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An initial boundary value problem for
the Boussinesq equation in a Trapezoid

This paper considers an initial boundary value problem for a one-dimensional Boussinesq-type equation
in a domain, that is, a trapezoid. Using the methods of the theory of monotone operators, we establish
theorems on their unique weak solvability in Sobolev classes.
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Introduction

The theory of the Boussinesq equations and its modifications always attracts the attention of both
mathematicians and applied scientists. The Boussinesq equation, as well as its modifications, occupies
an important place in describing the motion of liquids and gas, including in the theory of unsteady
filtration in porous media. Here we note only the works [1–6]. In recent years, boundary problems for
these equations have been actively studied, since they model processes in porous media. The processes
occurring in porous media acquire special importance for deep understanding in the tasks of exploration
and effective development of oil and gas fields.

In this paper, we study the issues of the correct formulation of initial boundary value problems
for a one-dimensional Boussinesq-type equation in a domain with a movable boundary. The domain is
represented by a trapezoid. Using the method of monotone operators, we prove theorems on the unique
weak solvability of the considered boundary value problems.

1 Statement of the initial boundary problem and the main result

Let Ωt = {0 < x < t}, and ∂Ωt be the boundary of Ωt, 0 < t0 < T < ∞. In domain Qxt =
Ωt×(t0, T ), i.e., a trapezoid, we consider the initial boundary problem for the Boussinesq-type equation

∂tu− ∂x (|u|∂xu) = f, {x, t} ∈ Qxt, (1.1)

with boundary
u = 0, {x, t} ∈ Σxt = ∂Ωt × (t0, T ), (1.2)

and initial conditions
u = u0, x ∈ Ωt0 = (0, t0), (1.3)

where f(x, t), u0(x) are given functions.
We have established the following theorems.
Theorem 1.1 (Main result). Let

f ∈ L3/2((t0, T );W−1
3/2(Ωt)), u0 ∈ H−1(Ωt0).
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Then initial boundary problem (1.1)–(1.3) has a unique solution

u ∈ L3(Qxt).

Theorem 1.2 (On smoothness). Let

f ∈ L3/2(Qxt), u0 ∈ L2(Ωt0).

Then initial boundary problem (1.1)–(1.3) has a unique solution

u ∈ L∞((t0, T );L2(Ωt)), |u|1/2u ∈ L2((t0, T );H1
0 (Ωt)), ∂ tu ∈ L3/2((t0, T );W−1

3/2(Ωt)).

2 Auxiliary initial boundary problem in a rectangle

To prove Theorem 1.1, we first consider an auxiliary initial boundary value problem. For this
purpose, we pass from variables {x, t} to {y, t} by formulas y = x

t , t = t and transform the trapezoid
Qxt into the rectangular domain Qyt = Ω × (t0, T ), 0 < t0 < T < ∞, where y ∈ Ω =
= (0, 1), ∂Ω = {0} ∪ {1}, Σxt = ∂Ω × (t0, T ). This transformation is one-to-one. Introducing the
notation w(y, t) = u(yt, t) = w(xt , t), w0(y) = u0(yt0, t0) and g(y, t) = f(yt, t), we write the auxiliary
initial boundary value problem for (1.1)–(1.3) in the following form:

∂tw −
1

t2
∂y (|w|∂yw)− y

t
∂yw = g, {y, t} ∈ Qyt, (2.1)

w = 0, {y, t} ∈ Σyt, (2.2)

w = w0, y ∈ Ω. (2.3)

By virtue of the one-to-one transformation of independent variables {x, t} → {y, t} the given
functions in problem (2.1)–(2.3) obviously satisfy the conditions:

g ∈ L3/2((t0, T );W−1
3/2(0, 1)), w0 ∈ H−1(0, 1). (2.4)

The following theorems are true.
Theorem 2.1 Under conditions (2.4) initial boundary value problem (2.1)–(2.3) is uniquely solvable

w ∈ L3(Qyt).

Theorem 2.2 (On smoothness). Let

g ∈ L3/2(Qyt), w0 ∈ L2(Ω).

