DOI 10.31489/2022M3/70-84
UDC 517.956

B.D. Koshanov!?*, N. Kakharman?®, R.U. Segizbayeva*, Zh.B. Sultangaziyeva!

! Al-Farabi Kazakh National University, Almaty, Kazakhstan;
2 International University of Information Technology, Almaty, Kazakhstan;
3 Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan;
4 Cil Aviation Academy, Almaty, Kazakhstan
(E-mail: koshanov@list.ru, n.kakharman@math.kz, segizbaeva-55@mail.ru, zhanat 87@mail.Tu)

Two theorems on estimates for solutions of one class of nonlinear
equations in a finite-dimensional space

The need to study boundary value problems for elliptic parabolic equations is dictated by numerous practical
applications in the theoretical study of the processes of hydrodynamics, electrostatics, mechanics, heat
conduction, elasticity theory and quantum physics. In this paper, we obtain two theorems on a priori
estimates for solutions of nonlinear equations in a finite-dimensional Hilbert space. The work consists of
four items. In the first subsection, the notation used and the statement of the main results are given. In
the second subsection, the main lemmas are given. The third section is devoted to the proof of Theorem
1. In the fourth section, Theorem 2 is proved. The conditions of the theorems are such that they can be
used in studying a certain class of initial-boundary value problems to obtain strong a priori estimates in
the presence of weak a priori estimates. This is the meaning of these theorems.

Keywords: finite-dimensional Hilbert space, nonlinear equations, invertible operator, differentiable vector-
functions, a priori estimate of solutions.

Introduction

The problem of describing the dynamics of an incompressible fluid, due to its theoretical and
applied importance, attracts the attention of many researchers. In mid-2000, the Clay Mathematics
Institute formulated this problem as The Millennium Prize Problems on the existence and smoothness
of solutions to the Navier-Stokes equations for an incompressible viscous fluid [1].

Countless works were devoted to the solution of this problem even before it was declared the
problem of the millennium. Since there are an infinite number of them, we simply do not list them.
The given article provides an incomplete list of works [2].

Many first-class mathematicians who managed to solve other important mathematical problems,
including those in problems of gas-hydrodynamics considered this problem. Such prominent mathe-
maticians of the 20th century as A.N. Kolmogorov, J. Leray, E. Hopf, J.-L. Lions provided significant
results in their works. Complete solution to the problem for two-dimensional case given by O.A. Lady-
zhenskaya [3]. In [4], a complete analysis of the current state of the problem and a review of the
available literature, as well as proposed methods for solving the problem, are given. In particular,
the main problem of the global unique solvability of the three-dimensional Navier-Stokes problem is
reduced to the question of finding a strong a priori estimate for all possible solutions. Works [5]-[12]
are devoted to the study of the solvability in the whole of equations of the Navier-Stokes type, the
continuous dependence of the solution to a parabolic equation and the smoothness of the solution. In
papers [13], [14] questions about the formulation and their solvability of boundary value problems for
high-order quasi-hyperbolic equations were studied.

In this article, we obtain two theorems on a priory estimates for solutions of nonlinear equations
in a finite-dimensional space. These theorems are proved under certain conditions, which are borrowed

*Corresponding author.
E-mail: koshanov@list.ru

70 Bulletin of the Karaganda University



Two theorems on estimates ...

from the conditions that are satisfied by finite-dimensional approximations of one class of nonlinear
initial-boundary value problems, rewritten in "restricted notation".

1 Used conditions and designations. Formulation of the main results

Let H be a finite-dimensional Hilbert space (10 < dim H = N < o0) and G is an invertible operator
in H such that |[|G]| < 1, ||G™!|| < co. We will be interested in the following equation

f(u):=u+L(u)=g¢€ H.

Throughout this paper, f (u) will mean an operation of the form u + L (u), where L (+) is a non-linear
transformation.

If € is a parameter from [0,+00) and the vector u (§) is a vector function that is continuously
differentiable with respect to the parameter £, then we assume that the vector function L (u (§)) is also
continuously differentiable (as well as the expressions arising from L(u) and f(u) below).

