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Controllability and optimal speed-in-action of linear systems with
boundary conditions

The paper proposes a method for solving the problem of optimal performance for linear systems of ordinary
differential equations in the presence of phase and integral restrictions, when the initial and final states
of the system are elements of given convex closed sets, taking into account the control value restriction.
The presented work refers to the mathematical theory of optimal processes from L.S. Pontryagin and his
students and the theory of controllability of dynamic systems from R.E. Kalman. We study the problem of
optimal speed for linear systems with boundary conditions from given sets close to the presence of phase
and integral constraints, as well as constraints on the control value. A theory of the boundary value problem
has been created and a method for solving it based on the study of solvability and the construction of a
general solution to the Fredholm integral equation of the first kind has been developed. The main results
are the distribution of all controls’ sets, each subject of which transfers the trajectory of the system from
any initial state to any final state; reducing the initial boundary point to a special initial optimal control
problem; constructing a system of algorithms for the gamma-algorithm study on the derivation of problems
and rational execution with restrictions on the solution of the optimal speed’ problem with restrictions.
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Introduction

Methods are proposed for constructing program and positional controls for processes described
by linear ordinary differential equations in the presence of boundary conditions, as well as phase
and integral constraints, taking into account constraints on controls. Two problems were solved: the
problem of a control existence and the problem of constructing a set of all controls that transfers the
trajectory of the system from any initial state to a given final state [1-2]. The proposed methods for
constructing programs and positional controls are based on the Fredholm integral equation of the first
kind. A necessary and sufficient condition for the existence of a solution to a linear integral equation is
obtained. A general solution is found for a class of Fredholm integral equations of the first kind [3-5].
It is shown that the boundary value problems of linear ordinary differential equations are reduced
to the original optimal control problems with a quadratic functional. Algorithms for constructing
minimizing sequences and estimating their convergence are given [6]. Algorithms for solving the optimal
performance problem based on solving the controllability problem are presented [7-8]. One of the
complex and unsolved problems of control theory is the existence of a solution to the boundary value
problem of optimal control in the presence of phase and integral constraints. To solve the problem of
the existence of a solution, it is necessary to create a general theory of controllability of dynamical
systems. This work is devoted to solving problems of controllability of complex dynamic systems with
boundary conditions and constraints [9]. It should be noted that in these works special cases of the
general problem of controllability and speed of dynamic systems without phase and integral constraints
were studied [10-12]. Actual and unsolved problems of controllability and optimal performance are:
obtaining necessary and sufficient conditions for the solvability of general problems of controllability
and performance; development of constructive methods for constructing solutions to general problems
of controllability and optimality of ordinary differential equations.
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1 Statement of the problem

Consider a controlled process described by a linear ordinary differential equation with an integral
and a control of the following form:

b
= A + B(tyu(t) + C(1) / Kt 7)o(r)dr + p(t), te T =t t], (1)

TEIQZ[a,b]

with boundary conditions
(x(tg) = xo) € So, (x(t1) =x1) € S1, So C R", S1 C R" (2)
as well as restrictions on control values
u(t) € U(t) = {u(-) € La(I1, R™) | u(t) € Uy(t) C La(I1, R™), a.e., t € I}, (3)

(1) € V(1) ={v(-) € La(I2, R™) | v(7) € Vi(T) C La(I2, R™), a.e., T € I2}. (4)

Here A(t), B(t), C(t), t € I are matrices of orders nxn, nxm, nxmj respectively, with piecewise
continuous elements; K(t,7) is a known matrix of order my x n; with elements from Lo, u(t) €
Ly(I2, R™) of a given function Sy C R™, S1 C R" of given convex closed sets, which defines restrictions
on the initial and final state of the phase variables U;(t) C La(I1, R™), Vi(T) C La(I2, R™) of given
convex closed sets. In particular, the sets

So={z0 € R" | |xzo — 71| <7}, So={x0€ R"|ci <wmp; <d;, i=1,n}

Si={z1 € R" ||z —71| <R}, Si={m1 €R"|G <z <d;,i=1n},

where Ty € R", 71 € R" are fixed vectors, r, R are given numbers, xg = (zo1, ... Ton) € R", x1 =
(711, ... ¥10) € R™, ¢;, di, G, d;, i = 1,n are fixed numbers.

There are sets

Uy =A{u(:) € Lo(I1, R™) | ||lu —u|| < r,ae.,t €1},

Ur = {u(-) € Lo(I1, R™) | ci(t) < wi(t) < Bi(t), ace., i =1,n, t € I},

Vi(r) ={v(:) € Lo(I1, R™) | |[v — ¥|| < R, a.e., T € I},

Vi(1) = {v(-) € Lo(I1, R™) | a;(7) < vi(1) < Bi(7), ace. i = 1,n, 7 € I},
where r > 0, R > 0 are given numbers, u(t) = (u1(t), ..., um(t)), v(7) = (V1(7), ..., vn, (7)), @i(t), Bi(t),
t € I, ai(7), Bi(T), T € Iy are given continuous functions.

