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On convergence of difference schemes of high accuracy for one
pseudo-parabolic Sobolev type equation

Difference schemes of the finite difference method and the finite element method of high-order accuracy
in time and space are proposed and investigated for a pseudo-parabolic Sobolev type equation. The order
of accuracy in space is improved in two ways using the finite difference method and the finite element
method. The order of accuracy of the scheme in time is improved by a special discretization of the time
variable. The corresponding a priori estimates are determined and, on their basis, the accuracy estimates
of the proposed difference schemes are obtained with sufficient smoothness of the solution to the original
differential problem. Algorithms for the implementation of the constructed difference schemes are proposed.
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Introduction

Applied problems of engineering and technology lead to the solution of pseudo-parabolic Sobolev
type equations. By pseudo-parabolic equations, we mean all high-order equations with a first-order
time derivative of the following form

0

o7 () + B(w) =0,

A(u) and B(u) are elliptic operators, generally speaking, the nonlinear ones [1]|. They refer to constitutive
equations. Such problems arise in many fields of modern science. For example, problems in the physics
of semiconductors, plasma physics, hydrodynamics of stratified and filterable liquids, the theory of
“creep” of structural elements, etc. For example, the equation of waves in thin layers of liquid on the
surface of a rotating globe (Rossby waves in oceanology) has the following form [2]

0 0
—A —u=—f(x,t t 1
8t 3u+68§62u f(l‘, )7 (JT, )GQTa ( )
where Ag = 88—52 88722 + 88—;2 is the three-dimensional Laplace operator, § is constant, and the equation
1 2 3
of pseudo-parabolic type has the following form [1]:
(A3U_u)t+A3u+ﬂu = —f((l?,t), (.’L‘,t) € Qr. (2)

This equation describes the filtration process in a fractured porous fluid. The equation of moisture
transfer in soil can be added to these equations [3]

up = Lu + f(:Uat)’ (CE,t) € Qr, (3)
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P
where Lu = Y Lyu, Lou = % (ka(x)a—“> +%% (k:a (1:)8371;) Mathematical models of nonstationary

0T q
a=1
processes in anuniaxial ferroelectric semiconductor lead to initial-boundary value problems for pseudo-
parabolic equations of the following form [3]:

0 9%u
e (Azu —mu) + a1 (Agu — y1u) + Blp =—f(x,t), (z,t) € Qr. (4)
L3

Here Ag = 86722 + 88—;2 is the two-dimensional Laplace operator, v; = 1/7“621, b1 = 4dras + aq, o > 0 is
1 2

constant (I = 1,2), rg = /T?/(4we’ng) is the Debye screening effect (Debye radius), e is the absolute
value of the electron charge, ng is the unperturbed particle density, Qr = {(z,t) : z € Q, t € (0,7},
Q= {ac = (3}1, xg,{L‘g) 0<zp <y, k= 1,2,3}.

The above equations are supplemented with initial and various boundary conditions, for example,
local ones - classical boundary conditions and nonlocal ones, where, instead of classical boundary
conditions, a certain relationship is specified between the values of the sought-for function on the
boundary of the domain and inside it. General questions of unique solvability and analytic properties
of such problems were studied in [1-6].

Recently, more attention has been paid to numerical methods for solving the above equations. In
particular, in [1,2|, problems of type (1)—(4) were reduced by some transformation to two equations
(one contains differentials in time, the other contains differentials in space) and then these equations
were solved by the finite difference method using quasi-uniform grids. Difference schemes built on quasi-
uniform grids have the second-order of accuracy in time and space variables, with sufficient smoothness
of the solution to the original differential problem. Similar problems were studied in [7-10], where high-
order Sobolev type equations with a second-order time derivative were considered. High-order accurate
schemes of the finite element method were constructed and investigated with minimal requirements for
the smoothness of the solution to the original differential problem. Difference schemes for an equation
with nonlocal boundary conditions were studied in [11-15], where difference schemes of the first and
second orders of accuracy were investigated.

The knowledge of the laws and features of non-stationary processes plays a primary role in the
development and improvement of technological processes, technical installations and devices in a
number of industries; this determines the relevance of research in the above areas. This implies the need
to construct and search for numerical methods of high accuracy (more than the second accuracy) for
various non-stationary initial-boundary value problems, including pseudo-parabolic equations. However,
numerical methods have their limitations in terms of stability, accuracy, and economy. Therefore, the
problem of determining the optimal method is an urgent issue.

