Bulletin of the Karaganda University. Mathematics series, No. 1(113), 2024, pp. 5-20

MATHEMATICS

https://doi.org/10.31489/2024M1/5-20 Research article

On the class of pointwise and integrally loaded differential equations

K.R. Aida-zade!?, V.M. Abdullayev!3*

! Institute of Control Systems of Ministry of Science and Education of Republic of Azerbaijan, Baku, Azerbaijan;
2 Institute of Mathematics and Mechanics of Ministry of Science and Education of Republic of Azerbaijan, Baku,
Azerbaijan;

3 Azerbaijan State Oil and Industry University, Baku, Azerbaijan
(E-mail: kamil_aydazade@rambler.ru, vaqif ab@rambler.ru)

We investigate a system of linear ordinary differential equations containing point and integral loadings
with nonlocal boundary conditions. Boundary conditions include integral and point values of the unknown
function. An essential feature of the problem is that the kernels of the integral terms in the differential
equations depend only on the integration variable. It is shown that similar problems arise during feedback
control of objects with both lumped and distributed parameters during point and integral measurements of
the current state for the controllable object. The problem statement considered in the paper generalizes a lot
of previously studied problems regarding loaded differential equations with nonlocal boundary conditions.
By introducing auxiliary parameters, we obtain necessary conditions for the existence and uniqueness
of a solution to the problem under consideration. To solve the problem numerically, we propose to use a
representation of the solution to the original problem, which includes four matrix functions that are solutions
to four auxiliary Cauchy problems. Using solutions to the auxiliary problems in boundary conditions, we
obtain the values of the unknown function at the loading points. This is enough to get the desired solution.
The paper describes the application of the method using the example of solving a test model problem.

Keywords: integro-differential equation, system of loaded equations, integral conditions, conditions of existence
and uniqueness.

2020 Mathematics Subject Classification: 34A12, 34B10, 45J05.

Introduction

The paper studies the existence and uniqueness of the solution of nonlocal problems with respect
to systems of linear ordinary differential equations, which are pointwise and integrally loaded, and the
kernels of integral terms depend on one variable of integration. The nonlocal conditions are linear and
contain point and integral values of the unknown function. Such problems are also called pointwise
and integrally loaded and they arise in many practical applications [1-4|. The specific feature of the
integral terms in the equations is important for the proposed approach to obtaining the existence
and uniqueness conditions for the solution of the problem and for its both analytical and numerical
solutions.
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The paper describes an example of an optimal feedback control problem for a heating process,
which leads to the class of nonlocal problems considered in the paper. Feedback is carried out due to
point and integral measurements of the rod’s temperature, the results of which are used to form the
current values of the control action [5,6].

In the paper, it is shown that the considered class of nonlocal problems, by introducing new
variables, can be reduced to well-studied pointwise loaded problems with separated boundary conditions
[7-9]. But taking into account the significant increase in the dimension of the problem, such an approach
to the study of the original problem is not recommended.

The approach to obtaining the existence and uniqueness conditions of a solution to the problem is
used to a certain extent for the proposed method for solving the problem both in an analytical form in
case of a constant matrix of a dynamical system, and for a numerical solution with a variable matrix
of the system. We present a study and an analytical method for solving one illustrative problem using
the proposed approach.

1 Problem statement and its analysis

We consider the following system of pointwise and integrally loaded differential equations:

I
du(x
) o)+ 3 Bl +
lo TLy+2j
+3 B [ CGOued+ D), v € lroay) o
j=1 TLq+2j—1
with non-local conditions
Is Iy TLg+2j
Sae,)+>. [ BOuOE = 2)
i=1 jzll‘L3+2j—1
Here u(-) € R™ is an unknown continuously differentiable function. There are: non-negative integers
l1,12,13,14; continuous n-dimensional square matrix functions A(x), B}(x), sz(ac), 1= 1,2,...,11,
J = 12,...)ls, at x € [a:o,xf], C](HJ) —at r € [xL1+2j_1,xL1+2j], 7 = 1,2,...,1o, Bj<1') - at

T € [XL342j—1,%Ly+2;5]; continuous n-dimensional vector function D(x); n-dimensional vector 7; points
xij, 0 =1,2,...,L4, L1 =1, Ly = L1 + 2ly, L3 = Ly + I3, Ly = L3 + 214 from segment [zg, x| (some
of the indicated points may coincide), and it is assumed that, without loss of generality, the following
conditions are satisfied:

Tri42f = TLi4+2j—1, J=1,2,...,00, Tr,49; > Xp,40i-1, J=1,2,...,14.