Then initial boundary problem (2.1)–(2.3) has a unique solution

w ∈ L∞((t0, T );L2(Ω)), |w|1/2w ∈ L2((t0, T );H1
0 (Ω)), ∂ tw ∈ L3/2((t0, T );W−1

3/2(Ω)).

3 Auxiliary statements

To prove Theorem 2.1, we first establish a number of auxiliary statements. Denote by A the operator
of problem (2.1)–(2.3)

A(t, w) =
1

t2
A1(w) +

1

t
A21(w), where A1(w) = −∂y(|w|∂yw), A2(w) = −y∂yw, (3.1)

and the operator A2(w) can be represented as:

A2(w) = A21(w) +A22(w), where A21(w) = w, A22(w) = −∂y(yw). (3.2)
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Let us show that the operator A1(w) +A21(w) will have the monotonicity property if we introduce
the scalar product in an appropriate way. For this purpose, we take as a scalar product

〈ϕ,ψ〉 =

∫ 1

0
ϕ
[(
−d 2

y

)−1
ψ
]
dy, ∀ϕ,ψ ∈ H−1(Ω), (3.3)

where d 2
y = d2

dy2
, ψ̃ =

(
−d 2

y

)−1
ψ : −d 2

yψ̃ = ψ, ψ̃(0) = ψ̃(1) = 0, ∀ψ ∈ H−1(Ω).
Let us show the validity of the following lemma.
Lemma 3.1. The operator A1 +A21 is monotone in the sense of the scalar product (3.3) in the space

H−1(0, 1), i.e., the following inequality is true:

〈(A1 +A21)(w1)− (A1 +A21)(w2), w1 − w2〉 ≥ 0, ∀w1, w2 ∈ D(Ω). (3.4)

To the proof of Lemma 3.1. It suffices for us to show that the operator A1 is monotone and condition
(3.4) will be satisfied (according to [7], chap. 2, s. 3.1). Indeed, on the one hand, we have

〈A1(ϕ)−A1(ψ), ϕ− ψ〉 =
1

2

∫ 1

0

(
−d2

y

)
(|ϕ|ϕ− |ψ|ψ)

(
−d2

y

)−1
(ϕ− ψ) d y =

=
1

2

∫ 1

0
(|ϕ|ϕ− |ψ|ψ)(ϕ− ψ) d y, ∀ϕ, ψ ∈ D(Ω).

On the other hand, the convexity condition of the functional
J1(ϕ) = 1

3

∫ 1
0 |ϕ(y)|3 d y, ϕ ∈ D(Ω), implies

〈J ′1(ϕ)− J ′1(ψ), ϕ− ψ〉 ≥ 0, ∀ϕ, ψ ∈ D(Ω).

Thus, we get
1∫

0

(|ϕ|ϕ− |ψ|ψ)(ϕ− ψ) d y ≥ 0, ∀ϕ, ψ ∈ D(Ω).

For the operator A21 according to scalar product (3.3) we have:

〈A21(ϕ), ψ〉 =

1∫
0

ϕψ̃ dy =

=

1∫
0

ϕ
(
−d2

y

)−1
ψ dy =

1∫
0

((
−d2

y

)−1
ϕ
)
ψ dy, ∀ϕ, ψ ∈ D(Ω), (3.5)

where ψ̃ is the solution to the following problem: −d 2
yψ̃ = ψ, ψ̃(0) = ψ̃(1) = 0.

Let us introduce the convex functional

J21(u) =
1

2

∫ 1

0

[(
−d 2

y

)− 1
2 u
]2

dy. (3.6)

For the Gateaux derivative of functional (3.6) we have

J ′21(u) =
(
−d 2

y

)−1
u, (3.7)

that is, taking into account (3.7), we obtain the following convexity conditions of functional (3.6):

〈J ′21(u)− J ′21(v), u− v〉 =

∫ 1

0

[(
−d 2

y

)−1
(u− v)

]
(u− v) dy ≥ 0 ∀u, v ∈ D(Ω). (3.8)
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Remark 3.1. On the other hand, inequality (3.8) is a consequence of the positivity of the operator(
−d 2

y

)−1. Further, based on relations (3.5) and (3.8), we establish that the following monotonicity
condition holds for operator A21:

〈A21(t, u)−A21(t, v), u− v〉 ≥ 0 ∀u, v ∈ D(Ω), ∀ t ∈ (t0, T ).