In this article, we consider the construction and study of high-accuracy difference schemes of
boundary value problems for equation (4). Here, the initial-boundary value problem for this equation
is first approximated in spatial variables by the finite difference method and the finite element method;
then, for the resulting system of ordinary differential equations, the second-order finite difference
method and the fourth-order finite element method (constructed and investigated in [7]) were used.

1 Statement of the problem

Consider equation (4) with the following initial and boundary conditions
w(x,0) = up(z),r € A =Q+ T, (5)
u(w,t) = ut),z € T =9Q,t € (0,T]. (6)

As already mentioned, instead of boundary condition (6), one can consider any classical boundary
conditions. In addition, nonlocal boundary conditions can be considered. At that, the matrices of
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difference schemes may turn out to be asymmetric but with the methods of linear algebra, they can
be symmetrized, for example, by the bordering method [16].

Let us formulate a generalized statement of problem (4)—(6). Function u(ac t) € W5 (Q), is called a
generalized solution of the problem, for each ¢t € [0, 77, it has derlvatlve i € L2[0,T] and satisfies the
following relations almost everywhere on [0, T:

as (dléi%) + az(u(t), V) + ar(u(t), ) = (f(t),9), w(0) = uo,¥(x) € H, @)

where

3 2
az(u,?) = — // (Z Uz, U +’yluz9> dz, az(u,?) = —aq // (Z Uz, Vs —1—711“9) dx,

al(u719) = _51 // Ux3191»3d517,
Q

u = u(t) is the function of abstract argument ¢ € [0, T] with values in H. Here W, (Q2) is the Sobolev
space vanishing at the boundaries, where scalar product and norm are defined as follows:

(u( // (m” 23: aii O )dx
s 22,23) gy = // (u +Z (axm) )

cs |lulli < as(u,u) < Csllullf, ez Jullf < as(u,u) < Collullf, 0 < ar(u,u) < Crlullf,

It’s obvious that

where co, c3, C1, Co, C3 are the positive constants. Constant ¢; depends on (1, co depends on ag, 71,
and c3 depends on 7.
The existence and uniqueness of the solution to this problem were studied in [2].

2 Discretization in space

Let us construct the subspace Hp, C H that approximates H. Consider the following two cases.
The first case corresponds to the approximation of equation (4) in spatial variables by the method
of finite differences. Let us introduce a grid uniform in each direction w; = Wy, X Wp, X Wy, , in
Q where @y, = {xm =i, im = 0, N,y hm = /N }, m = 1,2,3. Here @, = wp + 4. We
o

define the subspace Hj, = Wy (wy), the space of grid functions v(z1, 79, 73) with norm Hv||% =

N1 N2 N3
337> hihahs [( )2+ (ve,)? + (vg,)%| < M, where the constant M does not depend on hy, hg, hs.
i1 19 13

Here v = U(ilhl, ’iQhQ, ighg).

Uz, = [U(ilhl,ighg, i3h3) — U((il — 1)h1,i2h2,i3h3)] /hl,

vz, = [v(i1h1,i2h2,i3h3) — v(i1hi, (i2 — 1)h2,i3h3)] /ha,
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vz, = [V(i1hy, i2he, i3hs) — v(i1hy,iohe, (i3 — 1)h3)] /has,

(¢}
W (wp) is the space of grid functions that vanish at the boundaries.

Approximating the expressions for a,,(u,®) on the grid by the corresponding quadrature formulas
N1 N2 N3
al (up,vp) = S, > Y. hihohsupz,, vnz,,, we proceed from (7) to the definition of an approximate
i1=112=113=1
grid solution:

al <duc}llt(t)”9> + ab(un(t),9) + af (up(t),9) = (fa(t),9), VI(x) € Hp, (8)

up(0) = o, (9)
Relations (8), (9) correspond to the following Cauchy problem for the function wy(t):

duy, (t
D 4 gunt) = ). un(0) = o (10)
where
D= (A1 +A+A3)+mE, A=ai(Ar + Ay +711FE) + BiAs, (11)

Ay = —Ya,7,, M =1,2,3, y is the value of the function at a fixed node, x = (i1hy,izhe,i3hs),
Yoz, = (Y((31 + 1Ry, ioha,ighs) — 2y(ivhi, igha, ishs) +y((i1 — 1)h,d2ho,i3hs))/ hi,

Yaozs = (Y(i1ha, (iz + 1)ha,izhs) — 2y(i1h1,iaha, izhs) + y(i1h1, (i — 1)ha,i3h3))/ b3,
Yuszs = (Y(i1h1,izha, (i3 + 1)h3) — 2y((i1h,izha, ish3)) + y(i1h1,izhe, (i3 — 1)h3))/ hi.

