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Minimizing sequences for a linear-quadratic control problem with
three-tempo variables under weak nonlinear perturbations

The paper deals with the construction of minimizing sequences for the problem of minimizing a weakly
nonlinearly perturbed quadratic performance index on trajectories of a weakly nonlinear system with three-
tempo state variables. For this purpose, the so-called direct scheme for constructing an asymptotic solution is
used, which consists in immediate substituting the postulated asymptotic expansion of the solution into the
problem conditions and constructing a series of optimal control problems (in the case under consideration,
linear-quadratic ones), the solutions of which are terms of the asymptotic expansion of the solution of the
original nonlinear control problem. An estimate is obtained for the proximity of the optimal trajectory to
the trajectory of the equation of state when some asymptotic approximation to the optimal control is used
as a control. An example is given that illustrates in detail the proposed scheme for constructing minimizing
sequences.

Keywords: three-tempo variables, nonlinear optimal control problems, asymptotic estimates, minimizing
sequences.

Introduction

Mathematical models of many real processes contain multi-tempo fast variables. In review [1], there
are 74 links to publications devoted to the study of such models.

Difficulties of using numerical methods for solving differential equations with quickly changing
variables are well known. Therefore the employment of asymptotic methods is sometimes more preferable.
The most popular method for asymptotic solving optimal control problems is constructing an asymptotic
solution of problem following from control optimality conditions [2-4]. Another method, the so called
direct scheme, consists of immediate substituting a postulated asymptotic solution into the problem
condition and receiving a series of problems for finding asymptotic terms. The second approach allows
to establish non-increasing of performance index values, if a next optimal control approximation is
used, and gives the possibility to use standard programs for solving optimal control problems for
finding asymptotics terms. For two-tempo systems, it is presented, for example, in [5,6].

The direct scheme was applied in [7,8] for asymptotic solving an optimal control problem with weak
nonlinear perturbations in a quadratic performance index and a linear state equation of the following
form:

T
Poi Jiu) = /0 (1/2(w(t, &Y W (B)w(t, ) + u(t, o) Rt)ut, o)) + F(w(t, &), ult,e). £,2)) df — min,
(1)

dw(t,e) _ At)w(t,e) + Bt)u(t,e) + ef(w(t,e),u(t,€),t,e), t € [0,T], (2)

E(e) o

w(0,¢) = w’. (3)
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Here e is a non-negative small parameter, " > 0 is fixed, the prime means transposition;
w(t,e) = (z(t,e),y(t,e), z(t,e)"), z(t,e) € R™, y(t,e) € R™, z(t,e) € R™, u(t,e) € R™;
(12 G &)
E(e) = diag(ILy,,eln,,% 1), I, is the identity matrix of order n;, f = (f', f, f), f € IR™,
1 @ B3) @) _
B=(B,B,B), B: R"™ — R™, i = 1,3; all functions in (1), (2) are sufficiently smooth with

respect to their arguments; for all ¢ € [0, 7] matrices W (t), R(t) are symmetric, moreover, W (t), R(t)
and S(t) = B(t)R(t)"!B(t)" are positive definite.

The matrices A3 and Agg — A23A§31A32 are assumed to be stable. Here and further A;;, 4,7 = 1,3,
mean matrices from a block representation of a matrix A with number of rows and columns n1, ne, ns.

The rigorous justification of applying the direct scheme method to problem (1)—(2) is presented
in [8]. The proof of estimates of the proximity between the exact solution and asymptotic one for the
control, state trajectory and performance index value is also given. Moreover, this paper contains the
proof of non-increasing performance index values when some new asymptotic approximations to the
optimal control are used.

The construction of minimizing sequences is very important for approximate solving optimal control
problems. Some facts concerning such sequences are given, for instance, in [9; 18,22].

It should be noted that any illustrative examples are absent in [7, 8], though any example is
very useful for understanding, in general, not simple algorithm of constructing minimizing sequences
for problem (1)—(3). Such example is given in the present paper. A statement on estimate of the
proximity between the optimal trajectory and a trajectory of system (2), (3), when some asymptotic
approximation to the optimal control is used as control, is also proved here. In comparison with [8],
some additional minimizing sequences are considered.

Some results of this paper were presented at the ICAAM 2022 [10].

This paper is organized as follows. For convenience, when considering an illustrative example,
we present in the next section the algorithm of the direct scheme applied to problem (1)—(3) and
give explicit formulas from [8] for linear-quadratic optimal control problems, solutions of which are
asymptotic terms for a solution of problem (1)-(3). In section 2, we give some theorems on estimates
from [8] and the proof of one theorem on an estimate of the proximity of the optimal trajectory to a
trajectory of system (2), (3) under a special choice of the control. The last section is devoted to the
detailed study of the first order approximation for an asymptotic solution of an illustrative example.
A table containing values of the performance index for terms of constructed minimizing sequences is
given.