There are the possible cases: 1) when the moments are fixed; 2) to is fixed, to find the smallest
value t1, t; > 0 when boundary value problem (1)—(4) has a solution. Boundary value problem (1)—(4)
in the second case is called the optimal performance problem.

Definition 1. Let the moments be fixed. The solution of the differential equation with subintegral
control (1) is called controllable at the time of control u.(t) € U(t), vi«(7) = V(7) which transfers the
trajectory of the equation (1) from point zg, (t) = x.(to) € Sp at time ¢y points to z1, (t) = z.(t1) € Si
time 7.

Definition 2. A quadruple (u(t), v«(7), xo,, x1,) € U(t) x V(1) x Sy x S is called correct if the
function z.(t) = z«(¢; to, To,, us, v«), t € I; that is a solution of differential equation (1) satisfies
condition (2). The set of all admissible quadruples is denoted by .
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2 Necessary and sufficient conditions for controllability

To solve problems (1)—(4), we consider the controllability problem of a linear system

Yy = A(t)y + B(t)wi(t) + C(t)wa(t) + u(t), t € I, (5)
y(to) = xo = x(to) € So, y(t1) = x1 = x(t1) € S, (6)
wl() S LQ(IQ,Rm), U)Q() S LQ(IQ,le). (7)

Theorem 1. The integral equation

t1

Kuw = /K(tg,t)w(t)dt _ B, tel=lttl (8)

to

have a solution for any fixed 8 € R™ if and only if the matrix
t1
C(to, t1) = /K(to,t)K*(to,t)dt (9)
to

of order n; X ny is positive definite, where (%) is the transposition sign.

Proof. Sufficiency. Let the matrix C(tg,t1) > 0. Let us show that integral equation (8) have a
solution for any 5 € R™. Let’s choose
w(t) = K*(to, t)C~ (to,11)B, t €1 = [to, t1].
Then

t1
Kw = /K(to,t)K*(to, t)dt C~(to,t1)B8 = B.
to

Thus, for C(tg,t1) > 0, integral equation (8) have at least one solution
w(t) = K*(to, t)C '(to,t1)8, t € I, B € R"

The sufficiency is proved.

Necessity. Let integral equation (8) have a solution for any fixed § € R™. Let’s prove that the
matrix C(to,t1) > 0. Since C(to,t1) > 0, then to prove C(tg,t1) > 0 it is necessary to show that the
matrix C(to,t1) is nonsingular.

Suppose, by contradiction, that the matrix C(to,t1) is singular. Then there is a vector ¢ € R",
¢ # 0 such that ¢*C(tg,t1)c = 0. Let’s define the function v(t) = K*(to,t)c, t € I, v(-) € Lao(I, R™).
Note that

t1 51
/17*(t)1‘)(t)dt _ o /K*(to, DK (o, )t - ¢ = ¢ Clt, 11)e = 0.
to to

Therefore, the function ©(t) = 0, ¢ € I. Since integral equation (8) have a solution for any 8 € R",
then, in particular, there exists function (7) such that w(-) € Ly(I, R™) and (8 = ¢)

/ K(to, ) (t)dt = c.
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Thus the identity

t1 t1
0= /v*(t)w(t)dt =c" /K(to, tw(t)dt = c*c
to to

is true. This contradicts the condition that ¢ # 0. The necessity is proved. The theorem is proved.

Theorem 2. The existence of a control wy () = wi« (), wa«(-) € La(l2, R™)x La(l2, R™) transferring
the trajectory of equation (5) from the starting point y(¢g) = xo € Sp to the point y(t1) = z1 € Sy it
is necessary and sufficient condition for the matrix

Wito.n) = | " (10, 1)BL (1) BHO* (to, )t (10)

the order n x n be positive defined, where B(t) = (B(t),C(t)). Linear control system (5)—(7) differs
from (1)—(3) in that the point, xg € Sy, 1 € S1. Let the matrix W (g, t;) determined by formula (8)
be positive defined. Then a control wy(-) = (wi(+), wos(+)) € La(lz, R™T™) transfers the trajectory
of equation (5) from point y.(to) = xo« € So to point y.(t1) = z1. € S, if and only if

wa(t) € Wi = {ws(-) € La(Ia, R™ ) wy(t) = pa(t) + M1 (t, Zox, T14) + N1(t)2(t1, i),