Here upg = Ppup(x) is the interpolant of the initial condition, P, is the projection operator
Ph H — Hh and fh(t) = th($,t).

Difference operators D and A approximate differential operators Asu — y1u and oy (Agu — yu) +
31 0*u/dx% with second-order approximation errors.

The second case corresponds to the approximation of equation (4) in spatial variables by the

M
finite element method. Let Hp, C H be the set of elements of the form ¥, = > P (x). Here
m=1

{®,, = @m(x)}%zl is the basis of piecewise polynomial functions that are a polynomial of p degree on
each finite element [17]. Let us give an example of a basis based on third degree polynomials. To do
this, we introduce a partition of the domain  into N1 x Ny x N3 parallelepipeds

Qijr ={(i —h)h1 <21 < ihy, (j —1)he <2 < jho, (k—1)hs <3 < khs},

i=1,Ny, j=1,Ng, k=1,N3, hpm=1ln/Np, m=1,2,3.

Let us choose the following system of basis functions:

iji(x1, 22, x3) = wi(x1)pj(x2)pr(ws), i=1,N1—1, j=1,Npo—1, k=1,N3—1,

where ¢;(z) is the basis function built on the basis of the Bs - spline [7]. In this case p = 3. Then the
approximate solution can be represented as a bicubic spline:

N

Op(z1, 22, w3,1) = > ap(t)pp(a1, z2, 73), (12)
k=1
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where @ (21,72, 23) = @i(z1)p;(x2)pr(zs), i = L,N1 —1, j = I,No—1, k = 1,N3—1, and N =
(N7 — 1)(N> — 1)(Ns — 1).
The stiffness matrices corresponding to operators D, A are calculated as follows:

D = {as (1, 0m) N1 » A= {a2 (@1, 0m) Wiy + {01 (91, 0m) Hmes -

When choosing a polynomial of a degree no less than three, at each finite element in spatial variables,
we have the third order of accuracy in spatial steps.
In both cases
D*=D>0, A*=A>0.

In what follows, for simplicity of notation, in (10), u € Hy, is used instead of uy, i.e., problem (10)
is written in the following form

Di+ Au = f, u(0) = uo, (13)
where 4 = du/dt.

8  Time discretization

Here we also consider two cases of approximation. Let discrete function y approximates a continuous
function wu.

The first case. Let us introduce grid w, = {t, =n7, n=1,2,..., 7> 0} in time t. Then we
approximate problem (13) by the following difference scheme

Dy + Ay = ¢, 4 = ugp, y" € Hy, (14)

where g = (§ —y)/7, y = y" = y(tn), § = y"™ = y(tn +7), ¥ = 0§ + (1 — 0)y. Here D and A are
defined according to (11), and o is some arbitrary real parameter ¢ = f = f (x,t, +7/2).

It is known from the theory of difference schemes [18] that the approximation error for scheme (14)
is:

Y =012+ |h?) for o = 0.5, p = O (1 + |h|?) for 0 # 0.5, |h|* = h? + h2 + h2.

The second case consists in discretizing problem (13) by the finite element method connecting the
values "1, §", y"*1, " that approximate % (t, +7), D (t,), up(tn + 7), up(tn), respectively.

Such a scheme was constructed in |7] and it has the form:

Dy, — vAy + Ay®) = o1, Dy + ady, — BAY"D) = ¢, (15)

tinl tnt1

where oy =L [ f(t)dt, oo = L f FO (5108 + s998)dt, 51 = 15y — 35/3, s1 = 140y — 3500./3,
t

9 = 1/2, 08 = (1~ ) (€~ 1/2), € = (1~ to)/7.

