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Attractors of 2D Navier—Stokes system
of equations in a locally periodic porous medium

This article deals with two-dimensional Navier—Stokes system of equations with rapidly oscillating terms
in the equations and boundary conditions. Studying the problem in a perforated domain, the authors set
homogeneous Dirichlet condition on the outer boundary and the Fourier (Robin) condition on the boundary
of the cavities. Under such assumptions it is proved that the trajectory attractors of this system converge in
some weak topology to trajectory attractors of the homogenized Navier—Stokes system of equations with an
additional potential and nontrivial right hand side in the domain without pores. For this aim, the approaches
from the works of A.V. Babin, V.V. Chepyzhov, J.-L. Lions, R. Temam, M.I. Vishik concerning trajectory
attractors of evolution equations and homogenization methods appeared at the end of the XX-th century
are used. First, we apply the asymptotic methods for formal construction of asymptotics, then, we verify the
leading terms of asymptotic series by means of the methods of functional analysis and integral estimates.
Defining the appropriate axillary functional spaces with weak topology, we derive the limit (homogenized)
system of equations and prove the existence of trajectory attractors for this system. Lastly, we formulate
the main theorem and prove it through axillary lemmas.

Keywords: attractors, homogenization, system of Navier—Stokes equations, weak convergence, perforated
domains, rapidly oscillating terms, porous medium.

Introduction

In this paper, we study the asymptotic behavior of attractors to initial-boundary-value problems
for two-dimensional Navier-Stokes systems of equations in perforated domains as the small parameter
€, characterizing the microinhomogeneous structure of the domain, tends to zero.

One can find some results for homogenization problems in perforated domains and a detailed
bibliography in monographs [1-3]. This paper presents the case of the appearance of a potential in the
limit (homogenized) equation (cf. similar problem in [4-10]).

We study a weak convergence and limit behavior of attractors to the given system of equations
as the small parameter converges to zero. There are recent works (cf. [11-13]) on homogenization of
attractors used for this study. Overall results on the theory of attractors and the homogenization of
attractors cf., for example, in monographs [14-16], and also see the bibliography in these monographs.

We prove that the trajectory attractors 2. of the two-dimensional Navier—Stokes system of equations
in (cf. also [17-19]) a perforated domain weakly converge as € — 0 to the trajectory attractor A to
the homogenized system of equations in the corresponding function space. The small parameter e
characterizes the cavity diameter, as well as the distance between cavities in the perforated medium.

In Section 1, we define main notions and formulate theorems on trajectory attractors of autonomous
evolution equations. In Section 2, we describe the geometric structure of a perforated domain, formulate
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the problem under consideration, and introduce some function spaces. Section 3 is devoted to homo-
genization of attractors to the autonomous two-dimensional system of Navier—Stokes equations with
rapidly oscillating terms in a perforated domain.

1 Trajectory Attractors of Evolution Equations

We describe a general scheme of constructing trajectory attractors of autonomous evolution equations.
This scheme is used in Section 2 to study trajectory attractors of a two-dimensional system of Navier—
Stokes equations in a perforated domain with rapidly oscillating terms in equations and boundary
conditions and the corresponding homogenized equation.

We consider the abstract autonomous evolution equations

%~ A, tz0 1)
where A(+) : By — Ej is a given nonlinear operator, F; and Ej are Banach spaces such that E; C Ej.
For example, A(u) = vAu — (u, Vu) + g(+) (cf. section 2).

We study a solution u(s) to equation (1) globally, as a function of variable s € R,. Here, s = ¢
denotes the time-variable. The set of solutions to equation (1) is called the trajectory space of equation
(1) and is denoted by K*. We describe the trajectory space K in detail.

First of all, we consider the solution u(s) to equation (1), defined on a fixed time-segment [t1, ts]
in R. We study solutions to equation (1) in the Banach space F, +,, which depends on ¢; and ¢3. The
space JFt, 4, consists of functions, f(s),s € [t1,t2], such that f(s) € E for almost all s € [t1,t2], where
FE is a Banach space. It is assumed that £1 C E C Ej.

For example, for F;, 1, we can take the space C([t1,t2]; E) the space Ly(t1,t2; E), or p € [1,00], or
the intersection of such spaces (cf. section 2). We assume that II;, ;, Fr, 7, C Ft, 1, and

HHtl,t2fH]'—t1,t2 < C(t17t277_177_2)Hf”]:7'1,72’ Vfe "TT1,7'27 (2)

where [t1,t2] C [11,72] and Wy, 4, is the restriction operator on [t1,ts]. Constant C(t1,t2,71,72) is
independent of f. Usually, one consider the homogeneous case of the space where C(t1,t2,71,72) =
C(te —t1, 70 — 11).

Let S(h) for h € R denote the translation operator

S(h)f(s) = f(h+s).

It is obvious that if the variable s of f(-) belongs to [t1,?2], then the variable s of S(h)f(-) belongs to
[t1 —h,ta — h] for h € R. We assume that the mapping S(h) is an isomorphism from Fy, ¢, to Fy, _p¢,—n
and

||S(h)f||ft1_h,t2_h = [IfllFtr stz Vf € Fryto- (3)

This assumption is natural, for example, for the homogeneous space.