In the problem, it is required to find a continuously differentiable vector function u(-) € R™ for
x € [xo,xy], satisfying the system of pointwise and integrally loaded differential equations (1) and
nonlocal conditions (2), containing point and integral values of the unknown function.

An essential feature of problem (1) and (2) is the dependence of the integrands in equation (1) on
one variable of integration. For example, optimal feedback control problems lead to such a problem [5,6].
In particular, the control synthesis problem for the heating process of a rod with the length d in the
furnace, which can be described by the boundary value problem for the parabolic equation:

up(z,t) = a*uls (@, t) + p(@) [0 () — u(, )] (3)
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with some initial and boundary conditions

u(z,0) = p(x), z €10, d], n
ﬁugc)y, t) _ p [9(t) —u(0,t)], ¢t €10,T7, -
8uéi, t) = —up [9(t) —u(d,t)], t €[0,T]. ©

Here u(z,t) is the temperature of the rod at the point = at the moment ¢, x € [0,d], t € [0,T];
p(zx); o(x), a, p1 are the specified functions and process parameters; ¥(t) is a control function that
determines the temperature inside the furnace. There is a certain optimality criterion characterizing the
choice of control ¥(t). Assume that the given points z; and segments [Z2;_1, Z2;] of the rod, we take the
point u(z;,t), ¢ = 1,2,...,l; and integral u(z,t),x € [Toj—1,T2;],7 = 1,2,...,lo measurements of the
temperature. The measurement results are used to form the current temperature value in the furnace
(feedback control) in the form of the following relationship

Zklz «Tz; +Zk2j / ﬁ] 5 (7)

IQ] 1

Here the given functions f;(x),x € [x2j_1,x2;] are weighted, the constant coefficients ky;, ko ,
i=1,2,...,l;, are the optimizable feedback parameters [5, 6].
Substituting expression (7) into equation (3) and using the difference approximation of the derivatives

with respect to ¢

ou(z,ts)  u(z,ts) —u(z,ts—1)
a h Ohe),

we obtain the following system of loaded differential equations:

dPug(x
aOd;g) = alus + a2 Z klzus xz

+Z’% / BH(E)us(€)dE | + fulw), we[0:d] , s=1,2,... N, (8)

232] 1

Conditions (4)—(6) can be written in the form

dus Zklzus 377, + Zk2j / 6] us d& - us( ) ) (9)

x2g 1
I Iy Taj
dug(d
D | (o) + 3y [ Ol )] (10)
i=1 =L
In (8)—(10) the following notations are used: h; is the discretization step, uo(z) = wu(z,0)

o(x), x € [0,d] , us(z) = u(x, ts), ts = shy, s =1,2,..., Ny, hy = T/Ntv ag = a’hy, ar(x) = 1+ az(x),
a2(x) = ht,u(w)7 fs(x) = usfl(w)'
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To determine the feedback parameters ki;, koj, ¢ = 1,2,...,11, j = 1,2,..., 13 using any first-order
numerical iterative optimization methods, first, it is required to construct formulas for the components
of the gradient of the objective functional in terms of the optimizable parameters, and second, to
numerically solve problem (8)—(10) for given current values of these parameters. It is clear that system
(8) can be easily reduced to the considered system of first-order differential equations (1) and (2).

Note that some special cases of problem (1) and (2) were studied earlier. When BJQ({L‘) = 0,
j=1,2,...,ls, we have a point-loaded system of differential equations, investigated in many papers,
particularly, in [2-4,7]. When le () =0,7 =1,2,...,l;, we obtain an integro-differential system of
equations whose kernels Cj(x) depend only on the variable of integration [10-18]. Conditions (2) also
generalize many other local and nonlocal conditions. Their particular cases are Cauchy conditions,
two-point and multipoint conditions, conditions of an integral type [4,19].

