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In this work, we introduce a new concept of the stream function and derive the equation for the stream
function in the three-dimensional case. To construct a basis in the space of solutions of the Navier-
Stokes system, we solve an auxiliary spectral problem for the bi-Laplacian with Dirichlet conditions on
the boundary. Then, using the formulas employed for introducing the stream function, we find a system
of functions forming a basis in the space of solutions of the Navier-Stokes system. It is worth noting that
this basis can be utilized for the approximate solution of direct and inverse problems for the Navier-Stokes
system, both in its linearized and nonlinear forms. The main idea of this work can be summarized as
follows: instead of changing the boundary conditions (which remain unchanged), we change the differential
equations for the stream function with a spectral parameter. As a result, we obtain a spectral problem for
the bi-Laplacian in the domain represented by a three-dimensional unit sphere, with Dirichlet conditions on
the boundary of the domain. By solving this problem, we find a system of eigenfunctions forming a basis in
the space of solutions to the Navier-Stokes equations. Importantly, the boundary conditions are preserved,
and the continuity equation for the fluid is satisfied. It is also noteworthy that, for the three-dimensional
case of the Navier-Stokes system, an analogue of the stream function was previously unknown.
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Introduction

Previously, we solved the spectral problem for the bi-Laplacian in the unit circle with Dirichlet
conditions on the boundary. As is known, in the two-dimensional case the linear Navier-Stokes system
can be transformed into a single equation for the stream function [1-3]. Note that the spectral problem
for the two-dimensional bi-Laplacian in the unit circle was solved in [4-6], and its results were applied
to an approximate solution of the inverse problem with final redefinition conditions for the two-
dimensional system of Navier-Stokes equations. For the bi-Laplacian, the solvability of two-dimensional
spectral problems for square domains was considered in [7-12|, and for the 2m—Laplacian, spectral
problems for multidimensional domains with smooth and non-smooth boundaries — in [13-16|. In
[8,10,11], lower bounds for eigenvalues were obtained by introducing intermediate spectral problems
(the main thing was the fact that one of the boundary conditions was replaced by a family of
approximate conditions on the boundary, which in the limit tended to original). In [13-16], estimates
were given for the number of eigenvalues not exceeding a given number. However, the calculation
of eigenvalues and eigenfunctions in the above spectral problems has remained open. This issue is
dedicated to submitted work.
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The question of constructing a basis applicable to domains with time-varying boundaries also
remains open. For example, problems of this kind in degenerate domains or in domains with time-
varying boundaries were considered in papers [17-29]. Note that the results of this work can be used
in the construction of this basis.

1 Stream function for a three-dimensional linearized Navier-Stokes system. Statement of the spectral
problem

Let y = (y1,92,¥3), Qu = {y,t : |y < 1,0 <t < T} be a cylindrical domain, and Q be a
section (sphere with unit radius) of the cylinder @, for any fixed time ¢ € [0,T] with boundary 0€,
Yyt = 02 x (0,T). In the cylindrical domain @, we consider the following initial boundary value
problem for the linear three-dimensional Navier-Stokes equation of determining the vector function
w(y,t) = {w1(y,t),ws(y,t), ws(y,t)} and scalar function P(y,t):

Ow—Aw=f—-VP, (y,t) € Qu, (1.1)

divw =0, (y,t) € Qut, (1.2)

w=0, (y,t) € ¥y is a lateral surface of the cylinder, (1.3)
w =0, y € is a unit sphere, base of cylinder. (1.4)

Let’s introduce the notations of spaces V, H, L%(Q), H}(Q) and H?(Q2), used in studying the
solvability of the initial boundary value problem (1.1)—(1.4), and which we will use in the future:

V= {v: veH)Q) = (H}(Q)’, div v =0},
H={v:veL*Q),divov=0},
L2(Q) = (L3(Q)°, HX(Q) = (H2())°.
The following dense embeddings take place
VCH=H cV/, H)Q) cL}Q) = (L2(Q)) c H(Q),

and (-,-), ((+,)) are scalar products in spaces H, L2(Q) and V, H}(€), respectively. The Helmholtz
decomposition of space L2(Q): L2(Q) = H® H', where

H' is an orthogonal complement to H in the space L2(9),
H = {v: vel?Q),v=Vu uecH(Q)],
/
(H @ HL) = (L2(Q)) = L}(Q) = He HL,

and the "prime" symbol denotes a topologically dual space.

So, we will look for a solution of the initial boundary value problem (1.1)—(1.4) in the spaces of the
vector functions of liquid velocities w(y,t) = {w1(y,t),w2(y,t),ws(y,t)} € L*(0,T;V N H3()) N
HY(0,T;H(Q)), and scalar liquid pressure function P(y,t) € L%*(0,T;H'()) for a given vector
functions of the acting forces f(y,t) = {fi1(y, 1), f2(y, 1), f3(y,t)} € L*(0,T; H(Q)).

