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A fractionally loaded boundary value problem two-dimensional in the
spatial variable

In the paper, the boundary value problem for the loaded heat equation is solved, and the loaded term
is represented as the Riemann-Liouville derivative with respect to the time variable. The domain of the
unknown function is the cone. The order of the derivative in the loaded term is less than 1, and the load
moves along the lateral surface of the cone, that is in the domain of the desired function. The boundary
value problem is studied in the case of the isotropy property in an angular coordinate (case of axial
symmetry). The problem is reduced to the Volterra integral equation, which is solved by the method of the
Laplace integral transformation. It is also shown by direct verification that the resulting function satisfies
the boundary value problem.

Keywords: loaded boundary value problem, heat equation, isotropy, Volterra integral equation, Laplace
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Introduction

It is known [1] that, as a rule, mathematical models of nonlocal physical and biological fractal
processes are based on loaded differential equations with fractional order partial derivatives. In mono-
graph [2], A.M. Nakhushev gave a detailed bibliography on loaded equations, including various applica-
tions of loaded equations as a method for studying problems in mathematical biology, mathematical
physics, mathematical modeling of nonlocal processes and phenomena, and continuum mechanics with
memory. In [3, 4], a boundary value problem for a fractionally loaded one-dimensional heat equation
is considered. The load moves at a variable velocity. The conditions for the unique solvability of
the boundary value problem are established depending on the order of the fractional derivative. In
this paper, we study the solvability of a boundary value problem that is two-dimensional in the
spatial variable. In [5, 6], a boundary value problem for the heat equation is considered in a cone
in Lebesgue and Sobolev spaces. The BVP is reduced to a Volterra type integral equation of the
second kind, and the method of successive approximations is not applicable to it [5]. This fact follows
from the incompressibility property of the integral operator [7,8]. As a result, nonzero solutions of the
homogeneous equation arise [9, 10]. Singular integral operators defined in a bounded domain of the
hodograph plane are considered in [11]. In this paper, we show the unique solvability of the reduced
integral equation and the boundary value problem posed in a certain functional class.

The paper is organized as follows: in Section 1 we introduce some necessary definitions and
mathematical preliminaries of fractional calculus which will be needed in the forthcoming Section.
In Section 2, the statement of a fractionally loaded BVP of heat conduction is given. The loaded term
is represented as a fractional Riemann-Liouville derivative with respect to the time variable. Since
the boundary value problem is studied in the case of the isotropy property in the angular coordinate
(when passing to polar coordinates), the problem statement for this case is also given. In Section 3,
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the BVP is equivalently reduced to the Volterra integral equation, namely, to the generalized Abel
equation. Section 4 contains solving the integral equation (homogeneous and nonhomogeneous) using
the Laplace transform method. Further, the solution of the BVP in the case of axial symmetry is
obtained. Also in this Section it is shown that the obtained solution satisfies the BVP. Finally, Section
5 presents the main results of the paper, namely, theorems on the solvability of the integral equation
and the boundary value problem posed in Section 2.

Note that in this paper the order of the derivative in the loaded term is less than the order of the
differential part of the equation. In [12], the order of the derivative is greater than two, and the boundary
value problem was reduced to an integro-differential equation, which led to the non-uniqueness of the
problem’s solution.

Summing up the above analysis of studies, we can say that boundary value problems for loaded
differential equations are well-posed in a number of cases in natural classes of functions, i.e., in this
case, the loaded term is interpreted as a weak perturbation. In the case of violation of the uniqueness of
the solution to a boundary value problem, the loaded term can be considered as a strong perturbation
[13–15]. Everywhere linear equations are considered. An interesting method for studying semilinear
equations in the [16].

1 Preliminaries

Let us first recall some previously known concepts and results. The first one is the definition of the
Riemann–Liouville fractional derivative.

Definition 1 ([17]). Let f(t) ∈ L1[a, b]. Then, the Riemann-Liouville derivative of the order β is
defined as follows

rD
β
a,tf(t) =

1

Γ (n− β)

dn

dtn

∫ t

a

f (τ)

(t− τ)β−n+1
dτ, β, a ∈ R, n− 1 < β < n. (1)

From formula (1) it follows that

rD
0
a,tf(t) = f(t), rD

n
a,tf(t) = f (n)(t), n ∈ N.

We study a boundary value problem for the loaded heat equation, that is two-dimensional in the
spatial coordinate when the loaded term is represented in the form of a fractional derivative. The
considered problem is reduced to an integral equation by inverting the integral part.

