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Numerical solution of the boundary value problems for the parabolic
equation with involution

In this work, we study two boundary value problems for involutary parabolic equation with the first and
second kind conditions. We propose absolute stable difference schemes for numerical solutions of these

boundary value problems. Actually the stability estimates for solutions of difference schemes are proved.
Later error analysis for the numerical solution of both difference schemes are illustrated by test examples.
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Introduction

It is well known that various models in physics can be reduced to a parabolic equation with delay
and involution. Time delay and involutary parabolic equations with local and non local boundary
conditions have been investigated by several researchers [1-17].

1 Finite differences for involutary parabolic equation with Dirichlet condition

We consider boundary value problem for parabolic equation with involution and Dirichlet condition
as follows

u(t, ) — (a(@)us(t, ), + du(t,z) + q (= (a(x)w(—t, 2)), + du(—t,z)) = f(t,z),
tel, ze(0,0),

u(0,2) = ¢(x), z €[0,1],

[ u(t,0) =0, u(t,l)=0, tel.

Here and in future a, ¢ and f are given smooth functions and § and ¢ are known numbers such that
a(x) > ag >0, Vx € (0,1), 6, |q| <1, [ = (—00,00).

1.1 Stability of differential problem
Denote by WZ(0,1), the Sobolev space of all functions v(z) defined on [0, 1] equipped with norm
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Theorem 1. Let ¢ € W2(0,1) and f(t,x) be continuously differentiable on I x [0,]. Then, for the
solution of initial boundary value problem (1) the stability estimates

o
super [[u(t, ), 0, < M(5) [||90HL2(0,1) + ) a0 dS] ;
super [[ue(t, )l £y 0.0) + suPrer [lue(t, ) llwz o, < (2)

< M(9) [”SOHWg(o,l) HIFO oo+ S 100 dS]

hold, where M (4) does not depend on both functions ¢ and f.
Proof. One can write problem (1) in the abstract initial value problem

u(t) + Au(t) + g Au(—t) = f(t), t €I,
(3)
u(0) = ¢.

Here A = A7 is a self adjoint positive definite operator in H = Ly(0,[) which is defined by formula
Au(z) = = (a(z)uy (1)), + du(z) (4)
with the domain D(A) = {u € W(0,1) |u(0) =0, u(l) =0 }, ¢ = ¢(z) is given element of H and

f(t) = f(t,z) is a given abstract function. The proof of Theorem 1 is based on the stability of abstract
problem (3) and positiveness and self-adjointness of the abstract operator A defined by (4).

1.2 Stability of difference problems

Let [0,1], = {xn =nh, 0 <n < M} be grid space. Denote by Loy = Lo [0,(],, Hilbert space of
grid functions p"(z) = {p”}é\/l defined on [0, ], equipped with norm

|

To the operator (4) we assign the difference operator by formula

1
2
2

= > ‘ph(w)‘

z€[0,1],,

Ajph (@) = — (a(@)ph(@)) +6p" ()

acting in the space of grid functions p"(z) = {p”(x)}é\/[ and satisfying the conditions p =0,

p™ =0, where

R . PRk
p%:T7 1<i< M, pﬁ:T,ngSM—l.

In the first step of discreatization we get the following Dirichlet problem
h z, h x, h(__ _ fh
ut(t,x) + Afu(t, ) + qAju"(—t,x) = f"(t,x), t € I,

uh(0,2) = o"(z),x € [0,1],,.
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In the second step of discreatization one can construct the first order of accuracy difference scheme

uh xT —’LLh T
SO | Azuh() + ATl (x) = fR(@), fi(x) = it ),
ty=Fkr, ke Z, xe [0,1,, (5)

uf(z) = "(x), z € (0,1,

and the second order of accuracy difference scheme

h( )_uh7 ( ) T €T
M %(Ahuk( ) + qAful  (x)) + %(Ahuk nes )‘*’th“}ikH(ﬂC)) =

h h .
= k+%(37) =f (tk+%7x)7 tk+% = (k+ 5) T

tr=kr,ke Z, xe [0,1],,

uf(z) = "(x), x€ [0,1],.