Let us transform boundary value problem (1.1)-(1.4). For this purpose, in the domain @ we
introduce the scalar stream function U(y,t), defined up to an additive constant, by the equations:

w1 = 8y2U—8y3U, w2 = 8y3U—8y1U, w3 = 8y1U—8y2U. (1.5)
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We will act with the operators 0y, — Oy,, Oy; — Oyy, Oy, — Oy, to equations (1.1) respectively and
add the obtained results. Then for U(y,t) we obtain the equation

0= A)(A=05,, =0, — 00, )U=GCG(yt), {yt}eQy, (1.6)

viya ~ “yays — “ysy
where
2G(y,t) = (8?12 - 8?;3) fi+ (ays - ay1) f2+ (ayl - ayz) S
From relations (1.3) and (1.5) we have the identities:

(81/1 - ayz) U= (8y2 - ays) U= (8y3 - 61/1) U=0, (ya t) € Eyt (1-7)

or

0y, U = 0y, U = 0,,U, (y,t) € By (1.8)

Note that relations (1.7)—(1.8) do not completely determine the boundary conditions on the lateral
surface of the cylinder Q. In addition to (1.7)—(1.8) we will require that d,, U = 0 on X, which do
not contradict relations (1.7)—(1.8). So, instead of (1.8) we will have:

0y, U =0,U =0,U =0, (y,t) € Ey. (1.9)
Thus, equalities (1.9) allow us to set the following boundary conditions for equation (1.6)

0:U =0, (y,t) € Syr, (1.10)

U=0, (y,t) € Sy, (1.11)

where 7 is the outer unit normal to the sphere |y| = 1, and from (1.4) (doing the same thing as when
establishing conditions (1.10)—(1.11)) we obtain the initial condition

U=0,yeQ={ly| <1}, t=0. (1.12)

To numerically solve the initial boundary value problem (1.1)—(1.4) we will need to be able to solve
approximately the initial boundary value problem (1.6), (1.10)—(1.12). We will look for a solution to
this problem using the method of separation of variables. We have

Uly,t) = > cr(t)ur(y).
k=1

Then from equation (1.6) we obtain
cx(t) [Dur(y) — 05w (y) — Opye e (y) — Oy i (y)] =

= ci() A [Dug(y) — 05,y ur(y) — Opyys i (y) — Ory ui(y)] -

Further, we have

ci(t) _ DD =05y, = gy = Oyys) ur(y)

Y1y2 Y2Y3

cp(t) (A—E?? —02 ~— 02 )uk(y)

Yy1y2 Y2Y3 Y3y1

= —Ag, A\ >0 foreach k€N,

i.e., we finally come to the need to solve the following spectral problem:

A(D=02, =02, —02, ) uly)=-X(A=0,, — 0%, — 02, ) uy), (1.13)

Y1y2 Y293 Yy3y1 Y1y2 Y2Y3 Y3y1
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wWY)|pq = O7u(Y)|ye = 0 (1.14)

Solving the spectral problem (1.13)-(1.14) poses certain difficulties (details in Appendix A). We
actually need to construct a basis in the space solutions of the Navier-Stokes system V N H?2(1Q),
the elements of which would ensure the fulfillment of equation (1.2) and boundary conditions (1.3).
Therefore, it will be enough for us to use the solution to the following spectral problem, also posed
on a unit sphere (but with a simplification of the equation in which there are no terms with mixed
derivatives of the desired function):

(—A)*Z(y) = 1> (-2 Z(y), y € Q= {ly| < 1},
07Z(y) =0, at |y| =1, (1.15)
Z(y) =0, at |y| =1. (1.16)
Let us rewrite the equation in the form of a system for unknown functions {Z(y),Y (y)} :
—AZ@y)=Y(y), —AY(y) =p’Y(y) ye. (1.17)

So, we got spectral problem (1.17), (1.15) and (1.16).

2 Transition to spherical coordinates in the spectral problem

Let us write spectral problem (1.17), (1.15) and (1.16) in a spherical coordinate system {r,0,(} €
Q={0<r<1, 0€(0,7], ¢e€(0,2r]} using transformation formulas

y1 =rsinfcos(, ys =rsinfsin(, y3 =rcosb,

regarding the functions Z(r, 6, (), Y (r,0,() (in this case, for the sake of simplicity, we leave the function
designations unchanged):

1 1
- 50 (r?0,2) — S8z =Y, {r,0,¢} € 9, (2.1)

1

1
NpcZ =———0p (sin0pZ 2z 0 Q 2.2
0,¢ Sin989 (SlIl 80 ) + SiIl2 eag ) {7’, 7C} SV ( )
1 2 1 2

— ﬁar (r?9,Y) — ﬁAQCY =u?Y, {r0,(} e, (2.3)
Aol = — 9y (sin63pY) + —=—2Y, {r.0,C} €0 (2.4)

008 = G Y sin?g ¢ Y ’ .
Z is bounded in the neighborhood of the point r = 0, (2.5)
oZ =0 at r=1, (2.6)
Z=0 at r=1 (2.7)
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3 Solution of the spectral problem in spherical coordinates

We will solve problem (2.1)—(2.7) using the method of separation of variables:

Z(r,0,¢) = ZRZ )027,(0,¢), Y(r,0,¢) = ZRY )y (8, ¢), (3.1)
2p/ ! 2,.2 2/ ! 2
(r RY]) + pjrRy; _ _AO,CGYJ- 2 (7" RZj> + r“Ry; _ Rz e (52)
Ry, By, Yy Ry, 0z, % ‘

where the "prime" symbol here and below denotes the derivative with respect to the variable r.

