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Generalized differential transformation method for solving
two-interval Weber equation subject to transmission conditions

The main goal of this study is to adapt the classical differential transformation method to solve new types
of boundary value problems. The advantage of this method lies in its simplicity, since there is no need
for discretization, perturbation or linearization of the differential equation being solved. It is an efficient
technique for obtaining series solution for both linear and nonlinear differential equations and differs from
the classical Taylor’s series method, which requires the calculation of the values of higher derivatives of
given function. It is known that the differential transformation method is designed for solving single interval
problems and it is not clear how to apply it to many-interval problems. In this paper we have adapted the
classical differential transformation method for solving boundary value problems for two-interval differential
equations. To substantiate the proposed new technique, a boundary value problem was solved for the Weber
equation given on two non-intersecting segments with a common end, on which the left and right solutions
were connected by two additional transmission conditions.

Keywords: two-interval problems, the differential transformation method, Weber equation, transmission
conditions.

Introduction

It is well known that two-dimensional elliptic equations often occur as a mathematical model of
steady-state or equilibrium problems. For example, for a stationary flow of an incompressible inviscid
fluid, the velocity potential satisfies the two-dimensional elliptic equation
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the so-called Laplace’s equation. Separation of variables method applied to the Laplace equation in
parabolic coordinates leads to the Weber equation
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where n is a constant. This equation was first studied by H. Weber in connection with the parabolic
cylinder in the potential theory [1]. The Weber equation converts to the equation

' — v +nu=0 (1)

2
via the substitution y = ue ™2 . Note that the solutions of the Weber equation are known as Weber-
Hermite functions or parabolic cylinder functions. In the case when the constant n is a non-negative
integer, the Weber equation (1) has the solution

2
u=-e 4 Hy(x),
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where H,,(z) is the Hermite polynomial defined by the equality

n
Hy(z) = (—1)"e" Qddn e

In recent years, there has been increased interest in boundary value problems for many-interval
differential equations with additional transmission conditions. [2-6]. Such type of transmission problems
are motivated by the emergence of new and interesting applications in physics.

In this article, the Weber equation given on two non-intersecting intervals and satisfying supplemen-
tary transmission conditions between left and right solutions, will be solved by the differential transfor-
mation method (DTM, for short). The main idea of this method was first proposed by Zhou in
connection with some problems of electrical circuits |7]. Using differential transform, the given differential
equation and related initial and /or boundary conditions can be replaced by linear algebraic equations.
Therefore this method is of great interest in physics, engineering and other natural sciences ([8-14]).
For example, Sepasgozar et al. used DTM to solve the momentum and the heat transfer problems of
non-Newtonian fluid flow in an axis-symmetric channel with porous wall [15]. Usman et al. applied
differential transformation technique to investigate unsteady two phases on non-fluid flow and the heat
transfer between moving parallel plates in the presence of the magnetic field [16].

In recent years, various modifications of the DTM have been used to solve many interesting problems
that arise not only in theoretical mathematics, but also in applied sciences (see, for example [17-20]
and references cited therein)

1 Differential transformation and Differential inverse transformation

Let f = f(x) be an infinitely differentiable function on the real axis R = (—o0, 00) and let g € R
be any point. Denote by Yz, (f,n), n =0,1,2,... the coefficient at the n. term of the Taylor series of
the function f in the neighborhood of the point xg, that is Y;,(f,n) := %f(") (x0)-

Definition 1. The sequence Yy, (f) 1= (Yy, (f, 1), Yz, (f,2),...) is said to be differential transformation
of the function f at the point xg.

Definition 2. Let A := (a,) be any sequence, such that the power series

oo
Z an(z — x0)"
n=0

is convergent on the whole R. Then the function

x) = Z an(x — xo)"
n=0

is said to be the differential inverse transformation of the sequence A := (a,,) at the point z = x.

It is obvious that any analytic function f(z) satisfies the following equality

ngl(yxo (f)? JI) = f(l‘)

Let C*°(R) be the set of all infinitely differentiable functions defined on the real axis R. It is easy to
verify that the following properties are valid

(2) xo(f+g, ):YGUO(fvn)+YIO(gan)7 f?gECOO(R)a n:071727'-';
(”) Zo ()‘fv ) )‘Yxo (fa n)’ )‘ € R7 f € COO(R)a
(ii1) Yoo (2L n) = (S:?)! Yoo (f,s+mn), s,n=0,1,2,..., f¢€ C‘X’(R)'

( ) Io(fg7 ) Zk; 0 xo(fv ) ﬂﬂo(gvn k) that ISon(fg) (f)*yﬂﬁo( ) WhereYzo(f)*on(g)
denotes the convolution of the sequences Yy, (f) and Yy, (g).
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Remark 1. Let A = (ay) be any real sequence. If we denote the sequence (ay,ag, ...,ax,0,0,0...).
by A, then we have

in real applications.