1 Formalism of direct scheme method with explicit forms of problems for finding asymptotics terms

Following to the A.B. Vasil’eva’s boundary function method [11], a solution of problem (1)—(3) is
sought in the form
1

I(t,e) =0t e) + Y _(ILd(7i,€) + Qi €)), (4)
i=0

where 9(t,e) = (w(t,e),u(t,e)"), 7 = t/et, oy = (t —=T)/e'!, i = 0,1. Each term from (4) has
an asymptotic expansion according to non-negative integer powers of the small parameter ¢, i.e.
I(t,€) = 35087 05(t), i (7i,e) = Y550 /M), Qid(0s,6) = Y5506/ Qijd(0i). Here, 9;(t) are
regular functions and II;;9(7;), Qi;9(0;) are boundary functions of exponential type in neighborhoods

t =0 and t = T respectively.
For any sufficiently smooth function G(w(t,¢),u(t,€),t,e) we will use the notation G(9(t,¢),t,¢)
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and the asymptotic representation

1
G(¥,t.e) =G(t.e) + > _(ILG(r,€) + QiG(0i,¢)), (5)
=0

é(t,z?) = G(ﬁ(t,€), t,€) = ZjZO €jéj(t), HOG(TO,«S) = G(E(ET@, ) + Ho’ﬂ(To, ) ET0, 6) -
— G(V(eTo,€),eT0,€) = Z]>0£'HOJG( 10), I1G(71,€) = G(I(®1,€) + MpV(emy, €) +
+ H179(7'1,€),€27'1,6) — G(ﬂ(é‘ T1,E ) + Hoﬁ(&"i‘l, ) 627'1,6) = 2]208 Hlj ( 1), Q()G(J(),8) = G(E(T‘F
50‘0,5) + Qol?(O‘o,aE),T + €09, € ) — G(’L9(T + €09, ¢ ),T + 600,6) = ZjZO EonjG(Uo), QlG(Ul,E) =
G(T+e2%01,¢)+Qod(eor,e) + Q1 (o1, ¢), T+e%01,6) —GI(T +e201,¢) +Qod(eoy, €), T+e%01,¢) =
ijo £/Q1;G(01).

The first step of the algorithm of the direct scheme method consists of the substitution of expansion
(4) into problem condition (1)—(3) taking into account (5). Equating in the transformed expressions
for (2),(3) terms of the same powers of ¢, separately depending on ¢, 7;, g;, ¢ = 0, 1, we obtain relations
for defining asymptotics terms. Whence, in particular, it follows that

Eqillgow(m9) = 0, E1llypw(r) = Eilljyw(m) = 0, E1Qeow(oo) = 0,
E1Qiow(o1) = E1Quw(o1) = 0, Exlljpw(m) =0, ExQow(or) = 0.

With the help of passing in the integrals from the expressions depending on 7;, 0;, i = 0, 1, to integrals
over the corresponding intervals [0,400) and (—o0,0], in the transformed integrand from (1) the
functional J.(u) is written in the form

Je(u) => €. (6)

Jj=0

Analyzing the structure of coefficients J; with even and odd indices separately, five linear-quadratic
optimal control problems P;, I1;; P, Q;; P, i = 0,1, solutions of which are terms of asymptotic solution
of problem (1)-(3), are formulated in [8]. Further, the explicit formulas for these problems will be
given.

Let us introduce the following notation:

E,\ = diag(1,,,0,0), Ey = diag(0, I,,0), E3 = diag(0,0, I,,),
¢(0,t,¢) = A(t)w(t, ) Bt)u(t, ) +ef(w(t e),ult ), t,e),
p(0, .t €) = W(thw(t ) — A()'¢(t,e) + e(Fu(V,t, €)' — fu(V,t, €)Y (t,€)),
X0, ¥,t,€) = R(t)u(t,e) — B(t)9(t,€) + e(Fu(d, t,e)' — fuld,t,6) ¢, €)).

The coefficient with &/ in an expansion of a function w = w(e) in a series in powers of £ will be
denoted by w; or [w];. The k-th partial sum of a series will denoted by upper wave and the low index
k,ie wp = Z?:o eJw;. The hat and the low index k in a function notation will be mean that the
function is calculAated with the functional argument equal to the k-th partial sum of the corresponding
expansion, e.g., fr(t,e) = f(U(t,€),t,¢). Functions with negative indices will be considered equal to
Zero.

In the following expressions with p and x in the performance indices of the formulated linear-
quadratic optimal control problems we take v(t,e) = 372 el (1;(t) + (By + By 4+ E3)(ojp(mo) +
Q()jl/)(O’o)) + (€2E1 + EEQ + Eg)(Hljw(Tl) + Qljw(Ul))), where ¢j, Hijw(Ti); Qijw<0i)> 7 = 0, 1, are
costate variables in problems ﬁj, IL; P, Qi; P, i = 0,1, respectively.
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Regular functions 9;(t), t € [0,7T7], are solutions of the following problems

