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Numerical method to solution of generalized model Buckley-Leverett
in a class of discontinuous functions

A new numerical method is proposed for solving the generalized Buckley-Leverett problem, which describes
the movement of two-phase mixtures of Bazhenov bed sediments in a class of discontinuous functions. To
this end, we introduce an auxiliary problem that has advantages over the main problem, and using these
advantages, an original finite difference method to solve of the auxiliary problem is developed. Using the
suggested auxiliary problem, a solution which expresses exactly all physical characteristics of the problem
is obtained.

Keywords: generalized Buckley-Leverett problem, auxiliary problem, finite differences method in a class of
discontinuous functions.

Introduction

We consider the following problem in the upper half of the Euclidean R2 (z,t) space

ou(z,t)  Op(u(x,t)) B
ot + O — ¢ (u(z,t)) =0, (1)
u(x,0) = up(x),z > 0, (2)
u(0,t) = ui(z),t >0, (3)

where ¢(u) and 9 (u) are known functions according to argument u and have the following properties:

e p(u), Y(u) and ¢'(u), ¥'(u) are continuous functions, and they are bounded for bounded u, and
¢©"(u) does not change its sign,

e p(u) >0 and ¢'(u) > 0 for u > 0, and the argument u has values such that the function (u)
becomes zero at these points,

e ¢'(u) is bounded function for u > 0.

Here, up(z) and u;(x) are given functions satisfying the condition ug(0) # u1(0).

In the case of 1 (u(z,t)) = 0, the problem (1)—(3) is used to solve many problems in hydrodynamics,
including the qualitative characteristics of the mechanism of compression of oil with gas or water in a
porous medium, which is called the Buckley-Leverett model in the literature [1]. It has been proven
that when the initial and boundary functions are incompatible (for the initial-boundary problem) or
the initial profile has a decreasing part with respect to the spatial coordinate (for the initial value
problem), the jump points, locations of which are not known beforehand, occur in the solution of the
problem [2-9]. In other words, there is no classical solution for the problem under consideration, and
the question of the uniqueness of the solution remains open. For this purpose, criteria for the uniqueness
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of the solution and robustness of the jump are proposed in [4,6,8,10,11]. In the theory of hyperbolic
equations, the stable jump motion in a problem is called a discontinuity disintegration problem and
has been widely studied in the literature, as specified in [2,3,5,8,12,13], etc.

There are conservative finite volume methods of practical importance, which are based on dividing
the spatial domain into intervals (also called «finite volumes» or grid cells), and establishing certain
approximations to the integral of the flow over each of these volumes in [10, 11, 14-18], etc. Also,
Godunov-type finite difference algorithms were developed considering the properties of the analytical
solution in [13].

In [19], a method in the class of discontinuous functions was proposed to find an analytical solution
of the problem (1)—(3), and using this method, a finite difference algorithm was established that
accurately expresses all the properties of the physical processes of the problem in [20].

In the case of 1 (u(z,t)) # 0, the problem (1)—(3) is called generalized Buckley-Leverett problem
in a physical sense and differs from the classic Buckley-Leverett problem in that the trajectory of the
jump does not coincide with the characteristics, and the discontinuity jump approaches zero as time
values increase [21].

In [21], the dynamics of chemical and physico-chemical changes in a multi-phase and multi-component
oilfield after exposure to thermogas was investigated by means of a mathematical model, where the
process of injecting hot water into the reservoir containing hydrocarbons was specifically discussed.
Usually, this type of impact method is applied to an oilfield (Bazhenov-type deposit) including kerogen
containing oil in a bound state. Such deposits have a layered structure in which oil is located in the pores
as well. Permeable non-productive strata alternate with productive impermeable strata. Mathematical
modeling of deposits with such a structure in the non-isothermal mode becomes even more complicated.

The purpose of the thermal impact mechanism is to inject a certain amount of hot fluid such as
hot water into the reservoir in order to increase the reservoir temperature, and then to displace oil by
water at the common contact interface. This can also release trapped oil and isolated pores. During
treatment with hot water injected into the reservoir, some additional amount of oil is released into the
pore volume, which affects the regime of the displacement of oil by water. Ultimately, it leads to an
increase in the flow rate of light crude oil trapped in the reservoir.

Since the filtration process is slow, the deformation of the bed can be neglected. On the other
hand, the movement happens so quickly that it is possible to ignore the conductive heat transfer as
the essential mechanism of heat transfer is convection.