The second relation from (3.2) follows from the fact that the boundary value problems (3.3)—(3.4)
and (3.5)—(3.6) for the functions ©z,(0,¢) and Oy, (0,() coincide, then their solutions can be taken
equal to each other, i.e. ©z,(0,() = Oy;(0,() and ,uQZ], = /@/j.

Substituting (3.1) into (2.1)-(2.7) and taking (3.2) into account, we obtain

- AO,C@ZJ- - MQZ]-@ZJ" AS (Oa 7T), e <07 27T), ®Zj (07 C) = @Zj (Ha ¢+ 27T)a (33)
conditions of boundedness ©z,(0,() at 6 =0, 0=, (3.4)

— Ae’geyj = M%@yj, 0 c (0,7T)7 (€ (0, 271'), @yj (9, @Yj (9, ¢+ 271'), (3.5)
conditions of boundedness ©z,(6,() at =0, 6 =, (3.6)

T’Qjo (r) + 27’R’Zj (r)— MQZjRZj (r)= —rQRyj (r), (3.7)

PRy, () + 2Ry, (1) + (u3r® = i, ) Ry, () =0, (3.8)

Rz;(r) are bounded in the neighborhood of zero, Rz, (1) =0, R’Zj(l) =0. (3.9)

Let us deal with the solution of boundary value problems (3.3)—(3.4) and (3.5)—(3.6). Let us use
the variable separation method:

070,0) => Pz, (0)Qz, (), 0v,,(6,0)=>_ Py, (0)Qy,, (). (3.10)

m m

Then (3.3)—(3.4) and (3.5)—(3.6) are reduced to the following systems:

7, (Q) +m*Qz,,(¢) =0, ¢€[0,21), m*€{0,1,2,...}, Qz,,(C) =Qz, ((+27), (3.11)

Sull . (smepz (9))' + {;ﬁ‘zj - S::;@] Py, (0) =0, (3.12)

conditions of boundedness Pz, (0) at points 6 =0, 0 =, (3.13)

Qy,, () +m*Qy;, (¢) =0, ¢€[0,2n), m*€{0,1,2,...}, Qv;,, () =Qy;,, (C+27),  (3.14)
Sirll 7 (smeP;jm (9))' + [,ﬂyj - S::jg] Py, (6) =0, (3.15)

conditions of boundedness Py, (f) at points 6 =0, 0=, (3.16)

where the "prime" symbol denotes the derivative with respect to the variables ¢ and 6.
The solutions of boundary value problems (3.11) and (3.14) coincide and are equal:

QZ]'m(C) = QY]m(C) = {COST)’LC, SinmC}a Ce [07277)7 me {07 L2,.. } (317)
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In addition, it is easy to see that relations (3.12)-(3.13) and (3.15)—(3.16) also coincide, and their
solutions were found, for example, in ([30], p. 374-376) with using Legendre polynomials Pz, (¢) and
Py, (0).

If in the equation (3.12) we make the substitution ¢t = cos# and denote X (t)|,_ .o = X(cosf) =
Pz,(0), so we get the equation

(1) x'(1) + (pﬂzj — 1”_112) X(t)=0, |t|<1. (3.18)

Relation (3.12)—(3.13) admits bounded solutions only if and only if u2zj =j(+1) (3.20):

X(t) = Pj(m) t),_...= pm (cos0) = Pz,(0), where m =0,1,2,...,]. (3.19)

It:cos 0

Thus, according to (3.10) and (3.17)—(3.19) we obtain the eigenvalues

ng; =ty =j(i + 1), (320)

each of which corresponds to 2j + 1 spherical functions
0
09)(0.¢) = P;(0),
(9 Q) =P, (COS 0) cos ¢, 9(1)(9 () = ~1)(cos 0) sin ¢,

@(Z;2 0,¢) = PJ( )(cos 6) cos 2¢, G(ZQJ_)(G,Q = pj(Z) (cos @) sin 2¢,

(0 ()= (COSQ) cosl(, @(l (0,¢) = ”(cos@) sin (¢,
1=1,2,....7, (3.21)

where Pj(il)(cos ) are Legendre polynomials.

It should be noted that the system of spherical functions {@ 7;(0,¢), j=0,1,2,.. } is orthogonal
with weight sin § and forms an orthogonal basis in Ly (%), where {1,0,(} € ¥ is the surface of the unit
sphere. We can normalize this system of functions using the condition

T 27

2
//]@(Zf”(a,g)‘ sin6dod¢ = 1.
0 0

Functions @ (0 ¢) = Pj(cos®) do not depend on ¢ and called zonal. Since P;(t) has exactly j
zeros inside the 1nterval (—1,1), the unit sphere is divided into (j + 1) latitude zones, inside which the
zonal function retains its sign.

