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An initial boundary value problem for
the Boussinesq equation in a Trapezoid

This paper considers an initial boundary value problem for a one-dimensional Boussinesq-type equation
in a domain, that is, a trapezoid. Using the methods of the theory of monotone operators, we establish
theorems on their unique weak solvability in Sobolev classes.
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Introduction

The theory of the Boussinesq equations and its modifications always attracts the attention of both
mathematicians and applied scientists. The Boussinesq equation, as well as its modifications, occupies
an important place in describing the motion of liquids and gas, including in the theory of unsteady
filtration in porous media. Here we note only the works [1-6]. In recent years, boundary problems for
these equations have been actively studied, since they model processes in porous media. The processes
occurring in porous media acquire special importance for deep understanding in the tasks of exploration
and effective development of oil and gas fields.

In this paper, we study the issues of the correct formulation of initial boundary value problems
for a one-dimensional Boussinesqg-type equation in a domain with a movable boundary. The domain is
represented by a trapezoid. Using the method of monotone operators, we prove theorems on the unique
weak solvability of the considered boundary value problems.

1 Statement of the initial boundary problem and the main result

Let Q = {0 < x < t}, and 9€; be the boundary of Q, 0 < tg < T < oo. In domain Q. =
Qy x (to,T), i.e., a trapezoid, we consider the initial boundary problem for the Boussinesqg-type equation

Oru — 0y (|u|Ozu) = f, {z,t} € Qut, (1.1)
with boundary
u =0, {I’,t} € Yt = 00y X (to,T), (12)
and initial conditions
u=mwug, =€ Qy = (0,t), (1.3)

where f(x,t), ug(x) are given functions.
We have established the following theorems.
Theorem 1.1 (Main result). Let

[ € Lgs((to, T); Wg;é(Qt))a up € H™1 ().
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Then initial boundary problem (1.1)—(1.3) has a unique solution

u e Lg(th)

Theorem 1.2 (On smoothness). Let

f € L3a(Qut), uo € La().
Then initial boundary problem (1.1)—(1.3) has a unique solution
€ Loo((to, T); La()),  ul'?u € La((to, T); Ho (%)), Oeu € Laja((to, T); W ().
2 Auxiliary initial boundary problem in a rectangle

To prove Theorem 1.1, we first consider an auxiliary initial boundary value problem. For this
purpose, we pass from variables {z,t} to {y,t} by formulas y = %, t = ¢ and transform the trapezoid
Q¢ into the rectangular domain Qu = Q x (to,7), 0 < tg < T < oo, where y € Q =
= (0,1), 992 = {0} U {1}, ¥z = 92 X (to,T). This transformation is one-to-one. Introducing the
notation w(y,t) = u(yt,t) = w($,t), wo(y) = uo(yto, to) and g(y,t) = f(yt,t), we write the auxiliary
initial boundary value problem for (1.1)—(1.3) in the following form:

1 )
Ow — 50y (Jwldyw) — S0yw =g, {y,t} € Qu, (2.1)
w=0, {y,t} € Sy, (22)

By virtue of the one-to-one transformation of independent variables {z,t} — {y,t} the given
functions in problem (2.1)-(2.3) obviously satisfy the conditions:

g € Lzys((to, T); W.

3/2(0 1)), wo € H'(0,1). (2.4)

The following theorems are true.
Theorem 2.1 Under conditions (2.4) initial boundary value problem (2.1)—(2.3) is uniquely solvable

w € L3(Qye).
Theorem 2.2 (On smoothness). Let
g € L3a(Qyt), wo € La().
Then initial boundary problem (2.1)—(2.3) has a unique solution

w € Loo((t0, T); La(Q)),  |w|"?w € La((to, T); H3 (), 94w € Laa((to, T); W;/;(Q)).