We introduce the notation L, :

(L (u(€)))e = Luue-

It is obvious that L, (for every w € H) will be a linear operator

Lyv = (L (u(§)))e

Ug=v '

We have
(f (u(€)))e = ug + Luug = (E + Lu) ug.

Here and throughout follows, E is the identity transformation.
Operator adjoint to L, denote by L, that is L} = (L,)". Denote

u
Dy =E+ LDy f (u) = f(u) + Ly, f (u).
If w is a differentiable vector function, then we set
(D5, f(u))e = Myug.
Here M, is a linear operator for fixed is defined by the formula

Muv = (MU’LLg) ‘

Ug=v"

We will use the following conditions C1-C4.

Condition 1. If u, v € H, then the transformation L, and L continuous in H, L (0) = 0 and the
conditions are met

[1L(w) = L(v)|| < d(ull)[[u = vl,
1w = Lollr—n +[[Ly = Lyllr—m < d([Jul)llu =],
1Dl < (f[ulDlo]l,
Mo < @((lulDllv],

where || - || = || - ||&, () strictly monotonously increasing on [0, o) positive continuous function.
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This condition is natural, since H is certainly, as a rule, it is performed. Therefore, we will use this
condition often without stipulating. We will sometimes use the above designations without reservations.
In addition to them, we give often the frequently used designations

v(u) = (DX f(u), w)||u) 2,
p(u) = (|Gl 72,
S(u) = Dy f(u) = y(u)u — K (u)R(w)
R(u) = G*Gu — p(u)u,
<G*Gu__u@0uyDZf@0“Wﬁ7>
|G*Gul? |

J(u) = [ exp(=||f(w)[?).
Condition 2. If u-operator’s own vector G*G, then the inequality has been fulfilled

K (u) =

lull* < (IF (@)1 +2)™,

where m—integer number, m > 2.

Condition 3. For any u € H evaluation is made
1Gul® < d||f(u)]*
For some 0 #u € H

IA{, f <Muaya> - W
=in ,
|Gall?

where the infinum takes on all such a € H, that
llal| = 1, (G*Gu,a) = (u,a) = 0.
Condition 4. If 0 #w € H, S(u) =0, K(u) > 0, then
Kd <1-4,
fair, where § € (0,1).

Theorem 1. If the conditions C1- C4 are met then for any w € H fair assessment

[ul* < C exp(]| £ (w)[[), (1)

where C-does not depend on u and depends only on the conditions C2, C3, C4.

Remark 1. Since G is an invertible operator, we immediately have from condition C3 that the
following estimate holds:

lull* < IGTHP 1 Gull* < dllf (u)]*. (2)

When approximating an infinite-dimensional problem, the finite-dimensional quantity ||G~!|| can
tend to oco. Therefore, from (2) it is impossible to obtain the estimate for ||ul|.

Theorem 1 is extended to infinite-dimensional problems, and this is its meaning.

We present one more result.
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Theorem 2. Let H be a finite-dimensional Hilbert space. Assume that L(-) is a continuous transforma-
tion in H and D is a linear invertible operator. Let us pretend that L(0) = 0 and for any H we have
the inequality

(Du, DL (u)) > —6||Dul?

at some 0 < § < % Then for any g € H equation
u+tL(u)=g
has a solution satisfying the estimate
IDull* < (1 —26)~" | Dg|*.
Various forms of this theorem are well-known.
Basic lemmas
Lemma 1. If 0 #£ u € H, then the orthogonality equalities
(u, R(u)) = (u, S(u)) = (R(u), S(u)) = 0.

Proof. These equalities are consequences of the definitions R(u) and S(u).

Lemma 2. For any C > 0 ,
Mes = {u: ||u”2675||f(U)|| > C}.

Proof. Since G'is an invertible operator and condition C3 is satisfied, then for u € M¢ s we have

C < |ul2 e @7 < |y |2 e~ IGul < jjqy||2 =0 IGTHI72lull®,
This implies the boundedness of the set M¢ 5. But then, since H is non-dimensional, we obtain the
compactness of the set M¢ 5. Lemma 2 is proved.