Let us consider the behavior of the function on the sphere

1
050(6,¢) = sin' 0 [j l (t)] sin IC.

t=cos 6

cosl¢, © +l)(t9 ¢) = sin'0 [;ll (t)}

t=cos 8

Since sin @ becomes zero at the poles and sin I¢ or cosI¢ becomes zero at 2] meridians, and <% dtl P;(t)

at (j — 1) latitudes, the entire sphere is divided into cells in which @(Zfl (0, ¢) maintains a constant

sign. Functions @(Zfl)(Q, ¢) at I > 0 are called tesseral.
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Similar constructions are valid for boundary value problem (3.15)—(3.16).
Now we transform equations (3.7)—(3.8), by making the following substitutions

¢>yj (r) _ <I>Zj (r)
v Raln ==

Then, taking into account (3.20), instead of (3.7)—(3.9), we obtain the following equations with
boundary conditions:

Ry,(r) = (3.22)

r2oy (r)+ 1oy (r) — v5, 87, (r) = —r Oy, (r), v3 = (j+1/2), (3.23)
7"2(1)5’% (r) + r@{/j (r) + <u]r — yy) Py, (r) =0, y%/j = (j+1/2)%, (3.24)

T’_%CI)ZJ. (r) are bounded in the neighborhood of zero,
®z,(1) =0, @7 (1)=0.
If in (3.24) we make the replacement p = p;r, then by definition the cylindrical function @y, (r) =
Jyyj (nyr) will satisfy the equation (3.24), here vy, = vz, = j + %, j=0,1,2,...
So, according to the definition of cylindrical functions ([31], chapter VII, § 3) for the equation (3.24)

the following statement is true.

Lemma 1. Equation (3.24) has a general solution in the form of a cylindrical function ®y,(r) =
Jj+%(ujr), j=0,1,2,...

Substituting this solution into equation (3.23), we will have a boundary value problem for a second-
order nonhomogeneous ordinary differential equation:

7°2<I>g], (r) + T(I>'Zj (r) — V%]_(I)Zj (r) = —r2Jj+% (pgr),r € (0,1),

1

77 2@y (r) are bounded in the neighborhood of zero, (3.25)
D2,(1) =0, @4 (1) =0,

where j =0,1,2,...
For boundary value problem (3.25) we establish the following lemma.

Lemma 2. For each j € {0,1,2,...} the boundary value problem (3.25) has a countable family of
solutions

/G r0) 1 (1 p) dp, Wi o k=12,

where (15411 are the roots of the equations Jj+;(,u) =0, and Gj, j =0,1,2,... is the corresponding
2
Green’s function.

Proof. We look for fundamental solutions for (3.25) in the form ®j¢q (r) = r?, where o is whole
unknown number. Substituting r? into the homogeneous case of equation (3.25), we find: for 7 # 0
oc=j+ %, o=—j— %; forj=0 o= %, o= —%, i.e. fundamental solutions are equal
z15(r) = rj+%, 205(r) = r~7% for each J#0, zi0(r) = % zo0(r) =1~ 2.

D=

(3.26)

Thus, the general solution of homogeneous equation (3.25) according to (3.26) is written in the
form

[un

q)Zj f,s,(?") = Cljrj—i_% + ng?"_j_%, j e {1,2, .. .}, (I)Zo f.s'(r) = 0107“% + Coor™ 2. (3.27)
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Thus, general solutions for the equation from (3.25), obtained on the basis of fundamental solutions
(3.26)—(3.27) ([30], chapter 1, §5, Cauchy method), have the form:

1
6113'7"]—"_5 + (I)j part.s. (T), J 7& 0, 1
(pjvgen-s-(r) = 1 . :/ G r p)J %(/’Ljp) dp? j = 071727' )
ClOTE + @ part.s.(r)y J= 0
(3.28)
where

23+17ﬁ]+1 [P_jJr% —ﬂj+%} , 0<r<p<l,
Gj(r,p) = . . . 7=123,..., (3.29)

—g e [T_J_i - 7~9+5} , 0<p<r<l,

1 1 3

—r2[p2—p2}, O<r<p<l,
Go(r,p) = T, i=0 (3.30)

—p_ﬁ[r_ﬁ—ri}, 0<p<r<l,

L [ith it ;

_mf [p 2=p 2:| JJ+1/2(NP)dP7 J= 172737"'7

Chj = 0 (3.31)

1 3 .

= [|pz — 2} Ji2(up) d p, j=0,
0

ng:(], 7=0,1,2,3,..., (3,32)

the equality of the coefficients Cy; to zero follow from the conditions of boundedness in the neighborhood
of the point = 0 from (3.25).

We have included the details of the calculations contained in (3.27)—(3.32) in Appendix B.