T
o ) P
Pj: Jj(uj) = wi(T) E1(Qoj—1y¥(0) + Qi(j—2)%(0)) + /(wj(t) (§W(t)wj (t)+
0 (7)
dip; 4 (t dip 1 ~ .
el - B P gy (R 0) + Ry 4,9 e in
dw, (t dw;_1 (t dw;_o(t) ~
E wjt( ) | g, T dtl( )4 ngfdf() = [(t, 2); (8)
Eyw;(0) = Fyiw®, j =0, E(w;(0) 4 Iojw(0)) =0, j =1, ©
By (w(0) + Iojw(0) + Iiw(0)) = 0, j > 2.
The boundary functions Ily;9(7), 70 € [0, 400), are solutions of the problems
+oo
_ g
Moy Moy (o) = (o) (W (O)Tegro) + g1yl )y — B D))
0
Hloju(m) (5 ROoju(ro) + [ 1) (ro,2));)) dro — in,
(10)
4 dy (i
(51 + ) Ty gy DY) i )]+ (B 4 BT )y, (1)
Ig;z(400) = 0, Ea(w;(0) + Hojw(0)) = Exu’, j =0, (12)
By (w(0) + Iojw(0) + Iw(0)) = 0, j > 1.
The boundary functions Qo;9(00), o9 € (—00, 0], are solutions of the problems
Qoj P : Qo J(Qoju) = Qojw(0) Ex(¢;(T) 4+ Q1(j—1y%(0))+
0
1 ~ dQo(;—
+ [ (Quiwlon) GW D)Quw(a0) + Qo p(on.e)]; - &WH (13)

+Q0ju<‘70)/(%R(T)QOjU<UO) +[Qo(j-1)X(00,€)];)) dog — min,

05U

dQojw(oo) +E3dQ0(jfl)w(‘70)
dO’o dUo

(E1 + EQ)onw(—OO) = 0. (15)

The boundary functions IT;;9(71), 71 € [0,400) are solutions of the problems

(E1 + E») = E1[Qo¢(00,€)]j-1 + (B2 + E3)[Qog(00,€)];,  (14)

+oo
Iy, P 1y J (Tju) = /(Hljw(Tl)/(;W<0)Hljw(Tl) + [ﬁ1(j71)/?(7'17€)]j)+
0 (16)
Hlygu(n) (GROM u(m) + [Ty, 2))) dn - min,
dnléz(ﬁ) = Er[[11¢(71,€)]j-2 + Eo[Tlip(11, €)]j-1 + E3[llip(11, €)]y, (17)

Mathematics series. Ne 1(109)/2023 97



G.A. Kurina, M.A. Kalashnikova

0 , _
(El + EQ)Hljw(+OO) = O, Eg(@](()) + HO]'UJ(O) + Hljw(O)) _ {OES;U; i = 0, (18)
The boundary functions Q1;9(01), o1 € (—00, 0] are solutions of the problems
0

QP+ Q1 (Quju) = Qujw(0)' Es(;(T) + Qoj1b(0)) + / (Qljw(O'l)/(%W(T)Qljw(al)‘F

o (19)
Qg9 + Q”u(al),(%R(T)QU“(UI) + [Qu-1)x(01,)];)) don — min,

C%wl(al) = E1[Q1¢(01,¢)]j—2 + Ea[Q1¢(01,¢)]j-1 + E3[Q1¢(01,¢)];, (20)
Q1w(—o0) = 0. (21)

2 Asymptotic estimates

Let eigenvalues of the matrix < é/? s Sj’g p ) are different for all ¢ € [0,T] (condition I from [8])
33 —As3

and the same condition is satisfied for the matrix .
A S A S A S B A So3’ "

( S ) _ ( S ) ( S ) ( e, S ) (condition T from [3]).
Under these conditions, the following Theorems 1-3 have been proved in [§].

Theorem 1. Solution ¥(t,e) of problem P. for sufficiently small ¢ > 0, ¢ € [0,T], satisfies the
inequality B
[9:(t,€) = Dnlt,e)|| < ce™ .

Here and further c is a positive constant independent of ¢, €.
Note a slip of the presentation of Theorem 1 in [8], namely, the condition II for this theorem has
been formulated inside of the theorem proof.

Theorem 2. For sufficiently small € > 0, the following inequality for the performance index is valid
Jo () — Jo(uy) < g2,
Theorem 3. For sufficiently small € > 0, the following inequalities are valid

Js(a*(n—l)) 2 Ja(a*(n—l) + Enﬂ*n) =
Z Je(ﬁ*(nfl) + En(ﬂ*n + Hopus + QOnu*)) P Ja(a*n)7 n =1

If an addition to u,(,_1) is non-zero, then the corresponding inequality is strict.

Here the notation us, j = n,n — 1 is used for the j-th order approximation for the optimal control
Use.

Denote by w = w(t, ) a solution of problem (2)-(3) at u = Uy, and dw = dw(t,e) = wy(t,e) —
w(t,e), du = du(t,e) = ux(t, &) — Usn(t, e).

Under proving Theorem 2 in [8], the estimate for dw(¢, ¢) has been used without the rigorous proof.
The proof of it will be given below, i.e. we will prove the following.