Zox € SO; T1x € Slv VP*() = (pl*(')a pQ*(')) € L2(127Rm+M1)}7 (11)

where
Al(ta L0« .7)1*) = Bf(t)q’*(tO»t)W_l(thtl)aa (12)

t1
a = @(tg,tl)xl* — Tox — / (I)(to,t),u,(t)dt, Nl(t) = —Bik(t)q)*(t(),t)Wﬁl(to,tl)@(to,tl),

to
p«(-) € La(Io, R™*™) (13)
and the function z(t) = z(¢,ps), t € I is a solution of the differential equation
z(t) = A(t)z + B1(t)p«(t), z(to) =0, t € I.
The solution of differential equation (5) corresponding to the controller, is determined by the formula
Y (t) = 2(t, pe) + A2(t, Tox, T14) + No(t)2(t1, ps), t € I,
where

)\2 (t7 LOx .’L‘l*) = (I)(ta to)W(t, tl)W_l(t()? tl)mO* + q)(ta lo, )W(ta tl) W_l(t()v tl)q)(t7 t0)$1*+
t t1
+/ (I)(t(), T)M(T)dT — ‘I’(t, to)W(to, t) W_l(to, tl) / ‘I’(to, t),u(t)dt, t e Il,
to to
Tox € Sp, T14 € SlNQ(t) = —‘I)(t,to)W(to,t)W_l(to,t1>(I)(t0,t1), tel.
Proof. Indeed, from (8) for K (to,t) = ®(to,t)B1(t) we have (10). Then

Clto, t1) :/K(tg,t)K*(to,t)dt:/@(to,t)Bl(t)B{(t)CI)*(to,t)dt:W(to,tl)
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for the existence of a solution to integral equation (10) it is necessary and sufficient that the matrix
W (to,t1) > 0, the control w1 (t), t € I is determined by the formula w(t) = v(t)+K*(to, t)C~(tg, t1)B—

K*(tg, t)C~ (o, 1) tflK(to,t)v(t)dt, t € I. Then (see (9))

wi (t) = v(t) + K*(to, t) W (to, t1)a — K*(to, t) W (g, t1) / K (to, t)v(t)dt =

— u(t) + B (to, )W L (to, 11)[®(te, t1)e1 — 0 — / B (to, 1)ja(t)dt] -
B () (o, )W (10, 11) / B(to, £) By (t)u(t)dt =

=v(t) + T (t)eo + Ta(t)er + i(t) + Mi(t)z(t1,v), t €1, Yv, v(-) € La(I,R™),
where matrices T1(t), To(t), Mi(t), t € I, are defined by relations (10),

t1

/(I)(to,t)Bl(t)U(t)dt = @(to,tl)z(tl,v),v(-) € LQ(I, Rm),

to

z(t,v), t € I,is asolution of differential equations (11)—(13). The set U; is generated when an arbitrary
function v(-) € La(I, R™) runs through all elements of the space La(I, R™). The theorem is proved.

8 Creating and solving controllability problems

Consider optimization problem (5)—(7), in the form of

t1
J(0) = / Foq(t),t)dt — inf, 0 € X C H,

to

where q(t) = (6(t), 2(t1,p)), p1(t) € L5(I1, R™) = {p1() € La(I1, ™)l o1l < p},

p2(t) € LE(I, R™) = {pa2(-) € Lao(I1, R™)]l|p2|| < p},
Fo((](t),t) = ’Fl(q(t)7t)|2 + |Fg(q(t),t)\2,F1(q(t),t) =wr—u

b
Fs(q(t),t) = wy —/ K(t,r)v(r)dr

Note that:

1) U(t), V(t), So, S1 are bounded convex closed sets, then X is a bounded convex closed set in
a reflexive Banach space H, where Lo(Iy, R™), L5(I;, R™) are bounded convex closed sets in the
Hilbert space Lo.

2) the functional J(6), 8 € X is bounded from below J(#) > 0, V0 € X. It is easy to see that the
quadratic functional J (), § € X is convex since z(t,ap + (1 — @)p) = az(t,p) + (1 — a)z(¢,p),Vp, D €
LA(I, R™T™1) o € [0, 1].

3) It is known that a bounded convex closed set X in the reflexive Banach space H is weakly
bicompact, and a continuous convex functional J(#), 6 € X is weakly semicontinuous from below.
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4) A weakly lower semicontinuous functional J(6), 8 € X on a weekly bicompact set reaches the
infimum on the set X, and hence the set.
X =0, X|J(0) =Jc = Gin)f(J(O) = ]gli)l(lJ(@)} # O where O is the empty set.
€ €

The partial derivative of the function Fy(q,t) are:
Foay (g, 1) = 2T5 (1) Fi(g, 1) + 2 T3 (8) Fa(g, 1),
Foa, (q,1) = 2TY () Fi(q, 1) + 215 (t) Fa(g, ),
Fozey) = 2N11(H) Fi(g, t) + 2 Nix () Fa(g, 1),

Fop, (q,t) =2 F1(q,t), Fop,(q,t) =2Fa(q,t), Foulq,t) = =2 F1(q(t),1).

