of [1;
Section 2| and define the Banach spaces for every [t1,%2] € R

ov _
Fir s = La(t1,t2;Ly) N Lo(t1,t2; V) N Lo (t1, t2; H) N {'U ‘ o € Lysz (t1,to; H T)}
with norm
ov
HUH}—tl,tQ = ”UHL4(t1,t2;L4) + HvHLQ(tl,tQ;V) + ||UHLOO(O,M;H) + E . (4)
Lysz(t1t;HT)

According to the scheme, we use the norm (4); in this case, the translation semigroup {S(h)} satisfies
the conditions from the scheme.

Setting Dy, 4, = Lo (t1,t2; V) we have that F, 1, C Dy, 1, and if u(s) € Fy, +,, then A(u(s)) € Dy, 4.
We can consider a weak solutions of the problem (1) as a solution of an equation in the general scheme
from [1; Section 2].

Define the spaces

15
Floc — LQ"C(R ;L) N LZQOC(R V)N l/l:":c(]R ;H)N {v } —1; € Lff/cg(R ; H_T)} ,
0
J Lo,+c = LZOC(RJH L47u) N Léoc(R+§ -Vu) N Lloooc(]RJr; Hu) N {U 9: € Lilo/cs(RJr; IIM_T)} .
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We denote by IC:[ the set of all weak solutions of the problem (1). Recall that for any U € H there
exist at least one trajectory u(-) € K} such that u(0) = U(x). Therefore, the trajectory space K of
the problem (1) is not empty and is sufficiently large.

It is clear that IC:[ C ]:_lfc and the trajectory space IC;r is translation invariant, that is, if u(s) € /C;f,
then u(h 4 s) € K} for all h > 0. Therefore,

S(WK) CKf, Vh>o.

We now define metrics py, 4, (-, ) on the spaces Fy, 4, using the norms of the spaces La(t1, to; H):

1/2

partu) = ( [ " uts) - vollfds) L VU)ol € Fou

These metrics generate the topology @l_ﬁc in ]-"_lfc (respectively @l"i in ]-"Loﬁ_) Recall that a sequence
{vr} C Fio¢ converges to v € F* as k — oo in O if [Jug(-) — v(:)ll £y 0,m:m) = 0 (k — o0) for each
M > 0. The topology @lfc is metrizable. We consider this topology in the trajectory space IC:[ of (1).
The translation semigroup {S(¢)} acting on IC:[ is continuous in the topology @l_fc.

Following the general scheme of [1; Section 2|, we define bounded sets in IC: using the Banach
space ]:j’_’ .- We clearly have

FU = Li(RyiLyy,) N LS(Ry; V) N Loo(Ry H { ‘ — € L3 R+;Hur)}.
In an analogous way, we have
ov _
Fb = LiRy;Ly) N L5 (R4 ; V) N Lo (R H) N { ‘ T € L4/3(R+;H r)} ;

]:j’_ and fi,u are subspaces of ]:j_oc and F _lfi, respectively.

Consider the translation semigroup {S(t)} on K, S(t) : K} — Kf, ¢ > 0.

Let K, be the kernel of the problem (1) that consists of all weak complete solutions u(s), € R, of
the system bounded in the space

a -Tr
}"ﬁ:LZ(R;LML)HLS(R;V“)OLOO(]R;HM)ﬂ{ ‘ e € LY 4(R: H,, )}.

In analogous way we define F?.
The definition of trajectory attractor was given in [1] (see also [9]).

Proposition 1.1. The problem (1) has the trajectory attractors 2, in the topological space @l_fc.
The set 2, is uniformly (w.r.t. 4 € (0,1)) bounded in F¢ and compact in ©'°¢. Moreover,

Q[N - H+]CM,

the kernel £, is non-empty and uniformly (w.r.t. u € (0,1)) bounded in Fb. Recall that the spaces ]-'S’_
and @lfc depend on .

The proof of this proposition almost coincides with the proof given in [9] for a particular case. The
existence of an absorbing set that is bounded in ]:3 and compact in @lfr’c is proved using Lemma 1.1
similar to [9].

We note that

A, C Bo(R), Ve (0,1),
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where By(R) is a ball in F¢ with a sufficiently large radius R. The Aubin-Lions-Simon Lemma from
[1; Section 2| implies that

By(R) € LY“(R;H'™), (5)
Bo(R) € C"“(R;H™®), 0<d<1. (6)

Using compact inclusions (5) and (6), we strengthen the attraction to the constructed trajectory
attractor.