Theorem 4. For sufficiently small € > 0, the inequality
1w(t, )| < ee™* (22)

is fulfilled.
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Proof. It follows from (2), (3), that dw satisfies the system

S(a)cmii(f’g) = A(t)ow(t,e) + B(t)du(t,e) + e(f(wi(t, e), us(t, €),t,6)—
—f(wa(t, ) — ow(t,e), u(t, ) — du(t,e),t,¢e)),
dw(0,e) = 0.

In view of Theorem 1
Gutt, )| < cem . (23)

Write out the problem for dw = (d2/,y’,2’)" in the form

(1)
ﬁs—f = Ay (t)ox + Apo(t)oy + A13(t)dz + B(t)ou + e(é)(éw, Su,t,e), 62(0,e) =0, (24)
doy (2) @)
e~ = An(t)oz + Azn(1)dy + Az(1)0z + B (t)ou + e g (dw, du, . €), 0y(0,¢) = 0, (25)
(3)
52% = As31(t)ox + Ase(t)dy + Ass(t)dz + B(t)ou + 5(3)(610, Su,t,€), 62(0,¢) =0, (26)

i (4) (1) _
where (é)(éw,éu,t,s) = e( f (W, us, t,€) — f(we — 0w, uy — du,t,e)), i =1,3.
For brevity, the arguments ¢, € are dropped in some of the last relations.
3)
Using the fundamental matrix U (¢, s,¢) of the system

dz
272 = As(D)Z 2
e 33(t)Z, (27)

we write out the problem (26) in the integral form

1 (3) (3)
dz(t,e) = / U(t,s,e)(As1(s)dx(s,e) + Asa(s)dy(s,e) + B(s)ou(s,e)+
0

g (28)
(3)
+e g (dw(s,e),0u(s,e),s,¢))ds.
(3)
Due to stability of the matrix Ass(t) the matrix U (¢, s,e) has the estimate [10; 69]
3) ®(t — s)
HU(t7375)|’ < cexp(— )7 (29)

2

where 0 < s <t <7 and here and further e is a positive constant independent of ¢, €.
In the following, we will denote functions, appearing under transformations of problems (24)—(26)

(4) _

and satisfying the next two conditions 1) and 2) by h (dw,t,€), i = 1, 3. Specific forms of these functions
are omitted since they are insignificant for the proof.

1) For any g > 0, there exist such constants A = A(q) and g9 = €o(q) that, for [[dws|[c, - < A,
i=1,2,0<e<¢gg

(@) (4)

H h (511]1, t, 6) —h ((5’11)2, t, 5)” < QH(Swl - 5w2HC[0,T]a
(4)

2) || h(o>t7€)” < C€n+l.
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3) (3) (3)
In view of (27), taking into account that U (¢,s,¢) = U (t,e)U (s,€)~ !, we have

8(5)(15 ) (3) (3) d%)( )(3)
2 3 S, 3 _ 2 —1 5, 3 —1 _
gy =€ U(t,e)U (s,¢) 0 U (s,¢)

3) (3) (3) (3)

= —U(t,s,6)As3(5)U (5,6) U (s,6) ' = = U (t,5,€) Az3(s).

It follows from here that )
3
(3) oU (t,s,e)
Ut = g1
(1,5,6) = —* 2

Substituting this expression into (28), then integrating by parts the terms, containing dx and dy, due
to the initial values dy(0,¢), 0x(0,¢) and the estimates (23), (29) we obtain

Azz(s) 7 (30)

®)
S2(t ) = —Agg(t) " Ay ()82, €) — Ass(t) "L Ao (£)Sy(t,e) + h (dw, t, ). (31)

In view of the last expression, we get from (25) the problem

5% = (Ag1(t) — Agz(t) Az (t) LAz (1))0z + (Aoz(t) — Ao (t) Ass(t) ™t Asa(t))dy+ -
2)

+ h (0w, t,e), dy(0,e) = 0.

2
Using the fundamental matrix U (¢, s, ) of the system

e—— = (Aga(t) — Ags(t) Ass(t) " Asa(1))Y,

we write out the problem (32) in the integral form
1 [ 1 (2)
dy(t,e) = 8/ U (t,s,e)((A21(s) — A23(s)Ass(s)” " As1(s))0x(s,e) + h (dw, s,¢))ds. (33)
0

2)
Due to stability of the matrix Agg(t) — Ags(t)Asz(t) "L As2(t) the matrix U (¢, s,¢) has the estimate
[10; 69).
et —s)

(2)
10t 5,2)] < cexp(-=2

), 0<s<t<T. (34)
Analogously to (30) we get the relation

(2
(2) €8U(t,s,5)

Ult,s,e) = — 5 (Aga(s) — Agg(s)Ass(s) ' Asa(s)) .