Theorem 3. Let the matrix W (to,t1) be positively defined. Then the functional under the conditions
is continuously differentiable with respect to Frechet, the gradient

J(0) = (Ju(0), J(0), Jp, (0), Jp,(0), T, (0), I3, (0)) € H
at any point # € X is determined by the formula

J'(6) = ~Fouq(t), ),

t1

T =2 [ K¢yt dt+2/ / K*(t, 1)K (t, )o(7)drdt,

J(0) = 2F1(q.1) — B (0)0(0), J15(0) = 2F2(g,t) — C*(b(h), (14)
7,0 = | " Fonslal®), 1)t 11, (6) = / " Fuan(a(t), ),

where 9(t),t € I; is the solution of the coupled system
. t1
b= =AU, 6t =~ [ Forg, (alt)t)at (15)
to

Fox(t) (q(1),1) = 2N11 (1) F1(q(t), ) + 2 Nia () Fa(q(t), ), t € I,
function z(t) = z(t,p), t € I; solution of the differential equation (13).

In addition, the gradient satisfies J'(6), § € X the Lipschitz condition
HJ’(Ql) — J/<92)H < KH(91 — 92”, V01,92 e X. (16)

Proof. Let 6,0 + A0 € X, A0 = (Au, Av, Apy, Aps, Axgs, Ax1,). As in the proof of Theorem 3,
the functional increment can be represented as

AT =10 +80)~30) = [ (Au (O Fuulatt) + 510 Fops ) — B OV

to

+Apy(8)[Fopa(q, ) — C* ()¢ ()] + Azp(t) Foao (g, t) + Axy(t) Foe, (¢, ) pdi+
b
+/ Av*()Jydr + Ri 4+ Ry + Rs + Ry, (17)

where

t1
R1:/ \Awy — Av|2dt, Ry = / /KtTAv( Yt — Aws(t) 2,

to
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t1 t1
R3 = Az[Fozo(q + Ag,t) + Fozo (g, t)]dt, Ry = Axi[Foz, (¢ + Aq,t) — Fog (g, 1)]dt,
to to
|R| < c1l|AG]1%, Aq(t) = (AO(1), 2(t1,p))-
From (15)—(17) it follows that the Freschi derivative of functional (16) under conditions (15)—(17)

is determined by formula (14), where (t), t € I; is a solution of differential equation (15)—(17).
Let 81 = 0 + A6, 65 = 6. Then

21 (q + Ag, t) — 2Fi(q,t) — B*(t) Ay(t),
2F5(q + Aq,t) — 2F5(q, t) — C*(¢) Ad(2),

t1

/ " (Fosolq + A, 1) — Fouo (0, )]t / Foar (¢ + A, t) — Fog, (g, D)dt.

to to

|7'(61) = J'(62)] < L1|Aq(t)| + La| Adp(t)| + Lsl| Aq]l,

1760 = 7@ = [ " 160) — 6Pt < LAl + Ls / " Aot (18)
: :
Since
Ad = A" (OAG(), £ € T, Ab(tr) = - / [Fow (04 Aq,t) — Fosy (0, 0)d,
that

AY(t) = Ap(ty) + ! A*(t)AY(t), t € I,

t
t1 t1 t1
|AY(t)] < [Ap(t)] +A;knax/t |Ay(7)|dr < La/t ‘AQ(t)‘dt—i_A;knax/t |AY(T)|dT,

[Aq(@)]| < col|AG]], [Az(t, p)| < sl Ap]| + cal Apa]-

Then, applying the Gronwall lemma, we obtain

A (t)| < Lyetnat2)||AG). (19)

From (18), (19) follows estimate (16).
Based on the results of Theorem 3, we construct the sequences {6,,} = {un, vk, Pin, P2n, Ton, T1n} C
X by algorithm

Unt1 = Pulun — andy(0n)], vn1 = Pyl — anJy(vn)],

Pin+1 = PLZZ’ [pln - anJIgl (071)]7 Pon+1 = PLg [pZn - anJLQ (Qn)],
Ton+1 = Psy[Ton — O‘nJa/;()(en)L Tin+1 = Psy [T1n — an‘]:,cl(en)] )
n=0,1,2,..., 0<& <an< g, €1 >0,