It’s known [18] the function

G(r, ξ, t) =
ξ

2a2t
exp

{
−r

2 + ξ2

4a2t

}
I0

(
rξ

2a2t

)
is a fundamental solution to the equation

∂w

∂t
=
a2

r

(
r
∂w

∂r

)
,

where

Iν(z) =

∞∑
n=0

(
z
2

)2n+ν
n!Γ(n+ ν + 1)

, −∞ < ν <∞

is the modified Bessel function.
It’s known ([18]; p. 76) that in the domain Ω∞ = {(r, t)

∣∣ 0 ≤ r < +∞; t > 0} the solution to the
boundary value problem of heat conduction

∂w

∂t
=
a2

r

∂

∂r

(
r
∂w

∂r

)
+ F (r, t),
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w|t=0 = w0(r)

is defined by the formula

w(r, t) =

∫ +∞

0
G(r, ξ, t)w0(ξ) dξ +

∫ t

0

∫ +∞

0
G(r, ξ, t− τ)F (ξ, τ) dξdτ. (2)

The Green function G (x, ξ, t− τ) satisfies the relation∫ +∞

0
G (x, ξ, t− τ) dξ = 1. (3)

Indeed,∫ +∞

0
G(r, ξ, t)dξ =

1

2a2t

∫ +∞

0
ξ exp

(
−r

2 + ξ2

4a2t

)
I0

(
rξ

2a2t

)
dξ =

=
1

2a2t
exp

(
− r2

4a2t

)∫ +∞

0
ξ exp

(
− ξ2

4a2t

)
I0

(
rξ

2a2t

)
dξ.

From [19] (formula 2.15.5 (4) when α = 2; ν = 0, c =
r

2a2t
; ρ =

1

4a2t
) we have

∫ +∞

0
G(r, ξ, t)dξ =

1

2a2t
exp

(
− r2

4a2t

)
Aν+2
ν .

Since ν = 0 => A2
0 = Aν+2

ν . Then we get equality (3).
We assume that the right side of the BVP’s equation vanishes at t < 0 and belongs to the class

Φ(x, y; t) ∈ L∞ (A) ∩ C (B) , (4)

whereA = {(x, y; t) |x > 0, −∞ < y < +∞, t ∈ [0, T ]},B = {(x, y; t) |x > 0, −∞ < y < +∞, t ≥ 0},
T − const > 0.

The classes in which the problem is studied are determined from the natural requirement for the
existence and convergence of improper integrals that arise in the study.

2 Problem setting

Problem 1. In a domain

G = {(x, y; t)
∣∣√x2 + y2 ≤ t; t > 0} (5)

we consider a boundary value problem, two-dimensional in the spatial variable for a fractionally loaded
heat equation:

ut = a2∆u+ λ{RLDβ
0tu(x, y; t)}

∣∣∣∣√
x2+y2=t/2

+ Φ(x, y; t) (6)

with the condition of solution’s boundedness:

lim√
x2+y2→+∞

u(x, y; t) = 0, (7)
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and with the condition on the lateral surface of the cone:

u(x, y; t)

∣∣∣∣√
x2+y2=t

= g(t), (8)

where Φ(x, y; t) is a given function belonging to the class (4), λ is a complex parameter, RLD
β
0tu(x, y; t)

is the Riemann-Liouville derivative of the order β, 0 < β < 1, i.e.

RLD
β
0tu(x, y; t) =

1

Γ(1− β)

d

dt

∫ t

0

u(x, y; τ)

(t− τ)β
dτ. (9)

Let’s move on to polar coordinates:

x = r cosφ; y = r sinφ; 0 ≤ φ < 2π; r ≥ 0.

Since the problem (6)–(8) is considered in the case of the isotropy property in the angular coordinate
φ (case of axial symmetry), we obtain the following problem.

Problem 2. In a domain Ω∞ = {(r, t) | r > 0; t > 0} find a solution to the equation

∂w

∂t
=
a2

r

∂

∂r

(
r
∂w(r, t)

∂r

)
+ λ

{
RLD

β
0tw(r; t)

} ∣∣∣
r= t

2

+ F (r, t), (10)

that satisfies the conditions

lim
r→∞

w(r, t) = 0, (11)

w(r, t)|r=t = g(t). (12)

Hear w(r, t) = u(r cosφ; r sinφ; t) is unknown function, F (r, t) = Φ(r cosφ; r sinφ; t).
The temperature field is assumed to be axisymmetric, i.e., it is approximated by the functional

dependence of the temperature only on the value of r. Note that due to the axisymmetric nature of the
problem under consideration and the degeneracy of the definition domain (5) to a point at the initial
time, conditions (8) and (12) implies the matching condition at the cone top w|r=0 = w|t=0 = g(0).