Let us put
b(u) = sup [|Gul|?, (3)

where the supremum is taken over all such a € H, then
J(u) > J(u). (4)
Lemma 3. If 0 # % € H. Then there is a vector u, such that
|Gl = b(u) > |Gull?, J(@) > J(a).

Proof. The existence of the vector w follows from Lemma 2, since over a compact set is achieved on
some element of this compact space, and the suprenum set over which is taken is compact by Lemma
2 (see (3) suprenum and (4)). The lemma is proven.

We define a vector function as a solution to the problem

~ (5)

{% = 2 G* Gu+y S(u),
u(€)|e=o = U.

here 7 is the vector constructed in Lemma 3 for some 0 # u € H. For functionality J(u(¢)) and for
the norm ||Gu(§)|| using the orthogonality equalities of lemma 1 we have

(IGu(€)I*)e = 2(G*Gu, ug) = 2 || G*Gul]?, (6)
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Te(u(€)) =2 7w(©) (s ~ Do (€)ue) =

= —2J(u(&)) ([K(u(€)G"Gu(§) + S(u(f))], ue
=2J(u(€)) [~ = K(u(@)IG"Gu©)|* - y 1S (u(€)]*].

Lemma 4. Let u € H, U be from Lemma 3. Then the conditions a), b), ¢), d), e):

Proof. Let S(w) # 0. Then in (5) we choose
z=1,y=—[IS@|7?[1+ K@|G*Gu(&)|].
Then from (6) and from (7) we find

(IGu(©)e >0, Je(u(8)) > 0. (8)

This implies the existence of a number & > 0 such that the strict inequalities

[Gu(&o)ll > [IGall, J(u(éo)) > J(w). (9)

These inequalities contradict the origin of the vector w. Therefore, S(u) = 0 and done a).

Let us pretend that K(uw) < 0. If we choose z = 1, y = 0, then it follows from (6) and (7) that
(8) is satisfied. From (8) it follows that there is a small {, > 0, such that (9) is satisfied. We obtain a
contradiction with the definition of w. Therefore, b) is satisfied.

We define a vector function as a solution to the problem

(a,G*Gu) v«
{u§ =0~ & G*Gu,
(©)le=0 = u,

where a € H and (a, G*Gu) = 0. Because dim H > 3, such a vector e € H, |le|| = 1 exists. Thus,

(IGu(©) P)e = 2 e, G*Gu) =0 (10
JE(u(E)) = 2 u©) (S (ul€)). ) = 2706~ [ 5yfum)anue) =
=~ J(u(©)) [s<sn<u<n>>,ug>|n:os+g o) =
(1)

U

=2J(u(§)) [< T2 ™ Myuy, + K(u)G*Guuy, a>|,7:0§ + 520(1)} =

]

= 2J(u(®)) |z

In the last transition, we used the condition C3 and the equality u,|,—o = e. By definition K () from
(10) and from (11) it follows that if K (u) > K(u), then there exists a vector a and &y > 0 such that

1Gu(éo)ll = lIGull, J(u(§)) > J(u). (12)

~ (Mza, a) + K(@)|Gal]?| € + €20(1).
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Now, we define the vector function g(£) from the problem

{gs(f) = G*Cy(¢),
9(&)|e=0 = u(&o).

Then for g(u(§)) we have

13
IGo(©)]? = IGu(&o)||? +2 /{ 1G=G(m)|2dn.

From here and from (12) it follows that there exists & such, that & > & as for g(&;) relations (9) are
fulfilled, in which instead of £ taken &;. We get a contradiction. Therefore item d) of the lemma is
proved.

Suppose J(@) > J(u) and define the vector function g(¢) how to solve a problem

{gg(&) = G*Cy(¢),
9(&)|e=0 = .

For ||Gg(€)|| we have
2 ~112 ¢ * 2 .12 ¢ * 2
IGg (I = Gal® +2 /0 1G*Gg(m)|Pdn > (| Gil® + 2 /0 1G*Gg(n)|2dn.