Substituting this expression into (33), then integrating by parts the term containing dz, due to the
initial value dz(0, ) and the estimates (23), (34) we obtain

Sy(t,e) = —(Aga(t) — Ags(t)Ass(t) ™ Asa(t)) ™ (Aa1 (t) — Ags(t) Ass(t) " Az (£))dx(t, e)+

2) (35)
+ h (0w, t,¢e).
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Substituting the expressions (31), (35) into equation (24), we obtain the problem of the form

déx

(1)
—r = C(0)dz + h(dw,t.e), 5(0,€) = 0. (36)

The explicit expression for C(t) can be easy written taking into account (24), (31), (35).
(1) (1)
The fundamental matrix U (f,s) of the system % = C(t)X is bounded, ie. |U(t,s)| < c.

Therefore, writing the problem (36) in an integral form, we get

1)
dx(t,e) = h(dw,t,e).

So, from the last relation and (31), (35) it follows that system (24)—(26) can be written in the form
dw = h(dw,t,¢e), (37)

where h satisfies to the conditions 1) and 2).

If we take in condition 2) ¢ < 1 then h willbe a contraction mapping in Clo,1)- According to the
contractive mapping principle, equation (37) has a unique solution, and this solution can be found by
the method of successive approximations.

In view of condition 2) and Lemma 3 in [8] we obtain the provable estimate (22).

The proof of Theorem 3 in [8] is based on the following theorem on the structure of coefficients J;
in (6) proven in [§] .

Theorem 5. The sum jj +111(j—1)J +Q1(j—1)J of the performance indices in problems Fj, 1) P,
Q1(j—1)P is obtained by transforming the coefficient Jo; in expansion (6) and dropping terms, which
are known after solving problems Py, I P, QorP, k = 0,7 — 1, II11 P, Q1,P, k = 0,7 — 2. The sum
IIp;J + QojJ of the performance indices in problems Ilp; P, Qo;F is obtained by transforming the
coefficient Jy(;11) in expansion (6) and dropping terms, which are known after solving problems Py,
k=0,7, IL;;P, QuxP,i=0,1, k=0,7 — 1.

Similarly, using Theorem 5, we can establish some generalization of Theorem 3.

Theorem 6. For sufficiently small € > 0, {u*(n,l)} and the sequence with terms, obtained by
supplementing to 1, (,_1) one or several terms from the expansions (4) for the optimal control u, with
e™ are minimizing.

Detailing, {t(,—1)} and the sequence {ty(,—1)+&"Usn }, {Us(n_1)+E " Montis }, {Us(n—1)+"Qonts },
{ﬂ*(n—l) + Enﬂlnu*}y {’lj*(n—l) + €nQ1nu*}7 {ﬁ*(n—l) + En(ﬁ*n + HOnU*)}y {a*(n—l) + 5n(ﬂ*n + QOnU*)}7
{ts(n—1) + " (Wsn + Mipus) b, {Ua(n1) + " (Wsn + Quauis) by {ti(n_1) + " (Honts + Qontia) }, {tsn—1) +
Sn(HOnu* +H1nu*)}7 {a*(n—l)+5n(HOnU*+Q1nU*)}7 ey {a*(n—l)+5n(ﬂ*n+HOnu*+Q0nu*)}7 {a*(n—l)_'_
" (Usn +Tlonus +Tlnus) }, {x(n—1) + €™ (Wsn +Montse +Q1ntis) }5- o {Us(n—1) + €™ (Wsen +on s +Qonis +
Mipus) }y -1y + €™ (Usn + Hopus + Qontis + Q1) } are minimizing.

8 Illustrative example

Let us consider the problem P. with n; =1, u = ((%L), (222, (EL))’, (’lZJJ) € R, i=1,3, of the form

Je(u) = /1(
0

1 (3

(z(t,e)? +y(t, &) + z(t,e)? + u)(t, )% + (73)(t, £)? + u)(t, £)%)+

N

(38)

vea(t, )W (te) + ey(t, )W (t, 2)) dt — min,
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dxgt’ &) ate) + Wit e),
adygt’ )yt o)+ Dt ey + Wit ), (39)
£2 dzgt’ &) _ _it,e) + Wit e) + eyt ),
x(0,e) = y(0,¢) = 2(0,¢e) = 10. (40)

By setting ¢ = 0 in (38)—(40), taking into account the equalities IL;pz(7;) = 0, @ = 0,1, we obtain
degenerate problem Pj:

1
1 P ¢ ¢ ® ‘
/ 2+ To(t)? + Zo(t)? + U (t)? + To(t)? + uo(t)?) dt — min,
o 0
dZo(t (1)
D) — (1) + 1), Fo(0) = 10,
(2)

0 = —7o(t) + wo(?),
_ 3)
0= —Zo(t) + Tio(t).

The form of this problem follows also from (7)-(9) with j = 0. It is not difficult to find the solution

To(t) = 2a((V2 + l)e‘/ﬁt (V2 1)6_\/5(':_2))’ %)0( £) = 2afe V2t _ \/i(t—2)>7

where a = 5/((vV/2 — 1)62*/5 +V2+41),
_ _ 2 ®3)
Uo(t) =Zo(t) = wo(t) = wo(t) = 0.