We assume that if f(s) € F 4, then A(f(s)) € Dy t,, where Fiy 4y C D t,. The derivative
%&t) is a generalized function taking the values in Ey, % € D'((t1,t2); Ey) We assume that Dy, 4, C
D'((t1,t2); Ep) for all (t1,t2) C R. A function u(s) € F, 4, is called a solution to equation (1) in the
space Fi, 1, (on the interval (¢1,t2)) if %(s) = A(u(s)) if in the sense of distributions in D'((¢1,t2); Ep).

We also introduce the space

Fee={f(s), s € Ry [Ty, f(5) € Frror ¥ [tr,t2] C Ry} (4)
For example, Fy, 1, = C([t1,t2]; E) implies F1°¢ = C(Ry; E), and Fy, 4, = Ly(t1,t2; E), implies Flo¢ =
LI“(R s ).
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A function u(s) € F°¢ is a solution to equation (1) in F1°¢, if Il 1,u(s) € F4, +,, and the function
I, +,u(s) is a solution to equation (1) for any time-segment [t1,%2] C Ry.

Let KT be a set of solutions to equation (1), on the space F toc hut does not necessarily coincides
with the set of all solutions to equation (1) in .7:_11?0. Elements of KT are called trajectories, and K7 is
said to be the the trajectory space of equation (1).

We assume that the trajectory space KT is translation invariant in the following sense: if u(s) € KT,
then u(h + s) € KT for any h > 0. This condition is natural for solutions to autonomous equations in
homogeneous spaces. We consider the translation operators S(h) in ]:j?c :

S(h)f(s) = f(s+h), h>0.

It is clear that {S(h),h > 0} is a semigroup in F° S(h1)S(h2) = S(h1 + hs) for hi,he > 0 and
S(0) = I is the identity mapping. We replace the variable h with the time-variable ¢. The semigroup
{S(t),t > 0} is called the translation semigroup. By assumption, the translation semigroup maps the
trajectory space K1 onto itself:

SHKTCKT vt>o. (5)

In what follows, we study the attraction property of the translation semigroup {S(¢)}, acting on
the trajectory space KT C ]-"_lfc. We introduce a topology in .F_li_oc.

Let pg, 4,(+,-) be a group defined on the space F3, 4, for all segments [t1,t2] C R. As in (2) and (3)
we assume that

Pt1,ts (Ht1,t2f7 Ht1,tzg) < D(t17t27 7-177-2)p7'177'2 (f? g) ) Vf,g € le,Tgv [tlvtﬂ c [7-177-2]7
ptlfh,tth(s(h)fv S(h)g) = Pty,to (f7g)7 vfag € ftl,tQ? [t17t2] C Ra h e R.

(For a homogeneous space D(t1,te, 71, 72) = D(ta — to, 70 — 71).)

We denote by Oy, 4, the corresponding metric space on Fy, 1,. For example, py, 1, can be the metric
generated by the norm || - [/, ,, in the Banach space J%, t,. In applications, it can happen that the
metric py, 1, generates a weaker topology in ©y, s, than the strong convergence topology in the Banach
space Fi, t,-

We denote by @lfc the space F!°¢, equipped with the local convergence topology in O, ¢, for any
[t1,t2] C Ry. More exactly, by definition, a sequence of functions { fx(s)} C F: _lfc converges to a function
f(s) € F¢in k — oo as ©% if py, 1, (I, 4, s Iy 4, f) — 0 as k — oo for any [t1,t2] C Ry It is easy

loc

to prove that the topology in ©%¢ in metrizable by using the Frechet metric

p+(f1, f2) == Z 9—m po.m(f1, f2)

2 T o f) ®)

If all metric spaces ©y, 1, are complete, then the metric space @lﬁc is also complete.

We note that the translation semigroup {S(¢)} is continuous in the topology of the space ©°¢. This
fact directly follows from the definition of the topological space @lfc.

We define the Banach space

F={f(s) € FE L Iflm, < +oo}, (7)
equipped with the norm
1fll 72 = sup [T, f(h + 8)[| 7 - (8)
h>0

For example, if ¢ = C(R4; E), then F2 = C%(Ry4; E) is equipped with the norm Hfoi =
supy>q || f(h)]| g, and if Floe = LéOC(RJ'_; E), then Fb = LZ(RJF; E) is equipped with the norm ”foi =

h+1 1/p
(Sutho J |f(8)||%d8> :

h
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We note that ]-"ﬂ’r C @ljr’c. The Banach space Fi is necessary to introduce bounded sets in the
trajectory space K. To construct a trajectory attractor in Kt, we use the weaker local convergence
topology in ©¢, instead of the uniform convergences in the topology of the space ]-"i.

We assume that Kt C F2 | ie., any trajectory u(s) € Kt of equation (1) has finite norm (8). We
define an attracting set and a trajectory attractor of the translation semigroup {S(t)}, acting on K.

Definition 1.1. A set P C @lfc is called an attracting set set of the translation semigroup {S(¢)},
acting on T, in the topology of ©%¢, if for any bounded set .7-"_1; in B C KT the set P attracts S(¢)B
as t — +oo in the topology of O i.e., for any e-neighborhood O.(P) in @lfc there exists ¢; > 0 such
that S(t)B C O, (P) for any t > t1. The attraction property of P can be formulated in the equivalent
form: for any bounded set B C K+ in % and any M > 0

diSt@()’M (H(),MS(t)B, H(),M’P) —0 (t — +OO),

where

distpm(X,Y) := sup dist pm(z,Y) = sup inf paq(x,y)
z€X reX YeY
where denotes the Hausdorff semi-distance between sets X and Y in the metric space M.