Theorem 2. Let T and h be sufficiently small positive numbers. Then, for the solution {u,};(m)}ioooof
difference schemes (5) and (6) the stability estimates

g ol <360 [l + 5 I, |

keZ
h_ . h
sup kot L iz < (7)

fe=tia fkl

< M) [kuwgh I + S

Lap ]
are valid, where M (J) does not depend on 7, h ¢ and f.
Proof. Difference schemes (5) and (6) can be rewritten as the following abstract difference schemes

UZ_UZ—l + A h A h _ rh kLeZ
p huk+q AU _fk;7 € 4,

(8)
up =¢"
and
up—up_, LA uh Al l A A® h
S g (Apug +gApuly ) + 5 (Apufl_y +aAful ) = fk+%’ o)
9

ke Z, ug = ",

correspondingly. So, the proof of Theorem 2 is based on the stability of the difference schemes (8) and
(9) on the positive definiteness and self-adjointness of the operator A" in the Hilbert space Lyy,.
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2 Finite differences for involutary parabolic equation with Neumann condition

Let us take boundary value problem for parabolic equation with involution and Neumann condition
as follows

(w(t,z) — (a(z)us(t, x)), + oult,z) + q (— (a(x)u(—t, x)), + ou(—t,x)) = f(t,x),

tel, xe€(0,0),
(10)
u(0,2) = ¢(x), z €[0,1],

[ uz(t,0) =0, uy(t,l)=0, t€l.

Theorem 3. Let ¢ € W2(0,1) and f(t,x) be continuously differentiable on I x [0,1]. Then, for the
solution of initial boundary value problem (10) the stability estimates (2) hold.

Proof. One can write problem (10) in the abstract initial value problem (3), where A = A” is a
self adjoint positive definite operator in H = L2(0,1) which is defined by formula (4) with the domain
D(A) = {u e W§0,1) |ugy(0) =0, uy(l) =0}. So, the proof of Theorem 1 is based on the stability
of abstract problem (3) and positiveness and self-adjointness of the abstract operator A defined by (4).

To the operator (4) we assign the difference operator by formula

Ajp" (@) = = (a@)ph(@)) +0p"(@),

acting in the space of grid functions p(z) = {p”(m)}g/j and satisfying the conditions p? = 4p! — 3y,
pM=2 = 4pM-1 _3p)M  where

% i—1 k+1 k

L 1<i<M, pﬁ:%,ongM—L

S
After discreatization one can construct the following difference schemes
h

u :c—uh x
Al L Agul (@) + g ATl (2) = f(@), fR() = f(t ),

T

th=kr, ke Z, x € [0,1],, (11)

uf(z) = "(x), = € [0,1],

and
h

u (w),uh7 (z) x T T x
s % (Ahuz(f’f) + thu}ik(x)) + % (Athq(iU) + th“EkH(l‘)) =

T

- 1?+%($) = fh(tk%,m), bptl = (k+3) 12)
te=kr, ke Z ze [0,1,,

uf(z) = "(x), v € [0,1],.

Theorem 4. Let 7 and h be sufficiently small positive numbers. Then, for the solution {uZ(x)}ioooof
difference schemes (11) and (12) the stability estimates (7) are valid.

Proof. Difference schemes (11) and (12) can be rewritten as the abstract difference schemes (8) and
(9), correspondingly. So, the proof of Theorem 2 is based on the stability of the difference schemes (8)
and (9) on the positive definiteness and self-adjointness of the operator A” in the Hilbert space Loy,
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8 Numerical implementation

In this section we will consider test examples with the first and second kind boundary conditions.

3.1 Test example for first kind boundary condition

Test example 1. Consider boundary value problem for parabolic equation with involution and
Dirichlet condition

(urlta) — (2 + cos(@)us(t,2)), + ult,) — (2 + cos(@))us(~t,2)), + u(~t,a) = f(t,2),

f(t,z) =costsinz, t € (—m,x), z € (0,7),
(13)
u(0,z) =0, x € [0, 7],

[ u(t,0) =0, u(t,l) =0, t € [-m ]
Here and in future we define sets of grid points as follows
[—m, 7] x [0, 7], = {(tr, ;) : ty =k, =N <k<N, 2;=ih, 0<k<M, NT=n, Mh=rmn}.

By using Taylor decomposition in two points

u(ty) —u(tp_1) = 7u'(t) + 0(7’2), (14)
u(te) — u(ty_,) = %u’(tk) + %u’(tk,l) +o(r?), (15)
u//(xn) _ u(xn-l—l) - 2u(xn) + u(xn—l) + O(h2), (16)

h2

we present the first order of accuracy difference scheme in ¢

n o __,n n+l_ n—1 n+l_ n—1
B U (24 cos(ay)) Sk e Q;LQ’Z—W’“ + sin(zy,) A b — + ul—

