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Global solvability of a nonlinear Boltzmann equation

In this paper, based on the splitting method scheme, the existence and uniqueness theorem on the whole
time interval ¢t € [0,7),T < oo for the full nonlinear Boltzmann equation in the nonequilibrium case is
proved where the intermolecular interactions are hard-sphere molecule and central forces. Considering the
existence of a bounded solution in the space C, the strict positivity of the solution to the full nonlinear
Boltzmann equation is proved when the initial function is positive. On the basis of this some mathematical
justification of the H—theorem of Boltzmann is shown.
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Introduction

The Boltzmann equation [1] is a complex nonlinear integro-differential equation and refers to
difficult-to-study mathematical objects. Proof of the existence and uniqueness theorem for a solution
of the Cauchy problem for a spatially homogeneous Boltzmann equation begins with the work of
T. Carleman [2].

H. Grad [3] proved the first existence theorem in the "small" for spatially nonhomogeneous Boltzmann
equation in the case of Maxwellian molecules when the initial function tends to Maxwellian distribution
function in a special norm.

The world’s leading experts on kinetic equations provided a review monograph [4], on the current
state of mathematical theory of the Boltzmann equation starting with its derivation, theorem existence
and uniqueness and methods of solution. They wrote: «... For over 110 years this equation attracts
the attention of researchers, but only in recent years it has proved global solvability spatially —
nonhomogeneous problem in the case of a small deviation of the gas state from equilibrium positions
- more general results are not obtained to this day ...» [4].

T. Carleman in [2| pointed out that solving the full Boltzmann equation for practical problems
can be only done through approximate mathematical methods. In this connection, we have chosen the
splitting method to solve the full nonlinear Boltzmann equation. Splitting methods for solving a class
of various applied problems were developed by G. I. Marchuk [5].

In Kazakhstan, the study of the nonlinear equation and its corresponding discrete models began in
S.K. Godunov and U.M. Sultangazin works [6].

In this connection, to solve the full nonlinear Boltzmann equation in the class of positive initial
functions, the splitting method was applied [7], [8]. First, based on this method boundedness of
positive solutions in the space continuous functions was got. With the help of the boundedness of
the solution and of the established a priori estimates, the convergence of the scheme splitting method
and uniqueness of the limiting element were proved. The found limiting element satisfies the equivalent
integral Boltzmann equation. Thus, a weak solvability of the nonlinear Boltzmann equation as a whole
in time.

From modern bibliographic sources it follows that there are no the existence and uniqueness
theorems as a whole in time for the nonlinear Boltzmann equation in a nonequilibrium case when
intermolecular interactions are hard-sphere molecules or central forces.

4 Bulletin of the Karaganda University



Global solvability of a nonlinear

1 Statement of the problem for a nonlinear Boltzmann equation

Cauchy problem for the full nonlinear Boltzmann equation for molecules — hard spheres of radius
X in the domain

Q —(te[O,T),Tgoo;x—(xl,ajg,xg)eGE{ngagl,a—1,3};

V:(£17§2a§3) E%E{_Ooggagooa Oé:1,3}>

with respect to the distribution function f = f(t,x,v) is written as [1], [2]:

0

o (v V)f = 3(7) ~ IS = B(.1), 1)
with an initial

f(ta X, V) ’t=0: SO(Xa V) (2)

and periodic boundary conditions*

fFtx V)|, =ftx V)|, a=13 (3)
where

oo /22
S(f) = flt,x,v1)K(0,w)dedfdv, = flt,x,v1)K(0,w)dodvz;
il A

I(f) = / Ftx, V) f (%, V) K (0, w)dodvy, K(0,w) = 0.25x | w | sin(26),
V3xX

v, v are the velocity vectors of two colliding molecules, w = v — vy is relative velocity vector; velocity
of molecules after collisions v/, v, are related to v, vi by the dynamic relation: v/ = v+g(g,w), v| =
v — g(g,w); g is unit vector in the direction of scattering of molecules:
g = (sin@cose, sinfsine, cosG); (0,e) € ¥ = {0 <O0<m0<e<L 27r}; ['pz,— edge cube G
perpendicular to the axis x,, passing through z, = p, p takes the value either 0 or 1.