Corollary 1.1. For any set B C IC;r bounded in .7-"3 we have

diStLQ(O,M;Hl—é) (H()’MS(t)B,H(),M]CM) —0 (t — OO)7
diStC([(),M];Hfé) (H07M5(t)B,H07MICM) —0 (t — OO),

where M is an arbitrary positive number.

2 Homogenized (limit) problem

Let M; be 1-periodic solution to a problem

oM,

Ag(Mi—Ffi):OinD\w,
Ve

=v; on S(x), (7)

having zero mean values over the cell of periodicity. Denote by (-) the integral over the set 0N w.
The case 6 > 1. The homogenized (limit) problem has the form

d

% . . i N 8MZ($,§) 8u0
- e 30 o (o 250
—R(z)ug + (1 + B(2)i) [uo* uo = [DNw|g(x), =€, (8)
ug = 0, e 0, t>0,
ug = U(z), xeQt=0.

We consider weak solution to the problem (8), i.e. the function uy = ug(z,t), z € Q, t > 0,
0
ug € LY(Ry;Ly) N LYS(R; V) N LR H) N {v ‘ 577; c LQ(;@(&;HT)} ,

satisfying the integral identity

/ /uodtda:+ 1+oa/ / Z<” OM;( x£)> auoaidtd_
R R

] 0¢; O0x; 0z

/R+/ z)ug — (14 B(2)i) [uol? u0>vdtdx—/R+/|me]g( ) v dtdz

for any function v € C§°(R4; V N Ly).

Remark 2.1. It should be noted that M;(z, ) are not defined in the whole Q. Applying the technique
of the symmetric extension allows to extend M;(z,&) into the interior of the “holes” retaining the
regularity of these functions. We keep the same notation for the extended functions.
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3 Auxiliaries
3.1 General reasoning

We investigate the asymptotic behavior of the solution w,(x) as u — 0 of the following boundary-
value problem in the domain €2, :

-1+ ag) Auy, = g(x) in Q,
(1+ od) 5‘uyZ +ulq (:p, ;j) u, =0 on S, 9)
uy, =0 on 0,

where n, is the internal normal to the boundary of "holes” ¢(x,&) is a sufficiently smooth 1-periodic
in & function.

Definition 3.1. Function u, € H'(,,09) is a solution of problem (9), if the following integral
identity

(1+ ai) o Vu,(x) Vo(x) de + ,ue/s

K <:c Z) up(2)v(x) ds = /Q g(z) v(z) dz

holds true for any function v € H(€2,,0Q).

Here, we use the standard notation H'(Q* Q) for the closure of the set of C°(Q")-functions
vanishing in a neighborhood of 92, by the H'(2*) norm.

In [1] we showed that § = 1 is a critical value for problem (9); in what follows we prove that the
dissipation dominates if # < 1 and is neglectable if 6 > 1.

3.2  Subcritical case 6 > 1

This section deals with problem (9) in the case # > 1. Substituting the expression

x

X
uy () = up(x) + MeflUL—l (957 u) + o+ puon (367 M> + pfu g (fﬂ, M) +

xT T
+ M2UO,2(CC, ;) + M9+1U171(J}, ;) +---+ Mk0+luk l(:l), ;) +... (10)

in equation (9) and taking into account an evident relation

0 x 0 10
7 (77) = (oo o) |
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we obtain, after simple transformations, the following formal equality

_ 194(:60)41 = Agupu(x) = Aguo(z) + 1~ (Apur, 1 (2, ) ‘gzjj + 2 (Vi Vet 1(@,) L:f—
n M973 (Agul,—l(x7€)) ng + (Axu()’l(l',f)) ng +2 (Va:; VEUO,I(«T,O) L:&

(B (@) 2 (Ve Veunof,6))|

W w

2 (Buop(@.8) |, + 12 (Ve Vewoa(e, )|, +

= _z
m M w

N + M6+1 (Ayug 1 (z, ) ‘g—ﬁ + 2,u0 (Va, Vgul,l(%f)) ‘5:£+

w © w
+ 17 (Agua i (2, €)) LJ + o P (A gy (2, 9)) s + 20PN (T, Ve (2, €)) ‘
T e w

+ W2 Dgura(,9) |+ (1)

