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This paper deals with some differential inequalities for generalized fractional integro-differential equations
by using the technique of upper and lower solutions. The fractional differential operator is taken in Caputo’s
sense and the nonlinear term divided into two parts depends on the fractional integrals of an unknown
function with two different fractional orders. The results are studied by employing a variety of coupled
upper and lower solutions. These theorems have some potential for extending the iterative techniques
to fractional order integro-differential equations and to coupled systems of integro-differential fractional
equations to obtain the existence of solutions as well as approximate solutions for the considered problem.
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Introduction

Although fractional calculus has existed for as long as «conventionals» calculus, it was not until
recent decades that the study of fractional differential equations became popular. This is because
fractional operators commonly offer better accurate models than those with integer derivatives. See
[1,2] for the recent developments and further information. Among the different definitions for fractional
order derivatives, the Caputo fractional derivative stands out and has been intensely utilized since it
is best suited for describing many events and the initial conditions for fractional differential equations
are the same form as that of ordinary differential equations with integer derivatives. Due to the fact
that it is far more extensive than the theory of classical ordinary differential equations, the theory
of fractional differential equations has drawn a lot of attention. Although there has been tremendous
recent progress in the study of fractional differential equations, there is still a significant potential in
this area. After reviewing the literature, we find a number of publications on basic arguments, such
as existence, uniqueness and stability results for fractional differential equations. See [3-10] and the
references therein.

Differential and integral inequalities are crucial in the qualitative study of differential and integral
equations. They are used to investigate the concepts of existence, uniqueness, boundedness, stability,
continuous dependence, and so on. The method of upper and lower solutions is a quite effective concept
in the theory of nonlinear differential equations with initial or boundary conditions. Recently, these
methods have been applied to fractional differential equations as well as differential inequalities [11-20].
We give some comparison results for several types of coupled upper and lower solutions for a given
boundary value problems of fractional integro-differential equations. The results here can be viewed as
expansions and generalizations of corresponding analogous results from the integer order case to the
fractional order case.

The purpose of this paper is to refine some previously published results for a given boundary
value problems of fractional integro-differential equations by employing the method of upper and lower
solutions together with strict and non-strict inequalities.
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1  Mathematical Preliminaries

This section provides background knowledge on fractional calculus and fractional differential equations
in order to improve understanding.

Definition 1. [1] Let [a,b] C R, Re(q) > 0 and f € Lq[a,b]. Then the left and right Riemann-
Liouville fractional integrals I, and I;_ of order « are defined as

(@) = o /(f“)‘“ v € (a,)

(9) J (x- )=’
and b
I f () = rch) / (tf—(t;)(ﬁq’x € la,b)
respectively. )

Definition 2. 1] Let [a,b] C R, Re(q) € (0,1) and f € Ly[a, b]. The left and right Caputo fractional

derivatives of order g are given by
Dy f (x) = L,."Df (), Y € (a,0]
and
D f(x):=—I,""Df (z),Vz € [a,b)
respectively.
Let F,G € C[JxRxR,R], u € C'[J,R], J = [0,T]. We consider the following fractional
boundary value problem.

CDNy (t) = F (t,u(t), IPu(t) + G (tu(t), [%u(t), g(u(0),u(T)) =0, (1)

where 0 < g3 < g2 < q1 < 1 and g € C[R?,R]. From now on, the fractional operator © D9 stands for the
left Caputo fractional derivative as well as I? represents the left Riemann Liouville fractional integral
operator.