The initial function ¢(x,v) satisfies condition (3) and it is such that

0 < o(x,v) € C(G X Vo) A (Ilp(V)l(ey € —22—, 5 > 6));

(1+]v]?)2
IS [ et o)) IK (6 w)dodv = a1 (v) < oc; (4)
3 X
S(p) < [ lle(v)llpee)E(0, w)dodvy = ga(v) < o0,
V3><E

where [|o(V)|lz ) = sup | @¢(x,v) | at every v € V3, [qi(v)dv = const, k = 1,2. Following
xeG V3
[2], requirements (4) for the initial function were taken into account, that improper integrals were

convergent in the velocity space.

Lemma 1. For periodic functions, the following integration-by-parts formula over the cube G5 is
valid

/ VAU dx = — / YV VU dx. (5)
G3 G3

*or mirror reflections of molecules from the boundary of the G domain.
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Proof. Let us write down the integration-by-parts formula

/VAdez—/VVVde%—/VZde. (6)
Q

From the properties of the cube surface, it follows

/de— :1< / Vgg{n,{d:cgdx,y-l-

0G3 Loz,

3

+ / Vngnn dxgda:7>7 (8,7) € {1,2,3} A (B,7) # K, (7)

Fl,TN

where n is the outward normal vector to the cube surface, then considering the value of the normal

1, p=0
component in formula (7), n, = P77 e have
+1a P = 17
oU 3 oU oU
/ Va— dx = ’ ( / Va—xmn,.C drgdx, + / Va—xmn,.i da:gclam) =0.
0G3 =5 o, 1,2,

Taking into account this relation, from (6) we get (5).

2 Existence and uniqueness theorems

To solve problem (1)—(3) we use the of splitting method [5]. On [0,7") we introduce the time grid
T={t,=nt <00, 7>0,n=0,1,---;}, and*

<1/ [ (g1 + q2)dv. (8)
/

Suppose an approximation is known f"(x,v), at time n7. Then the schemes of the splitting method
corresponding to the problem (1)-(3) are written as follows:

fn+1/2 fn o en
—— =B({". "), (9)
Jn
n+l _ pn+1/2
m - Tf + (v, V)t =0, (10)
with initial and periodic boundary conditions
1%, v) = p(x,v), an‘Fom: f"H’Fma. (11)

Let the known approximation f™(x,v) has all the properties (4) of the initial function.

Introduce a shift operator T—/2 such that T—1/2f" = f7=1/2 that is, the operator T~1/2— acting
on the function f" returns its value obtained by the previous fractional step of the splitting method.
Acting this operator on scheme (10), we find the difference-differential analog of the continuity equation

*Condition (8) on the step 7 is necessary for the solution positivity of the splitting method schemes.
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(or mass conservation equation) at each v € V3 corresponding to the first fractional step of the splitting
method, that is

frE—pm nt1/2 nt1/2 nt1/2
- + (V7 V)f =0, f |Foza: f |Flza : (12)

The boundary condition was obtained from (9), since the function f™ has this property.

It is easy to see that there is the maximum principle on spatial variable x € G for problems (10)-(11)
and (12).

Let us first consider problem (12) in the form

VR g (v, ) R e

Applying the maximum principle to this problem, we find an estimate for the solution f"*1/ 2(x,v) in
the space C(G)

sup | /2 (v)| < sup |f"(v)], Vv € V3.
xeG xeG

Then in the same way from problem (10), (11) we obtain an estimate

sup | " (v)] < sup [P THA(v)], Vv € Vs
xeG xeG

Combining the found estimates, we have

sup | £ (v)] < sup [ £ (v)| < sup | f"(v)], Vv € V.
xeG xeG xeG

From here, summing over n, we find the main estimate

sup )] < sup 2] < () L) = 20(v), WV € V3 (13)
Xe XeE

that allows us to obtain estimates for the nonlinear terms of the equation (9).
Consider first

J(fM) = / fr(x,v) - f'(x, v K(0,w)dodv.
Vax ¥

From here

L3 < / P06V - 76, V) K (8, w)dodv, <

VaxX
< / sup |f™(x, v')| - sup | f"(x,v])| K (0, w)dodv, =
xeG xeG
V3x X%
= [ 170 i@ 17 ) o) K (0, w)dadv: <
VaxX