Thus, we have shown the validity of statement (3.4) of Lemma 3.1.

4 To the proof of Theorem 2.1

Let us preliminarily note that the nonlinear operatorA(t, v) ≡ (0.5 t−2A1+t−1A21)v : L3(Ω)→ L3/2(Ω)
(3.1)–(3.2) of boundary value problem (2.1)–(2.2) has the following properties:

A(t, v) : L3(Ω)→ L3/2(Ω) is a hemicontinuous operator, (4.1)

‖A(t0, v)‖L3/2(Ω) ≤ c‖v‖2L3(Ω), c > 0, ∀ v ∈ L3(Ω), (4.2)

〈A(T, v), v〉 ≥ α‖v‖3L3(Ω), α > 0, ∀ v ∈ L3(Ω). (4.3)

This follows directly from Lemma 4.1, as well as from ([7], Chap. 2, Proposition 1.1).
Recall the definition of a hemicontinuous operator.
Definition 4.1. Every operator B : V → V ′, having the following property:

∀u, v, w ∈ V function λ→ 〈B(u+ λv), w〉 is continuous as a function from R to R,

is called hemicontinuous.
Now we take as the main space:

H = H−1(Ω), (u, v)H =
(
u, (−d2

y)
−1v
)
, (4.4)

where (−d2
y)
−1v = ṽ is the solution to problem

−d2
yṽ = v, ṽ(0) = ṽ(1) = 0, v ∈ H−1(Ω). (4.5)

Further, we have
V = L3(Ω), V ⊂ H ⊂ V ′, (4.6)

where each embedding is dense and continuous. In notation (4.4)–(4.6), we introduce a linear continuous
functional

L(v) = 〈g, v〉 = (g, ṽ), i.e. the element g ∈ L3/2(Ω) is defined.

Finally, we introduce

a(t, u, v) = 〈A(t, u), v〉 =

1∫
0

[
1

2 t2
|u|uv +

1

t

(
−d2

y

)−1
uv

]
dy, ∀u, v ∈ L3(Ω).

We have
a(t, u, u) = 〈A(t, u), u〉 =

1

2 t2
‖u‖3L3(Ω) +

1

t

∥∥∥(−d2
y

)−1/2
u
∥∥∥2

L2(Ω)
,

and
a(t, u, u− v)− a(t, v, u− v) ≥ 0 ∀ t ∈ (t0, T ), (4.7)
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where the form a(t, u, v) corresponds to variational inequalities (3.4) and (3.8). Now, using (4.7), we
obtain the following variational formulation for initial boundary problem (2.1)–(2.3):

(w′(t), v)H + a(t, w(t), v)− b(t, w(t), v) = (g(t), v) ∀ v ∈ L3(Ω) ⊂ H−1(Ω), (4.8)

w(0) = w0, (4.9)

where b(t, w(t), v) = t−1〈A22(w), v〉.
We show that relations (4.8), (4.9) admit unique solvability.

4.1 Existence of the solution

Let us show that variational problem (4.8) and (4.9) has a solution. We will use the Faedo-Galerkin
method. Let v1, ..., vm, ... be a "basis" in the space L3(Ω). According to relations (4.8) and (4.9), we
define an approximate solution wm(t) of initial boundary value problem (2.1)–(2.3) on a subspace
[v1, ..., vm] spanned by v1, ..., vm:

(w′m(t), vj) + a(t, wm(t), vj)− b(t, wm(t), vj) = (g(t), vj), 1 ≤ j ≤ m, (4.10)

wm(0) = w0m ∈ [v1, ..., vm], w0m → w0 in H−1(Ω). (4.11)