Definition 1.2.([15]) A set 2 C KT is called a trajectory attractor of the translation semigroup
{S(t)} on KT in the topology of ©!¢ if the following conditions are satisfied: (i) 2 is bounded in F2
and compact in @lﬁc, (ii) 2A is strictly invariant under the translation semigroup: S(¢)2 = 2 for all
t >0, and (iii) 2 is an attracting set of the translation semigroup in the topology of {S(¢)} for £ in

the topology of ©%°¢, i.e., for any M > 0
diste, ,, (Io,nrS(t)B, Mo pA) — 0 (¢t — +00).

Remark 1.1. Using the terminology of [14], we can say that a trajectory attractor 2 is global (F4,©%¢)-
attractor of the translation semigroup {S(¢)}, acting on K, i.e., 2 attracts S(¢) B as t — +oco in the
topology of @ﬁ‘_’c, where B is any bounded (in fi) set in KT:

dist@zﬁc(S(t) B,A) =0 (t— +00).

We formulate the main result concerning the existence and structure of a trajectory attractor of
equation (1).

Theorem 1.1.([14,15,20]) Let the trajectory space KT, corresponding to equation (1), be closed in
F? and satisfy the condition (5). Let the translation semigroup {S(¢)} have an attracting set P CK,
that is bounded in ]-"i and compact in @lfc. Then the translation semigroup {S(t),t > 0}, acting
on K, has a trajectory attractor 2 C P. The set 2 is bounded in .7-"3 and compact in @lfr’c. We
describe the structure of trajectory attractors 2 of equation (1) in terms of complete trajectories of
this equation. We consider equation (1) on the whole time-axis

ou
5 = A(u), t e R. 9)

Now, we extend the notion of the trajectory space KT of equation (9) introduced on R, . To the case
of the whole axis R. If a function f(s), s € R, is given on the whole time-axis, then the translations
S(h)f(s) = f(s+h) are also defined for negative h. A function u(s), s € R is called a complete trajectory
of equation (9), if Il u(s+h) € KT for any h € R. Here, I1+ = IIj o, denotes the operator of restriction
onto the half-axis R.

We introduced the spaces FL¢, ]-"ﬂ’r and @lﬁc. Now, we can introduce the space F'°¢, F* and ©%° as
follows:

Floe = {f(s),s eR] Htl,tzf(s) € Fritn V [t1,t2] € R}
Fri={f(s) € F L fll 7 < ool
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where
| f1l 0 := sup [[To1 f(h + 8)|| 7., - (10)
heR

The topological space ©!°° coincides (as a set) with F°¢, and by definition fi(s) — f(s) as(k — o)
in ©¢, if Ty, 4, fe(s) — It 1, f(s) as(k — o) in Oy, 4, for any [t1,t2] C R. It is clear that ©¢ is a
metric space, as well as @l_f_’c.

Definition 1.3. The kernel K in the space F° of equation (9) is the union of all complete trajectories
u(s), s € R, of equation (9), that are bounded in F* in the norm (10):

HHO,lu(h + S)Hfo,1 < Cua Vh € R.
Theorem 1.2. Let the assumptions of Theorem 1.1 hold.Then
A =11, K.

The set K is compact in ©!°¢ and bounded in F?.

The full proof is given in [15,20]. To prove that some ball in .Fjbr is compact in @lfc we use the
following lemma. Let Ey and F; be the Banach spaces such that E; C Ey. We consider the Banach
spaces

Wpl,po(ovM;EbEﬂ) = {7/}(5)75 €0, M ’ @Z)() € Lp1 (O,M;El),
WOO,pO(OvM;El’EU) = {1/}(8)73 € O’M ’ ¢() € LOO(O,M; El),

LPD(Oa Ma EO)} )

()
’ LPO(O’M;EO)}7

P(-) €
V() €
(where p; > 1 e pg > 1) with the norms

1/p1 1/po

M M
0w,y = | [Io@Eds |+ | [Iolmds]
0 0

1/po

M
[0y = esssup {05 e |5 € 0,01} + ([ 10/(5) i ds
0

Lemma 1.1.(Aubin-Lions-Simon, [21]) Let By € E C Ep. Then the following embeddings are
compact:

Wi po(0,T5 Ev, Eg) € Ly, (0, T E), Wy (0,T; Er, Ep) € C([0,T]; E).

In the next section, two-dimensional systems of Navier-Stokes equations and their trajectory attractors
depending on a small parameter £ > 0 will be studied.