More interesting problems arise in investigating the role of spatial structures in the creation and
evolution of living organisms in molecular biology [22]. When studying this type of problem, ¢ (u(z,t))
in Eq. (1) represents the convective flow function of the reaction component, and ¢ (u(z,t)) represents
the kinetics of the reaction. If dp(u(x,t))/dz is a strictly non-linear function, then jumps occur in the
solution of the problem, in which case such solutions are understood as weak solutions.

In this study, we consider problems with source terms that do not include delta functions that
typically converge to zero throughout most of the region, ignoring the existence of very thin reaction
zones that occur dynamically as part of the solution. Such source terms are often expressed in delta
functions, but their positions and strengths are often not known in advance.

In this article, in order to show what behaviors are expected from the process, problem (1)—(3) is
handled only mathematically, with respect to wave propagation, without considering the mechanism
of any chemical reaction. In general, soft solutions found by the characteristics method do not enable
us to explore the dynamics from the beginning of the process to the end.

As it is known that, the solutions of problem (1)—(3) has the points of discontinuities locations
of which are unknown beforehand. Existence of the points of discontinuities in the solutions involves
difficulties in applying the classical numerical methods to that equations [19]. The necessity to work
with discontinuous functions and to find a solution that can accurately express the dynamics of the
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process require the creation of sensitive numerical methods in the class of discontinuous functions.

1 Finding the analytical solution

For the sake of simplicity, we will first consider the Cauchy problem for Eq. (1). We can easily get
the solution of problem (1), (2) by the method of characteristics. For this, if we search for the solution
of problem (1), (2) in the closed form V(¢,z,u) = 0, we reach the following quasi linear equation in
accordance with the V' function

ov ov ov
WS e Sl =0, @

The system of characteristic equations for (4) is

dt dx du

1 ¢ )

From here, the following system of equations is obtained

{%:ww

The first intermediate integrals for the system (5) are
)du du
=T — , ca=t— | —/. 6
5% o) )

According to the general theory, for an arbitrary continuously differentiable function F', the general
solution of problem (1), (2) is written as F'(¢1,c2) =0 or

x—/¢ w)du = f t—/¢ (7)

where the function f is any continuously differentiable function. Expression in the form of (7) is called
soft solution.

To check the effectiveness of the proposed method, and to find a clear expression of the analytical
solution, instead of Eq. (1), the following equation

ou ou
a—l—ua—x—u(l—u) 0 (8)

is considered in the special case of p(u) = % and 1(u) = u(1l — u). In this case, Eq. (8) is called the
Burgers equation with a robust source in hydrodynamics. For Eq. (8), the expression in (6) and (7)
take the following form

cao=z+In(l—u), cc=——c¢

and
t

:U—{—ln(l—u):f(%—et)

respectively. Here, f is any continuously differentiable function. Considering the initial condition (2),
the soft solution of problem (1), (2) is obtained as

u(z,t) = e (1 —u+ue ug(Ine”(1 —u+ue™"). (9)
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By a simple calculation, it is verified that the function u(z,t) given by (9) is a soft solution of problem
(1), (2). In a special case if it is assumed ugp(z) = e, then expression (9) takes the following form

u(z,t) = e ¥,
Also, it is easily shown that function (9) satisfies Eq. (8). In other words, function (9) is a soft solution
of Eq. (8).
When the second equation of system (5) is considered
d
di: = u(1 - u), (10)

it is seen that the constant functions v = 0 and v = 1 are equilibrium solutions. This equation, called
the logistic equation, describes the growth of population and is also applied to the growth of bacteria,
fruit flies and flour beetles, etc. [22]. It can be shown that v = 0 is an unstable equilibrium point, and
u = 1 is a stable one. The initial condition u(z,0) just indicates a non-regular spatial distribution.
Solution of Eq. (10) is
u(§) = %(1+tanh%), E=xz— Dt

and this becomes a piece-wise continuous function from zero to one rapidly, regardless of the initial
profile. To see the subsequent evolution of the solution, it is sufficient to consider the Riemann problem
with a jump from 0 to 1 or from 1 to 0. In the Burgers equation without source function, the jump line
moves with velocity D = 1/2 for wiry = 1 and upigne = 0. Then the source term is identically equal
to zero, and therefore, has no effect on the solution of the problem. An interesting situation occurs if
et = 0 and upigne = 1, in which case the Burgers equation converts the jump in the initial profile
into a rarefaction wave.