Using (10)—(12) at j = 0 and taking into account that ITpox(79) = 0, we write out problem IlpgP
in the following form:

+o00o
1 (1) 2) (3)
Moo (Toou) = 2 / (Hooy(70)* + Moo2z(70)* + Moo u (10)* + Moo U (7o) + o ' (70)?) dro — ﬂnln
oou
0
dIl T (2) B
0330(0) = —Tlooy(0) + oo (10), Fo(0) + ooy (0) = 10,

3)
0= —HooZ(To) + Hoo u (7‘0).

Using (13)—(15) at 7 = 0 and taking into account that Quox(o¢) = 0, we write out problem Qoo P
in the following form:

0

Qo0J (Qoou) = Qooy(0)7o(1) + % / (Qooy(00)* + Qooz(00)? + Qoo(ilt)(Uo)Q-F

—00

(2) (3) .
+Qoo U (00)? + Qoo U (00)%) dog — min,

Qoou

dQooy(00)

(2)
p; = —Qooy(0o0) + Qoo u (00),
o0

0=—Qouoz(00) + Qoo(g)(ao)a
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Qooy(—00) = 0.

In this example, ¥;(t) = (£;(t),7;(t), ¢;(t))’ means a costate variable for the problem Py, I;;1)(7;) =
(IL;;€ (), m(mi), ;¢ (3))" is a costate variable for the problem II;P, and Qi¢(0;) =
= (Qi;€(04), Qijn(0i), Qij¢(04)) is a costate variable for the problem @Q;; P, i =0, 1.

Using (16)—(18) at j = 0 and taking into account that ITjpxz(m) = Iijpy(1) = 0, we write out
problem II;gP in the following form:

+oo
1 1 2 3 .
H10J(H10u) = 3 / (Hloz(T1)2 + Hlo(u)(71)2 + H1o(u)(7'1)2 + Hlo(u)(T1)2) dm — II_Inln,
10U
0

dIl gz (T (3)

71(3 ) _ —Io2(m1) + o w (1),
T1

fo(O) + HOOZ(O) + I1;02(0) = 10.

Using (19)—(21) at j = 0 and taking into account that Qoz(o1) = Quoy(o1) = 0, we write out
problem (19 P in the following form:

0

Q107 (Q1ou) = Q102(0)(o(1) + Quo¢(0)) + % / (Qio02(01)* + Qlo(llé)(01)2+

—00

2 3
+Q10(U)(01)2 + Qlo(u)(al)Q) do; — glin,
ou
dQuoz(1)

(3)
y = —Q102(01) + Qio u (01),
01

Qloz(—oo) =0.

Taking into account the solution of problem Pg and solving problems ILio P, Q;oP, i = 0,1, we get
the zero order approximation of an asymptotic solution of problem (38)-(40) of the form (4).

1) (1)
Zo(t,e) = To(t), Golt,e) = Wo(t), Jolt,e) = 10e~V22,

2) ®)
Tolt,e) = 10(1 — V2)e V22 Zy(t,e) = 10e V2 To(t,e) = 10(1 — V2)e V2,

Further, in the expressions of problems for finding asymptotics terms of the first order approximation
we take into account the found asymptotics terms of the zero order approximation. We omit zero terms,

: . ) 3) _ _ 1) (3) (1) ()
in particular, wo(t), wo(t), yo(t), Zo(t), oo u (10), oo w (70), ooz(10), 1o w (71), 10 w (71). Note,
that problems QuoP and (Q19P have the zero solution.

Using (7)—(9) at j = 1, we write out problem P; in the following form:

1
Lwn:/Q@mf+mw%wwf+$@%dﬁw+ﬁw%+mw$m+muﬁ%»ﬁagp
0
dx;t(t) =71(t) + (ﬂll)(t), 71(0) + p12(0) = 0,

_ @)
0=-7:1() +m(),

0=—-%(t) +%?(t).
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Using (10)—(12) at j = 1 and taking into account that Ilpox(79) = 0, we write out problem Il P
in the following form:

—+o00
1 (1) (2) (3)
o1 J (Hpru) = / (§(H0156(7'0)2 + To1y(70)? + Ho12(70)? + o1 ' (10)? + Moy u (19)* + Toy w (70)%) +
0
(1) (3) )
+1p12(70) oo w (7o) + Ilo1 w (7o) (Tlooy(70) — Hoon(70))) d1o — Inin,
o1u
dITp12(9)
_— = H =
dTQ 0, 01$(+OO> O,

dIl T (2) _
(273_/0( 0) = —Ho1y(70) + o1 u (70), ¥1(0) + Io1y(0) + 11%(0) = 0,

(3)
0 = —Ho12(70) + o1 w (7o) + Hooy (7o)
In view of (13)-(15) at j = 1, problem Qq; P is defined by the relations

0
Q0 (Qor) = QO (1) + 5 [ @ua(on)? + Qury(on)? + Qorz(o0)? + Qon w00+
+Qo1(12t)(0'0)2 + Q01(Z)(00)2) dro — Din,
dQ(S:O(UO) =0, dQ(;géao) = —Qo1y(o0) + Q01(12L)(00),
(3)

0= —Qo12(00) + Qo1 u (0p),

Qorx(—00) = Qo1y(—00) = 0.