_x

i (Do o(a€) |,

14

+ 1072 (Agur o(x, €)) ¢

— -z

+ (Aeuoa(,6)|,

_z

w

Similarly, on S,, we get

0= uy +,u0q <a:, %)

~ 0—1 0
v, 1+ ai uy = (Vauo,vy) + 7 (Vaur—1,v,) + Txal

1(e.3)
+ 2 (ng,—l |§:£; w) + T =—Lun 1+ (Vauon, v) +
m

1+ai
X
q<wvﬁ>

v s 0+1
* ( €to1e ””) T

xz
20 (x’ N)

up1 + pf (Vyuro,vy) + pf <V5U1,0\5:z71/u> +
m

z
9+2q (a:, “)

2
T ot (Vatioz,v) +p <V£“0,2\5=z,vu> T g et
0+1 0 29111 (‘T’ %)
+p7 (Vaur i, vy) + 1 (Vgum‘gi, 1/“> + u W““ NI

q (w ﬁ)
+uk9+l (qukﬁhyu) +Iuk0+171 (vguk,l‘gzzayu> +M(k+1)9+lﬁukﬁl +... (12
n + a1
Note that the normal vector v, depends on z and £ in €2,. Considering, as usually, x and { = % as
independent variables, we represent v, in {2, in the following form:

vz, %) = ﬂ(a:,{)‘fJ + /M/L(x,é)‘g:g,

w w

where 7 is a normal to S(z) = {¢| F(z,§) = 0},
v, =V +O0(n).

Collecting all the terms with like powers of p in (11) and (12), we arrive at the following auxiliary
problems:

Aguy,—1 ((:1:,5)) = 0 in w, 13)
Ouy —1(z,§) 13
— 5, = 0 on S(z),
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Agurg (7,€) = —2(Ve,Vour—1(2,8) in w,
Mlgw = —(Veur,1(2,8),7)  on S(z), (14)
v
and problem
Agup (7,§) =0 in w,
({W = — (Va(uo(x)),n) on S, (15)

to be solved in the space of 1-periodic in £ functions; here x is a parameter, w := {{ e T¢ | F(x,&) > O}.

The problem (15) is the standard “cell” problem appearing in the case of Neumann conditions on the
boundary of holes. The solvability condition

/ (Vatip(2), 7(€)) do =0
S(x)

for problem (15) is clearly satisfied, and its solution forms the first “internal” corrector in (10).

It follows from (13) that w; —; does not depend on &. In fact, for our purposes, it suffices to put
u1,—1 = 0. Then u; ¢ = 0 solves (14).

In the next step, we collect all the terms of order x° in (11) and of order x' in (12). This yields

Agugp (z,8) = —m — Aguo(z) — 2 (Ve, Vauo 1 (z, €)) n w, )
8110’2(5375) = —(Vauo(z,€),7) — (Veuo(x,§),v) — (Vauo(x), V') on S(z).

If we represent ug1(z,&) = (Vauo(z), M(x,§)), where M(z,§) = (Mi(x,§),..., My(z,§)) solves
problem (7), then (16) takes the form

ron & Pugle) M E)
Aguoz (@,6) = 1+ai Agtio(x) =2 jz:l Ox; 0z O
d
Oug(z) 9?M;(x,€) :
—2 in w,
i;l al'l agjal'j
Quop(z,§) d OQUO(:E) dug(z) OM;(xz,€) _
o Z ox; @m Z (9:21 o0x; it
1,]= J ,] 1 J
d
L§h ) M) s owte)
mz':1 O; 9¢; Z 390@ v on 5@

Writing down the compatibility condition in the last problem, we get the following equation:

g9(z) &ug(x) OM;(x, &) dug(z) 02M;(x,€) _
/me<1—i—a +A“()+22 om0z, 05 22 0z;  0F; 0z, >d§

ij=
d
82u0(x) Qup(z 8M (2,8) _
= )7; + 7+
/Q <”Z:1 o0x; 8:13] J le 67:13Z Ox;j Yi
e: aM (« 5) ;= dup(a)
zjzl axl I/j + ZZ_; 8551 Vi dU
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In the same way, as in [1| we find the homogenized problem:

(1 + ai) zd: aij (<6ij + 8Még’£)> ag(;(l )) +|0Nw|glz)=0 in Q,

ij—1
up(x) =0 on ON.

The integral identity for problem (17) reads

1+a1/ Z<m 8M6;j §)>8u0 /\Dﬂwlg v(z) de

i,7=1

for any function v €H! (Q).