Since for small £ the strict inequality J(u) > J (&) will not get spoiled, then from the inequality for
|Gg(&)|| we obtain that there exists & > 0 such that the strict inequalities .J (u(&)) > J(w), ||Gg(&)| >

0, which contradict the origin of the vector &. That’s why J(@) = .J(u). Item €) of the lemma is proved.
The lemma is completely proved.

Lemma 5. Let 0 # weH , U be a vector constructed from m according to Lemma 3. Let us pretend
that R(u) # 0 and define the vector function u(€) as a solution to the problem

{u§ = R(u 3 (13)
u(§)le=o = u.
Then relations (15)—(17) are satisfied for 0 < £ < 1
e |IR@)|* < | R(u(&)I* < *|R@)]?, (14)
¢
IGul® > |Gaull* + 2 /0 IR(u(m)[*dn = || Gal® + 2¢|| R(@)|* — £28¢* || R(@)]|, (15)

J@) > J(€) = J@erp( -2 / K (u(n)) | R(u(n)) |2
i) exp (-2 / K (u(n) | R( ())||2d77)2 (16)
J (1) exp ( — 2 K ()| R(@)||* - e2||R<a>||201<||a||>),
J(@) = (@) exp [ K@ (IG@)] - 1G@@)?) - Ca(al))]. (17)

where C1(+), Ca2(-) — functions continuous on [0;00).
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Proof. Let R(u(§)) then we have

(IR@(©))I*)e| = 2(R(u(€)), (G*G — p(ul€)))ue — pe(u(€))u(€))| =

(18)
2/(R(u(€)), (G*G — p(u(€)))Ru(€)] < 4| R(u(€))].
This implies estimates (14). Further
(IG(€)))e = 2 (G*Gu, ug) = 2(G*Gu — p(uyu + p(u)u, R(w)) = 2(|R()|>  (19)
Je(u(€)) = 27(u(€)) [ (- K ()G Gu — S(u), R(w))| =
(20)

27(u(€)) | ~ K(@)|R@)? ~ (S(u), R(w)))

Integrating (19), using (18) and already proven inequalities (14), we obtain (15). Now we integrate
(20), and then using the definitions R(-), K(-), S(-) and the results of Lemma 4, we get

J(@) = (1) exp | 2K (@) | R(@)|P¢ -

[ (stmire? + (s, A >>>) andr]| =
()exp[zK R [ [ (Katiraomi
(—au(n) + Dl f(u(m) ~ K (u(n)G*Gun). R(uly >>>) andr| - (21)

s@e [2R @RI~ [ [0k o), REutn)] =
s@esp |2k @RI~ [ [ Ao, Bt 2

J(@) exp2 [~ K @) R(@)|1%¢ — | R@)Ci (1))

where C(+) — functions continuous on [0; c0).
To estimate the factor at &2, we used the equality ||u(¢)| = ||@||, which follows from the following
equality
(lu(©)11?) = 2(u(€), R(u(€))) = 0.

From (21) follows (16), from (15) and (16) follows (17). The lemma is proven.

Lemma 6. Let 0 # weH , u — the vector constructed from % in accordance with Lemma 3. Let us
pretend that R(u) = 0 and define the vector function u(§) as a solution to the problem

Ug = G Gujv (22)
w()lg=0 = u.
Then at 0 < £ < 1 relations (23)-(26).
e ¥ G Gu|? < |G Gu(§)|? < |GGl l? (23)

IGal* > |Gul* > ||Gall* = || Gal|*+

¢ (24)
+2 / |G*Gu(n)|Pdn < ||GT||* + 2£||G*Ga||* + 2¢678¢* || G*Ga|
0
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J((€)) = J (@) exp |26 K @)]|G* Gl — Ca([al2)i(e)| =
= J (@) exp | ~26 K (@)||G"Giil]* — €Ca([l)i(9)]

T(u(€)) = J(u)exp [Ny (1 = @) (|Gal* - || Gul®) — €2Cu([[all*)1(€)] , (26)
where C3(+), Cy(+) functions continuous on [0;00) a I(-) function with values from the interval [—1;1].
Proof. For |G*Gul| and ||Gu|| we have

(25)

(16" GullP)e| = 21(G" G, G*Gug)| < 2G" G,
(IGull?) = 2(G* G, ug) = 2 G*Gul >

Integrating these inequalities and using Lemmas 3 and 4, we obtain (23) and (24).