Now we have the following boundary value problem.
Problem 3. In a domain Ω∞ = {(r, t) | r > 0; t > 0} find a solution to the equation (10) that

satisfies condition (11) and the initial condition

w(r, t)|t=0 = g(0). (13)

3 Reducing the boundary value problem to an integral equation

We invert the differential part of problem (10), (11), (13) by formula (2):

w(r, t) =

∫ +∞

0
G(r, ξ, t)g(0) dξ + λ

∫ t

0

∫ +∞

0
G(r, ξ, t− τ)µ(τ) dξdτ + f(r, t), (14)

where
µ(t) =

{
RLD

β
0tw(r; t)

} ∣∣∣∣
r= t

2

, (15)

f(r, t) =

∫ t

0

∫ +∞

0
G(ξ, r, t− τ)F (ξ, τ) dξdτ. (16)
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Taking into account equality (3), representation (14) can be rewritten in the form

w(r, t) = g(0) + λ

∫ t

0
µ(τ)dτ + f(r, t). (17)

Applying to (17) the operator of fractional differentiation according to formula (9), substituting
r = t

2 into the resulting expression, by virtue of notation (15) on the left in (17) we obtain the function
µ(t).

Since

Γ(1− β)RLD
β
0t

{∫ t

0
µ(τ)dτ

}
=

d

dt

∫ t

0

1

(t− τ)β

∫ τ

0
µ(θ)dθdτ =

d

dt

∫ t

0
µ(θ)

∫ t

θ

dτ

(t− τ)β
dθ =

=
d

dt

∫ t

0

µ(θ)(t− θ)1−β

1− β
dθ =

∫ t

0

µ(θ)

(t− θ)β
dθ

then from (17) after the above procedure we obtain an integral equation

µ(t) =
g(0)

Γ(1− β)
t−β +

λ

Γ(1− β)

∫ t

0

µ(τ)

(t− τ)β
dτ + f1(t), 0 < β < 1,

where

f1(t) =
{
RLD

β
0tf(r, t)

} ∣∣∣∣
r= t

2

. (18)

Thus, problem (10), (11), (13) is reduced to solving the Volterra integral equation of the second
kind, namely the generalized Abel equation:

µ(t)− λ

Γ(1− β)

∫ t

0

µ(τ)

(t− τ)β
dτ =

g(0)

Γ(1− β)
t−β + f1(t), 0 < β < 1, (19)

where f1(t) is defined by formulas (18), (16).

4 Solving the integral equation

Solving the integral equation in the case of the homogeneous equation in BVP (6)–(8). Consider
the corresponding problem for Φ(x, y, t) ≡ 0 in equation (6), i.e. F (r, t) = 0 in equation (10). Then
integral equation (10) will take the form:

µ(t)− λ

Γ(1− β)

∫ t

0

µ(τ)

(t− τ)β
dτ =

g(0)

Γ(1− β)
t−β, (20)

where f1(t) is defined by formulas (18), (16).
Let Φ(s) = L[µ(t)] be the Laplace image of the function µ(t). Applying the integral Laplace

transform to equation (20) we obtain:

Φ(s)− λΦ(s)

s1−β
=
g(0)

s1−β
, Re s > |λ|

1
1−β .

From here

Φ(s) =
g(0)

s1−β − λ
, Re s > |λ|

1
1−β . (21)
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Applying the inverse Laplace transform, taking into account formula 1.80 [20]

L
[
tαk+β−1E

(k)
α,β(±atα)

]
=

k!sα−β

(sα ∓ a)k+1
; Re s > |a|

1
α ,

where Ea,b(z) is the Mittag-Leffler function, i.e.

Ea,b(z) =

∞∑
k=0

zk

Γ(ak + b)
,

from (21) we get

µ(t) = g(0)t−βE1−β;1−β

(
λt1−β

)
. (22)

Due to the representation (17) of the solution to problem (10), (13) for F (r, t) = 0 in the domain
Ω∞, taking into account (22) we get

w(r, t) = g(0) + λg(0)

∫ t

0
τ−βE1−β;1−β

(
λτ1−β

)
dτ.