Definition 3. Let a, B € C1[J,R]. Then o and f3 are said to be
(i) natural lower and upper solutions of (1) respectively if

Do (t) < F(ta(t),I%a)+Gtal), 1%a(t), g(a(0),a(T)) <0, (2)

“DUB(t) > F(t,B(t),I26(t)+G (1), I%6 (1), g(5(0),58(T)) >0, (3)
(ii) coupled lower and upper solutions of type I of (1) respectively if

CDia(t) < F(ta(),I"8(1)+GC(tal),[96(1), g(a(0),a(T)<0, (4

DUB () = F(t,B(1), [Pa(t) + G (A1), I%a(t), g(B(0),5(T)) >0, (5)

(iii) coupled lower and upper solutions of type II of (1) respectively if

Cpagy (t)
“DNB(t)

B @), [Ta(t) + G (t,B(1), [Pa(t), g(a(0),a(T))

< F(t, <
> F(t,a(t),I78(1)+G(ta(t), I1P5(t), g(B(0),8(T)) >0,
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(iv) coupled lower and upper solutions of type III of (1) respectively if

CDBq (t)
‘DB (t)

F(t,B5(t), I26()+G @ A(1),I%4(1), g(a(0),a
Fta(t), o) +G (4 a(t), [Pa(t)), g(B(0),8(T))

AVARVAN

(v) coupled lower and upper solutions of type IV of (1) respectively if

CDa(t) < F(ta(t),[a®)+G A1), I%8(), g(a(0).a(T)) <
CDUB(H) = F(LB(1), 128 (1) +C(La(t), % (1), g(8(0),8(T)) >0,

(vi) coupled lower and upper solutions of type V of (1) respectively if

CDn g (t)
“DU B (t)

F@A@1), 126 (1) + G (talt), [Pa(t), g(a0),a(T)) <0,
Fta(t), o) +G (), 1%6(t), g(B(0),8(T)) = 0.

AVARVAN

Lemma 1. [3] Let m € C'[J,R] and assume that m (t;) = 0 for t; € (0,7] and m (¢t) < 0 for
0 <t < t1. Then we have ¢ D%m (t1) > 0.

The Laplace transform technique, as is well known, is a beneficial tool for solving initial value
problems. Using this method, the stated problem is turned to an algebraic expression. The next lemma,
which is about the inverse Laplace transform of the given function, is critical in this case.

Lemma 2. [21] Let a > >0, a >, a,b € R, s > |a| and |s® —I—asﬁ‘ > |b|. Then we get

a) k (n;{rk) th(a—B)+na

_ s  La—— e ()" (—
3 1{(S“+asﬁ+b)}_t ' 1ZZF(k(a—ﬁ)+(n+1)a—v)-

n=0 k=0

We prove the following lemma in order to solve the given linear fractional initial value problem. It
allows the corresponding result in [16] to be a specific case of this lemma.

Lemma 8. Assume that A € C'[J,R], 0 < ¢3 < q2 < q1 < 1 and Ly, My, My € R. The explicit
solution of the following linear fractional integro-differential equation,

CDUN(t) = LA (t) + MiI2X () + MaIBX (), A(0) = Ao (6)

is given by
2 &0 &0 (M) (Ly)F (My)? (1R (n i) pas (b4 +naa-tias

At) =
2 nzzg)kmo I'(qi(n+k+1i) +ng +igs+ 1)

Ao

provided that [s71F9| > |My|, |s? — Mas™%| > |Ly| and [s91792 — Mys®~% — [1s%2| > | M.

Proof. If we apply the Laplace transform on both side of the equation (6), we find the following
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relations
L{°DUN({t)} = LiL{NO)}+ML{I2A({)} + ML {IBN ()}
sA(s)—Xo A(s) A(s)
31_‘11 - Ll)\ (S) - Ml S92 - M2 s43
SEN(s) — sy = LiA(s)+ M (s) s~ + MyX(s) s %
sfita—1
)\(8) - snt2 — Nos92—9 — [1s92 — My Ao
stge—1
= " Ao
(st1+a2 — Mpst—ts — [;502) (1 e Lls%)
ghita2—1 ad (M)
- snte — Nos92—9 — [1592 ZO (st — Moys92—93 — ngth)"
n=
o n
_ ey (M) .
S (st — Mys s — L18q2)"+1
[e.¢]
— ghitae—l (Ml)n

n=0 (Sq1+q2 — My

L1592

n+1 /\0
sq1+4a2 —Mos92—93 )