Problem (1) and (2), by introducing new unknowns, can be reduced to a two-point boundary value
problem for a system of point-loaded differential equations. Let’s show how it is done. We introduce

new n-dimensional variables ¥/ (x),j = 1,2,...,ls, satisfying the system of differential equations:
dd (z) .
e =Cj(z)u(r), Tri42j-1 <T<Tpi425, §=1,2,...,1, (11)
19](33) :OTL; $S-/EL1+2]'717 j:1727"')l25

where 0,, is the n—dimensional zero vector. System (1) will have only point loading:

l1 l2
du(x ,
d(t )= Aula) + Z; B} (z)u(x;) + ; B () (21, 42;) + D(x),x € [wo, ). (12)
By introducing new n-dimensional vectors w’(x), j = 1,2,...,l4, satisfying the system of differential
equations
dw’ () .

dx =Bj(@)u(z), Trsqo5-1 <T < wpgy05, j=1,2,... 14, (13)
wj(x)zon’ :L‘SxL:H*ijlv j:1727"‘7l47

conditions (2) are reduced to the multipoint conditions

l3 l4
> u(rr, )+ Y w (@ry05) = 7. (14)
i=1 j=1

The order of the resulting linear system of loaded differential equations (11)—(13) is (lo 4+ 4 + 1)n.
Using the approach proposed in [8,9], multipoint conditions (14) can be reduced to separated boundary
conditions. To do this, each of the 2(l3+14+1) segments between all the points o, Tpppir &= 1,2,...,13,
Tpoiond = 1,2, ., lg, oy after their ordering, is divided into two parts. For each of the halves of
these segments between the points, systems of differential equations are introduced for new variables
corresponding to u(z), ¥(x), wi(z), i = 1,2,...,l1, j = 1,2,...,l3, but in different directions of
change of the argument x. As a result, we obtain a system of differential equations of the order
2(l3+ 14+ 1)(I2 + l4 + 1)n with two-point boundary conditions of the form (after individual scaling for
each segment and reducing them to segments of a unit length):

Alw(()) = AQ, Agw(l) = A4,
where Ay, As are the square matrices of size 2(l3 + l4 + 1)(l2 + l4 + 1)n; Ag, A4 are the vectors of the

corresponding dimension.
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Point-loaded equations with two-point and multipoint conditions have been studied well enough,
necessary and sufficient existence and uniqueness conditions of a solution were obtained for them in [11]
and [17], approaches to their numerical solution were proposed in [2,7,20]. Optimization and optimal
control problems, inverse problems in various formulations described by point-loaded equations we
investigated in [21-23|, numerical methods for their solution are described in [21,22].

Considering a significant increase in the dimension of the original problem (1) and (2), when it is
reduced to a problem with point-loaded differential equations with separated boundary conditions, the
use of the previously proposed methods both for study and their numerical solution is inappropriate.
This is especially true for optimization and optimal control problems that require multiple solutions
of problems of the kind (1) and (2).

Therefore, this paper studies the existence and uniqueness of solutions to problem (1), (2), and
also proposes an approach to solving that does not require an increase in the dimension of the original
problem.

2 Emistence and uniqueness conditions for the solution of problem (1) and (2)

Consider the following auxiliary system of differential equations:

ll . lg .
du(x = ~J
") A@u(@) + Y BH@X + 3 BA@)X +D(a), a € [xo, ] (15)
i=1 j=1
i
with conditions (2). Here, A\, A, i =1,2,...,1l1, j=1,2,...,ly are arbitrary n-dimensional vectors,

the functions and parameters are the same as in equation (1).
Under the accepted assumptions on the functions involved in the problem, the solution to system
(15) for an arbitrarily given initial condition

u(xo) = ug (16)

according to the Cauchy formula can be written as:

T

u(w) = Fla)ur + F(o) [ FUOREE, o€ fov.), (1)
o
I i lo _j
R(§) =) BION +)_Bj©X + D). (18)
i=1 j=1
Here, the n-dimensional square fundamental matrix F'(x) is a solution to the Cauchy problem
dF
da(:) = A(x)F(x), F(xo)=1In, € [zo,24], (19)

where I, is the n-dimensional identity matrix.
Let us introduce the notation:

F(2) = F(x) / FUOBNOE, i=1.2.... .1, (20)
F(z) = F() [FroB@d i=12 b (21)
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Fl(x) = F(x) / FY(€)D(€)de. (22)

Then solution (17)-(18) of the system of differential equations (15) with an arbitrary given initial

—i  —~J
condition ug and the vectors A, A, i =1,2,...,l;, j=1,2,...,ly can be written as:

u(z) UO+ZF' A#ZF' Wt Fl(a). (23)

i

Considering an arbitrariness of the n-dimensional vectors ug, A , A ,i=1,2,...,l1, j=1,2,...,1ls,
we require that they fulfill the following conditions:

Vv
A =u(zy), v=1,2...1, (24)
TLq+2u

~H

A= / Cu(©u(&)ds, p=1,2,...,1ls, (25)

TLy42u—1

and conditions (2). It is clear that the total number of conditions in (2), (24) and (25) is equal and
i
coincides with the total dimension of an arbitrary vector ug, A , A, i =1,2,...,l;, j=1,2,...,[.
- -1 2 1 —_ ~1 -2 ~la
Let us introduce the notation for vectors: A = (A , A ,.., A )T e Rim A= (X, A ,..,\ )T € R,
A= (A A) e Rtz
“T” is the transposition sign.
From (24), taking into account (23), we obtain:

A :F(x,,)qurZFi(x,,))\ +Zﬁj(:py)ij+F1(%). v=1,2,..1. (26)

From (25), taking into account (23), for = 1,2,...,ls, we obtain:

TLy+2p
N / Culn)

TLy42u—1

UO+ZFi X+ ZF' W+ FL )| di. (27)

From conditions (2), taking into account (23), we obtain:

3 l> i
Z (674 SL'L2+1 UuQ + Z F $L2+z )\ + Z F $L2+Z) )\ + F (l’L2+z) +
; s=1 =1
1y Fkat2 . 4
+) / B;(n) u0+ZF /\+ZF WA+ F ) | dy = . (28)
i= TLg+25—1

Relations (26)—(28) are systems of linear algebraic equations of an ly1n, lon and n-th order, respectively,
-t ~J
with respect to the unknown n-dimensional vectors wg, A\, A ;i = 1,2,...,01, j=1,2,...,l5. The

total number of equations in these systems corresponds to the total number of unknowns: (uq, 7\’ K) €
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R+t - After simple transformations and grouping, the resulting algebraic system can be reduced
to the form:

Glyuo + GlpA + GhA = Gy, j=1,2,...,1s, (29)
Garug + Ga A + Ga3A = Gag.

The matrix coefficients participating in (29) are determined from (26)—(28):

Giy = F(x;) € R™™,

i 1 —i—1 1 —i+1 oy
12 —

F (2), 0 F (@), F ()~ T, F (2),., F (m) € el

~2 s

. ~1
L= (F (z), F ()., F (a:i)> e Rxbn,

ty=—Fl(z;) eRi™, i=1,2,...1,

TLy+25
ch= [ CFmder,
TLq+2j—1
TLq+2j5 TLy+2j
. 1 A
Gh=| [ owFwm .. [ cmr mm|ern
LLy+2j—1 TLy+2j-1
TLy+2j5 . TLy+2j - TL1+2j .
. ~ ~j— ~j
Gh=| [ cwFwi.. [ cwF wa [ GwFme-.,
ETLq+2j—1 TLq+25—-1 TLy+2j—-1
TLq+2j TLy+2j
It ol nxlan
CimF  (n)dn, ..., Ci(mF (n)dn | € R"*=",
Trq+2j-1 TLy+25—1
TLy+2j—1
Gy = — Ci(m)F'(n)dn e R, j=1,2,...,1,,
TLy+2j—1
Iy I, ThsrE
G31 = ZaiF($L2+i) + Z / Bi(m)F(n)dn € R™™,
i=1 j= TLy+2j-1
I3 ho P b,
Gs2 = Zai ZF (TLyti) + Z / Bj(n) ZF (n)dn € R0,
i=1  s=1 =Ly Doy i=1
I3 o, P b,
Gz = Zai ZF (Troti) + Z / Bj(n) Z F (n)dn € R™"=",
=1 j=1 =Ly Yoy s—1
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Tlq9425
ls 3127

l3
Gso=7— Y aiF (xr,4i) — Y / Bi(n)F* (n)dn € R™.
i=1 =l e
From the solution of algebraic system (29), we determine the initial value of the unknown function
uog = u(xp), the point values

—1

A :u(xi),i:1,2,...,l1,

—~J Li+25
and the integral values A = [ C)u(€)ds, j = 1,2,...,15. This allows us to solve the
L1+2j—-1
Cauchy problem for the system of differential equations (15) instead of loaded system (1) with initial
conditions (16) without using nonlocal conditions (2).

Thus, the existence and uniqueness of a solution to problem (1) and (2) depends on the existence
i g

and uniqueness of the vectors ug, A , A ,1=1,2,...,11, 5 =1,2,...,ls, which are solutions of algebraic
system (29). This implies the following theorem.