Next, taking into account the solution formulas (3.28)—(3.31) and satisfying their second boundary
conditions at r = 1 from (3.25), we obtain

J; 43 (tj41) = 0, for each j € {0,1,2,...}. (3.33)
Really, we have
Oy (1)=0= / prag 1 (pp) dp, j=0,1,2,.

According to formula (20) from ([31], chapter VII, §3) the last relations are equivalent to the equalities
(3.33).

Finally, as a solution of spectral problem (3.7)-(3.9) and taking into account formula (3.22) as
eigenfunctions Rz, (r) from (3.28)-(3.30), we obtain:

1
Rzjk(r) = 2/ Gj(r;p) i1 (jriep) dps Jjp1 (jpie) =0, 5,k =1,2,3,. (3.34)
1
Rzok(r) 2/ Go(r, p)Jl (/Jl kp) dp, J1 (,U,l £)=0, k=1,23,. (3.35)
As the roots of the equations Jj+% (j+1) =0, 5 =0,1,2,..., (into (3.34)—(3.35)) we find the
eigenvalues
[ 5=01,2,..., k=123, ... (3.36)
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Thus, from solutions (3.7)-(3.9), problems (3.11)-(3.21), (3.25) and (3.34)—(3.36) we obtain the
following system of eigenfunctions and the corresponding its eigenvalues:

+ +m
{Zj(lﬂzl(rae?g) :RZ]k(’r)@(Z] )(97C)7 Mj2+1,k}
je{0,1,2,...}, me{0,1,2,...,5}, ke{1,2,3,...}.

(3.37)

Note that the system of eigenfunctions (3.37) satisfies the orthogonality conditions with weight
2 .
r°sinf.

4 Construction of eigenfunctions in Cartesian coordinates. Main result

Now in (3.37) let us move on to the Cartesian coordinate system.
The system of eigenfunctions and eigenvalues has the form

2 2
m vity Y
{Ugﬁz(y) = Rz (ly)og;™ (arctgmﬁmtg ;) ) ﬂ?k}v

Y3
je{l,2,...}, me{0,1,2,3,...,5}, ke{l,2,3,...}, |y| <1,

(4.1)
72
0 Yty Y2
{UOkO(?/) = RZOk(‘yD@(Z; (arctg ~=L—=2 arctg ) ; M%k} ;
Y3 Y1
j=0, m=0, ke{1,2,3,...}, |yl <1, (4.2)
([Oa 3)7 Y1 > 07 Y2 > O;
(3F.2m), 41 >0, y2 <O;
arctg 92 _ arctg(, where (€4 (5,20), y <O0; (4.3)
n
5 y1 =0, y2 > 0;
37%7 Y1 = 07 Y2 < 0.

Note that under the conditions of orthogonality of the system of eigenfunctions (4.1)—(4.2) there

Vi3

will be missing weight |y|? sin (arctg -

), since the Jacobian of the transformation when passing

from the Cartesian system to the spherical coordinate system is equal to 72 sin 6.
Thus, we have established the validity of the following theorem.

Theorem 1. From the solution formulas (3.17), (3.20), (3.21), (3.34)—(3.37) for boundary value
problems (3.3)-(3.4), (3.5)—(3.6) and (3.7)—(3.9) respectively, we obtain the following system of eigenfunctions
and the corresponding eigenvalues:

+ + +m
{uon(v) = 250 (,0,0) = Rzjn(r)05(0.Q), 41}
j€{0,1,2,...}, me{0,1,2,...,5}, ke {1,2,3,...}.

In the Cartesian system, accordingly, we obtain the relations (4.1)—(4.3).

Now, according to the formulas (1.5), (4.1)-(4.2) we define the system of eigenfunctions w(y) =
{w1(y), wa(y), ws(y)} for the spectral problem (1)—(1.16).
Using the statement of Theorem 1, we establish the following result.
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Theorem 2 (Main result). For all j € {0,1,2,...}, m € {0,1,2,...,5}, k€ {1,2,3,...}, |y| <1,

we have that each triple of eigenfunctions {w%k)m(y), wéj.ck)m(y), w:(,)jck)m(y)}

W = @ = 0,) W) (), W) = O — 0y Ui (), W) = By — Oy) uln(v), (44)

wit) = (8, — ) ult) (), wit) = (0, = 0,) 0l (), W) = (0, —d,,)ul)) 4.5

Ljkm y2 — Oys) Wikm\Y)» Wojkm ys — 9y1) Wigm\Y)y W3jkm (Oy, o) U ]knl(y) (4.5)
where for j # 0:

(Oys — Oys) g?f,;(y) (Oyy — Oys) Rzji(ly))© arctg ~——= arctg y1>, (4.6)

7 (e
(O = O) B[O <arcth y) (a7
A

(8 — By) ul) ()

jkm

(O0: = By2) Wjgon () = (Oun = 0y2) Rsn(ly)OF;™ { awetg 5—22 y) SNCRY
and for j = 0:
(00 = D) uokoy) = (Do = Oys) Raron(141)O7) (arctg VIR ey y1> SR

(Bys — Oy) woro(y) = (Bys — 0y,) Rzon(y)OF) (arctg VY y) , (4.10)

(Dy — Dys) oo (y) = (9, — By,) Rezon(|y)OY) (arctg VIEE VS g yl) (4.11)

form an orthogonal basis in the space V N H?2(Q).
nd (

Remark 1. From (3.34)—(3.35), (4.1)-(4.2) and (3.25) it follows that the boundary conditions from
(3.9) are valid for r = |y| = 1, and from (1.5), (4.4)—(4.11) we obtain the satisfiability of the equation
(1.2), i.e. divw = 0.