SQ2—QS)”+1 (1 —

[e%S) k k (n+k
= 5q1+q2—lz (Ml)n 12 (Ll) (5%2) ( ) Ao
— (sm+az — Myst2—a)"F (sataz — Mysa2—as)k
k

Ao

>y

n=0 k=0

s~ 71— k+1)+1 (SQH—QQ

(Ml)n (Ll)k (n—llc-k

Mysia—as) 7R+

)

- Yy Ao
_ Fhk+1
n=0 k=0 g~ 01 —q2(k+1)+1 (8q1+Q2)”+k+1 (1 _ A/{SquqquQ3 )n
- Yy " (L) (L) Sy (M E ) iy
N —q1—q2(k+1)+1 ( gq1+go\Hk+1 1 s 0
n=0k=0 (5 ) i=0

oo o0 0

Ly)"

(Mg)i (n+k) (n+k+z’

7

)

2.0 2.

s—a1—a2( k+1 Y+1+(q1+q2) (ntk+1)+i(q1+qs) 0

n=0 k=0 i=0
)
o Sql n+k+z)+nq2+lq3 0
n=0 k=0 i=0
provided that [s779%| > |Ma|, |s? — Mas™%| > |Ly| and |s91192 — Mys9?2™ %3 — [15%2] > | M.

At this stage, we arrive at by implementing the inverse Laplace transform

oo o0 O

2.2 > (an)"

n=0 k=0 =0
oo 0 XX

> le

L7 (s)}

k(M) <"

A(t)

(M2)i (n+k) (n+f+i) a1 (ntk+i)+ngz+igs

1
n+k+1i)+nga+igs

+k\/n+k+1
k i

-1
)E {3‘]1(

Ao-

n=0 k=0 =0

ql(n+k+z)+nqz+iq;g+1)

2 Formulas and theorems

b

Depending on the selection of upper and lower solutions of (1), we will assume the suitable

conditions to establish some differential inequalities.
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Theorem 1. Let o and 8 be natural lower and upper solutions of (1). F(¢,u,v) and G(t,u,v) is
non-decreasing in v and following Lipschitz-like conditions are also satisfied for Ly, Lo, M7, My > 0

Ly (ug — ug) + My (v1 — v2), (7)

<
< Lz (u1 —ug) + Mz (v1 — 09) (8)

—~
~
SR
no
~—~
~+
~—
—~
~~
S~—

G (t,ur (t),01 (1)) —

whenever u; > ug. Then we have a (t) < S (t) provided « (0) < 5(0).

Proof. In order to make it compatible with the problem (1), the functions v;, v; must be evaluated
as follows v; = I%?u; and v; = IBu;, 1 = 1,2. Clearly, u; < ug implies that v; < vg and v; < s.
We now set a (t) = a (t) — e\ (t) for arbitrary small number € > 0, where

oo 0o 00 (Nl)z (n—l—k) (n+k+i) 0 (n+k+i)+ng2+igs
nz%kzng I'(gi (n+k+1i) +ng +igz + 1)

is unique positive solution of the equation
Cpa ) (t) = LA(t) + MiI®X(t) + MaI® X (t), X(0) =1, (9)

where L is a positive number such that L > L; + Lo. Notice that a.(0) = a(0) — eA(0) < «(0),
ae (t) < a(t) for 0 <t <T. If we differentiate a. (t) in terms of Caputo’s sense, and using (2) we get

Dl (t) = “DBa(t)— DAt
< Fta(t), I2a) + G (ta(t), [Pa(t))
—LeX (t) — Myel® X (t) — MoeI %\ (t).