T

n+l_2unk+unfl n+1 n—1

— (24 cos(an)) T sin(@,) g uty, = R = F (b wn),
ty =kr, —-N+1<k<N, (17)

u) =0, uM =0, k=0,+1,£2,...,£N,

ug =0, vp=nh, n=0,1,.... M
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and the second order of accuracy difference scheme in ¢

up —upy o (2tcos(wn)) ((upt=2upiupmt o wlfT-2ul i uptuny
T B 2 h2 + h2 + 7 T

psinGen) (utlougTt w1y
2 2h 2h

_ (2+00;(2n)) <“Z+i2“]§21+“21 + U”ti12U’;§+1+unki1> +
(18)
+Sin(2xn) (%ﬂ;}:ﬂ?_i + “z:i12_hu7—bk-1-1) + “Z—lJFQUT—Lk-H —
_ ¢k - 1 — - <k<
f(t,H_%,:v), tk+§ (k+2)7, ty, =k, —N+1<k<N,
u) =0,uM =0, k=0,£1,42,..., &N,
uy =0, z, =nh, n=0,1,..., M.
Later, system of equations (17) and (18) can be rewritten in the matrix form as follows
ApUn1 + ByUp + CnUn—l-l = Rpp, n=1,..,M —1,
(19)

Up=0, Uy = 0.
Here R is identity matrix. For solving (19) we apply modified Gauss elimination method by formula
U, =0a,Upy1+Bn, n=M-—-1,...,1,0, (20)

where o is matrix with zero elements and vector 5y with zero elements, matrices «,, and vectors 3,
are defined recurrently by

Qp = (Bn + Ananfl)_l Ana

Bn = (Bn + 1471047171)71 (R@n - Ay /anl) , (21)
n=1,.,M-1.
Error is calculated by formula

Error(N,M) = oy AX ‘u}c — u(ty, ;)

, (22)

where uﬁg and u(tg,z;) (k = 0,+1,...,+£N, i = 1,..., M) are values of solution of difference scheme
and differential problem at point correspondingly. Table 1 shows that if numbers N and M increase by
factor 2 then the values of errors decreases by a factor of approximately % for the first order difference
scheme (17) and  for the second order of accuracy difference scheme (18).
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Table 1

Error analysis for test example (13) with Dirichlet condition

N = M | 1st order difference scheme | 2nd order difference scheme
10 0.531 8,35x1072
20 0.351 2,88%x1072
40 0.208 7,36x103
80 0.115 1,92x107°
160 6,09%x10~2 5,01x10~2
320 3,13x10 2 1,28x10~*

3.2 Test example for second kind boundary condition

Test example 2. Consider boundary problem for involutary parabolic equation with Neumann
condition

(ue(t, ) — ((2+ cos(x))ug(t,x)), + u(t,z) — ((2+ cos(x))uy(—t,z)), + u(—t,x) = f(t,x),

f(t,x) =costcosz,t € (—m,7m), z € (0,7),

(23)
u(0,2) =0, = € [0,7],
ug(t,0) =0, ug(t,l) =0, t € [—m, 7).
By using (14), (15), (16) and
UI(O) _ —u(xg)+4u}f§:1)—3u(mo) + 0(]12),
' (m) = U(Qfoz)—4“(ié»171)+3u($M) + o(h2),
one can get the first order of accuracy difference scheme in ¢
( n _,mn n+1_ n n—1 n+1_ n—1
ML (24 cos(an) T o sin(ag) St o+ up—
n+l_ n n—1 n+l_,  n—1
— (2 + cos(wn)) I gin(a,) S o, = fR

W) =up, uf =u T k=0,+1,4£2, ..., +N,

ug =0, vp=nh, n=0,1,.... M
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and the second order of accuracy difference scheme in ¢

Uk R (eos(ea) (i —2updup £ gn
T - 2 A2 + RZ U

n+1_ n—1

. +1 n—1 n n
sin(zy,) [ up ' —up U_p —U_p uptuly
+— < 5% + 5% + 57—+

_|_(2+0025(xn)) <u2+%_2“]§2—1+“21 + until_zu%§+1+“nki1> +
(25)
(2—sin(z,)) [(whii—up_y | wiii—ul up_4ult,
+ 5 ( k 12h k—1 + k+12h k+1 _|_ k—1 5 k+1 —
= fh(thr%,x), tpyl = (k+3)7 ty=kr, -N+1<k<N,
3u) =du} —u?,3u) = 4wt — Tk =0,£1,42,..., £N,
[ ug =0, zp =nh, n=0,1,..., M.
System of equations (24) and (25) can be written in the following forms
ApUp—1+ B U, + CnUnJrl = RSOTL’ n=1,.,M—1,
(26)
Up =U1, Uny = Unr-1,
and
AyUn—1+ BoU, +CoUpy1 = Rpp, n=1,..,. M —1,
(27)