< / eV Lw(@) - eV Loy K (0, w)dodvi = qi(v) < co. (14)
VaxX
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2. f"(x,v) | S(f"(x,v1)) |[< sup | f*(v)] / | [ (x,v1) | K(0, w)dodvy <
xeG

V3><E
< qo(v) / 17 (1 o) K (6, w)dordvy <
V3><E
< qo(v) / Il () K (6, w)dodvy = ga(v) < co. (15)
V3><Z

It is now easy to obtain an estimate for the difference derivative f; +1/2 using (14), (15), based on the
equation (9):

et (2= T ISEBU ) ISEIUN 0TS 1S aa(v) + @2(v) = a3(v). (16)

Adding equations (9), (10), on the integer step we obtain the difference-differential Boltzmann
equation

(S = /7 + (v V) =BT . (17)
with initial and boundary conditions
vy =pxv), = (18)

From here
| (=M ILIBU ) L+ | (v, V)]

When the function f"*!(x, v) reaches its maximum value at extremum points reaches x in G for every
v in V3 by virtue of the maximum principle, we have

| =/ L) <L (= ) | (x0) <[ B ) | (x6).

From here
sup (= )] < B M| = a3(v). (19)
Now from (17) we find
sup (v, V) ] < 2g3(v). (20)

Remark 1. The functions qi(v) € C(V3). kK = 0,3, i.e., they are positive continuous summable
functions and continuous depending on the integral of norm for the initial function ¢(v) over the
domain V3.

Proposition 1. Each problem (12) and (10)—(11) has a unique positive continuous solution that is
bounded in @, and it is periodic function over z,, i.e., it possesses properties (4) of the initial function,
since the approximation f™(x,v) is such. The periodicity is shown in the same ways as in [7], and the
rest of the properties have already been proven.

3 Compact solutions and existence

We denote the set of found approximate solutions to problems (9), (10)—(11) by {f7}, and the the
set of interpolated values on the interval [0,7) by f7.

In the velocity space V3, we introduce a ball Vz- with the center at the origin of coordinates and
with the radius R” = O(1/7%) < oo, where 1 < k = const Ak € N resulting in a finite bounded
domain Qr- =[0,T) x G x Vrr C Q.
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Since all the estimates are established in the domain @ then they are valid in Qp-. The validity of
the estimates are not violated when the radius of the ball R™ increases arbitrarily large as 7 tends to
zZero.

Moreover, from estimates of (13), (14), (15), (16) and (19), (20) it follows the uniform boundedness
of the norms for the interpolated functions

JFT; J(JET)7 S(fT)a ffTa (V7 v)fT

in C(Q) at 7 — 0. From here it follows the equicontinuity of {f7} in C(Q). Hence, the set f7 is
compact in the space C(Q). A convergent subsequence can be distinguished from this set. It converges
in C(Q) to some element f(t,x,v) € C(Q). Due to compactness, the following limit transitions take
place at 7 — 0 :

Fr=f = £ 3G = 38, F7S(F7) = fS(5),

fT(t7 X, V) ‘t:0_> f(tv X, V) |t=0: (P(X, V)a (V? V)fT - (V> v)fa

fT(t7 X7 v)ll—‘oz(l: fT(t7 X? v)‘l—‘lxﬂ _> f(t? X? V)‘Foza: f(t7 X7 V)}Flza7a = 173?

QRT — Q

Thus, going to the limit in the difference-differential problem (17)-(18) we make sure that the limit
element f(¢,x,v) uniformly satisfies problem (1)—(3) for the nonlinear Boltzmann equation.