Theorem 1. For the existence and uniqueness of a solution to problem (1) and (2), the rank of the
(I1 + l2 + 1)n -dimensional square matrix of algebraic system (29) must satisfy the condition:

1 b 1 Ly T
Gll .. Gll G21 “ee G21 G31

rank | Gy, .. Gy Gy .. G2 Gz | = +l+1)n (30)
G%’?) e Gg_13 G%g e Gl223 G33

It is clear that if the rank of the matrix in (30) is less than n, then algebraic system (29) may have
no solutions or have an infinite number of solutions depending on the rank of augmented matrix (29).
Consequently, original problem (1) and (2) may have an infinite number of solutions or not have them
at all, respectively.

The above approach to studying the existence and uniqueness of a solution to problem (1) and
(2) can also be used to solve the problem. But, as can be seen from the above formulas, to find the
coefficients of the system of algebraic equations (29), it is necessary to have a fundamental matrix of
solutions F'(x) and its inverse matrix F~1(z), € [xo, x]. If the condition A(z) # const, x € [z, z]
is met, the construction of these matrices in an analytical form is not possible in practice, and using
numerical methods requires a large amount of computation and memory.

In the next section, we present an approach to the numerical solution of problem (1) and (2) is
presented that does not require knowledge of the matrix F~!(z), z € [zo, zy].

3 Approach to the solution of the problem

Below, we propose an approach to solving problem (1) and (2) using auxiliary Cauchy problems for
linear systems of differential equations. For the numerical solution of the auxiliary Cauchy problems,
known methods and software packages can be used.

The proposed approach is based on the representation of solution (23) to auxiliary problem (15),
(16) and the Cauchy problems given in the following theorem.

Theorem 2. The solution of the system of differential equations (15) for arbitrarily given independent
—i
initial condition (16) and n-dimensional vectors A , A ;i =1,2,...,01,j =1,2,...,ls, can be uniquely

1 —~J
represented as (23), if n-dimensional square matrix functions F(z), F' (z), F' () and vector function
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Fl(z), at = € [z, 2], are solutions of the corresponding Cauchy problems (19) and

dl;j(;x) — A@)F (2)+ BMx), Fla)=0, i=1,2 .0 (31)
dﬁdq;(x) = A(m)ﬁj(aﬁ) + Bj(x), ?’j(ﬂco) =0, j=12,..,b, (32)
df;f”f) = A(z)F'(z) + D(z), F(z¢) = 0. (33)

Proof. According to Cauchy formula, the unique solutions to problems (31)—(33) are the functions

—1 —~]
F (z), F (x), F'(x), respectively, defined by formulas (20)—(22). These formulas involve the matrix
function F'(x), which is a fundamental solution to homogeneous systems with respect to (31)-(33)

1 ~J
and the unique solution to Cauchy problem (19). It is clear that the functions F(z), F' (z), F' (z),

i —~J
F1(z) are independent of the initial condition ug and parameters A , A\ . But the representation of the
solution to the system of differential equations (15) in the form (23), by virtue of Cauchy formula (18),

-t ~J

is unique for arbitrarily and independently given vectors ug, A , A ,i=1,2,...,01,7=1,2,...,1s.

From the above, we can formulate the following approach to solving original problem (1) and (2).
_i
First, we solve auxiliary Cauchy problems (19), (31)-(33). After finding the functions F'(x), F' (z),
~J
F (z), FY(z x), i =1,2,...,01, j = 1,2,...,lz, further, taking into account the arbitrariness of the

—1 ]

parameters \ | )\ yi=1,2,...,l1,7 =1,2,...,l2, up € R in problem (15) and (2), we require that
they fulfill condltlons (24), (25) and (2). Then, from representation (23), we have:

N = u(zy) = Flx,)uo + Zﬁi(%)f +Y F (@)X +F' (), v=1,2,.10, (34)
i=1 Jj=1
. TLy+2p TLy+2p TLy+2p L
A= Cpu(&)u(§)de = Cou(€) F(€) uodg + CuOS F(©N de+
TLq+2u—1 TLq+2u—1 TLq+2u—1 =1
TLy+2u I ‘ 4 TLy+2p
+ / Cu©) S F ()N de + / CUOFNE)E, j=1,2, .., I2, (35)

3 la ]

—~J
E Qg Lroti u0+§ :F L+z>\ +§ F( L+z))\ +F1( L2+i) +
— =

et h 7 —1 la 8 8
+Z / 5€) |[FOu + S F@X + Y F ©X + F1©)| dn=1 (36)

From (34)—(36) we get the system of (I; + Il + 1)n linear equations with respect to unknowns n-
—~

dimensional vectors uy, )\ S A Lv=1,2,...,01,u=1,2,..., 1. Having determined these vectors, from
representation (23), we ﬁnd the desired solution to problem (1) and (2).