For Je(u(§)) we have
Je(u(8)) = 2J(u(€) [(~ K ()G Gu — S(u), G*Gu) | = 27 (u(€)) | - K(w)|G"Gul]?
Hence, using Lemma 4, we find
J(u(§)) = J(u) exp ( / K (u(n))||G*Gu(n )I!an> >

> J (@) exp (—2&K<u>||G*Gu||2 — 20 (l2)e))

(27)

Here C3(-) — continuous on [0;00) functions and I(-) function with values from the segment [—1;1].
When estimating the factor at £2, we used the equalities

| (lull?) ¢ | = 20{u, ug)| = 2(u, G*Gu) = 2[|Gul|* < 2]Jul*.
¢

From which it follows that
e X al* < flufl* < € alf*.

From (27) and from J(u) = J(u) (25) follows, and (24) implies (26). The lemma is proven.

Proof Theorem 1. Let 0 # uweH. If R(’IOL) = 0,, then u will be an eigenvector of the operator G*G.
Therefore, from condition C2 we have

J(@) = [lal? exp (=1 £(@)]2) = (|| f(@)]]* +2)™ e W@®IF <

< sup xme—x+2 — mme—m+2. (28)

r>2

If R(w) # 0, construct the vector u then by the vector . If R(ig) = 0, then for .J(Ty) we obtain
an inequality similar to (28) J(@p) < m™e~"™+2. Therefore, since by construction J(iig) > J (i) we
have that (1) holds. From this we draw the following conclusion.

Thus, if at least one of the conditions R(w) = 0 and R(%@) = 0, is satisfied, then Theorem 1 will be
proven.

It R(&) # 0 and R(ug) # 0, then we construct a sequence of pairs according to the following
algorithm.

Let the pairs be built (ﬂo,g), (U, 1), 0 < n, R(uj) #0,7=0,..,n.

: L~ 1
Let us build a pairs (U1, "l ).
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In Lemma 3, instead of the vector 7?1,, we take the vector 1 and construct the vector w, which we
take as Upy1.
For ,41, two cases are possible:
(I) R(tn41) =0,

(I1) R(tn41) # 0.

If (I) is satisfied, then we construct the vector e using Lemma 6. To do this, in (22) as u we take the

~ 1 L
vector uy+1 and for "4 we take the value u(§) at point &,:

—~ ~

+1
&n=6 "u =ul).
Then from Lemma 6, using condition C4, we have

I8 2 I exp [d7 (1= 0)(| Gl |2 = |68 |2 = €6 )] =

(29)
I2) — €2Ca(n11)]

> J (@) exp [d71 (1= 8)(|GHlI> — |G

When deriving (29), relations J(tu,41) = J (1), |Glns1|| > |G| were used, which follow from Lemmas
3 and 4 and the definition of %,+1. Let’s choose &, in the right place.

.~ 1y .
In the case (I) pair (unH,nz—; ) is constructed.
In the this case, we stop the process of constructing a sequence of pairs.
1 . L ~ ~
In case (II), we construct "% ) using Lemma 5. To do this, in (13) as u we take the vector 41

and for "4 we take the value (13) at point En:

0ol [ R (Tn-41) ||

0+ DG Tt + Collamsal) = T RGe T+ 11 (30)

gn:

here Cy(-), Ca(+)— continuous on [0;c0) functions from Lemma 5, d¢ is a small number. From Lemma

5 (17) and from (30) we find

n+1 n+1 - 52
IG |1 = |G |12 + 26| R(Tn1) 1> — 20,355 (31)

n+1 n _ n n+1 52
T > G exp [a1 0 - 9)(IGHIE - 16 ) - 20, 55]

Pair (ﬁnH,nﬁl) built. Let 1 < ng be an integer number, which holds for all j < ng

R(u;) # 0, R(tng+1) = 0.