We observe that a. (t) < a(t) on J yields I?a, (t) < I2a(t) and IBa, (t) < I8« (t) on J by the
definition of R-L fractional integral. We then employ the Lipschitz-like inequalities in (7) and (8) to
obtain

Dl (t) < Ft,at), I2a(t)) — F (t, o (t), IPa (t) + G (L, a (t), [Ba(t))
CG(t e (1), TP (1)) — LeA () — MyeI® A (£) — MoeI® A (1)
+F (t,ac (), IPac (1) + G (t, ac (1), [P (1))

Lie(@(t) — ac (1) + MieT® (a (1) — ac (1)) + Lae (a (t) — ac (1)

+Moel® (o (t) — e (t)) — LeA (t) — M1el X (t) — Mael )\ ()

+F (t,oe (), IPac () + G (t,ae (t) , [P, (1))

)

)

IA

= F(tac(t),I%ac () + G (t,ac (t) , % (t)) + e (t) (L1 + Lo — L)

)
< F(tac(t), IPac (b)) + G (8 ae (t), 1T ac (1)) -

We intend to demonstrate a. (t) < 5 (t) for ¢ € [0, 7], which concludes the proof by letting ¢ — 0.
Suppose that a¢ (t) < S (t) on t € [0,T] is false. Then the set A = {t:t€[0,T],a.(t) > (t)}
is nonempty. Let ¢, be the greatest lower bound of A, then ac (t.) = S (t«) and . (t) < B(t) for
0 <t <ts.

By generating m (t) = a. (t) — B (), it is written that m (¢) < 0 for 0 < ¢ < t, and m (t,) = 0.
Because of Lemma 1, it leads to “D%m (t,) > 0.
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Since a, (s) < B (s) for 0 < s < t,, we immediately get

I2a,(t,) = T (1(]2) /(t* — )2 o (s)ds
0
. t o
< () O/(t* —35) B(s)ds
= I25(t,).

A similar discussion offers IBa (t.) < I8 (t4). By recalling the non-decreasing features of F' and G,
we follow that

F (te, 0 () , TP (1)) + G (ts, e (ts) , [P e (t4)) “Dua (t,)
‘DB (t)
F (t*aﬁ (t*) ’quﬂ (t*)) + G (t*v B (t*) 7Iq3/8 (t*))

F (i, B (8e) s TP e (t2)) + G (b, B (8) , I e (E4))

vV IV IV V

giving rise to a contradiction because of the fact that a. (t.) = B (t«). Then the inequality
ae(t) < p(t),Vted

holds, which proves « (t) < S (¢t) on J.
Corollary 1. This result includes the Theorem 2 in [11] as a special case when F' = 0 and ¢; = ¢2
or G =0 and q; = g3.

Theorem 2. Let a and  be coupled lower and upper solutions of type I of (1). F(¢,u,v) and
G(t,u,v) is both non-increasing in v and they hold the following inequalities for u; > ug,v1 > vy and
L1, Lo, My, Ms positive constants such that

F(t,uy (t),v(t)) — F(t,uz (t),v(t)) < Li(u —u2), (10)
G (t,uy (t),0(t)) — G(t,uz (t),v(t)) < Lo(us —uz), (11)
F(t,u(t),v1(t) — F(t,u(t),va(t)) > —Mi(v1—wv2), (12)
G(t,u(t),v1 () — G(t,u(t),ve(t) > —Ms(v1—02). (13)

If «(0) < 5(0), then it yields that « (¢t) < B (t) on J.

Proof. We begin by constructing o, (t) = a(t) — €A (t) and 5. (t) = [ (t) + eX(t) for € > 0. The
function A (¢) is also supposed to be unique positive solution of (9) with Ly + Lo > L > 0 . It is clear
that B¢ (0) = 5(0) + eA(0) > 5(0) and . (0) = a(0) — eA (0) < a (0) that imply . (0) < S (0) and
for 0 <t <T, we get B (t) > [ (t) and e (t) < a(t).