Mathematics series. No.1(113)/2024 13
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If among B} (z),i=1,2,...,11, or B?(x), j=1,2,...,1y, there are functions having the same or
different constant coefficients, then the number of auxiliary problems (31)—(33) can be reduced by the
number of coinciding functions. For example, if k1 B} (x) = k2Bl (z) = ... = kyB}. (x), then instead of

-1 —1s ~Tx S
vectors A 1, ..., A it suffices to introduce into (24) one vector A = > kqu(z;,).
~J ~Js
Similarly, if lel (x ) = k232 () =..= ksBJQ-S (x), then instead of vectors A 1, A in (25) we
-rL1+2jq
introduce one vector A = Z ke [ Cj(&u(§)dE. One of such cases will be demonstrated by
TLy+2jq—1
the example of an illustratlve problem given in the next section.

4 Illustrative problem

Consider the following problem:

3
d
l;(;) = 3u(z) + 2u(1) + 3u(2) + 6/u — 62% + 4z — 118, z € [0, 4], (37)
2
2
u(0) — 2u(3 )+3 / u (38)
1

In equation (37) A(z) = const = 3, x € [0,4]; the functions B}(z) = 2 and Bi(z) = 3 differ in
constant coefficients; xg =0, z1 =1, 20 =2, 23=2, 24 =3, 25 =0, 26 =3, 27 =4, z8 =1, 19 = 2,
ll :2, l2 :l4 = 1,[3 = 3, L1 :2, LQ :4,L3 = 7, L4 :9; D(l’) = —61‘2+4$—118; Cl(l') = 1;
011:1,052:*2,043:1, 51:3,’7:13.

It is easy to verify that the solution to problem (37) and (38) is the function: u(z) = 22% + 1.

Let us introduce the notation

1 IR
N = 2u(l) +3u(2), A = / w(€)de. (39)
2
Let us construct auxiliary problems (31)—(33):
dF(z) B B
T = 3F(), F(0)=1, (40)
_1
dF (z) 2! =1
S =3F () +1, F(0)=0, (41)
~1
dF (z) =1 =1
= 3F (xz)+6, F (0)=0. (42)
dF;f) =3F'(z) — 62 + 42 — 118, F'(0) =0. (43)

It is not difficult to determine solutions to Cauchy problems (40)—(43):

1 1631_1’
3 3
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~1 11 11
F (z)=2¢% -2, Fl(2)=22% - ?863:0 + ?8

Using representation (23) and notation (39), we obtain:

X = (2F(1) + 3FY(2)) uo + (2F'(1) + 3F'(2)) +

+ <2ﬁ1(1) + 3?1(2)> N+ (225’1(1) +31?1(2)> AL (44)

~1
A =

[F(&) o+ FUE) L F (X +F () ] . (45)

RO,

_1 ~1
Substituting the found functions F(z), F (z), F (z), F'(z) into (44), (45) and adding condition (38),
we obtain the algebraic system (29):

1 ~1
(3(3¢5+263) up+ ((3¢5+2¢%) —8) A + (6(3€5 +2¢%) — 30) A =
= 118(3e5 + 2¢3) — 674,
1 —
3(e? =€) up+ ((”—€%)—=3) X + (6(e?—€f)—27) X =
= 118(e” — ) — 468,

-1
3((e? =2 +€b —e®) +1) ug+ ((e'? —2e” +e —¢e’) —2) X +
~1
+(6(e'? —2e” + €0 —€3) —12) A =118(e!? — 2¢” + €0 — €%) — 227.

Direct computation shows that the rank of the matrix of this system is equal to 3, and its only solution
is: ) T
w=1, X =33, N\ =—.
3
Then from representation (23) we obtain the required solution:

u(z) = F(z)ug —i-}v?l(a:) . Xl +}A71(:c) . Xl + Flz)=222+1, z€]0,4].