(20)

where K > 0 is the Lipschitz constant of equation (14), in particular, e; = % in the case of ¢g = «, =
%. We get that U, V, Sy, S1 are bounded convex closed sets, P [+] is the projection of a point onto the

set €). Any point has a unique projection onto a convex closed set.
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Theorem 4. Let the matrix W (to,t1) > 0, the sequence {6, } be defined by the formula (20). Then:
1. the numeric sequence {J(6,)} is strictly decreasing;
2. ||6r, — Ont1]| = 0 when n — oo;
3. the sequence {#,,} C X is minimized: lim J(#,,) = J, = inf J(0);
n—00 0—X
4. the set X, = {0, € X|J(0,) = J. = eing(J(G) = gli?(J(H)} is not empty, the lower bound
— —
functional J (), 6 € X is reached on the set X;
5. the sequence {6, } C X converges weakly to the set X, unwﬁiku*, Unwgk;v*, p%wgkm*’ x()nwgkxg*,

weak
Tin — T1x &t 1 — 00, where (U, Vs, D1k, D2xy Lok, T1x) € X
6. the following convergence rate estimate is valid

0§J(9n)—J*§@n:1,2, ..., mgy = const > 0,
n

where J(6.) = Jy;
7. controllability problem (1)—(4) has a solution if and only if the value J(6,) = 0. In this case, the
solution of controllability problem (1)—(4) is the function

zo(t) = 2(t, ps) + Ai(t, Tow, T14) + No(t)2(t1,p4), t € I1.

If J(6,) > 0, then controllability problem (1)—(4) has no solution, x.(t), t € I; is the best necessary
solution to controllability problem (1)—(4).
Proof. From the property for the projection of a point onto a set, we have

<J(0), 0 —0p_1 >> 1 <0p—0,1,0—0,1, V0, 0cX. (21)

n

Since J'(0) € CH1(X), X is a convex set, the estimate is true

K
J(01) — J(6) >< J'(01), 61 — 03 > _5”91 — 0,2, VO, 6 € X. (22)
From (16) and (17) 0 = 6, 01 = 0,, 02 = 0,41, we get
1 K 1 K+2
J(On) — J1(Ony1) > (07 — 5) 16n, — Ops1]|* > &1[|0n — Onsa ]|, P Tl (23)

It follows from equality (23) that the numerical sequence {.J(6,)} is strictly decreasing, and also
because of the limited value of the functional at ||6,, — 0,,+1]] — 0 by n — oo. Thus, assertions 1) and
2) of the theorems are proved.

The functional J(0),0 € My is weakly lower semicontinuous on a weakly bicompact set X, then
the set is empty. The sequence {6,) C M. Then, due to the weakly bicompactness of the set My it

eak

follows that 6,,"“%"6,, n — oo, 8, € X,. Thus, statements 4), 5) of the theorem are proved.
For convex functional J(6) € C11(My), the following inequality holds

J(6n) — J(6,) << J'(6), O — 0, >=< J'(0,), On — Opi1 + Onyr — 0, >=
=< J(0p), On — Opny1 > — < J(0,),04 — 01 > .

Hence, taking into account the inequality for 8 € 0, we have

0 < J(0n) = Ju << J(0n),0n — Ong1 > —5= < On — Oni1, 0s — Onyr >=
=< Jl( n) — i(e* — 9n+1)70n — 6n+1 ><

< (0n) = 5= (0 = O )10 — Ona || <

< (T On)ll + 210« = Onrall = 100 — OngallcollOn — Oniall,

D> D

(24)
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where |0 — Op41|| < D, 1 < &5 co =sup [|J'(0n)]| + 52, D is the diameter of the set My. Since with
10n, — Ont1]] — 0, then n — oo that nILH;oJ(O”) = J, = J(0,). This means that the {6,,} C My sequence
reaches a minimum.

It follows from inequalities (23), (24) that J(0,)—J(0pi1) = an—ans1 > €1/|0n—0ni1ll?, an—ani1 >
col|0n — Ons1lls an = J(0n) — J = J(0,) — J(04). Then a,, > 0,ap, — apg1 > i—%a%,n =1,2,...,my > C(Qfl

The theorem is proved.

4 Solving a model problem

Consider a controlled process described by a differential equation with an integral equation of the
form

2
T =9, To =u +/ DT y(r)dr, te I, =(0,2], T € I = [1,2], (25)
1

(710(0), w20(0)) € So = {—1 < z10 < 1, 1 < w9 < 24,
(211(2), 221(2)) € S1 ={—-1 < x11(2) <1, =2 < x9;(0) < —1},
u(t) €U = {u(-) € La(I2, RY)| —1<wu(t) <1, ae. t €L},
v(t) € V ={v(-) € Lo(Iz, RY)|7 < v(r) < 27, ace.T € I} (26)
1. The necessary sufficient conditions satisfy controllability defined by the ratios:

a) Matrix W (0,2) = < 16/3 —4 ) > 0;

—4 4
b) us(t) = w14 (t) = pra(€)To(t) w0 + T (¢) 214 + p11(t) + N11(t)2(t1, ps), t € I,
0 = G-, 2 np = A B e =0,
3(t—1) (2-3t)