Differentiating both sides of S (t) = B (t) + €A (t) leads to

CDUB (t) = “DNB(t)+ DU (1)
> F(t,8(),I%a(t)+G(t,B(t),I%al(t))
+LeX (t) + Miel X (t) + Mael B\ (t) .

Since S, (t) > [ (t), we can utilize the inequalities (10) and (11) in hypothesis to get
F(t,Be(t), I (t)) = F (8,5 (t), IPa(t) < Li(f(t) =B (1),
E@,B(1),1%a(t) = F(,B(t),[®a(t) = Li (B (t) = 5 (1))
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and

G, Pe (), [Ta(t) =G (L, 5(1), [Pa(t)) Ly (B (t) = B(1))
G(t,B(t), IPa(t)) G (t, Be (), TP o (t)) = L2 (Be (t) = B (1)) .-

Putting these results into the foregoing inequality, we write

“DUB(t) = F(t,fe(t),Ia(t) — L1 (Be (t) — B (1)
+G(tBe (1), 1P (t) = L2 (B (1) = B (1))
+LeX (t) + Miel )\ (t) + Mael B\ ()
= F(t,B:(t), IPa(t) + G (t,L(t), [Pa(t)) + (L — L1 — La)eX (t)
Myl ) (8) + Mael® A (1)
> F(t,8:(t), [a(t) + G (t, Be (), [T (t)) + MrelP X (t) + Mael B (t).

<
>

Since the fact that o (t) > ae (t), we can have [« (t) > 1%, (t) and [B«a (t) > [ a, (t). Therefore,
the following inequalities can be found by considering inequalities (12) and (13)
F(t,Be (1), IPa(t) = F (¢, B (t) , IPac (t)) = —MI® (a(t) — e (t)),
E(t, B (t), IPa(t)) = F( B (t), I1%ac(t)) — MiI® (a(t) — ac(t))

and

G (t, B (1), I%a (1)) — G (t, Be (1) , IPac () > —MaI® (ar(t) — e (1)),
Gt Be (), ITa(t)) = G(t,B (1), [Pac(t)) = Mal® (o (t) — ae (1))

Combining these results with previous inequality, we arrive at

CDUB(t) > F(t,Bc(t), 120 (1)) — MyI% (o (t) — o (1))
+G (t, Be (1) [P e () — MaI® (ar (1) — e (1))
FMyel®2) () + Moel® A (1)
= F(t,8c(t), IPac(t)) + G (t,Bc (), [Bae (t)).

We intend to demonstrate a (t) < S (t) on J. If we use the similar technique as before we first assume
that assertation is false which gives a contradiction itself. Therefore, when ¢ — 0 gives the desired
result.

Remark 1. Notice that if F(t,u,v) and G(t,u,v) are non-decreasing in v for each (¢,u) whenever
a < (3, then natural lower and upper solutions given by (2) and (3) imply the coupled lower and upper
solutions of type I given by (4) and (5). Conversely, if F'(¢,u,v) and G(¢,u,v) are non-increasing in
v for each (¢,u) whenever o < 3, then coupled lower and upper solutions of type I reduce to natural
lower and upper solutions respectively.

Theorem 3. Let o and (3 be coupled lower and upper solutions of type II of (1) as well as F(t, u,v)
and G(t,u,v) is non-decreasing in v. We also assume that

F (tyuy (t),v(t)) — F(t,ua (t),v(t)) > —Lj(u —uz)
G(t,ur (t),v(t)) — G (t,ua(t),v(t)) > —La(ur —u2)
F(tyu(t),v1(t)) — F(t,u(t),v2(t)) < My (v1 —ve)
G(t,u(t),v (t) —G({t,u(t),v2(t)) < M (v — v2)

whenever uj > ug,v1 > vg, where L1, Ly > 0, M1, My > 0. Then a (0) < 8 (0) implies that « (t) < B ()
on J.
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Proof. For the proof, we recall the previous definitions of functions «. (t), 5¢ (t) on J such that for
e>0

ac(t) = a(t) —eA(t), Be (t) = B (1) + eX(t).