Taking into account that II;;x(m) = 0, in view of (16)-(18) at j = 1, problem II;; P is defined by
the following way:

“+00

1 ¢! (2) (3) .
Iy J(Iu) = 3 / (Hlly(71)2 + H112(71)2 + 111 U (7'1)2 + 111 u (7'1)2 + 11w (7’1)2) dr — i,
11U
0
dlly y(7)
——— =0, II =0
dr , Ty (400) )
dlli1z(T (3) _
1;7_1( 1) _ —Ily12(m1) + Mg o (71), Z1(0) + o1 2(0) + 112(0) = 0.

Using (19)—(21) at j = 1 and taking into account that Q112(c1) = 0, we obtain problem (11 P in
the form:

0

QuJ(Quiw) = Q112(0)(¢1(1) + Qui¢(0)) + % / (Quy(o1)* + Qu12(01)* + Qn(llt)(ﬂl)2+

—0o0

(2) (3) .
+Q11 U (01)* 4+ Q11 1 (01)%) doy — gun,
11u
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d
6216;21’/1(01) =0, Quy(—o0) =0,
dQEZWI) — _Quz(o) + Quil(1), Quiz(—o0) = 0.
01

Solving problems Py, II;; P, Q;1 P, i = 0,1, we get the first order approximation of asymptotic
solution of problem (38)—(40):

Z1(t,e) = To(t,e) —ea((2 + \fg)teﬁt (2 \/i)te—\/?(t—Q))’
(é)l(t,&') _ (%)O(t’s) _ 5@((2 + \/§_|_ \/it)e\/it ( \f _ \/’t) Va(t— 2))
&) (2)
n(t,e) = o(t,e), %1@,5) = 50(75,5),
Z1(t,e) = Zo(t,€) + e5((—V2 + 1)e V2/E 1 (2 — 1) V2/E,

(3) (3)
u(t,e) = uolt,e) + 55(—(\/§+ 1)6—\/5'5/5 + (2\/5 _ 3)6—\/51&/52)_

The exact solution of problem (38)—(40) was calculated by means of Maple 2022.

The exact solution and asymptotic approximations to the solution of problem (38)-(40) at ¢ = 0.25
are presented in Figures 1-6, where the black line denotes the exact solution, the yellow line means the
solution of the degenerate problem, the red line — the zero order approximation and the green one — the
first order approximation. Please note that the degenerate and the zero order asymptotics solutions

1
for the trajectory z(t, ) and the control (u) (t,e) are equal, the zero and the first order approximations

2
for the trajectory y(t,e) and the control (u)(t, g) are the same.

Values of the performance index J.(u) corresponding to the optimal control u, and it’s approxima-
tions wg, up, u1 are presented in Table. We give here three decimal points using ordinary rules of
approximating. From this table it is seen that for a less values of € there is a better proximity between
values of the performance index for asymptotic approximations to the optimal control and it’s minimal
value and J.(ug) > Jo(up) > Jo(u1) > Je(us), this corresponds to Theorems 2, 3.

02 04 0.6 08 1 02 04 2 08 1
:

. (1) . (2)
Figure 1. Control wu (t,¢). Figure 2. Control wu (¢,¢).
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— 0.5+

0 02 04 06 08 1

r

3
Figure 3. Control (u)(t,e). Figure 4. Trajectory x(t,¢).
0.7
0.4

034

0.2

0.1+

T T T T i
0 02 04 0.6 0.8 1 —0.1+
1

Figure 5. Trajectory y(t,e). Figure 6. Trajectory z(t,¢).

Table
Values of the performance index

IS5 Je (ﬂo) Je (’170) Je (’171) Je (u*)
0.25 76.413 | 74.184 | 72.268 | 72.200
0.125 | 79.716 | 78.991 | 78.559 | 78.555
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IA. Kypuna'?, M.A. Kanamuukosa?
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2 Peceti Pouavim arkademuacorory, «HAngopmamura srcone backapys dedepandv, sepmmey opmanvien, Mockey, Peced;
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YInKapKbIH/IbI aifHBIMAJIbLIAP MEH 9JICi3 0eiiChI3bIKTHI aybITKYbI 0ap
CBHI3BIKTBIK-KBaJIPATTHIK 0acKapy ecernTepi YIIiH MAHIMYM/IAY b
TizbeKTep