8 Auziliary statements

To prove Theorem 2.1, we first establish a number of auxiliary statements. Denote by A the operator
of problem (2.1)—(2.3)

1 1
A(t,w) = t—zAl(w) + ZAQl(w)’ where A;(w) = —0,(|w|0yw), Az(w)= —yd,w, (3.1)

and the operator Az(w) can be represented as:

As(w) = Agi(w) + Aga(w), where Asi(w) =w, Ap(w) = —0,(yw). (3.2)
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Let us show that the operator A;(w)+ Aaj(w) will have the monotonicity property if we introduce
the scalar product in an appropriate way. For this purpose, we take as a scalar product

1
o) = [ e[(-a3) o), v e @), (33)

-1

where di = %, ) = (—dz) (L —d?,d; =, 4(0) = P(1) = 0,V¢ € H ().

Let us show the validity of the following lemma.
Lemma 3.1. The operator A; + As; is monotone in the sense of the scalar product (3.3) in the space
H~1(0,1), i.e., the following inequality is true:

<(A1 + Agl)(’wl) — (Al + A21)(w2),w1 — U]2> >0, Vwi,ws € @(Q) (34)

To the proof of Lemma 3.1. It suffices for us to show that the operator A; is monotone and condition
(3.4) will be satisfied (according to |7], chap. 2, s. 3.1). Indeed, on the one hand, we have

1
(1(0) = An(w)o = 0) = 5 [ (=) el = 0l) (=)™ (o = ) dy =

2

On the other hand, the convexity condition of the functional
1 o
Jilp) =5 Jy le@)*dy, » € D(Q), implies

(J1(0) = J1(¥), 0 =) >0, Vo, h € D(Q).

1
=1/0 (lelo — [¥l0) (0 — ) dy, Yo, b € D).

Thus, we get
1

[tele = t)e = v)dy 20, Ve, v e D).
0
For the operator Ag; according to scalar product (3.3) we have:

1
(Ag1(p),v) = /sm,f)dyz
0
1 1
_ /gp(—di)llﬁdy - / ((-df,)*1 cp) bdy, Yo, €DQ), (3.5)
0 0

where 1) is the solution to the following problem: —dzﬁ =1, QZ)(O) = @Z)(l) =0.
Let us introduce the convex functional

1 [t -t 12
Jor () = 2/ [(—dy) 2 u} dy. (3.6)
0
For the Gateaux derivative of functional (3.6) we have
-1
Ty () = (=d3) " u, (3.7)

that is, taking into account (3.7), we obtain the following convexity conditions of functional (3.6):

1
(b (u) — Jhy (v),u — v) = /0 [(—dgj)*1 (u — v)} (u—v)dy >0 Yu,v € D(Q). (3.8)
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Remark 3.1. On the other hand, inequality (3.8) is a consequence of the positivity of the operator

(—di)_l. Further, based on relations (3.5) and (3.8), we establish that the following monotonicity

condition holds for operator As;:
(A21(t,u) — Ag1(t,v),u —v) >0 Yu,v € D(Q), VteE (to,T).
Thus, we have shown the validity of statement (3.4) of Lemma 3.1.
4 To the proof of Theorem 2.1

Let us preliminarily note that the nonlinear operator A(t,v) = (0.5t 2A1+t "' Ag1)v : L3(Q) — Lg3o(Q)
(3.1)—(3.2) of boundary value problem (2.1)—(2.2) has the following properties:

A(t,v) : L3(Q2) — Lg/2(Q?) is a hemicontinuous operator, (4.1)
1At )15 < cllvll,y0)s >0, Vo€ Ly(9), (4.2)
(A(T,v),v) > aHv||%3(Q), a>0, Yve L3(Q). (4.3)

This follows directly from Lemma 4.1, as well as from ([7], Chap. 2, Proposition 1.1).
Recall the definition of a hemicontinuous operator.
Definition 4.1. Every operator B : V — V'’ having the following property:

Vu,v,w €V function A = (B(u+ Av),w) is continuous as a function from R to R,

is called hemicontinuous.
Now we take as the main space:

H = H_I(Q)’ (ua U)H = (ua (7d121)—1,0) ) (44)
where (—dz)_lv = 0 is the solution to problem
25 _ S0 — (1) — -1
—dyv=v, 9(0)=9(1)=0, ve H (Q). (4.5)
Further, we have
V=1L3(Q), VcHCcCV, (4.6)

where each embedding is dense and continuous. In notation (4.4)—(4.6), we introduce a linear continuous
functional
L(v) = (g,v) = (g,7), i.e. the element g € L3/5(2) is defined.

Finally, we introduce

1
a(t’u7 U) = <A(t7 u)’v> = / |:21t2|u’u1} + % (—dz)_l U’U:| dy, \V/U,U S Lg(Q)
0

We have )

)

-1/2 u‘
L2(Q)

1 1
alty ) = (At w0 = 5l o + 7 | (-)

and
a(t,u,u —v) —a(t,v,u—v) >0 Vte (ty,T), (4.7)
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where the form a(t,u,v) corresponds to variational inequalities (3.4) and (3.8). Now, using (4.7), we
obtain the following variational formulation for initial boundary problem (2.1)—(2.3):

(w'(t),v) g + a(t,w(t),v) — b(t,w(t),v) = (9(t),v) Yv € Lz(Q) € H (), (4.8)

w(0) = wo, (4.9)
where b(t,w(t),v) =t~ { A (w),v).
We show that relations (4.8), (4.9) admit unique solvability.

4.1 Existence of the solution

Let us show that variational problem (4.8) and (4.9) has a solution. We will use the Faedo-Galerkin
method. Let vy, ..., 0y, ... be a "basis" in the space L3(2). According to relations (4.8) and (4.9), we
define an approximate solution wy,(t) of initial boundary value problem (2.1)-(2.3) on a subspace
[v1, ..., U] spanned by vy, ..., vy,

(Wi (£),v5) + alt, wn (1), v5) = b(t, wm(t),v5) = (9(t),v5), 1 <j<m, (4.10)

Wi (0) = Wom € [V1, ey U, Wom — wo in HH(Q). (4.11)

From equations (4.10)—(4.11), wy,(t) is determined on the interval [to, t,,], tm > to. However, due
to the validity of inequality (4.3) (A(t,v),v) > aHvHiS(Q), a > 0, from (4.10)—(4.11) we obtain

t t

1 C

Slum @00+ @ [ T (e 7 < 52 [ o DI o () gy dr+
to to

t
1
[ 19ty 10 () ) 7+ 5 ol -1 (4.12)
to

since )
[b(t, Wi (), wm (t))] < P [ A22wm (#)ll ., o (0) 0m ()]l Lae),

[Ag2wm ($)l L, ) < Collwm(B)llL, 50,

Cy 8 (o) 32 @ 3
Eme(t)HL:&/z(Q)me(t>HL3(Q) < ov3a \to me(t)HL3/2(9) + Zme(t)HLs(Q) <
8 O\ 32 3/4 ¢
< o=k (2] [lum@Bse) " + 1o Ol 0

where K is the embedding constant of (H_I(Q))/ — L3/2(Q2), since by assumptions (4.4) and (4.6):
L3() c HY(Q) = (H*I(Q))/ C Lg)p(Q) = (L3(2))" . Here we also use Young’s inequality (p~—! +
g t=1):
B d d
— (q\/P Va2 V| < 24P+ & 1B|Y
48] = (@) (@) < Sap + S pr,
where

2
A . lwm )L, )0 B = lwm@)lpy0), d= Jia PT 3/2, ¢=3.
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We have similar calculations for the expression from (4.12):