The initial conditions for (15) are specified as follows: in addition to the natural condition y° = uy,
it is necessary to specify y°. For this, from the system of equations (13), at ¢ = 0, we determine
g = D7H(fY — Aug) and set §° = 1, therefore, the initial conditions for (15) have the form:

y° =g, 3° = DH(f° — auy). (16)

From the calculated values of ¢"*!, g™, 4"+, 4", it is possible to restore the approximation to

up(t) for any t € [t,, tht1], n = 0,1, ... by the following formula:

y(t) = y ol (t) + 9" () + y" T op (8) + T el (2).
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Here offy(t) = 26 =362+ 1, ¢y (t) = 367 — 267, oy (t) = 7(€% — 262 +€), 1y (t) = 7(&7 — €2), £ = .
Combining the approximation in space and time, we consider four methods for solving problem

(4)-(6):

e Scheme 1° — difference approximation of the second order of accuracy in space (11) and time (14);

e Scheme 2° — approximation of the FEM with bicubic elements in space (12) and time (14);

e Scheme 3° — difference approximation of the second order of accuracy in space (11) and the FEM
scheme in time (15), (16);

e Scheme 4° — approximation of the FEM with bicubic elements in space (12) and the FEM scheme
in time (15), (16).

4 Stability and accuracy

Let us analyze the stability and accuracy of the selected schemes. It is known [18], that schemes
(14), (15) are stable under the following conditions

D>0, A=A*>0, D>T1A/2. (17)

Let us check the fulfillment of conditions (17). It is seen from (11) that D = D* > 0, A = A* > 0.
The last condition (17) takes the form

A+ A+ A3+’71E—g [a1(A1 + A2+ E)+ B1As] > 0.

To satisfy it, it is enough that

7‘§2max<1 1). (18)

a1’ By
This condition is interesting because the time step is not related to the space step and is determined

by the parameters o1, (1 of the problem. Thus, the following theorem holds.

Theorem 1. Under condition (18), the solution of scheme 1° converges to a sufficiently smooth
solution of problem (4)-(6) and the following accuracy estimate holds

ly(t) = w4 + [y () —we (D)l p < M (7™ + [h]™2), (19)

where (|9, = /(D9,7) = [l wi(w,y> 1914 = vV (A9, 9) = 92, | (s, are the norms in the space of
grid functions Hy, y; = (y"*' —y™) /7, m1 =1, ma = 2 for 0 = 0.5 and m1 = 2, my = 2 for o # 0.5.
Let us formulate a result on the stability and accuracy of scheme 2V.

Theorem 2. Under condition (18), the solution of scheme 2° converges to a sufficiently smooth
solution of problem (4)-(6) and the following accuracy estimate (19) holds m; =1, mg = 3 for 0 = 0.5
and m; = 2, mo = 3 for o # 0.5.

Now let us investigate the accuracy of scheme (15), (16). Let 2" = " — u"™, 2" = ¢ — 4", where
u™ = u(ty). Then scheme (15), (16) satisfies the relations
Dz — vAZ + Az(05) = P, YDz + aAz — BA05) = e, 20 =0, =0,

the approximation error is
7'4 1% 7'4 v 5
Du +-—Au + O(1),

U1

3840 720
2
Yo = (a+B -4+ [(a+38—1)A-(3y—20)f| +0(r).
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Hence, if the following conditions are met

at+B=7 a B, v= (), (20)

then ¥ =2 = O (7‘4).

To prove the convergence of the two-layer vector scheme (15), (16), we reduce it to a three-layer
scheme separately for y and its derivative 5. When operators D and A are permutable, i.e., DA = AD,
the following estimate is obtained |7|

lun(t) = u(t)l 4 + lune(t) — w ()]l p < M7,

Let us w = DY/2y, w = D24 instead of y, . Note that (DI/Q)* = D2 > 0 and the inverse operator
D12 = (D1/2)" > 0 exists.
After obvious transformations from (15) we obtain
ﬁwt - th + Aw(©®) = »1, 'yf)wt + ozgwt — ,Bgu')((w) = o,

21
w® = DY2y, @ = DY2(f0 — Aug), (21)

where &1 = D120, $y = D™1/2¢p,, D=E, A=DY2AD"/2 1t is clear that D = D* > 0, A =
A*>0and D A= AD. Consequently, there is no need for the permutability of operators D and A.
Then, eliminating from (21) first ), and then  and adding them, taking into account (16), we obtain
the following three-layer difference scheme

Biw"™! + Bow™ 4+ Bsw"™ ! =7F,, n=1,2,..., where w°, w! are given, (22)
~2 T i 72 72
By =~D +§(7—5)AD— ZB—OW A7,
By =2vD?* + <25 + 2ozfy> A2,
Hn2 T in 7 72
Bs =~D —5(7—5)1413— 2 B—av) 4%
~ T\ ~ ~ ~ T\ o ~
Fo = (vD - £8A) @7 + Az — (vD + 264) 17! — v A",
Equation (22) can be rewritten in the canonical form:
Ewg + TQEUJB + Aw = F, where yo, y1 are given, (23)
and operators in (23) have the following form:

B =17(By — Bs) = 7(y — B)AD = 7aAD,

—_ 1 ~ 2 -
R25(31+B3)=7D2— <T45—067) A%,
Z:

B{+ By + B3 = 4’)/(52 + 04112),

. ~n—1

_ P + &) T~
= 'yDgZ;‘j — 51‘1# + 'yAgpgi.