3Uog =4U; — Uy, 3Upy = 4Upn—1 — Up—2,

correspondingly. For solving (26) we use formula (20), where ap = R is identity matrix and vector
Bo has only zero elements, matrices «,, and vectors 3, are defined by (21). Errors are computed by
formula (22). Let us move to (27). We seek solution (27) in the form (see |18, 19])

Un =anUps1 + BUpy2+vn, n=M—-2,M —1,...,1,0.
Here auxiliary matrices «ay,, 8, and vector v, are calculated by formulas

an = —Dp(An + Crfn-1), Bn =0,

Yn = Dn (Ron — Cn Yn-1),

Dp=Bn+Chan 1), n=0,..,M-2,

ag=3R, Bo=—3R, a1 =ER, f1=—2R, yo=m = 0.

At the same time formulas for unknown Uj; and Ups—q are given in [19].
Table 2 shows that if numbers N and M increase by factor 2 then the values of errors decrease by
a factor of approximately % for difference scheme (24) and 1 for difference scheme (25).
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16

Table 2

Error analysis for test example (23) with Neuman condition

N = M | 1st order difference scheme | 2nd order difference scheme
10 0.619 8,41x1072
20 0.414 2,91x1072
40 0.253 7,41x1073
80 0.144 1,95x107°
160 7,77Tx1072 5,03x107%
320 4,05x1072 1,30x10~7
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! Bazuewezup yrnusepcumemi, Cmambya, Typrus;
2 Peceti zanvxmap docmoien yrusepcumemi, Mockey, Peced;
3 Mamemamura sicone mamemamuraivr, modesvoey uncmumymot, Aivamo, Kazaxcman;
M. yavisber amwmdaze, O36excman yammuok yrusepcumemi, Tawkewm, O36excman

aBoaonusibl napadoJIaiblK TeHAey YIIH IIeTTIK ecenTepaiH,
CaHJBIK HIENTiMi

MakaJrazia GipiuIi >KoHe eKiHIm THMTI mapTTapbl 6ap dBOIIONMSILIK TapaboJIaJIbIK, TEHEY/IiH eKi MeTTIK
ecenrrepin 3eprrenred. OChI METTIK €CenTep/Ii CAHIBIK, TYP/Ie eIy YIIiH abCOTIOTTI TYPAKTHI affbIPBIMIBIK,
CXEeMAJIaphl YCHIHBLIFAH. ANRBIPBIMIBIK, CXeMaJapbIHbIH, MIENiMAePIiHiH TYPaAKThUILIFBIH Haraiay ic »Ky3iH-
ne mostesiieH . EKi affbIpbIMIBIK CXeMACBhIHBIH CAH/BIK IIEITIMIHIH KAaTeJiKTepiH ojlaH opi TaJijiay ChIHAK,
MBICAJIIAPBIMEH KEJITipiJreH.

Kiam cesdep: naBOTIONUS, TAPaOOIANBIK, AKBIPJIBI-AHBIPBIM/IBIK, CXeMAaChl, TYPAKTHIIBIKTHI OaFrasiay, IMeTTiK
ecerl.
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YucsienHoe perieHne KpaeBbIX 33/1a49 JJIs ITapadoImIecKoro
YPaBHEHUsI C MHBOJIIOIINE

B crarpe nccimemoBann Be KpaeBble 33/1a9u 1T 9BOJBBEHTHOTO MapabOJIMIeCKOTO YPABHEHUS C YCJIOBU-
sIMH II€PBOTO U BTOPOro poza. IIpesozkeHbl aOCOIOTHO YyCTONYNBBIE PA3HOCTHBIE CXEMBI JIJIsl HNCJIEHHOT'O
peleHust TUX KpaeBbIxX 33 1a4. PaKTHUIECKN JIOKA3aHbI OIEHKH YCTOWYUBOCTH PEIICHUN PA3HOCTHBIX CXEM.
Jagpuefnnii aHAJIN3 MOT'PEINTHOCTEH YMCJIEHHOTO penreHnsi 00enX PA3HOCTHLIX CXEM MPOUJIIIOCTPHPOBAH
TECTOBBIMH IIPUMeEPaMu.

Karouesvie ca06a: MHBOJIIONHS, TapaboJia, KOHEYHO-PA3HOCTHAST CXEMA, OIlEHKa YCTONYMBOCTH, KpaeBasl 3a-
nadJa.
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