Definition 1.4. We say that trajectory attractors 2. converge to a trajectory attractor 2 as ¢ — 0
in the topological space ©%¢, if for any neighborhood O(2A) in @)l_fc there is 1 > 0 such that . € O(X)
for any € < €1, i.e., for any M >0

diste, ,, (oA, o 2 2A) — 0 (€ — 0).
2 Notation and Setting of the Problem

First, we define a perforated domain. Let 2 be a smooth bounded domain R?. Denote

1 1
TE:{jEZQdISt(ﬁj,aQ)Zﬂ5}7 DE{€—2<£]€<27]€:1’2}
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Given an 1-periodic in £ smooth function F(z,§) such that F'(z,§)|¢com > const > 0, F(x,0) = —1,
VeF #0as e 0\ {0}, we set

, T
sz{xEE(D+j)| F(:Ug> go}, G-= |J
JjEY,
and introduce the perforated domain as follows:
Q°F=Q\ Ge.

Denote by G(z) the domain G(z,&) in a stretched space £. Afterwards, we often interprete 1-periodic
in ¢ functions as functions defined on 2-dimensional torus T? = {¢ : ¢ € R?/Z?}. According to the
above construction, the boundary 9€); consists of 02 and the boundary of the cavities 0G. C €.

We introduce the function spaces:

H := [L5(Q))%, He := [La(0)]%, V = [H}(Q))?, Ve = [H}(Q:;09)]? is the set of vector-valued
functions in [H'(£2.)]? with zero trace on 9§2. The norms in these spaces are defined by

2 2
ol? = /Q S i (@) de, [lo]2 = /Q S lvi(a) 2da,
=1

€ =1
2 2
o2 = /Q SV (o) P, (ol = /Q S Vi (2) P
=1 € =1

We study the asymptotic behavior of trajectory attractors of the following initial-boundary-value
problem for the autonomous two-dimensional system of Navier—-Stokes equations:

0

;: —yAus—l—(ug,V)uE:g(a:,g), x € Qe,
(V,us) =0, x € Qe,

ou T T 11
V@ne +B(m,g)u€:h(x,g), x € 0Ge,t € (0,400), (11)
Ue = 07 T € 8Q
ue = U(x), x € Q.,t=0.

\

Here ue = uc(z,t) = (ul,u?), g-(x) = g (2,2) = (¢",¢%) € H, he(z) = h (z,2) = (h',h?*) e H, n
is the outward normal vector to the boundary, and v > 0.

Further,
1
B(I',é.) = ( ’ (375) b2(2’€) ) )

functions b*(z, &) € C(Q x R?) such that b¥(x, ) is 1-periodic by variable ¢ functions on © x R? and
satisfy the condition

/ Wiz, &)do =0, k=1,2,
G ()

here, do is the length element of the curve 0G(z).
Similarly, vector-function components h(x, £) satisfy the conditions: h*(z,£) € C(2 x R?), h¥(x, )
is 1-periodic by variable ¢ functions on  x R? and

h*(z,€) do = 0, k=1,2.
G ()
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For U € H, there exists a weak solution u(s) to the problem (11) in the space LZOC ¢ (Ry; V)N

Ou,
Lf)%c*w(]RJr;Ha), such that u(0) = U. Moreover E € Ll"c (Ry;H.). We consider weak solutions to

the problem, i.e., [20], [22].
This satisfies the problem (11) in the sense of distributions, i.e.,

oc oc a
eles) € LR V) ML Ry 1 fus T € 1 (RyHL) |

that satisfy the problem (11) in the sense of distributions, i.e.,

8: . /Vu€ -V dxdt + /(us, V)ue - ¢ dedt+
OF Qe Qe
+o0 +o0
x
+ Z / / B(ﬂz,g)ug-w dodt = /ga(ac)w dxdt + Z / / he(z) -9 dodt
€Y 0 g Qs I 0 pai

for any function ¢ € C*(R4; H,). Here y; - y2 denotes the inner product vectors yi, yo € R?.
To describle the trajectory space KT of the problem (11), we follow the general scheme of and on
every segment, introduce the Banach space [t1,t2] € R

Oue
Firgo i= Lloc w(t1,t2; Ve )ﬂLéooc*w(tht%Hs)ﬂ{ Y (t17t2;He)}
equipped with the norm
ov
o050 = o) + el + | 5 . (12)
La(t1,t2;H)

It is obvious that the condition (2) holds for the norm (12) and the translation semigroup {S(h)}
satisfies (3).

Setting Dy, 1, = L2 (t1,t2; V) we find that Fy, 1, C Dy, 4, if u(s) € Fiy 4o, then A(u(s)) € Dy, 1.
Further, we can consider a weak solution to the problem (11) as a solution to the system of equations
in accordance with the general scheme .

Introducing the space (4), we find

Floe = LY (R V) N LR H { ‘ — e LyY( R+;H)},
P~ LRy Vo N LR H) 0 {0 | 3 € LR |

We denote by K a set of all weak solutions to the problem (11). We recall that for any function
U € H there exists at least one trajectory u(-) € KI such that u(0) = U(z). Consequently, the
trajectory space K of the problem (11) is not empty.