2 Solution of two-interval Weber equation using the modified differential transformation technique

Example 1. Consider the two-interval Weber equation

V(@) = o/ (@) + 29(@) =0,z € [l,5)U(51] )

subject to the boundary conditions, given by

and additional transmission conditions at the interior singular point z = %, given by

i)
Y (; - 0> — 729/ <; +0> =0, (4)

where v1 and 79 are real numbers that will be specified later. We will consider the equation (2) on the
left side [0, 1) and the right side (3, 1] of the domain [0, 3) U (3, 1], separately.

We will denote by Yy(yx, k) and Yi(y * *, k) the differential transformation of y(z) at the left end-
point x = 0 and the right end-point x = 1, respectively. Applying the differential transformation to
the differential equation (2) in the left interval [0, %), we have the following linear algebraic equations

k
1
Yo(y*, k +2) = Fr2ETD Z(/‘C —n+1D)Yo(yx k—r+1)0(r — 1) — 2Yo(y*,k) |, (5)
r=0
where Yy(y*, k) = %dkﬂ,ﬁx) |lz=0. The differential inverse transformation in the left interval has the

following form:
y* () = Yo(yx,0) + Yo (y*, 1) + ... + " Yo(yx,n) + ...

The first boundary condition y(0) = 0 becomes Yj(y*,0) = 0. Denoting Yy(y*,1) = A, (5) we have
where A is unknown number that will be calculated later, and then substituting in the recursive relation
Yo(y=,3) = 5, Yolyx,4) =0, Yo(yx,5) = 555, Yo(yx,6) =0, Yo(yx,7) = g --

Thus we have the following series expansion of the left solution:

= Ar— 23— — 5 - — 2"+ ..
y* () T 6:6 120:5 168096 + (6)
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Applying differential transformation in the neighborhood of the right end-point 2y = 1 we have

Yi(yxx,k+2)= [(E+1D)Yi(y*xx,k+1)+ kY1 (y x*,k) — 2Y1(y * *, k)]. (7)

(k+2)(k+1)
Applying the differential inverse transformation in the right interval (%, 1] gives
y*xx(x) =Yi(yx%,0)+ (z — DYi(yxx,1)+ ...+ (z — 1)"YVi(y * *,n) + ...

The boundary condition y(1) = 1 becomes Yj(y % *,0) = 1. Let Y1(y * x,1) = B. Here B is unknown
parameter that will be calculated later. Using the recursive relation (7) we have

}/l(y * *32) = %1(-8 - 2)7 Yl(y * *33) — %11 }/l(y * *74) = %217 Yl(y * *75) = %&7 Yl(y * *56) = %)
Y1 (y *,7) = 555 -

Then we have the following series expansion of the right solution

yxs(z) = 1+B(gg—1)+%(3—2)(x—1)2—é(x—1)3—
1 1 1 1
— E(az—l)4—%(x—1)5—%@—1)6—2—52@—1)7—1—... (8)

To find the unknown parameters A and B, we put the relations (6) and (8) into the transmission
conditions (3)—(4). Then using "Mathematica"8, we can calculate approximate values of the unknown
numbers A and B as A = 1.21302, B = 0.550509. Here we continued iterating up to the 7 th term in
the series expansion for DTM-solutions y * (x) and y * x(x). Below, Figure 1 shows the graph of the
DTM-solution

_ [ yx(@) for xel0y),
y(x)_{y**x) for :EE(,ZI].
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Figure 1. Approximate DTM- solution of the problem (2)—(4) for v; = v = 1.
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Figure 2. Comparison of the exact solution (red line) and the DTM-solution (blue line) of the
problem (2)—(4) for y1 = y2 = 1.

Example 2. Now we shall consider a two-interval Weber equation with negative n, given by
(@)~ oy (@)~ dy(e) =0, w1, 5)U(51 )

together with the boundary conditions at the end points x = 0 and x = 1, given by

subject to the additional transmission conditions, given by

e (5-0) e (1 0) o, =

1 1
csy’ <2 - 0> -y <2 + 0> =0, (12)

where ¢1, co, c3 and ¢4 are real numbers that will be specified later. As above, we shall consider the
differential equation (9) on the left side [0, 3) and the right side (3, 1] of the domain [0, 3) U (3,1],
separately.