Theorem 8.1. Suppose that g(x) € C1(R%) and that ¢(z, ¢) is smooth enough nonnegative function.
Then, for any sufficiently small x4 problem (9) has the unique solution and the following convergence

luo — wull () — 0
takes place, where ug is a solution of the problem (17).
3.2.1 Auziliary propositions
Lemma 3.1. Under the conditions of Theorem 3.1 the inequality

T
/m \Vv]de + ,ue/s q <$, M) vids > C’13HU||?{1(QM)

n

holds for any v € H'(,,,0Q).
Lemma 3.2. For any v € H'(£2,)

/S# ¢ (x i) wo(z) v(z) ds

Proof of the Theorem 3.1. The proof of this assertion is based on this lemma, and it can be found
in [20].

< Crap ol g [0l o) -

We omit their proof.

8.8  Supercritical case 6 < 1

This section deals with problem (9) in the case § < 1. The following assertion is valid.

Theorem 3.2. Suppose that g(x) € C'(R?) and that g(x, £) is smooth enough nonnegative function.
Then, for any sufficiently small x problem (9) has the unique solution and the following convergence

1wl 0,y — 0

takes place as pu — 0.

Proof. Keeping in mind Lemma 5 from [21], we get from the integral identity the estimate

1wl 10, < C.
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Acting in the same way as in [21], we deduce

€T
[ e < [a(e Yuas + i)

w Su

On the other hand,

< 1 g @)ooyl pag,) + O ).

',u/q(:z:, %)uids
S

Combining these estimates, bearing in mind the uniform boundedness of u, in H 1(Qu)v we complete
the proof.

4 The main assertion
4.1 The case 0 > 1

Theorem 4.1. The following limit holds in the topological space G){fc
A, > A asp—0+. (18)

Moreover,
K, —K aspu— 0+ in 0" (19)

Remark 4.1. Recall that the functions from the sets 2(,, and K, are defined in the perforated domains
1,,. However, all these functions can be prolonged insides the holes in such a way that their norms in the
spaces H, V, and L, (without perforation) remain almost the same (are equivalent with the constants
independent of the small parameter) as in the perforated spaces H,, V,, and Ly, (the prolongation
of functions defined in perforated domains, see, for instance, in [5; Ch.VIII|). So, in Theorem 4.1, we
measure all the distances in the spaces without perforation.

Proof. Tt is clear that (19) implies (18). Therefore it is sufficient to prove (19), that is, for every
neighbourhood O(K) in ©¢ there exists p1 = u1(O) > 0 such that

K, C O(K) for pn < piy. (20)

Suppose that (20) is not true. Then, there exists a neighbourhood O'(K) in ©!¢, a sequence pj, —
0+ (k— 00), and a sequence uy, (-) = uy, (s) € K, such that

uy, ¢ O'(K) for all k € N. (21)

The function u,, (s), s € R is the solutions to the problem

( Ou . x T\ .
W“k = (1+ai)Auy,, + R <m, Mk) Uy, — <1 + 8 (x, Mk) 1) |Uuk|2uuk +g(x), xe€Q,
(1+ i) ggk +uzq<x,£)uuk:0, x € 8Sy,,t>0,
Upy, = 0, S 8Q,

| uy, = U(x), x €8y, ,t=0.

(22)
on the entire time axis ¢ € R. To obtain the uniform in p estimate of the solution, we use the following
Lemmata (see [22; Ch. III, §5] and [23] respectively).
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We obtain the estimate using the integral identity (3), by means of Lemma 1.1. More precise the
sequence {uy, (z,s)} is bounded in F?, that is,

[ty || 7o = sup [, ()[4
teR
1/4

t+1 9 t+1 4
T sup < / ||uuk<s>|rlds> + sup ( / ’|Uuk(5)||L4d3) ;
teR t teR t

t+1 a 4/3 3/4
+ sup (/ | S (s)| ds) <C forallkeN. (23)
teR ot H-

1/2

The constant C' must not depend on .
Hence there exists a subsequence {u, (z,s)} C {uy, (x,s)} which we label the same such that

y, (2,8) — u(s) as k — oo in O

where u(z, s) € F? and u(s) satisfies (23) with the same constant C. Due to (23) we have u,, (z,s) —

u(z, 5) (k — 00) weakly in LI(R; V), weakly in LI (R; Ly), s-weakly in LI%¢(R y; H) and 245\%%)

w (k — o0) weakly in Lff/cg » (R;H™). We claim that u(z,s) € K. We have already proved that
|lul]| 7» < C. So we have to establish that u(z,s) is a weak solution of (8).