It is clear that KI C F°¢ and the trajectory space K is translation invariant, i.e., if u(s) € K7,
then and u(h + s) € K for any h > 0. Consequently,

S(hKI CcKf, vh>o.
Further, using the Ly(t1,t2; V)-norms, we introduce the metrics py, 4, (+,-) in the spaces Fy, 4, as

follows:
1/2

artu) = ( | " Jugs) - voIPds) L Vo0 € Four
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These metrics generate the topology of @l"c in the space F'¢ loc (respectively @le"i in ]-'é‘ﬁ) We recall that

Flo¢ converges to a function v € F1¢ as k — oo in ©%¢, if [|vg(-) = v(:) ||y (0.005) —

a sequence {vg} C F
0 (k — o0) for any M > 0. The topology of ©%¢ is metrizable (nf. (6)) and the corresponding metric
space is complete. We consider the topology in the trajectory space KI of the problem (11). The
translation semigroup {S(t)}, acting on K is continuous in the topology of the space ©'¢.
Following the general scheme of 1, we consider the bounded set in K1 by using the Banach space

FY (cf. (7)). It is clear that

ov

o :Lg(R+;V)mLOO(R+;H)ﬂ{ 5

€ Lb(R+,H)}

and .7-"3 is a subspace of the space F ﬂfc.

We consider the translation semigroup {S(¢)} on K, S(¢t) : KIf — K, ¢t > 0.

Let K. denote the kernel of the problem (11), consisting of all weak solutions u(s),s € R bounded
in the space

F¥ = LY(R; V) N Lag( { ‘eLbRH)}

Proposition 2.1. The problem (11) has trajectory attractors 2. in the topological space @lfc. The
set 2. is uniformly (with respect to € € (0,1)) bounded in F% and compact in ©%¢. Furthermore,

Qle = H—‘:-ICEv

the kernel . is nonempty and uniformly (with respect to e € (0,1)) bounded in F°. We recall that
the spaces .7:3’_ and GZ_EC depend on €.
The proof of Proposition 2.1 is similar to the proof in [15] given in a particular case.

8 Homogenization of attractors of initial boundary value problem for the Navier-Stokes system of
equations in a perfected domain

3.1 The main assertion

In this subsection, we study the limit behavior of attractors 2. of the Navier-Stokes equations
(11) as € — 0+ as and their convergence to a trajectory attractor of the corresponding homogenized
equation.

The homogenized (limit) problem has the form:

2
Moy (aﬂ<w>a%)+<uo,v>uo+v<m> — gla) + H(z), z€Q,

ot =1 (9.%'1 830,
(vv uO) :707 x € Q’ (13)
ug = 07 S 89
ug = U(x), zeNt=0,
where ON
aiw) = [ (D) gw- [ s
Y\G(z) Y\G(z)
m) = [ Paor@od, v = (" 0.
0G(x)
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) =~ [ weortegde - ( 3o ).

0G(x)

Here M*(¢) and N;(€) are 1-periodic functions of ¢ satisfying the problems

k
AMF =0in Y\ G(z), Oé\i = —b¥(x,€) on OG(x),
n
AN, =0in Y \ G(z), %]X = —ny on OG(x)

and having zero mean over the periodicity cell.
We consider the weak solution to the problem (13), i.e., a function

)
uo(x, s) € LY (Ry; V) nLlee (R+;H)ﬂ{v: (;f

2w 00, kW

L (R |
satisfying the problem (11) in the sense of distributions,i.e.,

8’&0 & ~
yr <) drdt + I// | a;(x) oz, o dxdt + /(uo, V)ug - 9 dadt+

Q Q W=l Q

auo ) Ow

+/Vuo-wdmdt:/g(x)'wdxdt—l—/H-wd:cdt
Q Q Q
for any function ¢ € C*(Ry; H).
Remark 3.1. Denote by my = supmy(z).The coercivity of the limit operator (13), is a delicate
Q

problem since the constants my are always positive. In particular, the well-posedness of the problem
(13), connected with the coercivity of the operator is guaranteed by the inequalities

Ao > max{mi,ma}, (14)

2

where )¢ is the first eigenvalue of the operator v g 86 (Ziil(:c)aa> in the space H'(Q). The proof
; ZT; X
3,0=1

of this assertion can be found in [8].
Under the condition (14) (cf. remark 3.1) the problem (13) has a trajectory attractor 2l in the

trajectory space KJF, of the problem (13); moreover,
ﬁ - HJFK

whera K is the kernel of the problem (13) in JF.

We formulate the main theorem on homogenization of attractors of the system of Navier—Stokes
equations.

Theorem 3.1. Let \g > max{mj, ma}, then is topological space @lfc correctly limited relation

A, - A if e =0+, (15)

Moreover, B
K. =K if ¢ =0+ in 0k, (16)

Remark 3.2. We recall that the spaces in theorem 3.1 depend on €. We assume that all functions
under consideration can be extended over the holes with preserving the norms.
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3.2 Auziliaries

We use some results of [8] below.
We consider the auxiliary problem

—yAmu =g ( ) x € e,
p o an + 07 (z, L)ul = ¥ (2, L), z€0G., k=12 (17)
ub =0, x € 0N,
We also require that
/ V¥ (x,€)do =0, / hF(x, €)do = 0. (18)
dG(z) G ()

We look for a solution in the form of a series
T
uf = ug (@) + eui(2,€) +uf(@, O+, £=7. (19)

Substituting the series (19) into (17) and collecting terms with € , of the same order in the equation
and boundary conditions, we find a recurrent sequence of problems such that the first one has the form

u %uk
Vanl + Vauo + b8 (2, §)uf = hk(a: €), x € IdG(x).
The integral identity for the problem (20) is a follows:
ouk Qv 8u’f 8U> oul Ov 8u v
L déydés + / / ( 0 2 ) d&ydéa+
//Y\G’(a:) <8§1 351 082 08 S V\G() \ 01 0&1 " o, 3 1tz (21)