Since [20] (formula 1.99)∫ z

0
Ea,b(λt

a)tb−1dt = zbEa,b+1(λz
a); (b > 0),

then

w(r, t) = g(0) + λg(0) t−βE1−β;2−β

(
λt1−β

)
. (23)

(23) is the solution to problem (10), (13) in the domain Ω∞, since condition (12) takes the form
(13). Thus, the solution to problem (6)–(8) for Φ(x, y, t) = 0 in the case of axial symmetry has the
form:

u(x, y; t) = g(0) + λg(0) t−βE1−β;2−β

(
λt1−β

)
, (24)

where 0 < β < 1.
Due to the formula

Ea; b(z) = z Ea; a+b(z) +
1

Γ(b)

we have at b = 1 and z = λt1−β

λt1−βE1−β;2−β

(
λt1−β

)
= E1−β;1

(
λt1−β

)
− 1.

Then (24) will take the form:

u(x, y, t) = g(0)E1−β

(
λt1−β

)
, (25)

since Ea,1(z) = Ea(z).
It can be shown by direct verification that function (25) satisfies homogeneous equation (6) in the

case of axial symmetry.
The case of BVP (6)–(8) at β = 1/2 when Φ(x, y, t) = 0.
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If β =
1

2
in BVP (6)–(8) then expression (9) can be rewritten as

RLD
1
2
0tu(x, y, t) =

1√
π

d

dt

∫ t

0

u(x, t, τ)√
t− τ

dτ.

Let
u

∣∣∣∣
t=0

= g(0),

where
g(t) = u(x, y, t)

∣∣∣∣√
x2+y2=t

and Φ(x, y, t) = 0.
Then the solution to BVP (6)–(8) has the form (see (24))

u(x, y; t) = g(0)E 1
2

(
λ
√
t
)
,

when Φ(x, y, t) = 0. Since [20] (formula 1.65)

E 1
2

(
±z

1
2

)
= ezerfс

(
∓z

1
2

)
,

then

u(x, y; t) = g(0)eλ
2terfс

(
−λ2t

)
,

where
erfс z =

2√
π

∫ z

0
e−ξ

2
dξ

is the complementary error function.
Solving the integral equation (19). Consider now equation (19). Let L[f1(t)] = F1(s). Then, in the

space of Laplace images, equation (19) takes the form:

Φ(s)− λΦ(s)

s1−β
=
g(0)

s1−β
+ F1(s).

From hear

Φ(s) =
g(0)

s1−β
+ F1(s) + λ

F1(s)

s1−β − λ
.

Applying the inverse Laplace transform, we get:

µ(t) = g(0)t−βE1−β,1−β

(
λt1−β

)
+ f1(t) + λf1(t) t

−βE1−β,1−β

(
λt1−β

)
. (26)

Then, taking into account function (26), representation (17) has the form:

w(r, t) = g(0) + λ

∫ t

0

(
g(0)τ−βE1−β,1−β

(
λt1−β

)
dτ + f1(τ)

)
dτ+

+ λ2
∫ t

0

∫ τ

0
f1(θ)(τ − θ)−βE1−β,1−β

(
λ(τ − θ)1−β

)
dθdτ + f(r, t) =

= g(0) + λg(0)t1−βE1−β,2−β

(
λt1−β

)
+

+ λ

∫ t

0
f1(τ)dτ + λ2

∫ t

0
f1(θ)dθ

∫ t

θ
(τ − θ)−βE1−β,1−β

(
λ(τ − θ)1−β

)
dτ + f(r, t)
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that is

w(r, t) = g(0) + λg(0)t1−βE1−β,2−β

(
λt1−β

)
+ λ

∫ t

0
f1(τ)dτ + λ2

∫ t

0
f1(θ)I(θ; t)dθ + f(r, t), (27)

where

I(θ; t) =

∫ t

θ
(τ − θ)−βE1−β,1−β

(
λ(τ − θ)1−β

)
dτ = (t− θ)1−βE1−β,2−β

(
λ(t− θ)1−β

)
.