According to the auxiliary problem in the case 8 > 1, we have

1+ ai / / Vuy, Vipdrdt + uk/ / uukwdadt + / / x)pdxdt —

8M (, &)\ Jug(z,t) O M
(1+ ai) / / Z < i+ 7, > dui o, —dx dt+/_M/Q]Dﬂw|g(3:)wd:cdt

3,7=1

as k — oo.
Let us prove that

R <x ;) up, (z,5) = R(z)u(z, s) (24)

and

(1 +8 (x ;) i) sy (2, 8) Py (2, 8) = (14 B(@)i) |u(z, s)Pulz, s) (25)

as k — oo weakly in LIy | (RiLyys).

We fix an arbitrary number A > 0. The sequence {uy, (x,s)} is bounded in L4 (=M, M;Ly) (see
(23)). Then the sequence {|uy, (,s)|*uy, (z,s)} is bounded in L5 (=M, M;Ly3). Since {uy, (2, s)} is
bounded in Ly(—M, M; V) and %(;:,@
Uy, (x,s) = u(x,s) as k — oo strongly in Ly (—M, M;Ly) and therefore

is bounded in L3 (—M, M;H™") we can assume that

up, (2,8) = u(x,s) a.e. in (z,5) € Q x (=M, M).
It follows that

|y (7, 8) P, (2, 8) = |u(w, s)[*u(z, s) ae. in (z,8) € Q x (=M, M). (26)
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We have
(1 ny ( fk) i) [t (2, 8) Pt (2,8) — (1 + B@)i) [z, 5)[Puz, ) =
_ <1 8 <x Mk) i) (It (5) Pt (,5) — [y 5) Pu(a, ) +
" ((1 +3 (1: ‘””) i) ~(1+ 5(:,;)1)) lu(z, 8)|2u(z, s). (27)

HE

Let us show that both summand in the right-hand side of (27) converges to zero as k — oo weakly in
Ly (—M, M;Lyy3).
The sequence

1+ B (2, ) 1) (g (@, 8) P (2, 5) — [z, s)2u(, 5))
(e (=)

tends to zero as k — oo almost everywhere in (z,s) € Q x (=M, M) (see (26)) and is bounded in
Lys3 (—M, M;Lyy3) (see (2)). Therefore Lemma 1.3 from [24] implies that

<1 +8 (m ;) i) (. (2, )Pty (2, 5) — ue, 8)[2u(@, 5)) — 0 as k — oo

weakly in Ly/3 (—M, M; L4/3).

The sequence
((1 +8 <m ;) i) ~(1+ /5’@:)1)) u(z, s)|2u(z, s)

also approaches zero as k — 0o weakly in Ly/3 (—M, M; L4/3) because, by the assumption 3 <x, a;) —
7

B(r) as k — oo *-weakly in Lo (—M, M; L) and |u(z, s)|?u(z, s) € Lys3 (—M, M;Lyy3).

We have proved (25). The convergence (24) is proved similarly. Using (24) and (25), we pass to the
limit in the equation (22) as k — oo in the space D' (Ry; H™") and obtain that the function wu(z, s)
satisfies the equation (8).

Consequently, u € K. We have proved above that Uy, — u as k — oo B ©loc. Assumption
uy,, ¢ O'(K) (see (21)) implies u ¢ O'(K), and, hence, u ¢ K. We arrive at the contradiction that
completes the proof of the theorem.

4.2 The case 6 < 1

Considering the convergence in Theorem 3.2, we get the following assertion.

Theorem 4.2. The following limit holds in the topological space @lfc
A, =0 aspu—0+.

Moreover,
Ky—0 asp— 0+ in o',
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JlokaJib1bl mepuoaATHI KeyeKTepi 6ap oprajapaa 'uucoypr-Jlangay
TeHJIeyJIePiHIH aTTPaAKTOPJIAPbIHBIH OpTAIlIaJay: CyO- »K9He
CYNEePKPUTHKAJBIK, KaF/Jaijiapbl

K.A. Bekmaran6eros’?, I'A. Yeuknn?34, B.B. Yenbrxos?>%, A.D. Tememic?”