Bl

R =R

s

Hence it is clear that, B'=B> 0, =A>0,
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Now, based on the results of the theory of difference schemes [18], we check the fulfillment of the
stability condition for the three-layer difference scheme (23)

1
R>-A. (25)
4
A straightforward computation ensures that (25) holds if the following conditions are met

T <2/\/B. (26)

Condition (26) always holds if (20) is satisfied. Then, based on the results of the theory of difference
schemes [18,19], we establish the validity of the following theorem.

Theorem 3. Under condition (26), scheme (23) is stable in Hy by the initial data and by the
right-hand side, and its solution satisfies the following estimate

n
2 oz , 1 = 112
"% < 5+ 5 7 [ Fellgr (27)
k=0
From inequality (27), returning to the variable y and taking into account the definition of operators
A, B 'and F in (24), we obtain the estimate

197170 < o + D

B

(0%

7= |2k

Vg 171l 515

o 28

oh+ gt (28)
2

EERIPS:
v P
’ -1
D1 af AD
where M is a constant independent of 7 and h.
Let us apply the obtained estimate to assess the error of scheme (23). The z = y — u error satisfies

the equation Pz; + 72Rzgy + Az = 1), where ¢ = F — (Eu; + 72Ruz, + Au). Hence, the following
estimate

Y k
fonl e < ol + Mg (< Lollote]

e

B
Ta 2

Q

T \/ZTﬁng’tHZf)l

is valid for z.
Here 11, 19 are the errors in the approximation of the vector scheme (15).

Eliminating z and /z\, from relation (21), we can arrive at an equation of the form (23) for Z = ¢ — .
Then we obtain [|2"|| 7, = [[u" — y"|| 7 = O(7*) and [|2"]| 7, = [|[&" — §"| 1. = O(7*) at the point of
time t,, n = 1,2... . Therefore, based on estimate (28), under the conditions of (20), we obtain the
convergence of scheme (15) to the solution of the original problem wu(t,) € C°[0,T] with the fourth
order, i.e.,

ly(tn) = ulta)ll zo + 9(tn) = i(tn)ll 7 < M7™.

Therefore, for the error ||y(t) — u(t)||, Vt € [tn, tn+1], n =0, 1,.... the following result holds.

Theorem 4. Let the stability conditions (26) be satisfied. Then, if u(z,t) € C%[0,T], then scheme
(15), (16) converges to the solution of problem (13) and the following accuracy estimates are valid for
its solution:

ly(t) = w®)ll 7 < M7%, [l§(t) = a(t)l| 32 < M7*, Vt € [0,T].
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The second estimate of Theorem 4 is obtained using the results of Theorem 3 for the derivative Z.

To estimate the accuracy of schemes 3% and 4°, it is necessary to obtain an estimate of the error
z = up — u. Using the technique of such an estimate in the theory of difference schemes [18] of the
theory of the finite element method [17], we formulate the following results.

Theorem 5. Under condition (26), the solution to scheme 3% converges to a sufficiently smooth
solution of problem (4)-(6) and the following accuracy estimate holds

ly(t) = u(®)ll, < M(v* + h?).

Theorem 6. Under condition (26), the solution of scheme 4% converges to a sufficiently smooth
solution of problem (4)-(6) and the following accuracy estimate holds

ly(t) —u(®)ll, + 9(t) — @), < M(r* + h?).
5 Schemes with skew-symmetric operator

Let us investigate the stability by the initial data and the right-hand side of scheme (15), (16) with
operators D* = D > 0, A* = —A, and write it in the canonical form

BY,+AY =0; Y =(y,7), (29)

~ T _ -
5o D+ 3A 71:1 . A= A 0 )
aA 7D — 5B8A 0 —pBA
To prove stability by the initial data of scheme (29), we use the results of [20]. To do this, we take
a = 72/12 and represent the operator B in the form B = D + AC, where

b= ( o= (2 .
aA  ~D 0 5
Then, for the stability of scheme (29), on the basis of the results of the theory of difference schemes

[20], it remains to check the fulfillment of condition C*D + DC > D. This condition is met if a >
0, v > 0. Thus, taking into account (18), we arrive at the following statement.