Then from (31) we deduce

n 0 n ~
1G> > | Gull® + 2 3272 & R(;)||* — 10253,

n n 32
J() = J(w)exp [a1(1 = 9)(IGU| ~ |GH2) — 10253 . %
From the second inequality (32) we have
0 -1 012 2¢2 no —1 n0 12
J () exp [d (1-0)|Gu|? — 10 50} < J(#) exp [d (1-0)|G%| ] - )

— %2 exp [~ IS ()2 +a (1= S)IGRIZ| < %12 exp 3] £()]2]
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In the last transition, condition C3 is used.
From (33) and from Lemma 2 on compactness (see Lemma 2), since the left side of (33) does not
depend on ngy and the inequalities 0 < § < 1, it follows that

18] < J(@) < oo, (34)

where J (8) does not depend on ng. From (34) and from the first inequality in (32), due to the choice
of &,, follows that only two cases (A) and (B) are possible:

(A) There is an n > 0 such that R(u,,) = 0 and R(u;) # 0, if 0 < j < n4;

(B) For any j = 0,1, ... done R(u;) # 0 and lim,,_, || R(u,)| = 0.

Here lim means lower limit.

Indeed, if none of the conditions (A) is satisfied, then by virtue of (34) and the choice of A (see (30))
from the first inequality in (32) we obtain

n+1||2

J) > "8 = |G > Gl - 10252+2Z *— inf || (i) |

When n — oo, the right side tends to +00. So we got a contradiction. Therefore, at least one of
conditions (A) and (B) is satisfied.

Let condition (B) be satisfied. Then, by virtue of (34), if necessary, passing to sequences can be
considered

lim % = g, lim R(4) = R(§) =0, lim f(&) = f(3).

]—)OO ]—)OO ]—)OO

When deriving the equality for R(§) and f(§), we used the estimates for R(%) in terms of R(u;)
from Lemma 5 and choice &; (see (30)), as well as the divergence of the harmonic series.
Letting go to infinity and then using the conditions C2 and C3, we obtain

J(@) exp [d71(1 = 8)[|Gul2 — 10%63] < |32 exp [0l @)]] <

m 35
< (@I +2)" exp [<0(17 @) +2) +20] < supae =2 = (5)" e, )

Now from the definition of A and from (35) we deduce

02 < exp [|F @2 — a1 - a)Gal? - 10%3] (5)" < (%) epllf@I (30

In the derivation, we used that the possibility of choosing dg small and inequalities 0 < § < %, m > 1.
Theorem 1 follows from (36) in case (B).
If (A) is satisfied, then (29) is satisfied. From (29), since for all j < n the inequalities R(u;) # 0,

then choosing &, = £ small enough, we get

JOE) z ) exp 71 = o) (|GuP — 1670 2) — 10%63) (37)

Since "' is defined in terms of Un+1 by the equation (see (22))

ue = G*Gu,
u(§)|g=0 = Uny1.
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And "3 = u(gn), then choosing the number En = E small enough from (37) we obtain
I(iins1) = J (@) exp [d71(1 = O)(| Gl ~ | Gina][?) — 1053
Hence follows
J(@) exp [d71(1 = )| Gu|2 — 10%63] < [imslleap [~ (nsn) |2 + 47 (1 = D)l|Ginsa 7] . (38)
From (38), since u,+1 is an eigenvector of the operator G*G, we get the estimate
i < (%) exp 172

which are derived in the same way as we derived the estimate from (36). Theorem 1 is proved in case
(A). Therefore, Theorem 1 is proved completely.
Proof Theorem 2. We use the notation of Theorem 2. If g € H, then vector u = 0 is a solution to
the equation
u+ L(u) = 0.

Let 0 # g € H- arbitrary vector. Since D is an invertible operator, then || Dgl|| > 0.

Denote by M the set
2

M = fu: |Dulf < g Dol

Let’s put
. u+ L(u)—g
I1D(u+ L(u) — g)|l

F(u) = 1,

where the number 7 is chosen as follows:

2
=,/———1|Dgll?.