It is obvious that each triple of functions from (4.4)—(4.11) satisfies the homogeneous Dirichlet
condition on the boundary of the unit sphere, with the possible exception of the following six points
on the sphere {y1,y2,y3}: {1,0,0}, {—1,0,0}, {0,1,0}, {0,—1,0}, {0,0,1} and {0,0,—1}.

5 Towards an approximate solution of the initial boundary value problem (1.1)—(1.4)

We have constructed the orthogonal basis w](:khgl(y), j=0,1,2,....m=0,1,2,...,5,k=1,2,3,...
in the space VN H?(Q). And based on this basis, we will introduce an approximate solution and given
functions for the initial boundary value problem (1.1)—(1.4), formulated in weak form (in terms of the

integral identity):

+ +

w (y,t) = Z chkzm Yl (y), (5.1)
j=—N,k=1m=0

+ al j:

o= Y ZdﬁkmN yu'lt) (y), (5.2)
j=—N,k=1m=0
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Pt = > ZejkmN Wi (4), (5.3)

—N,k=1m=0

<8tw§$),wl(:p))+((w]($),wl(:;)) :<f](\,i),wl(:p)>, 0<I<N, n=1,...,N, p=0,...,1, (54)

w$E (y,0) =0, (5.5)

where the expansion coefficients cgzlfgn ~(t) (5.1) are to be determined at given coefficients dgzlfr)n ~N(t) (5.2)

from the Cauchy problem for ordinary differential equations (5.4)—(5.5). And the expansion coefficients
eg.:,;)n ~(t) (5.3) are determined from equations (1.1). Thus, it is possible to find an approximate solution

to the initial boundary value problem for the linearized system of Navier-Stokes equations (1.1)—(1.4).

Conclusion

In this work, a basis is constructed in the space solutions of the system of Navier-Stokes equations
V N H?(Q), composed of eigenfunctions of the generalized spectral problem for a three-dimensional
bi-Laplacian with Dirichlet boundary conditions in the unit sphere Q = {y = (y1,92,y3) : |y| < 1}.
It is shown that these eigenfunctions satisfy the boundary conditions for the liquid velocity vector
w(y) = {w1(y), wa2(y), ws(y)} and the continuity equation divw(y) =0, y € Q.

Appendiz A. Spectral problem (1.13)—(1.14) in spherical coordinates

Let us recall the well-known formulas for gradient and divergence in spherical coordinates (r, 8, ():

o1 , 1 :
vu(y) = a?"u(rv 97 C) <11 + ;69”(7”, 07 C) S22 + maCu(ra 07 C) 13, (Al)
I 1 1 . 1
divD(y) = r—28r (r*Di(r,0,¢)) + neag (sin@Ds(r,6,()) + - eacDg(r,G,C), (A.2)

where the vector D = {0,u(r,0,0), %Bgu(r, 0,¢), Tsmeagu 7,0,()} defined by the gradient vector. In
addition, it is known that if u(r,8,() = R(r)©(0, (), then

Auly) = div Vuly) = 5 (PR/(r) ©(6,0) + T%R(rme,c@ 0.0).

r

where

1 .
AQA'Z = mag (SlH@@gZ) ac

9

Now, instead of gradient (A.1), we introduce a new vector (modlﬁed gradient vector):

~ 1 , 1 . ,
vu(y) - ;aﬂu(r’ 97 C) -1+ maCU(T, 9a C) “12 + aru(ra 07 C) 13, (A3)
where %(%u = Dy, Tsmgag =Dy, Oyu= Ds.

Then, using (A.2) and (A.3), we have:

div Vau(y) = (82, + 2

2
Y1Y2 Y2Y3 + aysy1) (y) =

1 1
— T—QE)T (T2T89u(r,0,(:)> +

rsinﬁag <sm0 8Cu(r 0 C)) rsin@ac (Oru(r,0,0)).
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And finally, we have for the required operator (1.13):

(D=2, — 2, — 0% Yu= 20, (Pou(r.6.0) +

Y1y2 Y2ys3 Y3y1 ’f‘2

1 .
5 1nc989 (sin 00pu(r, 0,¢)) +

8<u(7‘ 0,¢) — 1 Oy (rogu(r,0,¢)) — ;392 u— #Ogru(r,ﬁ,().

r2sinf ¢ rsinf

Having separated the variables u(r, 9, ¢) = R(r)©(, (), we obtain

r2sin2 6

1 ’ 1
(& =8y, = Ty = Ty wy) = 5 (PR()) ©(6,0) + 5R(r)L0cO (6,) —

r

1 1
Sm@&@(@,o) -

1 .
AQ,C@ (9, C) = m(‘?@ (Slneag@ (9, C)) +

Lr (w00.0 + Rir) (000 0.0+ 030 (0.0)):

Thus, we have obtained the spectral problem (A.4) and (1.14), which (in our opinion) is

20 (6,¢). (A.