—I-/ v (w,{)uovda = / % (w,{’)vda,
OG(zx) 0G(z)

where v € H.(Y \ G(2)).
From the form of the integral identity we can propose that the functions u¥(z, &) have the following

structure: L

oul oug
No(&)—.

o T (&) D9

Substituting the last expression into (21) and collecting the corresponding terms, we obtain the
following problem for the functions N;(¢) and M¥(€):

ON; Ov 8Nl )
dérd L dgyd
//Y\G (351 851 & 6§2> & §2+//Y\G(z 06, §1d&2 = (22)

or, in the classical form:

ut(a,€) = L*(€) + MM (&)ug (@) + N1(§) 52

{ Age(Ni+ &) =0, z€Y \G(x),

Tt = 1, x € 0G(x);
8Mk ov 8Mk ov
//Y\G(a:) < 061 06 & 3§2> §1dé ¢ () (33 f)v o (23)
or
AgeMF =0, z €Y\ G(x),
DI+ (2,8) =0, @ € 0G(x);
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oL* oy OLF du k
//Y\G(x) (651 6, + 965 06, ) d&rdgs = /80(36) h*(z,&)vdo (24)
: Agel* =0, z €Y\ G),
OL° = hM(x,6), x € 0G(x).

The compatibility condition in the problem (22) can be easily verified by integrating by parts and
using (18) in the problems (23) and (24). We note that the functions L*(¢), M*(¢), and Ny(§) are
defined up to an additive constant and the natural normalization conditions are the following:

//Y\G(m) LA = //Y\G( §)dt = //Y\G Q=0

In what follows, we assume that these conditions are satisfied.
The next power of eyields the problem for u}(z, ¢):

82 k 82 k k k
Aggué’ +2 (8&17391“ + 6527;:1@) + Aggug = —¢"%, zeY \G(z), (25)
0 0
‘aﬁé aZl o (, £)uf + h* (2, £ )uf = 0, z € 0G(x).

The following statement is true.
Lemma 3.1. The functions M* (&) and N;(€) are connected by the integral identity

Oubi(x / / oM* / i
d&1déy — b* N;d =0.
Oy < \G) 98 1z 0G(x) e

We also need the integral identity corresponding to the problem (25)

81} Fov oul ov

dé1d —l—// ( + — >d déo+

//Y\G(x (351 351 652 8§2> $1d6 Y\G(x) Oy &+ 1 Do 03 §1d&2

k

+/ bk(f)ulvdg"‘uo( )/ hF (x, € vda—// 6M vd§1d§2 8u0

9G(z) G () @ .
ey - 28 / / < +1> dé1d 0
/ /Y\G(:r 06 Sz O Vo) \ 981 vd§yd&s - o2

e L (o S
N dérd — + 1) vd&id 04 g8 =0,
//Y\G’(x) ( 852 8&1 v §1 52 83318.%'2 \G(@) 852 v 51 §2 xQ g

where g¥( // (z,&)d&1dEs.

The solvability condltlon for the problem (25) leads to the equations for u£(z), which is the required
formal homogenized equations. Applying Lemma 3.1, and considering the connection between b(x, )
and h(z, &) we can write it in the form

2
auo - e k oul(z) = g"(x k(x k o
3 28— [ e on @i =@+ [ ot

0G(x) 0G(x)

where

ay(x // < 3 (5il> d€1d€s, 6y is the Kroneker symbol.
G(z) \ 9
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Thus, the homogenized problem can be written as

where as k = 1,2 we have m"*(z) = / v (x, &) M*(z, &)do
8G(x)

H(2) = / W (o, €)M (, ) dor = — / Ve (2, €) L (., €)do
0G(x) 0G(x)

The following lemma is true (cf. [8]).
Lemma 3.2. If u, is a solution to the problem (17), and ug is a solution to the problem (26), then
there is convergence

“+o00

x x

\V4 . — 2. —
/ ue - Vb dwdt + H / / €)u5 Y dodt Z / /h(z,e) Y dodt
JEY: 0 6GJ JEYe 0 60“;

—/g(a:,i)ue‘wdadt—>V/ZiVug~V¢ dzdt—l—/Vuo-zpdxdt—/H-wdmdt—/g‘wda:dt

Qe Q Q Q Q

as € — 0.
Following 23] and taking into account Remark 3.2 , we show that
(e, V)ue — (u, V)u strongly in Ly(Q). (27)

For this purpose we use the estimate

[(ue, Ve = (u, V)ul|Lyq) < l[(ue = u, Vel Ly () + 1w, V) (ue =)L) <

1

1 1
C’(/|u8 —u]2|Vu5]2dxds)2 —|—C(/\u|2\V(u5—u)|2dxds)2 <

< Cl</|Vu5]3dxds)é</|u5—u]6dxds>é +C’1(/\u|6dxds)é(/\V(ue—u)|3d:cds)é.