T 1 ), p1x(+) € La(I2, RY), zox € (104, T204) € So,

(T114, 214) € S1, ux(t) € U, vi(t) € V;
c) ff DTy (T)dT = wae(t) = pox(t) + To(t) s + T3(t) 14 + p12(t) + Nio(t)2(t1, ps),

o) — (%(t_ D, #)7 T(t) = (3(14— t) 3754—2), Nus(t) = (3(t4— b (2—4375))7

Tox € (fElO*, $20*) € S, T1x = («Tll*a x?l*) €Sy, p2*(‘) € L2(127 Rl)nul?(t) =0,
Sy = S10, S20, S10 = {x10 € RY| — 1 < 219 < 1, Sog = {z9p € RY1 < 299 < 2};
Sy = S11, So1, S11 = {x11(2) € RY| —1 < 211(2) < 1}, So1 = {221(2) € RY| — 2 < 291(2) < —1}.

2. Construction of a solution to the controllability problem. The desired controls u.(t) € U, v.(T) €
V, pre(t) € LY(I1, RY), pou(t) € LE(I1, RY), 2o« € So, 14 € S1, can be found when solving the optimal
control problem: minimize the functional

t1
J(u, v,p1,p2, 10, T20, T11, T21) = {Jwi(t) — u(t) |2 + |wa(t) / K(t, 1) dT| tdt — inf  (27)
to

under conditions

u(t) € U, v(1) € V, p1(t) € LE(I2, RY), pa(t) € Lo(I1, R), w10 € S0, 20 € Sa0, 11 € S11, T21 € Sat,
(28)
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w1 (t) = p1(t) + Tio(t)z10 + Too ()20 + T11(t) 11 + To1 ()21 + N11(t)2(t1,p), t € I,
wa(t) = pa(t) + Too(t)x10 + T30(t) 20 + Ta1(t)x11 + Tur (t)x21 + N12(t)z(t17p)7 tel,

3 3t—4 3t — 3t —2
Tio = Tho(t) = Z(t — 1), Ty =T (t) = T JTi =T (t) = T To1 =T (t) = 1

I

3 3t — 3(t—1 3t —2
Too = Too(t) = Z(t — 1), Tzo = Tso(t) = T T =Ts1(t) = ( 1 ), Ty =Tn(t) = 1
where a function z(t,p), t € I3 is a solution of the differential equation

Zi = Z2, ,2:2 :pl(t) —|—p2(t), 21(0) = 0, 22(0) = 0, te Il.

Let us calculate at 0 = (u, v,p1,p2, T10, T20, T11, T21)
under conditions (25)—(28):

a) Ju(0) = Fou(q.t) = —2(w1 — w), Fo(q,t) = |Fi(q. )" + | Fa(q, 1),

g = (0,2(2)) a gradient of functional (24)

2
Filg,t) = (w1 — u), Fa(qt) = ws — / () dr,
1

2 2 2
J(0) = -2 / DT (1) dt 4+ 2 / / (DT 1)y (1 g
0 0 1
J (0) = 2Fi(q,t) = B*(t)y(t), J,,(0) = 2F2(q,t) — C*(t)(t), t € I,

2 2
J.(0) = /0 2T10(t)Fy (.£) + 2T (1) Falg, D))dt, T, (6) = /0 2T (1) F1 (. £) + 2T (1) Falg, 1)) dt,

7. () = /0 T ()P (0,8) + 2T (1) Fal, )t T (8) — /0 9T (1) Fy (0. ) + 2Tao(t) ol D]t

b) partial derivative

3(t—1) 3(t—1)
4 4
FOz(tl) (Q7 t) = ; Fl(qa t) =
2—3t) 2—3t)
4 4

¢) coupled system

t1
U1 =0, o = —b1, ¥(2) = ( z;g; ) = / Fozey) (g (t) 1) dt.

d) minimizing sequences are:

Unp41 = PU[Un - anJ{L(en)]y Pn+1 = PV[vn - anJ{;(en)]u

Pin+1 = Przlpin — and}, (6n)], Pant1 = Prelpen — andy, (0n)],
x?(;rl PSIO [l'éoi O‘TLJ, 0( n)]7 m1210+1 PSQO [m%O; an‘]:fxgo (en)}
‘T?lJrl PSu [xll - 111( n)]’ l‘7210+1 PS21 [1‘21 J:fcgl (Qn)}
n—0,1,2,..., Oéngf

e) projections of a point onto sets

7, if vy — anJy(0n) < T3
Pylvg — and'v(0,)] = vp — and’y(0n, if 7 < vy —and’y(0,) < 27;
27, if vy, — anJ'y(0,) > 27;
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PLQ [pln - anJ’m (en)] = Pin — anJ’m (On), if len - anJ’m (‘gn)H <p,