Then function (27) can be rewritten as:

w(r, t) = g(0) + λg(0)t1−βE1−β,2−β

(
λt1−β

)
+ λ

∫ t

0
f1(τ)dτ+

+ λ2
∫ t

0
(t− τ)1−βE1−β,2−β

(
λ(t− τ)1−β

)
f1(τ) dτ + f(r, t). (28)

Due to the formula

Ea, b(z) = z Ea; a+b(z) +
1

Γ(β)

we have at b = 1 and z = λt1−β

λt1−βE1−β; 2−β

(
λt1−β

)
= E1−β

(
λt1−β

)
− 1.

Then function (28) takes the form:

w(r, t) = g(0)E1−β

(
λt1−β

)
+ λ

∫ t

0
E1−β

(
λ(t− τ)1−β

)
f1(τ)dτ + f(r, t), (29)

where f1(τ) and f(r, t) are defined by formulas (18) and (16), respectively. (29) is a solution to BVP
(10), (11), (13).

So, in the case of axial symmetry in the domain G, the function

u(x, y, t) = g(0)E1−β

(
λt1−β

)
+ λ

∫ t

0
E1−β

(
λ(t− τ)1−β

)
f1(τ) dτ + f

(√
x2 + y2, t

)
is a solution to BVP (6)-(8), where f1(τ) and f(r, t) are defined by formulas (18) and (16), respectively,
and F (r, t) = Φ(r cosφ, r sinφ; t).

Checking that function (29) is a solution to BVP (10), (11), (13).
We first rewrite function (29) in the form (28). Since

d

dt

[
t1−βE1−β;2−β

(
λt1−β

) ]
= t−βE1−β;1−β

(
λt1−β

)
,

then

d

dt

∫ t

0
(t− τ)1−βE1−β;2−β

(
λ(t− τ)1−β

)
f1(τ) dτ =

=

∫ t

0

d

dt

[
(t− τ)1−βE1−β;2−β

(
λ(t− τ)1−β

) ]
f1(τ) dτ =

=

∫ t

0
(t− τ)−βE1−β;1−β

(
λ(t− τ)1−β

)
f1(τ) dτ.
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Then from (28) we have

∂w

∂t
= λg(0)t−βE1−β;1−β

(
λt1−β

)
+ λf1(t)+

+ λ2
∫ t

0
(t− τ)−βE1−β;1−β

(
λ(t− τ)1−β

)
f1(τ) dτ +

∂f(r, t)

∂t
. (30)

a2

r

∂

∂r

(
r
∂w

∂r

)
=
a2

r

∂

∂r

(
r
∂f(r, t)

∂t

)
. (31)

By virtue of notation (15) and equality (26), we have

RLD
β
0tw(r, t)

∣∣∣
r= t

2

= µ(t) = g(0)t−βE1−β,1−β

(
λt1−β

)
+ f1(t)+

+ λ

∫ t

0
(t− τ)−βE1−β;1−β

(
λ(t− τ)1−β

)
f1(τ) dτ. (32)

Substituting (30)-(32) into equation (10) we get:

∂f(r, t)

∂t
=
a2

r

∂

∂r

(
r
∂f(r, t)

∂r

)
+ F (r, t). (33)

By notation (16), we have

∂f(r, t)

∂t
=

∂

∂t

∫ t

0

∫ +∞

0
G(ξ, r, t− τ)F (ξ, τ) dξdτ =

=

∫ t

0

∫ +∞

0

∂G(ξ, r, t− τ)

∂t
F (ξ, τ)dξdτ +

∫ +∞

0
G(ξ, r; 0)F (ξ, 0) dξ;

a2

r

∂ (rfr(r, t))

∂r
=
a2

r

∂

∂r

(∫ t

0

∫ +∞

0
rG(ξ, r, t− τ)F (ξ, τ) dξdτ

)
.

It is known [21] that

e−zIν(z) ∼ 1√
2πz

(
1 +O

(
1

z

))
when | arg z| < π

2 and |z| → ∞. Then limt→0G(ξ, r, t) = 0. Therefore, equality (33) takes the form:∫ t

0

∫ +∞

0

∂G(ξ, r, t− τ)

∂t
F (ξ, τ) dξdτ =

∫ t

0

∫ +∞

0

a2

r

∂ (rG(ξ, r, t− τ))

∂r
F (ξ, τ)dξdτ + F (r, t)

or ∫ t

0

∫ +∞

0

[∂G(ξ, r, t− τ)

∂t
− a2

r

∂(rG(ξ, r, t− τ))

∂r

]
F (ξ, τ)dξdτ = F (r, t). (34)

Since G(ξ, r, t) is the fundamental solution of the heat equation in polar coordinates, then

∂G

∂t
− a2

r

∂(rG)

∂r
= δ(ξ − r)δ(t),

80 Bulletin of the Karaganda University



A fractionally loaded boundary value problem ...

where δ is the Dirac function. Then equality (34) takes the form:∫ +∞

0
δ(ξ − r)δ(t) ∗ F (ξ, t)dξ = F (r, t)

or ∫ +∞

0
δ(ξ − r)F (ξ, t)dξ = F (r, t).