From equations (4.10)–(4.11), wm(t) is determined on the interval [t0, tm], tm > t0. However, due
to the validity of inequality (4.3) 〈A(t, v), v〉 ≥ α‖v‖3L3(Ω), α > 0, from (4.10)–(4.11) we obtain

1

2
‖wm(t)‖2H−1(0,1) + α

t∫
t0

‖wm(τ)‖3L3(Ω) dτ ≤
C2

t0

t∫
t0

‖wm(τ)‖3L3/2(Ω)‖wm(τ)‖L3(Ω) dτ+

+

t∫
t0

‖g(τ)‖L3/2(Ω)‖wm(τ)‖L3(Ω) dτ +
1

2
‖w0m‖2H−1(Ω), (4.12)

since
|b(t, wm(t), wm(t))| ≤ 1

t0
‖A22wm(t)‖L3/2(Ω) ‖wm(t)‖L3(Ω),

‖A22wm(t)‖L3/2(Ω) ≤ C2‖wm(t)‖L3/2(Ω),

C2

t0
‖wm(t)‖L3/2(Ω)‖wm(t)‖L3(Ω) ≤

8

9
√

3α

(
C2

t0

)3/2

‖wm(t)‖3/2L3/2(Ω) +
α

4
‖wm(t)‖3L3(Ω) ≤

≤ 8

9
√

3α
K3/2

(
C2

t0

)3/2 [
‖wm(t)‖2H−1(Ω)

]3/4
+
α

4
‖wm(t)‖3L3(Ω),

where K is the embedding constant of
(
H−1(Ω)

)′
↪→ L3/2(Ω), since by assumptions (4.4) and (4.6):

L3(Ω) ⊂ H−1(Ω) ≡
(
H−1(Ω)

)′ ⊂ L3/2(Ω) ≡ (L3(Ω))′ . Here we also use Young’s inequality (p−1 +
q−1 = 1) :

|AB| =
∣∣∣∣(d1/pA

)(
d1/qB

d

)∣∣∣∣ ≤ d

p
|A|p +

d

qdq
|B|q ,

where
A =

C2

t0
‖wm(t)‖L3/2(Ω) , B = ‖wm(t)‖L3(Ω) , d =

2√
4α

, p = 3/2, q = 3.
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We have similar calculations for the expression from (4.12):

‖g(t)‖L3/2(Ω)‖wm(t)‖L3(Ω) ≤
8

9
√

3α
K3/2

[
‖g(t)‖2H−1(Ω)

]3/4
+
α

4
‖wm(t)‖3L3(Ω).

Now, using a variant of Bihari’s lemma from ([8], Chapter 1, p.1.3, Example 1.3.1; it is important
here that 3/4 < 1), it follows from (4.12) that tm = T and that

wm(t) are bounded in L∞((t0, T );H−1(Ω)) ∩ L3(Qyt).

Hence, we can extract such a subsequence of wµ(t) that

wµ → w ∗ -weak in L∞((t0, T );H−1(Ω)),

wµ → w weak in L3(Qyt),

wµ(T )→ ξ weak in H−1(Ω),

A(t, wµ)→ χ(t) weak for almost every t ∈ (t0, T ) in L3/2(Qyt),

due to condition (4.2) ‖A(t, v)‖L3/2(Ω) ≤ c‖v‖2L3(Ω), c > 0, and hence A(t, wµ) are bounded in
L3/2(Qyt).

We extend wm(t), A(t, wm(t)), ... on the real axis with zero outside the interval [t0, T ], and denote
the corresponding continuations by w̃m(t), ˜A(t, wm(t)), ... It follows from (4.10)–(4.11) that(

w̃′m(t), vj
)
H

+ 〈 ˜A(t, wm(t)), vj〉 − t−1〈Ã22wm(t), vj〉 =

= (g̃(t), vj) + (w0m, vj)δ(t− t0)− (wm(T ), vj)δ(t− T ). (4.13)

Now we can pass to the limit in (4.13) at m = µ and fixed j, whence we have(
w̃′(t), vj