The function A (¢) is the unique positive solution of (9) with L; + Ly < L. We can achieve the desired
conclusion by using a similar process as described above.

Theorem 4. Let « and 8 be coupled lower and upper solutions of type III of (1) as well as both
F(t,u,v) and G(t,u,v) is non-increasing in v. We also assume that

F (t,ul (t) , U1 (t)) - F (t, usg (t) , V2 (t)) > —L1 (U1 — ’U,z) — M1 (’1)1 — 'UQ) )

G (t, U1 (t) , U1 (t)) -G (t, U9 (t) , U9 (t)) > -1 (u1 — UQ) — M, (771 — 172)

whenever u; > ug,v7 > ve and Li, Ly > 0,M;, Ms > 0. Then «a(t) < 5(t) on J provided that
a(0) < 5(0).

Proof. By using analogous considerations as mentioned previously, we can gain the conclusion of
theorem directly. For space-saving, we omit the details here.

Corollary 2. If we take G = 0 in the problem (1), then the results in Theorems 1-4 are reduced to
the results in [16].

Remark 2. 1t is worthwhile to note that if « < 8 on J, then the monotonicity assumption of F' and
G in Theorem 3 combined with allowing «, 5 to be the coupled lower and upper solutions of type II
respectively is equivalent to the case in which the monotonicity assumption of F' and G in Theorem 4
combined with «, 8 being the coupled lower and upper solutions of type III respectively.

Theorem 5. Let o and (8 be coupled lower and upper solutions of type IV of (1). F(¢,u,v) is non-
decreasing in v while G(¢,u,v) is non-increasing in v. Assume further that following inequalities are
satisfied:

F(t,ur (t),v1 (1) — F(tuz (t),v2 (1))
G (t,ur (t),01 (1) — G (tuz (t), 02 (1))

Ly (uy — ug) + My (v1 — v2), (14)

<
> =L (u1 —ug) — Ma (91 — 0a), (15)

where Ly, Ly > 0, My, My > 0, whenever u; > ug,v1 > ve. Then a (0) < §(0) implies that « (t) < B ()
on J.

Proof. We begin by constructing S, (t) = [ (t) + e\ (t) and «, (t) = a(t) — e (t) for € > 0. The
function A () is also supposed to be unique positive solution of (9) such that L > L; + Lg. It is clear
that 8. (0) = B(0)+€eA(0) > 5 (0) and a (0) = a (0) —eX (0) < a(0) imply . (0) < B¢ (0). In addition
to that for 0 <t < T we get B¢ (t) > B (t) and ac () < a(t).

Differentiating both sides of S, (t) = B (t) + e (¢) leads to

CDUB(t) = “DNB(t)+C DUeA(t)
> F(t,8(1), 175 () + G alt), [®a(t))
+LeA (t) + Myel X (t) + Moel BN\ (t) . (16)

Since B¢ (t) > [ (t) for 0 <t < T, we can employ the inequality (14) and (15) then it yields

F(twﬁe (t) 7Iq266 (t)) - F(taﬁ (t) 7Iq25 (t)) < Ll (56 - /8) =+ M1[q2 (ﬁe - 5) )
F <t7ﬂ (t> A (t>) > F <t756 (t> 1% B, (t)) — LieA (t) — Myel? X (t) (17)

and
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G(t,a(t), [%a(t) — G(t,ac(t), [Bac(t) > —La (o — o) — MaI® (a0 — o)
G(t,a®t), IBa(t) > Gt ac(t),[Bac(t) — Lae) (t) — Mael B (1). (18)
If we substitute (17) and (18) into (16), we get
“DUB(t) = F(t,8(t), 128 () + G (ta(t), [Ca(t)

+Le (t) + Myel P\ (t) + Mael B\ (t)

> F (b B (8), T26c (1)) — Lieh (1) — MyeI) (1)
+G (t,ac (), TP, (t)) — LoeX (t) — MaelB X (t)
FLeA () + Myel®X (t) + MoeI® )\ (1)

> F(t,B:(t),I”6: (1)) + G (t,ac (), IPac (1)) .