4 Uniqueness

Let there be two solutions f(t,x,v) and F(t,x,v) of problem (1)—(3). Let us write down the
equations for their difference U = f — F:

ou
E—F(V,V)U:B(f,f)—B(F,F), (21)
in the domain @ = [0,7") x G x V3 with zero initial U |;—o= 0 and periodic boundary condition
U(t,x,v) =U(t,x,V) ,a=1,3. (22)
FOZa Flza

Note that all improper integrals in the calculations make sense, i.e. they are converging integrals.
Multiply equation (21) by 2U and integrate by domain Vi:

;/U2dv+/(v,vw2dv - 2/U(B(f, /)~ B(E.F))dv. (23)
V3 VS V3
Remark 2. In ([2], p. 13), there are formulas (8), (9) of the involutive transformation. For trans-
formation (8), properties are briefly written as
U =P(U),
a) P is an involutive transformation, i.e. P(P(U) = U),
b) Transformation P preserves the volume element dodvidv.
Definition 1. We call two single-valued functions sign equivalent, i.e., U ~ W, in the domain @) for
Vt € [0,T) such that
Ut,x,v),W(t,x,v) € C(G x V)N L1(V3),Vt € [0,T),

and properties
a) signU = signW in Q,
b) U(M’) = W(M’) =0, where M7,j =0,1,--- , are zeros of these functions in Q.
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Lemma 2. There is the inequality
/U(B(f, f) - B(F, F))dv <0. (24)
Vs

Proof. Consider the expression system

f OB(f, f)dv = f O[f, fldodvidv,
V3

VX%
(25)
J ®B(F,F)dv = [ ®[F, F|dodvidv,
Vs VZxE
where
[f, 1= (f'fi = ) K(0,w), (26)

VE=V3x Vs, @=®(tx,v) is an arbitrary continuous in @ and summable in V3 function.
From the first expression of system (25), subtracting the second expression, respectively, we get

/(I)(B(f,f)—B(F,F))dv: / @([f, f] — [F, F])dodvidv.

Vs VEx%

Here we use the well-known involutive transformation P (see Remark 2).
Applying P to the integrand on the right parts, we have

/CD(B(f, f) — B(F, F))dv =— / (I)’([f, f1—1F, F])dadvldv.
Vs VZx3
Adding the latter with the previous expression, we find
[o®.n-BE) = [ @ @75~ (F.F)dodviav.
V3 V32><2

In this formula, we make the change of variables vi &= v and find

/cb(B(f, f) = B(F,F))dv = % / (® + By — & — &) ([f, f] — [F, F)dodvidv.

Vs VExS

Hence the square brackets on the right side, replacing the expressions according to the formula (26),
we find

/@(B(f,f) —B(F,F))dv =~ / (@ + P — D' — D)) x
V3 VZxE®
X ((f’f{ +FR) - (ffi+ F’F{))dadvldv. (27)
If we put ® = In(f/F), then from (27) we arrive at formula
[ 04/F)(BU.) ~ BEF))dv -
V3

1 F'F] /ol ! 1
= / ln<%)((ff1+FF1)—(ff1+FF1)>dadv1dv. (28)
VZx%
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We must define the sign definiteness of the complex integral (28). In this case, it is difficult to check
the sign of the second the integrand in the domain (). Since we are interested in only integral is definite
in sign, then using Definition 1 we write the sign equivalence functions for the terms of the second
integrand

f'fi
fh

Using these relations, we rewrite the integral (28) sign equivalent form

/ln(f/F)(B(f,f) _B(F,F))dv ~ / In (fle’Fll) (mf'fhr

FFy

(F'fi = f1) ~ It (FF — F'F]) ~1

4 ' fiFF fh
V3 VZx%
FF, 1 FAF'FN, [ fiFF _
+ lnF,Fl,>K(9,w)dadv1dv =3 / In (f/f{FFl)ln<ff1F,F1,)K(G,W)dadvldv -
VEx%
1 L (FHEFF
_ ! Jr <0. .
; / 1n? ( - f{FFl)K(G,w)dadvldv_O e [0,T). (29)
VExS

According to Definition 1, the functions U = f — F and ® = In(f/F') are also sign equivalent that is,
U ~ &, since signU = sign® in @, Thus, (29) implies inequality (24), since U = f — FA® =1In(f/F),
then we will see that signU = sign® in Q, As a result, we arrive at the inequality (24).

[ /P B - BER)iv < 0= [U(B(.1) - BEF)dv <0
V3 Va
Lemma 2 is proved.