Conclusion

We have proposed an approach to the study and solving a class of nonlocal problems with respect
to linear ordinary pointwise and integrally loaded differential equations. The main specificity of integral
loadings is that the kernels of the integral terms depend on only one variable of integration. This made
it possible to reduce solving the original problem to solving auxiliary Cauchy problems with respect to
ordinary differential equations.

The considered problem is of independent interest. But as shown in the paper, the optimal control
problems for objects with feedback are reduced to it, in which the current state measurements of an
object can be of a point and interval nature.

We have obtained existence and uniqueness conditions of the solution for the considered class of
problems, and provided study and solution of one illustrative problem.
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Hykrestik »KoHe MHTerpaJiibIK KYKTeJareH anddepeHnna gbIk,
TeHJleyJiep KJachl 2KalbIHAA

K.P. Aitna-zaznel?, B.M. A6aynnaes!?

L Bsip6atiorcan Pecnybauraco, Fouvim orcone Ginim munucmpaizingy, Backapy owcytieaepi unemumymos, Bak
Y P H Kapy Yy s Y,

Ozipbativtcan;

2 Dzipbatiorcar Pecnybaukaco, Touavim orcone Giaim munucmpaizingy, Mamemamuka scorne METGHUKG WHCTMUMYMbL,

Baxy, Osipbatiorcan;
3 Dzipbatiorcan Mmemaekemmir My rall srcone onepracin yrnusepcumemi, Baxy, Osipbatiocan

Beitmokan mekapasbik maprrapbl 6ap HYKTEIIK »KoHE WHTEIPAJIBIK, }KYKTEMeJIEP/IeH TYPATHIH ChI3BIKTHIK,
KapamnaiibiM nuddepeHnmaabK, TeHaeyrep xyieci seprrenren. [llekapanbik maprrapra 6ericis gpyHK-
[USTHBIH, THTETPAJIIBIK, XKOHEe HYKTEJIK MOHJepi KaTtanabl. KcenTiH MaHBI3ABI mapThl 1uddepeHInaIbik,
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TeHJIeyIep/Ieri UHTErPAJIJIBbIK MYIIeJIepIiH sapoJiapbl TeK MHTErPAIMSIbIK alHbIMAJIBIFA TOYeJITriH/Ie.
Yxkcac ecenTepiH 6acKapbLIATBIH OOBEKTIHIH aFbIMIAFbl KYHIH HYKTENTK YKoHE WHTErpPaJIbIK OJIIIeyJep
Ke3iume GipikTipinren »kome GesiiHreH mapamerpJsiepi 6ap eki 00beKTiHIH e Kepi GallIaHBICHIH OaKbLIAY
Ke3iH/e TYBIHIANTHIHBI KopceTiaren. Makasaga KapacThIPbLIFAH €CENTiH KONbLIYhI OEeMI0Ka I MIeKapasIblK,
mapTTapMeH YKYKTeJreH auddepeHnnaablK TeHIeyaep OOUbIHIIA OYPBhIH 3€PTTE/NeH KOIITEreH eCenTep/Ii
Kanmbutaiiael. Kemekmn mapamerpiiep/ii eHrisy apkbLIbl KAPACTBHIPBLIATHIH €CENTIiH MIeTiMinig 6ap KoHe
2KaJIFbI3 OOJIYBIHBIH, KaKeTTi IMapTTapbl ajblHIbl. EcenTi caHJbIK Typ/e Iemry yIiinin TepT KkeMekir Korm
ecebiniy, mrenriMi 60JIbIT TaOBLTIATHIH TOPT MATPUIIAJIBIK, (DYHKITUSTHBI KAMTATBHIH GACTAIKBI €CEIITIH, IEeITMiH
nmaiinanany yceibLIaabl. [llekapasblk Kargaiiapia KOMEKIT eCenTep/IiH MIeniMAIepiH naigaiana OThi-
PBII, XKYKTEy HYKTesepiHgeri Oesrici3 dyHKIUSIHBIH MOH/EP] aJblHIAbI. Bysl KaXkeTTi memnriMal aay yImin
KeTKUTiKTI. Makasaja MOIEIbIIK €CeNTi MIENIy/IiH, MbICAIbI APKBLIbL O/IICTI KOJIJAHy KOPCETLJIreH.

Kiam cosdep: nnrerpaabik-auddepeHnnaablK TeHIeY, XKYKTeJNeH TeHIeyep Kyiecl, HHTerpaJiIbIK, ap-
TTap, 6efiyIoKa mapTTap, 6ap *KoHe YKAJIFbI3 60Ty MAapTTapH.