A similar procedure can be applied to ae (t) = a (t) — €A (t) to achieve the following result
CDlac(t) < F(t,ac (t), 1% () + G (t, Be (1), I9 6. (1))

on [0,7].

We next prove that ae (t) < B¢ (t) on [0,T]. Contrary to this claim, we presume for a moment that
the inequality is not true and, setting m (¢t) = ae (t) — B (t) there would exist a point ¢, such that
m(ts) = 0 and m (t) < 0 for 0 < t < t,. We get at once “ D%m (t,) > 0 by Lemma 1. Obviously, it
causes a contradiction. Then, it has to be

(0% (t) < Be (t)

on J. Finally, letting ¢ — 0, we reach at

Tim (o (f) = A () < Tim (B(2)+A(1),
alt) < B,

for t € J, ending the proof.

Corollary 3. This result is evaluated as the generalization of Theorem 2.10 in [17] to fractional
orders by simple modifications.

Theorem 6. Let o and 8 be coupled lower and upper solutions of type V of (1). F(t,u,v) is non-
increasing and G(t,u,v) is non-decreasing in v. Additionally, following inequalities hold:

F (t,ug (t),v1 () — F (t,ug (t),ve (t))
G (t,ur (t),01 (1) — G (tuz (t),02 (1))

(

(
where Ly, Lo, My, My > 0, whenever u; > ug,v; > ve. Then « (0) < 8(0) implies that a (t) < B (¢)
on J.

Proof. In that case, for some € > 0, we compose ¢ (t) = B(t) + e (t) and . (t) = a(t) — e (t)
where the function A (¢) is taken as the nonnegative unique solution of the following linear equation

—Lq (ug —ug) — My (v1 — v2),
Lo (ug —ug) + Ms (01 — v2),

)

> 19
< 20)

CDUN(t) = LA (£) + My () + MaI®BA (1), A (0) = 1.

Taking derivatives in Caputo’s sense on both sides of constructed functions and using (19) and (20),
we have the following strict inequalities

DB (t) > F (t e (1), IPac (1)) + G (¢, Be (1) , 1 Be (¢))
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and

DU (t) < F(t,Bc (t) , 126 (1) + G (t, e (), TP e (1)) .

At this stage we apply proof by contradiction with the help of Lemma 1 to show «. (t) < S (t) on J.
As a final step, performing ¢ — 0, we get the desired result

a(t) < B(t),

for t € J, which completes the proof.

3 Conclusion

Using the method of upper and lower solutions, this research discusses some differential inequalities
for generalized fractional integro-differential equations. Multiple coupled upper and lower solutions
are used to examine the results. These theorems provide some possibilities for stretching iterative
techniques to fractional order integro-differential equations and coupled systems of integro-differential
fractional equations in order to determine the existence of solutions as well as approximations for the
problem under consideration.
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A. dxkap, X. Kyrait

Toxam Iasuocmannawa ynusepcumemsi, Toxam, Typrus

2Koraprbl 2kKoHe TOMEHTI ImentiMaep apKbljibl 06JII1eK peTTi
MHTerpaJabl auddepeHnnajIIbIK TeHaeyJiep YIIniH Keiidip
anddepeHInaJIblK TeHCI3AIKTep/diH KeHel0i