Hence, function (29) satisfies equation (10). Function (29) obviously satisfies condition (11) due to the
choice of classes for F (r, t). Let us now show that function (29) satisfies condition (13). We have

w(r, t)|t=0 = g(0) + lim
t→0

f(r, t) = g(0)

due to equality (16).
So, function (29) is a solution to BVP (10), (11), (13).

5 Main results

Theorem 1. Equation (19) is uniquely solvable in the class µ(t) ∈ C([0;T ]), for any function side
f1(t) ∈ AC([0;T ]), and the solution to equation (19) is determined by formula (26).

Theorem 2. Let conditions (4) and F (r, t) = Φ(r cosφ, r sinφ; t) ∈ L1(t ∈ [0;T ]) be satisfied for
the function Φ(x, y; t), the function µ(t) is defined by formula (26). Then in the class L1(t ∈ [0;T ])
the boundary value problem (6)–(8) for the case of axial symmetry has a unique solution defined by
formula

u(x, y, t) = g(0)E1−β

(
λt1−β

)
+ λ

∫ t

0
E1−β

(
λ(t− τ)1−β

)
f1(τ) dτ + f

(√
x2 + y2, t

)
,

where f1(τ) and f(r, t) are defined by formulas (18) and (16), respectively.

Remark. Since equation (19) is a generalised Abel equation, its solution can be written as [22]

µ(t) = f1(t) +

∫ t

0
R(t− τ)f1(τ)dτ,

where

R(t− τ) =
d

dt

∞∑
k=0

(
λ(t− τ)1−β

)n
Γ(1 + (1− β)n)

or
R(t) =

d

dt
E1−β

(
λt1−β

)
.

After simple transformations, we get formula (26).
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Кеңiстiктiк айнымалыдағы екi өлшемдi бөлшектiк жүктемелi
шеттiк есеп

Жұмыста жүктемелi жылуөткiзгiштiк теңдеуi үшiн шеттiк есеп қарастырылды, жүктелген мүше
уақыт айнымалысына қатысты Риман–Лиувилл туындысы ретiнде берiлген. Белгiсiз функцияның
анықталу облысы конус болып табылады. Жүктелген мүшедегi туындының ретi 1-ден кiшi, ал жүк
конустың бүйiр бетi бойымен қозғалады және iзделiндi функцияның анықталу облысына жатады.
Шеттiк есеп бұрыштық координаттағы изотропия қасиетi (осьтiк симметрия жағдайы) жағдайын-
да зерттелдi. Есеп Вольтерра интегралдық теңдеуiне келтiрiлдi және Лаплас интегралды түрлендiру
әдiсiмен шешiлдi. Алынған функцияның шеттiк есептердi қанағаттандыратыны тiкелей тексеру арқы-
лы көрсетiлдi.

Кiлт сөздер: жүктелген шеттiк есеп, жылуөткiзгiштiк теңдеуi, изотропия, Вольтерра интегралдық
теңдеуi, Лаплас түрлендiруi.
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Дробно-нагруженная краевая задача, двумерная по
пространственной переменной

В работе найдено решение краевой задачи для нагруженного уравнения теплопроводности, в котором
нагруженное слагаемое представлено в виде производной Римана–Лиувилля по временной перемен-
ной. Область определения неизвестной функции — конус. Порядок производной в нагруженном члене
меньше 1, и нагрузка движется по боковой поверхности конуса, который находится в области опре-
деления искомой функции. Краевая задача исследована в случае свойства изотропности по угловой
координате (случай осевой симметрии). Задача сведена к интегральному уравнению Вольтерра, кото-
рое решается методом интегрального преобразования Лапласа. Непосредственной проверкой также
показано, что полученная функция удовлетворяет поставленной задаче.

Ключевые слова: нагруженная краевая задача, уравнение теплопроводности, изотропность, инте-
гральное уравнение Вольтерра, преобразование Лапласа.
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