)
H

+ 〈χ̃(t)− t−1Ã22w(t), vj〉 = (g̃(t), vj) + (w0, vj)δ(t− t0)− (ξ, vj)δ(t− T ) ∀ j

and hence
w̃′(t) + χ̃(t)− t−1Ã22w(t) = g̃(t) + w0δ(t− 0)− ξδ(t− T ). (4.14)

By restricting (4.14) (t0, T ), we get that

w′(t) + χ(t)− t−1A22w(t) = g(t), (4.15)

from where w′(t) ∈ L3/2(Qyt), hence w(t0) and w(T ) make sense, and comparing with (4.14), we get
that w(t0) = w0 and w(T ) = ξ. So, we will prove the existence of a solution if we show that

χ(t) = A(t, w). (4.16)

From property (3.4), i.e., (4.7), it follows that

Xµ ≡
T∫
t0

〈A(t, wµ(t))−A(t, v(t)), wµ(t)− v(t)〉 dt ≥ 0 ∀ v ∈ L3(Qyt). (4.17)
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According to (4.10)–(4.11),

T∫
t0

〈A(t, wµ), wµ〉 dt =

T∫
t0

t−1〈A22wµ(t), wµ(t)〉 dt+

T∫
t0

(g, wµ) dt+
1

2
‖w0µ‖2H−1(Ω) −

1

2
‖wµ(T )‖2H−1(Ω)

(4.18)
and, therefore,

Xµ =

T∫
t0

(g, wµ) dt+
1

2
‖u0µ‖2H−1(Ω) −

1

2
‖wµ(T )‖2H−1(Ω)+

+

T∫
t0

t−1〈A22wµ, wµ〉 dt−
T∫
t0

〈A(t, wµ), v〉 dt−
T∫
t0

〈A(t, v), wµ − v)〉 dt,

whence (since lim inf ‖wµ(T )‖2H−1(Ω) ≥ ‖w(T )‖2H−1(Ω)):

lim sup Xµ ≤
T∫
t0

(g, w) dt+
1

2
‖u0‖2H−1(Ω) −

1

2
‖w(T )‖2H−1(Ω)+

+

T∫
t0

t−1〈A22w,w〉 dt−
T∫
t0

〈χ(t), v〉 dt−
T∫
t0

〈A(t, v), w − v)〉 dt. (4.19)

From (4.15) we can conclude, since integration by parts is legal, that

T∫
t0

t−1〈A22w,w〉 dt+

T∫
t0

(g, w) dt+
1

2
‖u0‖2H−1(Ω) −

1

2
‖w(T )‖2H−1(Ω) =

T∫
t0

〈χ,w〉 dt.

Comparing this equality with (4.17) and (4.19), and also considering (4.18), we get

T∫
t0

〈χ(t)−A(t, v), w − v〉 dt ≥ 0. (4.20)

Now we use the hemicontinuity property (4.1) of the operator A(t, w) to prove that (4.20) implies
(4.16). Let v = w − λu, λ > 0, u ∈ L3(Qyt); then it follows from (4.20) that

λ

T∫
t0

〈χ(t)−A(t, w − λu), u〉 dt ≥ 0,

whence
T∫
t0

〈χ(t)−A(t, w − λu), u〉 dt ≥ 0; (4.21)

when λ→ 0 in (4.21), then we get that

T∫
t0

〈χ(t)−A(t, w), u〉 dt ≥ 0 ∀u.

Therefore, χ(t) = A(t, w). The existence of a solution to problem (2.1) and (2.3) is proved.
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4.2 Uniqueness of the solution

Let w1(t) and w2(t) be two solutions to problem (4.8)-(4.9). Then their difference w(t) = w1(t)−
w2(t) satisfies the homogeneous problem:

w′(t) +A(t, w1(t))−A(t, w2(t))− t−1A22w(t) = 0, w(0) = 0,(
w′(t), w(t)

)
+ 〈(A(t, w1(t))−A(t, w2(t)), w1(t)− w2(t)〉 − t−1〈(A22w(t), w(t)〉 = 0

and, due to (4.12) and the monotonicity property of the operator A(t, w), we have:(
w′(t), w(t)