8 34«
901l (D10 < 5= K [loOlie]  + Glom Do

Now, using a variant of Bihari’s lemma from ([8], Chapter 1, p.1.3, Example 1.3.1; it is important
here that 3/4 < 1), it follows from (4.12) that ¢,, = T and that

wy, (t) are bounded in Leo((to, T); H™H(2)) N L3(Qye)-

Hence, we can extract such a subsequence of w,(t) that
w, — w *-weak in Loo((to, T); H (),
wy, — w weak in L3(Qy),
w,(T) — ¢ weak in H™1(Q),

A(t,wy) — x(t) weak for almost every t € (tg,7") in L3/2(Qyt),

due to condition (4.2) [[A(t,v)|L, @) < CH’UHL @ ¢ > 0, and hence A(t,w,) are bounded in

L3 5(Qyt)-
We extend wy, (t), A(t, wm(t)),... on the real axis with zero outside the interval [tg, T], and denote

the corresponding continuations by Wy, (t), A(t,wm(t)),... It follows from (4.10)—(4.11) that

—_—

(@ (1),07) g + (At wm (1)), 03) — £ { Az (8), v}) =
- (g(t)’ Uj) + (wﬁma Uj)5<t - tO) - (wm(T)v vj)(s(t - T)' (4'13)
Now we can pass to the limit in (4.13) at m = p and fixed j, whence we have
(@' (£),05) yy + (X(8) =t Aggw(t), v5) = (§(t), v;) + (w0, v;)8(t — to) — (& 05)8(t = T) Vj

and hence
W' (t) + X(t) — t 7 Agow(t) = §(t) + wod(t — 0) — £5(t — T). (4.14)
By restricting (4.14) (to,T'), we get that

w'(8) + x(8) — t7 Azpuw(t) = g(t), (4.15)

from where w'(t) € L3/2(Qyt), hence w(to) and w(T) make sense, and comparing with (4.14), we get
that w(ty) = wp and w(T) = £. So, we will prove the existence of a solution if we show that

x(t) = A(t,w). (4.16)

From property (3.4), i.e., (4.7), it follows that

T
:/ (twu(t)) — At v(t)), wu(t) — v(t)) dt >0 Yo € Ls(Qy). (4.17)
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According to (4.10)-(4.11),

T T T
Jeat ) w it = [ Az 0, wu0)dt+ (00,0 de+ ol — 5l D10
to to to
(4.18)
and, therefore,
T
X = [(g.wa)dt+ Gluolrosiey — 5 10u) B+
' 2 () o™k H-1(Q)
to
T T T
+/t‘1<A22wH, w,) dt — /(A(t,wu), oy di — /(A(t, o)y, —v)) dt,
to to to
whence (since lim inf Hw#(T)H%I_l(Q) > Hw(T)leq_l(Q)):
T
i sup X, < [ (9,10)dt+ 5 JunlBy ) — 5 () s+
to
T T T
+/t‘1<A22w, w) dt — /(X(t),v> dt — /(A(t,v),w o)) dt. (4.19)
to to to
From (4.15) we can conclude, since integration by parts is legal, that
T T T
[t sy des [ (g.w)dt+ Slunlly v — 5l = [
to to to
Comparing this equality with (4.17) and (4.19), and also considering (4.18), we get
T
/(X(t) — A(t,v),w —v)dt > 0. (4.20)
to

Now we use the hemicontinuity property (4.1) of the operator A(t,w) to prove that (4.20) implies
(4.16). Let v =w — Au, A >0, u € L3(Qy); then it follows from (4.20) that

T
)\/(X(t) — A(t,w — Au),u) dt > 0,

whence
T

/ () — At w — ), ) dt > 0; (4.21)
to
when A\ — 0 in (4.21), then we get that

T
/<x(t) — A(t,w),u)dt >0 Yu.

to

Therefore, x(t) = A(t,w). The existence of a solution to problem (2.1) and (2.3) is proved.
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4.2 Uniqueness of the solution