Q Q Q Q

As proved in [15] the trajectory attractors 2. and 2 of equations (11) and (13) exist in the following
(2,2,1)
space with a stronger topology: Hy, (Q), where

ov

HZ2D(Q) = Ly (R+; [WS(Q)]2) n { g € L2w(R+aH)} :

We set . 2
HLM(Q) = Lo (Rys W3 (@))7).

Since H221(Q) € H{""?(Q) and H?21(Q) € L¢(Q), we find

/ lue — u|®dxds — 0, /|V(u8 —u)|*drds — 0
Q Q
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as € — 0. Here, we used the uniform boundedness of the integral /|Vu5|3dxds < M. Thus, we have

Q
proved the convergence (27).

3.8 Proof of Theorem 3.1

Proof. It is clear that (16) implies (15). Therefore, it suffices to prove (16), i.e., for any neighborhood
O(K) in ©!¢ there is £; = £1(O) > 0 such that

K. c O(K) for all € < &. (28)

If (28) fails, then there exists a neighborhood O’'(K) in ©!¢, a sequence e, — 0+ (k — o) and a
sequence ug, () = ug, (s) € K¢, such that

ue, ¢ O'(K) for all k € N. (29)

The sequence {g (w, i)} is bounded in H. Consequently, using the integral identity and the

Cauchy-Bunyakovsky inequality, we conclude that the sequence of solutions {ue, } is bounded in JF?.
Passing to a subsequence, we can assume that

s, — ug (n — 00) in @,

We assert that ug € K. The functions wu., (z, s) satisfy the equation

0
Yen _ vAu, + (ue,, V)ue, = g(x, E), teR, (30)
ot En
the condition 5
U, T T
TTT+B($’ a)uan :h(l', a), $€8G5n,

and the energy identity

— /_i||u€n<s>||%lw<>ds+u / e, () o(s)ds + 3 / [ B gl (o 5)(s)dods-

jeY
J € 8G]

- / [ nawisos = [ (9000, uele N vis)as (31)

—-M
JEY, 8G7

for any M > 0 and any function ¢ € C3°(] — M, M[), ¢ > 0. Furthermore, u., (s) — uo(s) (n — o0)
weakly in Lo(—M, M;V), x-weakly in Lo, (—M, M;H) and Otc, (3) 8u0( )
Lo(—M, M; H). By the known compactness theorem [22] we can assume that ugn( ) = up(s) (n — o0)
strongly in Lo(—M, M;H) and u., (x,s) — ugp(z, s) (n — oo) for almost all (z,s) € D x (=M, M). In
particular, u., (s) — ug(s) (n — 00) strongly in ©%¢ = LY*(R; H).

Now, taking into account Lemma 3.2 and the convergence (27), we pass to the limit in (30) and
(31) as € — 0, based on a standard argument in [22] (see the detailed proof in [15,17,20]). Consequently
up € K, i.e., ug is a solution to the problem (13), satisfying the corresponding identity (31) with the
exterior force g(z). At the same time, we have established that u., (s) — uo(s) (n — 00) in ©'¢ and,
consequently, u.,(s) € O'(ug(s)) € O'(K) for &, < 1. Thus, we arrive at a contradiction with (29).
The theorem is proved.

(n — o0) weakly in
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2 Mamemamuka srcone Mamemamuraivr modeaviey uncmumymot, Aivamo, Kazaxcman;
3 M.B. Jlomonocoe amwmdazs. Mackey memaexemmix yrusepcumemi, Mackey, Pecet;
4 Komnwromepaix opmanviess 6ap mamemamura uremumymo, — PFA Yfa Bedepantiv
zepmmey opmanviebihoy, benimweci, Yga, Peceti;
SJI.H. Dymuses amvindaew, Bypasua yammows ynusepcumemi, Hyp-Cyaman, Kazaxeman

Jlokaababl mepumoaThl KeyekTi opTagarbl 2D HaBbe—CTOKC
TeH/leyJiep >KYHeCciHIH aTTpaKTopJaphbl