)
=

d

2 dt
‖w(t)‖2H−1(Ω) ≤

C2K

t0
‖w(t)‖2H−1(Ω), i.e. w(t) ≡ 0,

whereK is the norm of the operator
(
−d2

y

)−1/2
: H−1(Ω)→

[
H1

0 (Ω);H−1(Ω)
]
1/2

,
[
H1

0 (Ω);H−1(Ω)
]
1/2

is an intermediate space [9].
Remark 4.1. Let us give the interpretation of the solution to problem (4.8)–(4.9) as the solution to

problem (2.1)–(2.3). By introducing ṽ in (4.8), we obtain

1∫
0

∂tw ṽ dy +

1∫
0

[
1

2t2
|w|w +

1

t

(
−∂ 2

y

)−1
w +

1

t

(
−∂ 2

y

)− 1
2 (y w)

] (
−∂2

y ṽ
)
dy =

=

1∫
0

g(t)ṽ dy, ∀ ṽ ∈ H1
0 (Ω).

Hence, from here we have

1∫
0

(
∂tw − ∂2

y

[
1

2 t2
|w|w +

1

t

(
−∂ 2

y

)−1
w +

1

t

(
−∂ 2

y

)− 1
2 (y w)

])
ṽ dy =

1∫
0

g(t)ṽ dy+

+

[
1

2 t2
|w|w +

1

t

(
−∂ 2

y

)−1
w +

1

t

(
−∂ 2

y

)− 1
2 (y w)

]
∂yṽ
∣∣y=1

y=0
∀ ṽ ∈ H1

0 (Ω). (4.22)

Or, taking into account equality (3.5), the last identity can be written in the following form

1∫
0

(
∂tw −

1

t2
∂y (|w|∂yw)− y

t
∂yw − g(t)

)
ṽ dy = 0 ∀ ṽ ∈ D(Ω), (4.23)

that is, the function w(y, t) satisfies a Boussinesq type equation (2.1). Now, returning to (4.22) and
taking into account (4.23), we get[

1

2t2
|w|w +

1

t

(
−∂ 2

y

)−1
w +

1

t

(
−∂ 2

y

)− 1
2 (y w)

]
∂yṽ
∣∣
|y=0

= 0 ∀ ṽ ∈ H1
0 (Ω),

[
1

2t2
|w|w +

1

t

(
−∂ 2

y

)−1
w +

1

t

(
−∂ 2

y

)− 1
2 (y w)

]
∂yṽ
∣∣
|y=1

= 0 ∀ ṽ ∈ H1
0 (Ω).

The last equalities imply the fulfillment of boundary conditions (2.2). Finally, from the continuity of
the function w : [t0, T ]→ H we get that initial condition (2.3) makes sense. This completes the proof
of Theorem 4.2.
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5 To the proof of Theorem

Since the transformation of independent variables {x, t} → {y, t} is one-to-one, there is a mutual
correspondence of functional classes defining the given functions and solutions of initial boundary value
problems. Therefore, from Theorem 2.1 we obtain the validity of the statement of Theorem 1.1 in terms
of the existence of a solution to initial boundary value problem (1.1)–(1.3). Let us show the validity of
the assertion of Theorem 1.1 in terms of the uniqueness of the solution to problem (1.1)–(1.3).

We show that the operator A1(t, u) in problem (1.1)–(1.3) will have the monotonicity property if
a scalar product is introduced accordingly. For this purpose, we take as the scalar product

〈ϕ,ψ〉 =

∫ t

0
ϕ
[(
−d 2

x

)−1
ψ
]
dx, ∀ϕ,ψ ∈ H−1(Ωt), ∀ t ∈ (t0, T ), (5.1)

where d 2
x = d2

dx2
, ψ̃ =

(
−d 2

x

)−1
ψ : −d 2

xψ̃ = ψ, ψ̃(0) = ψ̃(t) = 0, ∀ψ ∈ H−1(Ωt), ∀ t ∈ (t0, T ).
The following lemma is valid.
Lemma 5.1. Operator A1(t, u) is monotone in the sense of the scalar product (5.1) in the space