Suppose equation u + L(u) = g has no solution in M: Since equation u + L(u) = g has no solution,
the transformation F'(-) continuously translates from M to M. But then by the Schauder fixed-point
theorem ug we get that there exists such that

~up+L(uw) —yg
1D (uo + L(uo) — g

7 = ug. (39)
)l
From here and the choice of  we have

2
| Duoll* = = || Dy

(1—20)

We act on (39) with the operator D, and then multiply scalarly by Dug. Then, using (39) and the
condition of the theorem, we obtain

7| Duol*|| D(uo + L(uo) — g)|| = —[[Duo||* = {DL(uo), Dug) + (Dg, Duo) <

-1
5 1
< —||Du0|]2+5HDu0||2+—2 Jr§5HDUO||2-
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Let us take ¢ = 24. Then from the last inequality and from (39) we deduce

1 1 7
< —||Dugl*(1 — —|Dg|? = - 1-96)||Dg|*> + =||Dg||*> = ——=|Dgl>.
0 < ~[|Duo|[*(1 = 8) + I Dyl (1= 8)[[DglI” + 1Dy 15129l

(1203

We got a contradiction. Therefore, the equation u + L(u) = g has a solution. We act on the equation
u + L(u) = g by the operator D:
Du+ DL(u) = Dg.

Multiplying the resulting equality scalarly by Du, we obtain
1 1
|Dull* + (Du, DL(w)) = (Dg, DL(u)) < S||Dg||* + 5 [ Dul*

Now, using condition (Du, DL(u)) > —d||Dul|?, , we obtain the desired evaluation
(1—20)[| Dull* < || Dg]*.

Theorem 2 is proven.

Remark 2. Note that in Lemma 1 we can take K non-linear transformations as K.
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B.JI. Komanos'?, H. Kaxapman®, P.V. Cerns6aesa*, 2K.B. Cynranrasuesal

L Oa-Papabu amvmodaes, Kasax Yammuows ynueepcumems, Aamamu, Kasaxeman;
2 X anbisapanolk, GKNApAMMbLE METHOA0ZUALGD YrUusepcumemi, Armamst, Kasaxcman;
3 Mamemamura sicone mamemamuraivr, modesvoey uncmumymot, Aivamo, Kazaxcman;
4 Asamammun, asuayusa akademuaco,, Aimamos, Kazakeman

AXKpIpJblesneM/Ii KEHICTIKTeri ChI3BIKThI eMec TeHaeyJepaiH Oip
KJIACBhIHBIH, IITeNTiMiH OaraJiay/iblH €Ki TeopeMachl

DJUITMIITUKAJIBIK, YKOHE apaboJIaJIbIK, TeHJIeyJIep VIIH IIeTTIK ecenTep/ii 3epTrey KaXKeTTLIri rujipogauHa-
MUKa, JIEKTPOCTATUKA, MEXaHWKA, YKBLJIY OTKI3TIIITIK, CEPIIM/IIIK TEOPUsIChI, KBAHTTHIK (DU3UKaA TTPOIle-
CTEPIH TEOPUSJIBIK, TYPFBIIAH 3ePTTEyAe KOUTEreH NPAKTUKAJIBIK, KOChIMIIAIAPAbIH TYCIHAIpYiMeH Tikesei
OaitIaHbICTBI. Byl 2)KyMbICTa aKbIPJIBIOIIIEM/II KEHICTIKTE CBhI3BIKTBIK, eMeC TeHJEYJIEP/IiH IeiMaepi yImin
aIpUOPJILIK, baFasiayIapbl TypaJsbl eKi TeopeMa ajbiaFaH. 2KyMbic TOpT GesiMHeH Typasbl. Bipinm 6estiM-
Je TaiilaJaHbLIFaH Oesrijieysiep MEeH Heri3ri HOTHMXKEHIH TYXKBIPhIMIAMAChl KeaTipiaren. Exinmi GesmiMae
Herisri jiemMadsiap 6epinren. Yimiuin 6esim 1-11i TeopeMaHbIH, JIpJIe/IeMecine apHaJran. Teprinmn 6estim/ie
eKIHIII TeopeMa JJIeIeHreH. TeopeMaHbIH MapThl MBIHAIAN, OHBI HACTANKBI-IIEKAPAJIBIK, €CEIITEeP/IiH 6eJi-
risi 6ip KIacklH 3epTTEY KE3iH/Ie OJIap/IbIH MIEMTiM/IepiHe AITPUOPJIBIK, Oaraiay ajry YIIiH KOJITaHyFa OO Ib.
TeopemaHbIH M9HI OCBIHIA.