YM.B. Jlomonocos amwimdazo, Mackey memaexemmir ynusepcumeminiy, Kasaxcmandaev, dusuanv,, Acmana,
Kasaxcman;
2 Mamemamuka sicone mamemamuraivr modesvoey uncmumymot, Aivamo, Kazaxcman;
3 M.B. Jlomonocoe amwimdazs. Macxey memaexemmix ynusepcumemi, Mackey, Pecet;
1 Komnvromepaix opmaavies. 6ap mamemamura uHemumymo, — Peceti evtavim axademuscoino, Yha dedepanvovy
zepmmey opmaavievbihory, beaimwecis, Yga, Peceti;

5 . ) .
° Peceti evinvim axademuacomoiry A.A. Xapresuyw amwvimdazv. Axnapam bepy maceaenepi uncmumymul, Mackey, Pecei;
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5 «Dornomura srcozapo, mexmebis Yammo sepmmey ynusepcumemi, Mockey, Peceti;
"JI.H. T ymunes amundaev, Eypasus yammuk ynusepcumemi, Acmana, Kasaxcman

Tenneyne xkoHe MeKapaJbIK, MAapTTAPBbIHIa Te3 Tepbeameri mytresrepi 6ap ['uucbypr-Jlangay Teraeyi Tecik
00JIBICTA KAPACTBIPBLIFAH. Byl TeHIEYIiH TPAEKTOPUSIBIK aTTPAKTOPJIAPHI 9JICI3 MarblHA/Ia «OFAIl MYIIIe-
ci» (omeyeri) 6ap opramasnanran ['macOypr-Jlannay TeHmeyiHis TPaeKTOPHUAIBIK ATTPAKTOPIAPbIHA XKYBIK-
Taitreiabl mostenaeri. Og ymia B.B. Yensrkosreiy, kore M.V, BUIMUKTIH 9BOTIONUSIIBIK, TEHIEYTEPIIH
TPAEKTOPUSIJIBIK ATTPAKTOPJIapbl TypaJbl MaKajajJapbl MeH MOHOIPadUSIaPBIHBIH, 9JiCTeMeCi KOJIIaHbI-
sgran. Conpaii—ak, XX FachIpJIbIH COHBIHJIA Taiiga GOFaH opTalaiay dicTepi maiigaJaHbLIFal. AJIbIMEH
ACHUMITTOTHKAJIBIK, 9/IICTEPl AaCUMITOTHKAHBI (POPMAJIBIBI KYPY VIIMIH KOJIaHAMBI3, COJIaH KEeHiH aCUMITOTH-
KaJIbIK, KaTapJiap/IblH Heri3ri MyIresepin (OyHKIMOHAJIbI TaJIIay KOHEe HHTEerPaJIIbl barajay 9/iCTepiH KOoJI-
JIaHa, OTBIPBIN TaH alMbI3. CollKeciHIe, KOMEKII 9JICi3 TOTOJIOTHSIIBI (DYHKITMOHAJIBI KEHICTIKTI aHBIKTAM
OTBIPBIN, MEKTI (OPTAIIATAHFAH) TEHIECYIH AJIAMBI3 YKOHE OCHI TEHJECY YIIH TPACKTOPHUSJIBIK, ATTPAKTOPBI
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Gap ekenin masenmeitmis. ComaH KeiiiH Herisri TeopeMasapbl TY>KBIPBIMJIAIl, OHbI KOMEKIIN JIeMMaJIapIblH
KeMeriMeH JpJiesiieliMis. Bysl TeHey 1iH, TpaeKTOPUSIIBIK, ATTPAKTOPJIaphl CyOKPUTUKAJIBIK, XKaFaaiiia op-
TamaJsianran ['nacOypr-Jlanmay TeHmeyiHiH TPACKTOPHUSIBIK, ATTPAKTOPBIHA OJICI3 TYP/Ie KIUHAKTATIATHIHBIH
JK9HE CYyNEePKPUTHKAJIBIK, KaFIali/ia »KOFaJIbIll KeTETIHIH JIDJIeieiMis.

Kiam cesdep: arrpakropiap, opraraiay, I 'nucbypr-Jlannay Tenjeyiiepi, CbI3bIKTBIK, €MeC TeHIIEYIIEeD, dJICI3
JKUHAKTBLIBIK, TECIK 06JIBIC, KEYEKTI OPTa.