H−1(Ωt), i.e., the following inequalities hold:

〈A1(t, u1)−A1(t, u2), u1 − u2〉 ≥ 0, ∀u1, u2 ∈ D(Ωt), ∀ t ∈ (t0, T ). (5.2)

To the proof of Lemma 5.1. For each t ∈ (t0, T ) operator A1 is monotone and condition (5.2) is
satisfied (according to [7], chap. 2, p. 3.1). Indeed, on the one hand, we have

〈A1(t, ϕ)−A1(t, ψ), ϕ− ψ〉 =
1

2

∫
Ωt

(
−d2

x

)
(|ϕ|ϕ− |ψ|ψ)

(
−d2

x

)−1
(ϕ− ψ) d x =

=
1

2

∫
Ωt

(|ϕ|ϕ− |ψ|ψ)(ϕ− ψ) d x, ∀ϕ, ψ ∈ D(Ωt), ∀ t ∈ (t0, T ).

On the other hand, the convexity condition of the functional J(t, ϕ) = 1
3

∫
Ωt
|ϕ(x)|3 d x, ϕ ∈

D(Ωt), ∀ t ∈ (t0, T ), implies

〈J ′(t, ϕ)− J ′(t, ψ), ϕ− ψ〉 ≥ 0, ∀ϕ, ψ ∈ D(Ωt), ∀ t ∈ (t0, T ).

Thus, we get ∫
Ωt

(|ϕ|ϕ− |ψ|ψ)(ϕ− ψ) d x ≥ 0, ∀ϕ, ψ ∈ D(Ωt), ∀ t ∈ (t0, T ),

that is, inequality 5.2 is established. Lemma 5.1 is proved.
Now we are ready to show the uniqueness of the solution to problem (1.1)–(1.3). To do this, using

inequality (5.2), we obtain the following variational formulation for initial boundary problem (1.1)–
(1.3):

(u′(t), v)H−1(0,t) + a0(t, u(t), v) = (f(t), v)H−1(Ωt) ∀ v ∈ L3(0, t) ⊂ H−1(Ωt), ∀ t ∈ (t0, T ), (5.3)

u(t0) = u0, (5.4)

where
a0(t, u, v) = 〈A1(t, u(t)), v〉 =

∫
Ωt

|u(x, t)|u(x, t) v(x) dx, ∀ t ∈ (t0, T ).

Let u1(t) and u2(t) be two solutions to problem (5.3)–(5.4). Then their difference u(t) = u1(t)− u2(t)
satisfies the homogeneous problem:(

u′(t), u(t)
)
H−1(Ωt)

+ 〈A1(t, u1(t))−A1(t, u2(t)), u(t)〉 = 0, ∀ t ∈ (t0, T ); u(0) = 0,
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and, due to the monotonicity property of the operator A1(t, u) (5.2), we have:

(
u′(t), u(t)

)
H−1(Ωt)

=
d

2 dt
‖u(t)‖2H−1(Ωt)

≤ 0, i.e. u(t) ≡ 0.

Thus, Theorem (1.1) is completely proved.

Conclusions

The initial boundary value problems for a one-dimensional Boussinesq type equation in a trapezoid
domain are studied. Theorems on their unique weak solvability in Sobolev classes are proved by methods
of the theory of monotone operators.
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Трапециядағы Буссинеск типтi теңдеу үшiн
бастапқы-шекаралық есеп

Мақалада трапеция облысындағы бiр өлшемдi Буссинеск типтi теңдеу үшiн бастапқы-шекаралық
есеп қарастырылған. Соболев кластарындағы олардың бiрегей әлсiз шешiлетiндiгi туралы теоремалар
монотонды операторлар теориясының әдiстерiмен анықталған.
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Начально-граничная задача для уравнения
типа Буссинеска в трапеции

В статье рассмотрена начально-граничная задача для одномерного уравнения типа Буссинеска в
области, представляющей собой трапецию. Методами теории монотонных операторов установлены
теоремы об их однозначной слабой разрешимости в соболевских классах.
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