Let wi(t) and wa(t) be two solutions to problem (4.8)-(4.9). Then their difference w(t) = w1 (t) —
way(t) satisfies the homogeneous problem:

w' () + A(t,wi(t)) — A(t,wa(t)) — tF Agew(t) = 0, w(0) =0,

(w'(£), w(t)) + ((A(t, wi(t)) = A(t, wa(t)), wi(t) — wa(t)) =t~ {(Azw(t), w(t)) =0
and, due to (4.12) and the monotonicity property of the operator A(t,w), we have:

(0 (@0,0(0) = 3 010y < 2 [0y e w(t) =0,

where K is the norm of the operator (—dg) vz, H=YQ) = [H{(Q); H ()]
is an intermediate space [9].

Remark 4.1. Let us give the interpretation of the solution to problem (4.8)-(4.9) as the solution to
problem (2.1)—(2.3). By introducing v in (4.8), we obtain

1/2° [HS(Q)v H_I(Q)]1/2

1 1
- - 1 1 -
/@wvdy—k/[ 752]w|w—i— ( 8;) lw—i-%(—@g) 2 (yw) (—851)) dy =
0 0

1
= /g(t)ﬁdy, Vo € Hy(Q).
0

Hence, from here we have

1 1
1 1 - 1 —1
/ <8tw 82 [2752 |w|w + n (—85) Y+ : (—612/) 2 (yw)]) vdy = /g(t)f) dy+
0 0

K\J\)—'

1 2 2

+[;t2lwlw+t(—ay)—1w+1(—ay) (yw}@v} Vo € Hy(Q). (4.22)

Or, taking into account equality (3.5), the last identity can be written in the following form
1
1 Yy . 8
/ <3tw 20 Oy (lw|0yw) — n Oyw — g(t)> 0dy =0 Vv eD(Q), (4.23)
0

that is, the function w(y,t) satisfies a Boussinesq type equation (2.1). Now, returning to (4.22) and
taking into account (4.23), we get

l\:)\»—‘

1 1 _ 1
[%gywm—kt(_az) 1w+;(—8§) (yw]@vh =0 Vi€ HY(Q),

1 1 -1 1

K)\)—l

2 (yw) ] 0 U!l ,=0Voe HY(Q).
The last equalities imply the fulfillment of boundary conditions (2.2). Finally, from the continuity of

the function w : [tg,T] — H we get that initial condition (2.3) makes sense. This completes the proof
of Theorem 4.2.
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5 To the proof of Theorem

Since the transformation of independent variables {z,t} — {y,t} is one-to-one, there is a mutual
correspondence of functional classes defining the given functions and solutions of initial boundary value
problems. Therefore, from Theorem 2.1 we obtain the validity of the statement of Theorem 1.1 in terms
of the existence of a solution to initial boundary value problem (1.1)-(1.3). Let us show the validity of
the assertion of Theorem 1.1 in terms of the uniqueness of the solution to problem (1.1)—(1.3).

We show that the operator A;(t,u) in problem (1.1)—(1.3) will have the monotonicity property if
a scalar product is introduced accordingly. For this purpose, we take as the scalar product

o) = [ o [(a2) o] dn, Veorw e HTU@), Ve (o) (1)

where d2 = &5 ) = (=d2) " w1 —d20 =, $(0) = (t) = 0,y € H™(Q), Vte (to,T).

The following lemma is valid.
Lemma 5.1. Operator Aj(t,u) is monotone in the sense of the scalar product (5.1) in the space
H~1(€y), i.e., the following inequalities hold:

<A1(t,u1) — Al(t,uQ),ul — u2> >0, Yui,us € @(Qt), Vte (to,T). (5.2)

To the proof of Lemma 5.1. For each t € (tyo,T) operator A; is monotone and condition (5.2) is
satisfied (according to |7|, chap. 2, p. 3.1). Indeed, on the one hand, we have