2 Finite differences in a class of continuous functions

Firstly, let’s divide the interval [a, b] into n equal parts by means of the points x;, (j = 0,1,2,...,n)
and by setting h, = (b—a)/n, (i =0,1,2,...,n) that is, ; = a+ jh,. In a similar way, let’s divide the
interval [0,7) into time layers by means of points ¢, = kh., (k = 0,1,2,...), where h, > 0. Here a, b,
and T are given real numbers. Thus, we have constructed two one-dimensional grids over the intervals
[a,b] and [0,T), respectively

wh, ={xj =a+ jhy, hy=(b—a)/n, (j=0,1,2,...,n)},

wh, = {ty = khy, h.>0, (k=0,1,2,..)}.

Eventually, we cover the region by a uniform grid 5, = wp, X wp,.

The need to work with discontinuous functions and find a solution that can accurately express
the dynamics of the process requires the creation of a sensitive numerical method in the class of
discontinuous functions. Now, we can study the techniques in discretizing the differential problem.

To find the numerical solution of problem (8), (2), let us include the following operator

A() = %(3'3).

It is clear that this operator has an inverse denoting by A~!(.), which differs from it by a constant.
Applying the operator A~1(.) to both sides of the Eq. (3) we get

A1 @;‘) + A7t <;%Zf> — A (u(1 —u)) = A7H0).
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Let A=1(0) = h(t), from here we have Ah = 0. The last equation is written as

Ly u?
a/gt +5 - A7 (u(1 —u)) = h(t), (11)

where h(t) € A7Y0) = ker A = {h(t) € C[0,00) : Ah = 0} is any function. We introduce the

following transformation

A+ h(t) = oz, ). (12)
From (12) we obtain
u(z,t) = A(v(z,1)). (13)
Substituting the relations (12) and (13) in Eq. (11), we get
ov(x,t 1 z
E?t ) + §(u(x,t))2 — a/ u(f,t)(l — u(f,t))dﬁ =0. (14)
The initial condition for Eq. (14) is
v(z,0) = vo(x). (15)

Here the function vg(z) is any continuously differentiable solution of equation A(U(x, O)) = u(x,0),
which is
dvo(z)

dx

We will call the problem (14)—(15) as an auxiliary problem. In accordance with [19] and [23]| we consider
this special auxiliary problem in order to determine the weak solution of the problem (8), (2).
The auxiliary problem has the following advantages:

= ug(z). (16)

e The differentiability property of the function v(z,t) is of a higher order than the differentiability
property of the function u(z,t),

e The function u(z,t) may be a discontinuous function, as long as it is an integrable one,

e Algorithms built to calculate the function u(x,t) do not require the derivative of u(z,t) with
respect to any variables.

Theorem 1. If the function v(z, t) is a solution of the auxiliary problem (14), (15), then the function
u(z,t) = A(v(z,t)) is a weak solution of the main problem (8), (2).

Proof. To prove the theorem, it is sufficient to apply the operator A directly to the Eq. (14) and
consider the expression in (13).

The construction of finite difference algorithms

We will apply two finite difference schemes for Eq. (14) using explicit and implicit schemes.
Ezxplicit scheme : Firstly, let us discretize Eq. (14) as follows

Vi Vi
’““7 Ufk—ahz Ujk(1=Ujp) =0
or
‘/Yi,k+1:‘/;'7k—TUiyk{U ( +ah>}+mhz Uik(1=Ujp), §=1,2,.,n=1; k=0,1,2,... (I7)

where h and 7 are steps of the grid for  and t variables, respectively.
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The initial condition for (17) is
Vio =wo(z;), §=0,1,2,..,n.

Here, vg(x) is the grid function corresponding to the continuous function found from Eq. (16). The
validity of the following equality can be easily shown as

Vik+1 — Vici k41
Uipy1 = . .

Implicit scheme : Now let’s write an implicit scheme for problem (14), (15). For this, let’s write
equation (14) as a finite difference equivalent as follows

1 i—1
Vikt1 = Vig — Ui ki1 [Uz’,kzﬂ (5 + ah) + ah} + TOéthle‘,k—i-l(l —Ujpt1),
i=12..nk=0,1,2,..

We can obtain the solution of the last system of nonlinear algebraic equations by applying Newton’s
method.

Computer tests

In order to compare the solutions found by the finite difference algorithm we proposed solutions
in the literature, as ug(x) function e~* is accepted. The calculation results are shown in Figures 1-3
accordingly.