Maxkasiazia TeHeyIepie KoHe MeKapaJsblK MapTTapia Te3 Tepdemesti mymrerepi 6ap eki emem i Habe—
Crokc Tengieysiep Kyiecinin KapacTbIpblabl. Tecik 06JIbICTaFbl €CeITi 3epTTeil OTHIPBIIL, CHIPTKBI IIEKAPa-
narel Jupuxienis 6ipTeKTi MapThIH XKoHe KybICTapAblH mekapacbiaaarbl Pypbe (Poben) mapThiH aHbIKTal-
MbI3. Ocbingail 6o/KaMIaAPMEH OChI YKYHEHIH TPaeKTOPUSIIBIK aTTPAKTOPhI KEHOIp 9JICI3 TOMOIOrUsIIapia
KOCBIMIIIA [TOTEHIIAAJIBIMEH YKOHE TPUBHAJIIBI €MeC OH, YKaK 0eJI1iri 6ap Teciri KoK, 00JIbICTaFbl OpTaIlaJIaHFAH
Hasbe—Crokc Tenzeynep »KyileciHiH TPaeKTOPHUSIBIK aTTPAKTOPbIHA KUHAKTAJIATBIHBL Jpiesaenred. Our
yutie A.B. Babunnig, B.B. YenwvikosreiH, 2K.—JI. Jluouctei, P. Temam xome M.M. Bummukrin 3BOJIIO-
[USIBIK, TEHIEYJIEPIIH TPACKTOPHUSIBIK, ATTPAKTOPJIAPHI TyPAJIbl MAKAJIAIAPhl MEH MOHOTPAMUIAPBIHBIH
amicremeci KomnanbuFal. CoHpmait-ak, XX FachIpbIH, COHBIH/IA Taiiga OOJIFaH opTallajiay 9icTepi maiiga-
JIAHBLIFAH. AJIIBIMEH aCUMITOTUKAJIBIK, 9[ICTEP/l aCUMIITOTUKAHBI (POPMAJIBbIBI KYPY YIIH KOJJIAHBII CO-
[aH KefiH aCUMITOTHKAJIBIK KATapPJIapAblH HEri3ri MyInesepid GyHKIIMOHAIIb TAIAay KOHE WHTEIDAJIIbI
GaraJiay 9JiCTEPiH KOJIIaHa OTBIPHIN TaHaaFal. ColikeciHIlle, KOMEKII 9JICi3 TOMOIOTUSIBI (DY HKIUOHAIIIBI
KEHICTIKTI aHBIKTay apKbLIbI TEHJECYJIEP/IiH MeKTi (OpTalalanran) XKyHeCiH aJbIHFaH KoHe OCBI XKyie VI
TPAEKTOPUSIIBIK, ATTPAKTOPJIAP/IbIH 6ap exeni mosesienren. Cofan Keilin Herisri reopema TY>KbIPBIMIAJIBIIL,
0J1 KOMEKIIII JIleMMaJIap/IblH KOMeriMeH HaKThLIAHFaH.

Kiam ces3dep: arrpakTopJiap, opramasay, HaBee—CroKC TeHzeysiep xKyiteci, 9JIci3 dKUHAKTBUIBIK, TeCiK 00-
JIBIC, Te3 TepbOeIMesti MyIesep, KeyeKTi opra.
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ArtpakTopsl 2D cucremnl ypaBuenuii HaBbe-Ctokca
B JIOKAJIbHO NEPUOJNYECKON MMOPUCTOI cpejie

Paccmorpena gsymepnas cucrema ypasuenuii HaBbe—CTokca ¢ GbICTPO OCIUJIMPYIONIMME YJIEHAMY B yPaB-
HEHUSAX U IPAHUYHBIX yCJIoBUsX. Vcciemys 3amady B nepOprUpOBaHHON 00JIACTH, MBI 38J1a€M OJHOPOTHOE
ycnosue Jlupuxsie Ha BHemHe# rpanune u ycinosue Pypbe (Pobena) ma rpammme mosocreit. [lpn Takmx
MIPEIIIOIOKEHNAX TOKA3bIBAEM, UYTO TPAEKTOPHBIE ATTPAKTOPHI ITOM CHCTEMBI CXOISTCS B HEKOTODOH Cla-
00ii TOMOJIOTHM K TPAEKTOPHBIM aTTPAKTOpaM yCpeJHeHHON cucrtembl ypaHenuii Hasre—CroKca ¢ J10m0JI-
HUTEJIbHBIM TOTEHITNAJIOM U HETPUBUAJIBHON MTPaBOil YaCThIo B 0OacTu 6€3 mop. Jjist 9TOro MbI HCITOTB3yeM
nonxox u3 crareir u mouorpacuit A.B. Babuna, B.B. Henszkosa, 2K.-JI. JIuonca, P. Temama u M.!. Bu-
IIIAKA O TPAEKTOPHBIX ATTPAKTOPAX IBOJIIOIMOHHBIX ypaBHeHMit. Kpome Toro, npuMeHsieM MeTOIbI yCpeIHe-
HUsl, TIOgBUBINKECs: B KoHIe XX Beka. CHadasIa UCIOIb3yeM aCUMITOTUIECKAE METOIBI st (pOPMATHLHOTO
IIOCTPOEHUS ACUMITOTHK, JaJiee Mbl BbIBEPsieM TJIABHBIE YJIEHBI ACHMIITOTUIECKUX PAIOB C IOMOIIBIO METO-
JI0B (DYHKIMOHAJIBHOIO aHAJIN3a U MHTErPaIbHBIX OlleHOK. OIpe e isisi COOTBETCTBYOIIUE BCIIOMOTATEIbHBIE
GYHKIMOHAILHBIE TPOCTPAHCTBA CO CIab0i TOIOJOrHEil, MBI BBIBOJAMM TPEAETBHYIO (yCPEIHEHHYIO) CH-
CTeMy ypaBHEHWI M JOKA3bIBAEM CYIIECTBOBAHWE TPAEKTOPHBIX ATTPAKTOPOB JIJIsl TON CHCTEMbI. 3aTeM
(dopMyIUpyeM OCHOBHYIO TEOPEMY U JIOKA3bIBAEM €€ C IMIOMOIIBIO BCIIOMOTATEIbHBIX JIEMM.

Karoueswie caosa: aTTpakTOphl, ycpeJHenue, cucrema ypasaennit Hasre-Crokca, cirabast cXoauMOCTb, Iep-
dopupoBanHast 06,1aCTh, OBICTPO OCIUJIIUPYIONINE UIE€HBI, IOPUCTAs CPEIa.
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