PLg [p2n - anJ/m (en)] = P2n — anJ/pz (9n>7 if Hp2n - O‘n‘]/m (Hn)H <p,

p > 0 is quite large;

" —1, i 2\ =, (00) < —1;
PSlo[mlo - an‘],$10(9n)] = $gg) - O‘nt]/mlo(en)a if —1< iﬂ%) - O‘njlzm(en) < 1;
1, if x%) — and 5y, (0n) > 1;

1, if 2l — an ey (0n) < 1
Poyy[25) — and a0 (0) = & 282 — oy (0n), if 1 < Po [0 — v a0 (0) < 21
2, if P520 [55%) - an‘],wzo (en) > 2;

—1, it 2 =, (0,) < —1;
Psy, [257 = 0, (00)] = {20 — 0T 0y (00), i — 1< a2l — q 'y, (00) < 1
—2, if 2\ — ey, (0n) > —2;

—2, if 2 — 4Ty, (00) < —2:
PSzl[ng) - anJ/CE21 (Qn)] = 1'&711) - anJ/:rm (en)7 if —-2< mgll) - anjlml (en) <-I
—1,if 2l — anJ'g,, (0n) > —1.

f) limit points of minimizing sequences:

)weak

R (), vn(T)SF

k k
U (t E0a (), p1() S p1a(t), pa(t) S pas(t), t € I,

(n) * (n) * (n)
T19 — T100 Tog —* P20, P11

= T11y Ty T Top-
g) solvability of the controllability problem (22), (23):
1) if J(us, Vs, P1s, P2x, T1gs Tg, 51, €51 ) = 0, the solution of problem (21)-(23) is a function

z(t) = z(t, pe) + A&, 270, T30, 271, T51) + Na(t)z(t1, ps), t € I1;

2) if J (s, Ui, D1x, P24s Tgs T, 71, T51) > 0, then the controllability problem (22), (23) has no
solution. In this case, the function z.(t), t € I1, is a given approximation of the controllability problem.

5  Conclusion

The main results obtained in this work are: the choice of a set of program and positional controls
for the process described by a linear ordinary differential equation, in the absence of restrictions on
the values of the controls, by constructing a general solution of the Fredholm integral equation of the
first kind; determination of program and positional control, as well as solving problems of optimal
performance in the presence of restrictions on the control values and phase and integral restrictions;
reduction of the initial-boundary value problem with restrictions to a special initial-boundary value
problem of the optimal control and the construction of minimizing sequences and successive narrowing
of the area of admissible controls solution of the optimal performance problem.
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C. Aiicarammes, [.'T. Kepnebaii

Oa-Dapabu amvmdazv, Kasax yammork yrnusepcumemi, Aamamo, Kasaxeman

IMTekTik nraprrapbl 60ap CHI3BIKTHIK, 2KYiieJaep/aiH 0acKapbLIybl
2KoHEe OHTAMJIBI 9cepi

Maxkasaza dazaibik KoHe HHTEIPAJIIBIK, IEKTeyIep OOFaH Ke3e Kail quddepeHInaIblK TeHIeYTePIiH
CBI3BIKTBIK, YKYHeJiepi YIIiH OHTalIbI KbLIIAMIBIK, 9CEPIiH IIeITy 9/1iCi YChIHBLIFaH, MYH/Ia XKYieHiH b6acra-
KB >KOHE COHFBI KYili 0acKapy MOHIHIH IIEKTEYJIriH ecCKepe OTBIPHII, OEPIIreH IOHEC TYUBIK, >KUbIHIaP/IbIH
3JieMeHTTepl OOJbIN TabbLIaAbl. Y chiHbLIFal »KyMbic JI.C. TToHTpsSirud MeH OHBIH, IMOKIPTTEPiHIH, OHTANIBI
MIPOIECTEPiHIH, MATEMATHKAJBIK, Teopusichbina, coubiMeH Oipre P.E. Kanbmanuba quHaMuKaIbK Kyiteaepin
backapy TeopuschIHa *KaTaapl. Pa3aJiblK *KOHE MHTEIDAJIIBIK IIEKTeYJep, COHail-ak 6ackapy IIeKTeysepi
GoJtraH Ke3jie OepireH KUBIHIAP/IBIH MTEKTIK MapTTapbl 6ap CBI3BIKTHIK, XKYesIep VIITiH OHTAlIbl XKbLITaM-
nbIK ocepi 3eprreni. [TlekTik ecenTin TeOpusiChbl KYPbLIYBI KOHE OHbI IIIEINy 9JIici IIemiMIiIikTi 3eprrey,
Oipinmi Tunreri perosbM UHTErPAJJIBIK TEHJAEYIHIH >KaJIbl MIeNIiMiH Kypy Herisinge »kacajabl. Heris-
ri HOTHMZKeJep: XKYHMeHIH TPAaeKTOPUSCHIH Ke3 KeJIreH OACTAlKbl KYHIeH Ke3 KeJreH KAXKeTTi COHFBI Kyire
aybIca aJlaThIH 9pOip 31eMeHTTI OapJIbIK 6acKapy KUbIHAAPBIHAH OOJIII aj1y; aJbIHFaH OACKAPYIbIH KasKeTTi
2KOHE KETKIJIKTI MapTTapblHbIH 0ap OOJIybI; IIeKTeyJiepi 0ap OHTAMJIbI YKbLIIAM/IbIK 9CEPiHiH Mocesecin
MIENTYIiH aJrOPUTMI.