Theorem 7. If the conditions o > 0, 8 > 0, ~ > 0, are satisfied, then scheme (29) is stable by the
initial data and the right-hand side in Hp and the following estimate

where

k
i < 1Y0ll5+ > Ikl
k=0

is true.

Based on this estimate, likewise in the previous sections, we obtain the accuracy of scheme (15),
(16) with the skew-symmetric operator A, i.e. the results of Theorems 1, 2, 5 and 6 are also valid for
scheme (29).

6 Algorithm for the implementation of the scheme (21)

Consider one of the possible algorithms for implementing the scheme (21). We rewrite it as

A N A A
MW + mig = @1, Ma1W + Mo = P2, (30)
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where

mi1 =D + 5147 mig = —vA, mao1 =aA, moy=~yD — 55/1,

- ~ T 7. ~ = ~ TR .
o1 =71 + (D — 514) w— yAW, ¢ = TP + aAw + (fyD + 5&4) w.
To calculate the integrals 7 and (2, we can use the Simpson quadrature formula.

Taking into account the permutable operators A and 15, we exclude w from equation (30):
A
Cw = F. (31)

Here C = yD? + 5y — B)AD — (%5 - 04’7) A2 F = maay — miagho.
Equation (31) can be solved either directly by inverting the operator C, or by factoring it

C=~vC1Cy =7 {52 — (=1 + xg)T/T]j) + :1:1:627'2112} , Cp = (D — kaA) , k=1,2.
Then, equation (31) is solved using the following algorithm:
MOTT = F, Cotd = . (32)

A
After determining & from (32), the solution of w is calculated, for example, from the equation
~ - A ~

(w - gﬁA) W = o — AW .

The scheme (14) is implemented as follows:
(D+o1Ay" " =[D— (1 -0)TAly" + 79, n=0,1,2,..,

0
Y = UpQ.

Remark. It is possible to prove the stability of scheme (15), (16) with variable operators A = A,,,
D = D, for example, in norm A,,. It is required that the operatorA,, be Lipschitz-continuous in t.

Conclusions

The methods of a high degree of accuracy for solving the first boundary value problem for a pseudo-
parabolic equation of a special form are developed and investigated in this article. These methods
are based on finite-difference and finite-element approximations in space and time. The stability and
convergence of the constructed methods are proved, and the accuracy estimates are obtained. An
algorithm for the implementation of the finite element method was developed. Other pseudo-parabolic
equations given in the introduction, as well as other types of similar equations, are investigated likewise.
We can study problems with other local and nonlocal boundary conditions.

The system of ordinary differential equations obtained by spatial approximation may turn out to
be rigid. A separate study will be devoted to this issue and numerical modeling, where, based on the
algorithm for implementing the method developed here, it will be tested on exact solutions in the form
of a Fourier series and the constructed methods will be compared with other methods. In addition, on
the basis of a computational experiment, the convergence rates of the method along the spatial and
temporal directions will be checked, as well as visualizations, which confirm these theoretical results.
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M. M. Apunos!, JI. Yrebaes?, M. M. Kazemmb6erosa?, P.I11. dpamos?

1 .
M.yawkbex amovindazvr O36excman yammok yrusepcumemi, Tawxenm, O36excman;
2Bepdax amwmdaen. Kapakasnax, memaexemmir yrusepcumemi, Hywic, O36excman

CoboJieB TUNITI TIceBAOIIAPab0JIAJIBLIK, TeHAEY1 YIIH YKOFaphbl
JRJIJTIKTET1 allbIpMAaIlbLIIBIK, CXeMAJIAPBIHBIH, XKTHAKTBIJILIFBI TYPaJIbl