U0
°
&

Figure 1. The source function.

vix,t)

Figure 2. Graph of the solution of problem (14), (15) at 7" = 1.5.
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Figure 3. Graph of the function u(z,t) = A(v(z,t)).

3 Conclusion

The results obtained in this paper can be listed as follows:

An original method in the class of discontinuous functions is proposed to find the numerical
solution of the Cauchy problem for the first order nonlinear partial differential equation with a
nonlinear source function.

The special auxiliary problem of which the differentiable properties of the solution one order
higher than the differentiable properties of the main problem is introduced.

Using the advantages of the auxiliary problem the efficient numerical algorithms are suggested
in a class of discontinuous functions. The obtained solutions express the all physical properties
accurately.
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B. Cuncoiican', M. Pacynos?, P. Mckenneposa?
L Cmambyna T'edux ynueepcumemi, Cmambya, Typrus;
20sepbatiorcan Yammuk evuvim axademuactinoity Mynati srcone 2as3 unemumymuo, Baxy, D3ipbatisrcan
Y3imicTi pyukiusaaap kJjaacekiHgarbl bakim-JleBeperTiH >KaJanblIaHFaH
MOJIEJIiH HIEIIYdiH CaHJbIK 9iCi

Baxkn-JleBeperTiH kanmblaanran ecebiH MIENTYIIIH KaHA CAHIBIK OJIiCI YCBIHBUIBI, OJ1 Y3LmicTi (yHKIm-
sytap KaachlHAArbl baskeH KabaTbhIHBIH €Ki (a3alibl KOCIAJAPBIHBIH, KO3FaIbIChIH cunarTaiasl. Our yimix
HeTi3ri ecenTeH apTHIKIIBLIBIFLI 6ap KOMEKII ecell eHTi3i//Ii KoHe OChl DACHIMIBIKTAPIbIH KOMETriMeH KO-
MEKIII eCenTi IMIeNTy YIIH aKbIPJIbl aflbIPBIMJBIK TYITHYCKA 9ici 93ipsensi. ¥ ChIHBLIFaH KOMEKII eCeITiH
KOMETriMEeH eCeITiH 6apJIblK, (PU3UKAJIBIK, CAITATTAMAJIAPHIH J9JT KOPCETETIH IIeTM aJIbIHIbI.

Kiam ceadep: Bakin-JleBeperrin, xKasmnblianran ecebi, KOMeKIIi ecelr, y3iIic DyHKIUIAPHI KJIACHIHIAFBI
AKBIPJIBI AfBIPBIMIBIK, 9IiC.
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B. Cuncoiican', M. Pacymnos?, P. Vckeneposa?

L Cmambyaveruti yrusepcumem Ieduxa, Cmambya, Typyua;
2 Unemumym nemu u 2aza Hayuonaionot axademuu nayx Asepbatiocana, Baxy, Asepbatidocan

YucneHHbIid MeTo/ pereHns obobIenHoii moaenan Bakim-JIeBeperTa

10
11
12

13

14

B KJIacce pa3pbIBHBIX PYHKIINI

IIpenyiosken HOBBIM YMCJIEHHBIN MeTOJ, pelreHust 0600meHHoi 3amadn Bakim-JleBeperTa, onuchbIBaronmumii
JBH2KEHUE JBYX(]a3HbIX cMecell OTJIOXKEHHH 0aKeHOBCKON TOJIIN B KJacCe Pa3pbIBHBIX (MyHKIWA. s
9TOr0 BBEJIEHA BCIIOMOTaTe/IbHAS 38/1a49a, UMEIOIIast TPENMYIIECTBA [TEPE]T OCHOBHOM, M C TIOMOIIBIO JaHHBIX
MIPUOPUTETOB pa3paboTaHa OPUTHHAIBHBIA METOJ, KOHEUHBIX PA3HOCTEN JMJis PEIIeHus BCIIOMOTATEIbLHOMN
3asaun. C MOMOIIBIO NPEJJIOKEHHOM BCIIOMOIraTeIbHOM 3a/[a49i [IOJIyY€HO PeIlleHue, TOYHO BBhIParKaloliee
BCe (PU3NYECKUE XaPAKTEPUCTUKU 38, Ia 1.

Karouesvie crosa: 0bobiennas 3agada bakiu-JleBeperra, BcnoMmoraresnbHas 3a7a4da, METO KOHEYHBIX Pa3-
HOCTEH B KJIACCe Pa3PhIBHBIX (DYHKITUIA.
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