(iltp) = Atw)o =) = 5 [ (~d) (el = ol) () (o = ¥) d =

Q

1
=5 [ (ole = 10lu)(e = ) da, Y. 6 € D@, VEE (10, 7).

t

On the other hand, the convexity condition of the functional J(¢,¢) = %fﬂt lo(x)Pdx, ¢ €
D(), YVt e (to,T), implies

<J,(t7 (10) - Jl@ﬂ/’)v@ - ¢> >0, V% TIZ) S Q(Qt)a Vit e (t07T)'

Thus, we get

[l = 0t = v 20, Ve, v € D), Vi€ (10,7,
Q
that is, inequality 5.2 is established. Lemma 5.1 is proved.
Now we are ready to show the uniqueness of the solution to problem (1.1)—(1.3). To do this, using

inequality (5.2), we obtain the following variational formulation for initial boundary problem (1.1)—
(1.3):

(W' (£),0) 10y + ao(t, u(t),v) = (F(E),0) 10,y Vo € La(0,8) € H (), Vi€ (to,T),  (5.3)

U(to) = Uup, (54)
where

ap(t,u,v) = (A1(t,u(t)),v) = / lu(z, t)| u(z, t)v(x)de, VYt e (to,T).
Q

Let w3 (t) and ua(t) be two solutions to problem (5.3)—(5.4). Then their difference u(t) = w1 (t) — ua(t)
satisfies the homogeneous problem:

(u'(t), u(t))H—l(Qt) + (A1(t,ui(t)) — Ar(t,ua(t)),u(t)) =0, Vt e (to,T); u(0) =0,
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and, due to the monotonicity property of the operator A;(t,u) (5.2), we have:

d .
(u/(t),u(t))Hfl(Qt) = Q—Cﬁnu(t)ﬂfq,l(ﬂt) <0, ie. u(t)=0.

Thus, Theorem (1.1) is completely proved.
Conclusions

The initial boundary value problems for a one-dimensional Boussinesq type equation in a trapezoid
domain are studied. Theorems on their unique weak solvability in Sobolev classes are proved by methods
of the theory of monotone operators.
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ecen KapacTbipblirad. CoboJeB KIacTapblHIaFbl OJIap/IbIH Hipereil 0JIci3 MeIiIeTIHIr Ty paJibl TeopeMaJiap
MOHOTOHJIBI OIIEPATOPJIAP TEOPHUSICHIHBIH, 9/IiCTEPIMEH AHBIKTAJIFAH.

Kiam cesdep: Byccuneck Tunti Tenjiey, meKapaJsiblK, €cell, Tpaleysi, MOHOTOH/IbI OIlepaTopJiap TEOPHUSCHI.

M.T. Tzxkenamues!, A.C. Kacoimbexosa!, M.I". Eprammes!, A.A. Aceros?

! Huemumym mamemamuru u mamemamureckozo modeauposarnus, Aimamo, Kazazcman;
2 Kapazandunckuti ynusepcumem umeny axademura E.A. Byxemosa, Kapazanda, Kazaxcman

Ha‘{aﬂbHO-FpaHI/I‘{Haﬂ 3adava AJid ypaBHEHU:d
TUIIA& ByCCI/IHeCKa, B Tpalienmuu

B crarpe paccmorpena madagbHO-TpaHWYHAsS 3aada JJIsi OJHOMEPHOrO ypaBHeHHUsi Tuna bByccumecka B
obJracTy, IpesCTaBIAmEel coboit Tpamenuio. MeTonaMu Teopur MOHOTOHHBIX OIIEPATOPOB yCTAHOBJIEHBI
TeopeMbl 00 MX OJHO3HAYHOH C1ab0il Pa3PEenInMOCTH B CODOJIEBCKUX KJIACCAX.

Kmouesvie caosa: ypaBHeHne Tuna bByccumHecKa, TpaHUYHAs 3aJa4a, TPAlelus, TEOPUU MOHOTOHHBIX OITe-
PaToOpOB.
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