Makasiazia KoFaprbl 2KoHe TOMEHT] IIeIMIep TEXHUKACHIH KOJITaHa OTBIPHII, O6JIIIeK PETTI YKaJIIbLIaHFaH
nHTErpasibl-1uddepeHnraIblK, TeHaeysep YIniH Keibip auddepeHnaiiblk TeHCI3IKTep KapacThIPbl-
gran. Bemmek muddepennmnanabik oneparop KamyTo marbiHAChIHIA TYCiHIIED], an ekire OeiHIeH ChI3bI-
KTBIK €MeC TepMUH eKi TypJii Oesiiek peri 6ap Oesrici3 pyHKIUAHBIH OOJIIIEeK UHTErPAJIapblHa, TOYesIi.
Hormxkesep oprypai 6ailiaHbICTEI XKOFaPFBI 2KOHE TOMEHT IIeIiMIep/1i KOJIIaHy apKblIbl 3epTTesred. By
TeopeMasiap KalTaJaHATBIH 9/icTepai OeJIeKk peTTi mHTerpaiabl-1uddepeHInaIIblK TeHIeyIepre KoHe
mrentiMIepin 60JybIH, COHIail-aK KapaCTBIPBLIBIIT OTBIPFAH MdCeje VIIH XKYBIKTAJFaH MIENIMIepAl aty
yimiH Gestrek peTTi mHTerpasab-auddepeHnaIIbK, TeHAeYIepiH 6ailIaHbICThI XKy ieIepine TapaTy yIIiH
Gestrisii Gip osieyerke ue.

Kiam cesdep: Gemmek nuddepeHInaiablK, TeHaeyaep, mmddepeHuaiablK, TeHCI3MIKTED, XKOFapFbl XKoHEe
TOMEHT] IeNTiMIep, IIeTKi ecerl.
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A. dxap, X. Kyrai

Vnusepcumem Toxam Iazuocmannawa, Toxam, Typuus

Pacmupenus HeKoTopbiX auddepeHInaIbHbIX HEPABEHCTB JIJIs
nHTerpo-and depeHImaabHbIX YyPaBHEHUN JPOOHOTO MOPAIKA depe3
BEepXHUE W HU>KHUE PeIneHuns

B crarpe paccmorpensl HekoTopble nuddepeHIAIbHbIE HEPABEHCTBA JJjIs OOOOIIEHHBIX HHTErpo-aud-
depeHIaTbHbIX YPABHEHUN IPOOHOTO TOPSIIKA C WCIOJB30BAHMEM TEXHUKHA BEPXHUX W HUXKHUX pellle-
uuit. I pobuo-nuddepeHimanpHbit onepaTop moHUMaeTcs B cMbiciae KamyTo, a HeMHEWHBIH 4jaeH, pas-
JIeJIEHHBI HA JBe YaCTU, 3aBHUCHT OT JPOOHBIX MHTEIPAJIOB HEM3BECTHON (DYHKIUU C JABYMsI PA3IUIHBIMU
JPOOHBIMU TTOPsIKAMU. Pe3ysIbTaThl M3yYeHbI ¢ UCIOJIH30BAHNEM PA3JINIHBIX CBI3aHHBIX BEPXHUX W HUK-
HUX PEIIeHUH. DTU TeOPEMbl UMEIOT HEKOTODBIA MOTEHIMAN JJIsi PACIPOCTPAHEHUS] UTEPAIMOHHBIX METO-
OB Ha HHTerpo-nuddepeHnajbHble YPaBHEHUA JPOOHOTO IOPSIKA U HA CBS3aHHBIE CUCTEMBI HHTETDO-
mudepeHIaATBHBIX YPAaBHEHUI JPOOHOTO MOPSIAKA JJIsi MOJIy9YeHUsT CyIeCTBOBAHUs PEIeHM, a TaKkKe
MIPUOIU>KEHHBIX PeIeHni JIJIs PACCMaTPUBAEMON 3a/1a4u.

Kmouesvie crosa: apobubie nuddepeHiaibabie ypaBHeHus, JuddepeHiinajibHble HepaBEHCTBa, BEPXHIE
¥ HUKHFE DEIeHus], KpaeBasl 3ajiaja.
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