As in above, Yy(y*, k) and Y1 (y*, k) denotes the Y- transforms of y(z) at the left end-point x = 0
and the right end-point z = 1, respectively. Using differential transformation in the left interval, i.e. in
the neighborhood of the point o = 0, we have

k
1
Yt k+2)= —oc—— k — 1Y k — Do(r —1) +4Y; k 1
where Yy(yx, k) = %dkj;:,ﬁx) |z=0. The differential inverse transformation in the left interval has the

following form:
y* () = Yo(y*,0) + Yo (y*, 1) + ... + 2" Yo (y*,n) + ...

The first boundary condition y(0) = 1 becomes Yy(y*,0) = 1. Denoting Yy(y*,1) = K, where K is
unknown parameter that will be calculated later, and then substituting in the recursive relation (13),
we have
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%(y*a2) =2, }/O(y*a?’) = %7 }/O(y* 4) =1, Y()(y* 5) - 247
Yo(y*,6) = -5, Yo(y=7) =%, Yg(y* 8) = 57, ..

Thus we have the series expansion of the left solution y * (z) in the form

TK 4 K 1
Y a4 —af —i——:r—l— 8—|—... (14)

5K
= 1+ Kz+22°+—2°
y*(2) tRTELT A e Tt oy 157 " 16

Now applying differential transformation to the equation (9) in the right interval, we have

Yi(yx*x,k+2) = [(E+1D)Yi(y*xx,k+1)+ kY1 (y x %, k) — 4Y1(y * *, k)]. (15)

(k+2)(k+1)
The differential inverse transformation in the right interval (%, 1] has the following form:
yxx(x) =Yi(yx%,0)+ (z — DYi(yxx,1)+ ...+ (z — 1)"Yi(y * *,n) + ...

The second boundary condition y(1) = 0 becomes Y7 (y * *,0) = 0. Putting Y (y **,1) = M, where M
is unknown parameter that will be calculated later, and using the recursive relation (15) we have

Yl(y**2)_]\2/[, Yi(y**,3) =M, Yi(yxx*4) =

Yi(y *x,5) = 53%‘/1

2]\6[, Yi(y *x,6) = 21\21’ Yi(y**,7) = 50 )

Consequently we have the series expansion of the right solution y % *(x) in the form

y*x(x) = M(x—1)+%(:c71)2+M(x71)3+J\;( 1)* +%( 71)552]{44(3071)
53M

Substituting (14)—(16) in the transmission conditions (11)—(12) we obtain two algebraic equation with
respect to the variables K, M.

Finally, using «Mathematica 8>, we can calculate approximate values of the parameters K and M
as K = —1.93316, M = —0.70003. Here we were continued iterating up to the 7 th term in the series
expansion for the DTM-solutions y * (z) and y * *(z). The approximate DTM-solution of the problem
(9)—(10) is presented graphically in Figure 3 and Figure 4.
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Figure 3. Approximate solution of the problem (9)-(12) for ¢; =3, ca =4, ¢3 =5, ¢4 = 6.
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Figure 4. Comparison of the exact solution (red line) and the classical DTM-solution (blue line).
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M. IOzkent, @.II1. Myxrtapos?, O.I11. Myxrapos®

L Xumum Ywnusepcumemi, Yopym, Typrus;
20sipbatiorcar ¥Yammows eviavim axademuacoiioy Mamemamura orcone mexanura unemumymo, Baky, D3ipbatiorcan;
3 Toxam Lasuocmamnawa Yrwusepcumemi, Toxam, Typrus

Tapary miaprrapblH ecKepe OThIpbIII, BebepaiH eKimHTepBaJabl
TeHJIEyiH MIelryTre apHAJFaH KaJIblJIaHFaH JuddepeHImanabIk