)

an

unsolvable problem to solve. Naturally, the boundary conditions (1.14) must be written on the surface

of the unit sphere and at the center of the sphere (in spherical coordinates):
U(T7 97 g)\r:l = 07 8ru(7“, 97 g)\r:l = 07
u(r, 0, ) is bounded in the neighborhood of the center of sphere.

Appendiz B. Cauchy Method

According to |23, chapter 1,§5] a particular solution to the equation (3.25) has the form

T

Benor) == [ 13(r0) 0y (s)d, (.

0

where for the Cauchy function n;(r, p) we have

1)

2)

3)

4

97

-1 .1
ni(r, p) = Cij(p)r? ™z + Coj(p)r—=. (B.
Using (B.2), we obtain a system of equations for determining the unknown coefficients Cij(p) and
Ca;(p):
1 1
ni(p.p) = Cu(p)p’t2 4+ Coj(p)p™ 72 _— (
B.
omi(p:p) = (i+3) [Clj(p)p] 2 — Ca(p)p™ 2] ~- 1
From (B.3) we have:
Culp) = g th Coylp) = g (&
1JP—2j+1P ) 2j(pP) = 211 . .
Thus, from (B.2)—(B.4) for the Cauchy function we obtain
__1 —j+30+s +3 —i—3
77]-(7",,0)—2j+1 [,0 apite — ptapTita |
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respectively for the particular solution ®; ., s () (B.1):

T

/ [pfﬂ%w% _ pj%w‘f%} J,

0

1

q)jch.s.(T) = _2] T1

(1jp)dp. (B.5)

+1
+3

Now, using (B.5) and (3.22), we write the formulas for general solutions of the nonhomogeneous
equations (3.25) and (3.7), respectively. We have

T

D gen.s.(1) = Clj?“j+% + CQjT_j_% — 2j:—1 / [,0_”21"#7 - pj+27“ i- 2} J; %(u]p)dp, (B.6)
0
,

Rjgen.s.(r) = Cryr? + Cojr ™71 — 2].1 i / {p’”%ﬂ - ,0”%7”"1] i1 (pip)dp, (B.7)
0

where in (B.6)-(B.7) C1; and Cy; are the unknown constants that need to be found. To do this, we
will use the boundary conditions from (3.25). Due to the boundedness of the solution (B.7) in the
neighborhood of zero, it is necessary that the coefficients C5; be equal to zero, i.e., Cy; = 0. According
to the boundary condition R;(1) = 0 from (3.25) from (B.7) we get

1
1
- —]+* _ g+
Cij=5 +1/ 2 —p } 1(up)dp,
0

il 5417 iy
Rjgen.s.(r) = 2]11/[7' 172 _T]+2] p]+2Jj+%(Mjp)dp+
0

—j4 1 it 1l
T [ 3 _ it }r]-‘rzjj_i_%('ujp)dp.

r
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Bipaik miapaarsl yinesmieMal ou-Jlamnnacuan
YIIiH KOWBLIFAH CIEKTPJIIK ecell TypaJibl

M.T. Kuenonues!', A.M. Cepix!?

! Mamemamura osicone mamemamurasvir, modesvoey unemumymaot, Aamamot, Kazaxcman;
20n-Dapabu amvindaes. Kasax yamo yrnusepcumemi, Aamamon, Kasaxcman