Kiam cesdep: oHTARIBI THIMAUIK, TOJBIFBIMEH HIEKTEY, (DYHKIMOHAJJIBI TPAJUEHT, HHTErPAJIJIBIK, TEHJIEY.

C. Aiicarammes, [.'T. Kopmebait

Kasaxcrull nayuonasvhoili yrnusepcumem umenu asv-Dapabu, Aamamu, Kazaxcman

Y1paBJIseMOCTbh U ONTUMAaJbHOE OBICTPOAeiicTBIe
JMHENHBIX CUCTEM C I'PAHUYHBIMU yCJIOBUSIMU

B craTbe mpejioxken MeTo;1 perenns 3aa91 OITUMAIBHON CKOPOCTH JIJIsI JIMHEAHBIX CUCTEM OOBIKHOBEHHBIX
nuddepeHnnaIbHBIX YPaBHEHU IPpU HAJIUIUU (Pa30BbIX U UHTEI'PAJBHBIX OrPAHUYEHU, KOT/1a HadYaIbHOe
¥ KOHEYHOE COCTOSHUS CUCTEMBI SBJISIIOTCA dJIeMEHTaMU 3aJaHHBIX BBIITYKJIBIX 3aMKHYTBHIX MHOYXKECTB C yUe-
TOM OT'PAHUYEHMSI KOHTPOJILHOTO 3HadYeHus. IIpeacrapientnas pabora OTHOCUTCS K MaTEeMAaTHIECKON TeOPUN
ontuMaJibHBIX mporeccos JI.C. [ToHTpsirnHa ¥ €ro y4eHUKOB U TEOPHUU YIIPABJISEMOCTH JUHAMUYECKUX CU-
crem P.E. Kanbpmana. VccnenoBara 3aada ONTHMAIBHON CKOPOCTH ISl TUHEMHBIX CUCTEM C I'DAHUIHBIMU
YCIOBUSIMU U3 33]AHHBIX MHOXKECTB, OJIM3KUX K HAJUINIO (PA30BBIX U NHTETPAJIHHBIX OTPAHUIECHUI, 8 TAKXKe
OrpaHUYEHMsI 110 YIIpaBJsionemMy 3Hadenuto. Co3maHa Teopusl FPAHUYHOM 3aa4i, U pa3paboTaH METOJ, ee
pellieHnst Ha OCHOBE MU3yYeHUsI PA3PEIUMOCTUA U MMOCTPOEHUs OOIIEro PEIeHus] HHTErPAILHOTO YPABHEHUST
®pearosbma 1mepBoro poja. OCHOBHBIME PE3yJIbTATAMU SABJISIIOTCS PACIIPEIETICHIe BCceX HaDOPOB 3JIEMEHTOB
YIIPaBJIEHUS], KAXKJIbIH CyObeKT KOTOPBIX IEPEBOJUT TPAEKTOPUIO CUCTEMBI U3 JIIOOOr0 HAYAJIBLHOTO COCTOSI-
HUS B JII0O0E€ KOHEYHOE COCTOSTHIE; CBEJIEHNE HAYaIbHON IPaHUIHON TOYKN K CHEIUaILHON NCXOAHON 3a1ade
ONTUMAJIBHOT'O YIIPaBJIEHUs; IIOCTPOEHNE CUCTEMBI &JITOPUTMOB IraMMa-aJrOpUTMa yUeHN:A O BBIBOJE 3alad 1
PallMOHAJIBHOM BBIIIOJIHEHUH C OTPDAHUYEHUAMHU PEIIeHUs] 33/1a91 OITUMAJIbHON CKOPOCTH C OI'PDAHUYEHUSAMU.

Kmouesvie caro6a: onTuMasbHast IPOU3BOAUTEIHHOCTD, OTPAHNIEHUST 1IEJIOCTHOCTH, (PYHKIIMOHAILHBIN Tpa-
JIMEHT, NUHTErpaJIbHOE YpaBHEHUE.
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