TYPJAEHOIPY 9aici

3epTTeyaiH HErisri MakcaThl — KJIACCUKAJIBIK JuddepeHInaIblK TYPJEHIIPY O/IIiCiH KaHa IIEeTTIK ecell-
Tepmiy memntyre GeitiMaey. By omicTiH apTHIKIIBIIBIFB OHBIH KaPalalbIMIBIIBIFBIHIA, OTKEH] IIeniIeTiH
muddepeHIIANIBIK, TEHIEYI1 ipiKTey, aybITKy HEMECE CHIZBIKTBHIK €Ty KazkeT eMeC. OChbl ChI3BIKTBHIK YKOHE
GeChIBBIKTHI AudbepeHnnaIbIK TeHIeyep YIIiH KaTapjap TYPIHIe MeniMIep aJIyablH THIMI 9iCi KoHe
GepinreH pyHKIMSHBIH XKOFapbl TYBIHIBLIAPBIHBIH MOH/IEPIH ecenTeyll KaxkeT ereTiH Teitstop Karapaapbi-
HBIH KJIACCUKAJBIK d/1iciHeH epekiesnene . Juddepenmuaiasl TypaeHipy o/ici 6ip nHTepBaJsIbl ecernTep/ii
IIIeIyTe apHaJFaHbl OeJIrijI KoHe OHBbI KOTI MHTEPBAJIIAbLI ecenTepre Kajai KOIIaHy KepekTiri 6esricis. Ocbr
Makasaza 6i3 eki mHTEpBAIALl AuddEPEeHITNATIBIK, TEHACYIED VIMH METTIK eCenTep/l IIerry YImH KJIac-
CHUKAJIBIK, JuddepeHInalIblK, TYPJIEH Py 9icin 6eitiMae/iik. Y ChIHBLIFAH YKaHa 9/IiCTeMEH] Herizjey yIiH
COJI YKOHE OH, YKaKThI IIENIMIEP €Ki KOCBhIMIIa 6eplty mapTTapbiMeH 6ailIaHbICThI 6OJIATHIH OPTAK, YIIbI 6ap
€Kl KUBLIBICTIAMTHIH Kecinmijep Ootipiama bepinren Bebep tenpeyinin merTik ecebi mremmisii.

Kiam cesdep: ekimaTepBasabl ecentep, auddepeHnuaiabl TypPaeHaipy oici, Bebep Tenaeyi, Tapary map-
TTaphbl.
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1
Vhusepcumem Xumum, Yopym, Typuus;
2 Mnemumym mamemamusy v mezarury, Hoyuornaivrotl axademuu nays Asepbationcana, Baxy, Asepbatidowcan;
3 Vnueepcumem Toxam Tazuocmarnawa, Toxam, Typyua

Metona, 06061menHoro auddepeHnnaJIbHOro Mpeodpa3oBaHus IS
pelieHnsl ABYyXUHTEPBAJIbHOTO ypaBHeHus Bebepa c ydyeTroMm ycjoBuii
rnepeiavdn

OcHoBHAs 1EJIb TAHHOTO UCCJIEJOBAHKS COCTOUT B TOM, 4TOOBI aJalTUPOBATh KJaccudeckuii puddepenim-
aJIbHBIN MeTOoJ IpeoOpa30BaHus /ISl PEIleHIs HOBBIX THIIOB KpaeBbIX 331a4. [IpenmyInecTso sToro merona
3aKJII0YAETCSI B €ro MPOCTOTE, TAK KAK HET HeOOXOAMMOCTH B IUCKPETU3AINH, BOZMYIIEHUN WU JIMHEAPU3a-
nuu pemaeMoro auddepeHaabHoro ypaBHenus. 91o 3(pdEeKTUBHBI METOJ, [TOJIyYeHUs PEIeHn B BUJIE
PSZIOB KaK JJIsl JIMHEWHBIX, TAK U HEJIMHENHBIX UM dePEeHIINaIbHBIX yPABHEHU, M OH OTJINYAETCS OT KJIACCU-
9ecKoro MeTosa psiaoB Teitopa, KOTOPBIit TpebyeT BBIYNC/TIEHNsT 3HAYEHU BBICIIINX TPOU3BOIHBIX 3aJaHHOMN
dyukmuu. V3BectHo, uT0 MeTo 1 nuddepeHnaJ bLHOr0 Ipeodpa3soBaHus IIpeIHa3HAYEeH IS PEIIeHIs OHO-
WHTEPBAJIbHBIX 33124 U He SICHO, KaK €ro IIPUMEHITh K MHOIOMHTEPBAJIbHBIM 33/la4aM. B HacToseil ctarbe
MBI &JIAIITUPOBAJIN KJIACCHUIECKUN MeTo 1 TudHEePEeHITNATBLHOTO Tpeobpa30BaHUs JJIs PEIIeHNs] KPAeBbIX 3a-
nadq sl IBYXUHTEPBAJIBHBIX JuddepeHuaibabiX ypaBHeHuit. s o6oCHOBaHUS TPEJIOXKEHHONR HOBOM
METOJIMKH pellajiach KpaeBasl 3ajiada /s ypaBHeHUs Bebepa, 3aJaHHOIO Ha JABYX HEIEPECEKAIOIIMXCS OT-
pe3Kax ¢ ObIIMM KOHIIOM, Ha KOTOPBIX JIEBOE U IIPABOE PEIEHUsT OBIIN CBSI3aHBI JBYMS JIOTIOJTHUTEIbHBIMU
YCIOBUSIMU TEPEIAtN.

Kmouesvie caosa: IBYyXUHTEPBAJbHBIE 331841, METOJ JuddepeHInaIbHOro Ipeodbpa3oBaHus, ypaBHEHNE
Bebepa, ycimosust mepegaan.
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