Makasaga ToK (YHKIMSICHIHBIH >KaHa TYCIHITIH eHrizeMi3 >KoHe YIIeJIeMIl »Karaaia TOK (OyHKIUICHI-
HBIH, TeHJieyiH mbirapambl3. Hapbe-CToOKC KyiieciHiy, menrimaepinia KeHicTirinae 6a3uc Kypy VIIiH IIeKa-
pana Jlupuxie maprrapsl 6bap 6u-Jlammacuan yimH KOMEKIN CIIEKTPJIK eCeNTi IemeMis. Opi Kapaii, TOK
bYHKIUSCHIH €HIi3y YIIIiH KOJIJIaHbLIFaH (popMysaiap/sl naiganana oreipsin, HaBbe-Croke xyiieciniy mie-
mimepiniy Kericriringe 6asuc 6osmaTbiH GyHKImsIAp XKyiiecin Tabambi3. Bys 6asucti HaBbe-Crokce xyiteci
VITiH CBHI3BIKTHI KOHE CBI3BLIKTBI €MeC Typa YKoHe Kepi ecemTepsl *KybIKTall IIelry VIMH KOJIaHyFa OoJa-
TBHIHBIH aTall OTKEeH »KOH. Y CHIHBIJIFAH KYMBICTBIH HETi3ri ueschl Kejecifei: mekapablk MapTTapibl eMec
(osmapapl e3repicci3 KajaabpaMbl3) CIEKTPJIK mapaMeTpi 6ap TOK HOyHKIUSCHIHBIH JuddepeHIuaIIbIK TeH-
neynepin esrepry. Hormxkecinge 6i3 06sbIc mekapachiaaa Jupuxite mapTrapbIMeH VIO meM/ i OipJIik map-
MeH beiiHesieHreH obJibicTarbl 6u-Jlamiacnanga CrieKTpIIiK ecen ajaMbl3, OHbI mienry Kesdinge Hasbe-Crokc
TeHJey/Iep KYHeCiHiH MemiMIepiHiH KeHiCTiriHae 6a3uc KypaiTblH MEHIIKTI (pyHKIUsIap XKyieciH Taba-
MBI3. Byt xkarmaiina mekapaJsblk, MapTTap CAKTAJBIN, CYHBIKTHIH Y3LIicci3 iri mapTeiMeH Oepirer Tenaey
JiH OpBIHJAJFaHBl MaHBI3ABI. Hapbe-CTOKC »KyieciHiH yiIeamemal »Karmaiibl yIIH TOK (PYHKIMSCHIHBIH,
aHaJIorbl OeJirici3 GOIFaHBIH Ja eCKepeMis.

Kiam cesdep: HaBbe-Crokc xkyiteci, 6u-Jlanmacnan, cieKTpJiik ecen, TOK OYHKIUSICHI.

O cnexkTpaJibHOI 3a7a4de A1 TpexMepHoro om-Jlamiacuana
B €AMHUYHOM IIape

M.T. T:xenamues', A.M. Cepux’?

L Hnemumym mamemamuky U Mamemamuieckozo modeauposanus, Aamamol, Kasaxcman;
2 Kasazcrutl Hayuonaibmod yrusepcumem ument avb-Papabu, Aimamo, Kasaxcman

B crarbe Mbl BBOMM HOBOe noHsTHE (DYHKIMU TOKA M BBIBOJIUM ypaBHEHHE JJis (DYHKIMM TOKA B TPEX-
MepHOM cirydae. st mocrpoenns: 6a3uca B npocrpaHcTBe perrennit cucrembl HaBbe-CToKca MBI peraemM
BCIIOMOTATEIHHYIO CIEKTPAIbHYIO 3amady s bu-Jlamracnana ¢ yeaoBusimu upuxie Ha rpanune. [lasee,
C IOMOIIIBIO (POPMYJI, KOTOPBIE HCIIOIH30BANCH JJIs BBeJeHNs (DYHKIIUN TOKA, Mbl HAXOJIUM CUCTEMY (DYHK-
i, obpasyrorryio 6a3uc B npocrpancrse pernennii cucrembl Hasbe-Crokca. Crieyer OTMeTHTD, ITO 9TOT
6a3nc MOXKEeT OBITH HCIOJb30BAaH JJIsi TPUOJIMKEHHOTO PEITIEHUsT TPSMBIX 1 OOPATHBIX 33719 JIJI CHCTE-
mbl HaBbe-CroKca, Kak JIMHEApU30BAHHOM, Tak M HejauHeiHoil. OCHOBHAsI Mjes NPEJICTABIEHHON PabOThI
3aKJIIOUAETCS B CJIEJYIOIIEM: U3MEHsITh He IDAHUYHbIE YCIIOBUsI (MX OCTaBisieM 0e3 M3MEHEHMIl), a MEHsTh
nuddepeHmaIbHble ypaBHEHUs 11 (PYHKIIME TOKA CO CIEKTPAJIbHBIM apaMeTpoM. B pe3ysnbrare MBI m10-
JlydaeM CIIEKTPAJIbHYIO 3ajiady s 6u-Jlammacuana B 061acTu, IpeICTaBIEHHON TPEXMEPHBIM €IMHUTHBIM
mapow, ¢ ycsioBusimu Jlupuxiie Ha rpanuie obacTy, pemast KOTOPYIO, MbI HAXOAMM CHCTEMY COOCTBEHHBIX
byukImit, obpasyomux 6a3uc B IPOCTPAaHCTBe pereHuit cucrembr ypasuennit Hasbe-Crokca. IIpu sTom
SIBJISIETCSI BarKHBIM, YTO COXPAHSIOTCS I'DAHUYHBIE YCJIOBHs, ¥ BBIIIOJIHAETCS yPDABHEHUE, [IPEJCTABIIEHHOE
YCJIOBHEM HEPa3PBIBHOCTU KUIKOCTH. 3aMETHM TaK:Ke, UTO I TPEXMEPHOTO ciiydasi cucreMbl Hambe-
Croxkca anaJyior pyHKIUN TOKa OB HEU3BECTEH.

Karoweswie caosa: cucrema Hasbe-Crokca, 6u-Jlansiacuan, cniekrpajibHas 3aja4a, (QyHKIM TOKA.
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