Kiam cesdep: axpipabiesmeM i ['mab0epT KeHICTIr, ChI3BIKTHIK €MeC TeHJIeysep, Kepi omeparop, audde-
peHIMATAaHATHIH BEKTOP-(DYHKIIASIIAP, MIENiMIEp/Ii AIIPUOPJIBIK, Oarasiay.
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B.JI. Komanos'?, H. Kaxapman®, P.V. Cernz6aena?, 2K.B. Cynaranrasnesa'

! Kazaxcxui nayuonaroronl yHusepcumem umeny Aav-DPapabu, Aimamo, Kazaxcman;
2 Meotcoyrapodnnidi yrueepcumem uHGOpMauuoHrsT mesnosoeut, Aimamo, Kazazcman;
3 Mnemumym mamemamuky, u Mamemamudeckozo modesuposanus, Aamamu, Kaszaxeman;

4 Axademus epastcdancroti asuayuu, Aamame, Kasaxemarn

JIBe TeopeMbl 00 OIleHKaX PeIeHnil OJHOro KJiacCa HEeJWHENHBIX
YPaBHEHHNII B KOHEYHOMEPHOM HPOCTPAHCTBE

HeobxomumocTs uccienoBannst KpaeBbIX 331a49 I SJUINNITHIECKAX W NapabOINIecKuX YpPaBHEHHUN Ipo-
JMKTOBaHA C MHOIOYUCJIEHHBIMU [TPAKTHIECKUMU IPUJIOKEHUSIMU IIPU TEOPETUIECKOM U3y YEHHUH [IPOIIECCOB
TUIPOIUHAMUKY, JIEKTPOCTATUKY, MEXAHUKH, TEILJIOTPOBOIHOCTH, TEOPUY YIIPYTOCTH, KBAHTOBON (DU3UKMU.
B aT0it pabore MBI mOyUMaN ABE TEOpeMbl 00 AIPHUOPHBIX OIEHKAX PEIEHUil HeJIMHEHHbIX yPABHEHUN B
KOHEYHOMEPHOM TI'MJILOEPTOBOM IIpOCTpaHCTBe. PaboTa cOCTOUT M3 4YeThbIpeX IIYHKTOB. B ImmepBoM ITyHKTE
MPUBEJIEHBI MCIOJIb3yeMble 0003HAUYEeHUsI U (POPMYJIMPOBKA OCHOBHBIX PE3Y/IbTATOB. BO BTOPOM — OCHOB-
HBIE JIeMMbI. TpeTnii MyHKT MOCBSIIEH TOKA3aTeIbCTBY TeopeMbl 1. B werBeproM — mokazana Teopema 2.
VcioBuSE TEOPEM TAKOBBI, YTO MOXKHO HCIIOJIB30BATH IIPU U3YyUE€HUN HEKOTOPOT'O KJIACCa HAYAIbHO-KPAEBbIX
3a/a4 TSl TIOJIyYEHUs] CUJIbHBIX allPUOPHBIX OIEHOK MPU HAJUYNU CJIabbIX alPUOPHBIX OIEHOK. B 3ToM u
COCTOWT CMBICJI 9TUX TEOPEM.

Karoueswie cao6a: KOHEIHOMEPHOE THIILOEPTOBO IIPOCTPAHCTBO, HEJIMHEHHbIE YPABHEHUsI, OOPATUMBIN Olle-
patop, guddepeHupyemble BeKTOP-MYHKIINN, allPUOPHAs OIEHKA PEIeHMUIA.
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