CoboJieB TUITI TICEBIONAPAOOIAIBIK, TEHIEY] YIIIIH YAKBIT IIEH KEHICTIK OOMBIHIIA YKOFaphl J2JIIIKTEr] aKbIp-
JIBI afBIPBIMJIBIK, 9JIiCI MEH aKbIPJIbl 3JEMEHTTED 9ICIHIH OPTYpJI albIPhIMJIBIK, CXeMaJapbl YCHIHBIJIFAH
2KoHe 3eprresireH. Kenicrikreri 1ok TOPTIOIiH apTTHIPY €Ki 2KOJIMEH, aKBIPJIbI A BIPBIM/IBIK, CXEMACHI 2KOHE
aKBIPJIbI 9JIEMEHTTED CXEMAChl MEH KY3€re aChIPbLIIbI. YaKbIT OOMBIHINA Ti30EKTiH JOJIIriHIH *KOFaphl TOP-
TibiHe yaKbIT allHBIMAJIBICBIH apHAibl ipikTey apKbuLIbl KOoJ »keTkisinren. Twuicti anpuopibik Garasayiap
2KoHe OJIapIbIH HerisiHze 6actankpl qudOEpeHITHAIBIK, €CENT] MENTyIiH *KeTKITIKTI TericTiriMeH yChbIHbI-
JIFAH afibIPBIM/IBIK CXeMAJIAPBIHBIH JJIIITiHIH 6araaapsl aablHAbl. KyphlraH albIphIMIBIK, CXeMaJIapBIH iCKe
achIpy aJITOPUTM/IEP] XKy3ere achbIPbLIIbI.

Kiam cesdep: mceBmonapabosIaIbIK, TEHJEY, albIPBIMIBIK CXeMaJjiap, aKbIPJIbl aflbIPBIMIAP 9JTiCi, aKbIPJIbI
9JIEMEHTTED OJIiCi, alPUOPJIBIK barasiayaap, TYPAKTBLIBIK, KIHAKTHIIBIK, TIJIIIK.

M. M. Apunos!, JI. Vrebaes?, M. M. Kasumberosa?, P.I11. SIpiamos?

! Hayuonaavruti yrusepcumem Yabexucmana umenu M. Yayebexa, Tawkenm, Yabexucman;
2 . .
Kapaxaanaxckuti eocydapemeennoti yrusepcumem umernu Bepdaxa, Hykyc, Yabexucman

O cxoamMOCTH Pa3HOCTHBIX CXE€M ITOBBIIIIEHHON TOYHOCTH AJISI OJHOTO
ICEeBA0NaPadOoIMYIECKOT0 YPaBHEHNSI COD0OJIEBCKOIO THUIIA

IIpenaoxkensb! u nccIeqOBAHbBI PA3INYHBIE PA3HOCTHBIE CXEMBI METOIA KOHEUYHBIX PA3HOCTEN U METO/Ia KOHEY-
HBIX 3JIEMEHTOB BBICOKOTO MOPSIIKA TOYHOCTH IO BPEMEHU U IO IIPOCTPAHCTBY JIJIA IICEBIOIapa00IIMIECKOTO
ypaBHeHUsT cO60JIeBCKOro Tuma. 11oBbINEHNEe TOPsIKA TOYHOCTH 10 MPOCTPAHCTBY OCYINECTBJIEHO JIBYMSI
crrocobaMm: MEeTOOM KOHEYIHBIX PA3HOCTEH W METOIOM KOHEUYHBIX JIEMEHTOB. BBICOKUIT MOPSIOK TOYHOCTH
CXeMBbI TI0 BPEMEHHU JOCTHUTHYT 3a CYET CIENUAJbHON AUCKPETU3AIUU BpeMeHHO# mepeMenHoi. [losyuenst
COOTBETCTBYIOIIIVE AIIPUOPHBIE OIIEHKH, U HA UX OCHOBE OIIEHKN TOYHOCTHU IIPEJJIOZKEHHBIX PA3HOCTHBIX CXeM
MIpU JTOCTATOYHON TJIAJKOCTH PEIeHHsI UCXOMHON muddepeHImaabHoi 3a1a4un. Peann30BaHbl aaropuTMbl
BBINOJIHEHUA MOCTPOEHHBIX Pa3HOCTHBIX CXEM.

Karouesvie crosa: mceBaonapaboOIMIecKoe ypaBHEHHE, PA3HOCTHBIE CXEMBbI, METOJI KOHEYHBIX PAa3HOCTEH,
METO/T KOHEYHBIX 3JIEMEHTOB, OOOOIIEHHBIE PEIIEHNs], AIIPUOPHBIE OIIEHKH, YCTOWIMBOCTD, CXOJIUMOCTh, TOY-
HOCTb.
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