O KJ1acce TOYEYHO U MHTErpaibHO HArpyKeHHbBIX
anddepeHInaJIbHbIX YPaBHEHMIA

K.P. Aiina-zane'?, B.M. A6aymnaes!?

L Hnemumym, cucmem ynpasaenus Munucmepemea nayku u obpasosanusa Asepbatioocancroti Pecnybauxu, Baxy,
Asepbatiorncan;
2 Mnemumym mamemamusy u mexanuky Munucmepemesa nayku u obpazosanus Asepbationcanckoti Pecnybauru, Baky,
Asepbatioscan;
3 Asepbatioorcancruti zocydapemeennuitl yrusepcumem wedmu u npomwvuuaernocmu, Baxy, Asepbatioocan

Wccnenosana cucrema JTHHENHBIX OOBIKHOBEHHBIX MM dEPEHITNAIBHBIX YPABHEHUI, COIePKAIasd TOUYeIHbIe
¥ MHTETrPaJIbHble HATPY2KEHUS, C HEJIOKAJIbHBIMIA KPAeBBIMH YCJIOBUSAMU. KpaeBble YCJIOBUSI BKJIIOYAIOT WH-
TerpaJjibHble U TOYEYHBbIE 3HAUYECHUS Hem3BeCTHOH pyHKmmu. CyIlecTBEHHBIM YCIOBHEM B 3aJ1a9e SBJISIETCS
TO, 4TO SIAPa UHTEIPAJIBHBIX CJIaraeMbIX B IuddepeHnnaabHbIX YPABHEHUAX 3aBUCAT JIUIIb OT ITI€PEMEHHOMN
nHTerpupoBanus. [lokazaHo, 9To MOmOOHBIE 3a]a91 BO3HUKAIOT IIPU YIIPABJIECHUN ¢ OOPATHOM CBI3BIO KakK
00BEKTAMH C COCPEIOTOYCHHBIMHU, TAK U PACIPEIETIEHHBIMA TapaMeTPaAMU [IPA TOYEYHBIX U MHTETrPAIbHBIX
3aMepax TEKYIIEro COCTOSHUS yIPAaBJIseMOro oObeKTa. YKa3aHHas B CTATbe IIOCTAHOBKA 3aJa4u 00001~
eT MHOTHE WCCJIeIOBAaHHBIE PaHee 33J]aYd OTHOCUTEIBHO HATPYXKEHHBIX TuddepeHnaabHbIX yPaBHEHUN C
HEJIOKAJIbHBIMU KPAeBBIMHU yCJIOBUSMU. BBeIeHneM BCIIOMOTaTeIbHBIX TIAPAMETPOB MOy Y€HbI HEOOXOIUMbIE
YCJIOBHSI CYIIeCTBOBAHUS U €IMHCTBEHHOCTH PeEIIeHUs pacCMaTpuBaeMoil 3aja4u. s duciieHHOro perie-
HUS 3312490 IIPEJJIOZKEHO HCIIOJIBb30BaTh IIPEJICTABJIEHNUE PEIIeHns NCXOTHOH 3a/1a49n, BKJIIOYaoIlee deThIpe
MaTpUYHble DYHKITNHN, SBIISAIONINECS PENIEHUsIMHI YeThIPeX BCIIOMOTaTeabHbIX 3amad Kommu. Vcnonb3ys pe-
IIIEHNsI BCIIOMOTATENbHBIX 3329 B KPAEBbIX YCJIOBUAX, IIOJIyYeHbl 3HAYEHNUSI HEN3BECTHOM (DYHKIUU B TOY-
KaX HarpyKeHusl. DTO JOCTATOYHO, YTOOBI MOJYIUTh UCKOMOE pellleHne. B craTbe TPUBEIEHO M3JIOXKEHUE
IIPUMEHEHNs MEeTO/1a Ha IIPUMEpPE PeIleHHs MOJIEIbHON 3aadu.

Kmouesvie crosa: naTErpo-auddepeHnuaabHoe ypaBHEHNE, CACTEMa, HArPYKEHHBIX Y PABHEHUN, MHTET DA
HBIE YCJIOBUS, HEJIOKAJIbHbBIE YCJIOBUS, YCIOBUS CYIIECTBOBAHUS M €IMHCTBEHHOCTH.
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