Maxkasia yIIKapKbIHIBI Kyl affHBIMAJIBLIAPBl 6ap 9JICi3 GEeMCHI3BIKTHI YKYHEHIH TPAeKTOPUSIAPBIHIA OJI-
Ci3 GEMChI3BIKTHI aybITKY KBaJIPATTBIK, Calla KPUTEPHUiiH a3aiTy ecebi yIIiH MUHUMUBAIUJIBIK, Ti30eKTep-
Ol Kypyra apHajraH. bys jkaraaiiia menriMHiH aCHMITOTUKAJBIK, bIIbIPAYBIH €CEITiH MapTTapbliHa, TiKe-
Jielt aybICTBIPYIAH XKoHe MIentiMaepi 6acTankbl 6efiChI3BIKTHI 6acKapy eceOiHiH MenTiMiHiH aCHMITOTHKAJIBIK,
BLIBIPAY BIHBIH, MYIIeepi GoJIbi TabblIaThIH THIML 6acKapy ecenTepidin yiipiH (KapacThIPbUIBII OTBIPFAH
JKaraiia ChI3BIKTBI-KBAIPATTLIK) KYPYZaH TYPATHIH IIENIMHIH aCUMITOTHKAJBIK KYDPBIIBICHIHBIH TiKe-
Jielt cxeMachbl KOJJAHbLIAAbI. TuiMzai Gackapyra Keibip aCHMIITOTHKAJBIK KYBIKTayIbl OacKapy PpeTiHe
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nafiajgaHraH Ke3Je THUIMJIi TPaeKTOPUSIHBIH KYH TeHJIeyiHIH TPaeKTOPHUsCHIHA >KaKbIHIBIFbI OarajlaHaIbl.
Munnmymaaymsl Tiz6eKTepai KYPY/AbIH CXeMAaChIH erzKeif-Terskeiyli KOpceTeTiH MBICAJ KeJITipiireH.

Kiam cesdep: yIIKapKbIH/IBI aflHBIMAJBLIIAD, THIMIL OGacKapy/IblH OeiiChI3bIKTHI ecerTepi, aCHMITOTUKAIIBIK,
GaraJjiayiap, MUHIMYMIAYIIBl Ti30eKTep.

I''A. Kypmna'?, M.A. Kamamuankosa®

! Boponesicexuiti zocydapemeenmonii yrusepcumem, Bopowneoic, Poccus;
2 Dedepanvroni uccaedosamenveruti uenmp «HUngopmamura u ynpaeaenues Poccuitickoti axademuu Hayx,
Mocxea, Poccus;
3 Ayxco, Bopowneoic, Poccus

MuHuUMU3UPYyIoMNie Nocjae0BaTeJbHOCTI JIJIs
JMHENHO-KBaAPAaTUIHON 334241 yIIPABJEHUSA C TPEXTEMIOBbBIMU
nepeMeHHbIMU 1 CJIAObIMU HEJIMHEMHBIMU BO3MYIIIEHUSIMU

CraTbst TOCBSIINEHA TOCTPOSHUIO MIHUMU3UPYIONINX TTOCIEI0BATETLHOCTEN /I 3a1a9l MUHUMU3AIIAN CJIa-
60 HEJTMHENHO BO3MYIIEHHOTO KBAJPATUIHOTO KPUTEPU KAIECTBA HA TPACKTOPUAX CIa00 HEJIUHEHHOHN cu-
CTEMBI C TPEXTEMIIOBBIMY IIEPEMEHHBIMU COCTOSTHUA. [Ipy 9TOM MCIIOIb30BaHa TaK HAa3bIBaeMasl IIPsIMasi CXe-
Ma IIOCTPOEHUA aCUMIITOTUKH PEIIeHNs, 3aKII09aIONIAsACA B HEIIOCPEACTBEHHOU ITOJCTAaHOBKE IIOCTYJIMPYEMO-
IO ACUMIITOTUYECKOT'O PA3JIOZKEHUSI PEIIEHUs B yCJIOBUS 33291 U IIOCTPOEHUH CEPUH 3a]1a9 ONTUMAJJIBLHOTO
yIpaBJIeHUs (B paccMaTpuBaeMOM CiIydae nHHeﬁHO-KBaﬂ\paTW{Hbe), pellleHnsI KOTOPBIX ABJAIOTCA YJIEHAMU
ACUMITOTUYECKOTO PA3JIOKEHUsI PEIIeHUsT UCXOJIHOW HeJIMHEHHOU 3aja4un yrpaBienusi. [lomydena oreHka
OJIM30CTH OUTUMAJBLHON TPAEKTOPUU K TPACKTOPUU YPABHEHUs COCTOSHUS I[PU WCIOJb30BAHUU B Kade-
CTBe yIpaBJIE€HUsI HEKOTOPOI'0 ACUMIITOTHYECKOTO TTPUOJIMKEHHUSI K ONITUMAaJIbHOMY yipassenuto. [Ipusejen
IpuMep, OeTaJbHO UJIIIOCTPUPYIOMIUNA IIPEJIO’KEHHYIO CXeMY IOCTPOEHHsI MUHUMHUIHUPYIOMUAX IIOCJIEI0BA-
TEeJIbLHOCTEN.

Karoueswvie caosa: TpexXTEeMIIOBbIE II€PEMEHHEBIE, HeJIMHEHbIE 3aa9i OIITUMAJIBHOTO YIIpABJICHUA, aCUMIITO-
TUYIECKHUE OLICHKW, MUHUMU3UDPYIOIINE I10C/I€10BaTEJIbHOCTH.
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