Ycpeanenne aTTpaKToOpoB ypaBHeHuii I'ma30ypra-J/lanmay B cpegax c
JIOKAJIBHO TI€PUOANYECKNMU IIPENATCTBUSIMU: CyO- 1
CyIepKPUTHUYECKNE CJIyvan

K.A. Bexmaran6eros'?, I'A. Yeuknn?3*, B.B. Yensnxos?>®, A A. Tomenmc?7

! Kasazemanexuti uauas Mockoscrkozo zocydapcmeenmozo ynusepcumema umenu M.B. Jlomonocosa,
Acmana, Kazaxcman;
2 Mnemumym Mamemamuky U Mamemamuieckozo modesuposanus, Aamamu, Kasazeman;
3 Mocxosckuti zocydapemeennuits yrusepcumem umenu M.B. Jlomonocosa, Mocksa, Poccus;
4 Mrnemumym MmMamemamury ¢ KoMNoomeprsm uenmpom — nodpazdeaenue Ydumcrkozo pedepanvrozo
uceaedosamenvckozo uenmpa Poccutickoti axademuu nayx, Yga, Poccus;
5 Unemumym npobaem nepedau ungopmavuy umeny A.A. Xapresuwa PAH, Mockea, Poccua;
8 Havyuonarvriti uccaedosamenverutl yrusepcumem «Buicuias wrora sxonomukuy, Mockea, Poccus;
" Espasutickuti nayuonaasruti yrusepcumem umenu JI.H. Dymunesa, Acmana, Kazazcman

Paccmorpeno ypasuenne ['muzbypra-Jlanmay ¢ OBICTPO OCHWJLIHPYIONIMMY YJI€eHAMHA B YPAaBHEHUUM U TPa-
HUYHBIX YCJIOBUSX B mepdopupoBannoit obmactu. [IpuBeseno n0ka3aTeIbCTBO TOTO, YTO TPACKTOPHBIE aT-
TPAKTOPBI 3TOI0 YPABHEHHS B CJ1IaOOM CMBICIIE CXOIATCA K TPAEKTOPHBIM aTTPAKTOPaM yCPEIHEHHOIO yPaB-
wenus ['mua3bypra-Jlanmay. st aTOr0 Mbl mcmosib3yeM moaxos u3 crareit u monorpadmuit B.B. Henwrkosa
u M.U. Bummka 0 TpaeKTOPHBIX aTTPAKTOPAX BOJIIOIMOHHBIX YPABHEHUl, a TaKKe MPUMEHSEM MeTOIbI
yCpeJiHeH s, osiBUBIIeCs B KoHlle XX Beka. CHadajia UCIOJIb3yeM aCHUMIITOTHYECKHE METOJbI JJist pop-
MaJIbHOTO TTOCTPOEHMSI ACUMIITOTUK, Jajieeé OOOCHOBBIBAEM BHUJ[ IVIABHBIX WIEHOB aCHUMIITOTHYIECKUX PsIIOB
C MOMOIIBI0 METOJ0B (DYHKIMOHAJIHHOIO aHAJU3a M WHTErPaJbHBIX OleHOK. Oupesesisis COOTBETCTBYIO-
I[e BCIIOMOTraTeIbHbIe (PYHKIMOHAIBHBIE IIPOCTPAHCTBA CO €Jj1aboil TOIOJIOrnel, MBI BBIBOJUM IIDE/IEIbHOE
(ycpemnenHoe) ypaBHEHUE U JOKA3BIBAEM CYIIECTBOBAHUE TPAEKTOPHOIO ATTPAKTOPA JJIsl 3TOTO YPABHEHUS.
BareMm dopMyIMpyeM OCHOBHBIE TEOPEMBI U JOKA3BIBAEM HMX C HOMOIIBIO BCIOMOTATEILHBIX JieMM. Kpome
TOr0, JOKA3bIBAEM, YTO TPAEKTOPHbBIE aTTPAKTOPHI TOI0 YPABHEHUS CXONATCS B CJIa0OM CMBICJIE K TPA€K-
TOPHBIM aTTPAKTOPAM yCpeTHEHHOTO ypaBHeHus: [ mu3bypra-Jlanmay B cyOKpUTHIECKOM CITyUae U UCIE3AI0T
— B CYyIEPKPUTUIECKOM.

Kmouesvie carosa: aTTpakTOpBI, yCpeaHeHne, ypaBHeHus | nn3dypra-Jlannay, Hennneiinble ypaBHeHUs, Cla-
Gasi CXOIMMOCTbD, epdOpUpPOBaHHas 06JIACTD, TIOPUCTAs] CPEA.
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