Now for functional equation (23), integrating over the domain G taking into account the boundary
condition (22) and Lemmas 1 and 2, we obtain the main the inequality for the uniqueness of the
solution

d

= | UAtxv)dvdx <2 / U(B(f, ) - B(F, F))dvdx <0.

GxV3 GxV3

The latter we will rewrite

Ci/U2(t,x,v)dvdX—2 / U(B(f,f)—B(F,F))dVdXﬁO,

GxV3 GxV3

from the left side, discarding the non-negative bounded integral justified in estimates (13)-(16) and,
integrating over t, we obtain

/ U%(t,x,v)dvdx < / U%(0,x,v)dvdx, Vt € [0,T).
GxV3 GxV3
From here [ U?(t,x,v)dvdx <0, = U(t,v,x) = 0. V(t,x,Vv) € Q.
GXV3

As a result, we show the existence and uniqueness of the positive solution to the full nonlinear
Boltzmann equation from the space

ft,x,v)eC! (0,T5;C(G x V5) N L1(V3)) A (v, V); B(f, f)) € C(Q) N Ly (V3), (30)
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it consists of the union of some functional spaces, as the space of continuously differentiable functions
f(t,x,v) by t € [0,T) and at each ¢ continuous in (x,Vv) in the domain G x V3 and summable over v
in V3, and the functions (v, V)f; B(f, f) at each ¢ continuous over all variables in () and summable
over v in V3.

Definition 2. The solution f(¢,x,v) with properties (30) uniformly satisfying the Boltzmann
equation (1) with initial boundary conditions (2), (3) in the domain @ will be called strong.

As a result, it was proved next main theorems

Theorem 1. If the initial function satisfies conditions (3), (4), then there is a unique strong positive
solution to (1)—(3) for the whole time interval ¢ € [0,7),T < oo satisfying uniformly the Boltzmann
equation (1) everywhere in Q.

When intermolecular interactions are determined by central forces, then K (6, w) is determined by
the formula (see [2], p. 15)

KOw) = w | ppw=vovy;S=1{0<p<p;0<0< 2} do= dpd,

where p is the target distance of the colliding molecules, pg is the radius of action of the molecule.
Initial function ¢(x,v) satisfies condition (3) and such that

0 < p(x,v) € C(G x Va) A (loW)llee) < M5, 4> 6));

(1+vi?)?
I(p) < sz [V - eV Ee(8, w)dodvy = by (v) < oo; (31)
3 X
S(p) < [ le(vi)lKe(0, w)dodvy = ha(v) < oo
V3x X
where [ hy(v)dv = const, k=1,2.

Vs
The existence and uniqueness theorem of the Cauchy problem for the Boltzmann equation with

intermolecular interaction K (6, w) is also proved as Theorem 1, by a literal repetition, the formulation
will be:

Theorem 2. If the initial function satisfies conditions (3) (31), then there exists a unique strong
positive solution of problem (1)-(3) on the whole time interval ¢ € [0,7),T < oo satisfying uniformly
the Boltzmann equation (1) everywhere in Q.

Corollary 1. The existence and uniqueness theorems 1 for the nonlinear Boltzmann equation (1) are

trivial for the Boltzmann equation in the case of Maxwellian molecules with corresponding relaxations
of the requirement from the initial function.

5 Positivity of the solution to the Boltzmann equation

Lemma 3. Since there exists a bounded solution of the Boltzmann equation (1) with positive
initial condition (2), then the value B(f, f) of the collisions integral makes sense and the solution
f(t,x,v) € Q is positive.

Proof. The Boltzmann equation (1) is written along the trajectory
d aof
dif(tx - V(t - 7_)7V) = a + (V7 V)f(t,X - V(t - T)7V) = B(f7 f)(t,X - V(t - T)7V)' (32)

-
We put f = U1, since f exists and it is a bounded solution of the Boltzmann equation, then (32) can
be rewritten as

%U(t,x —v(t—r71),v)=-UBUU)(t,x —v(t—7),Vv).
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From here, integrating we find
Ul(t,x,v) = p(x,v)exp(-B(U,U)t) > 0,V(x,v) € G x V3,

it was required to prove.

6 H—Boltzmann theorem

Let us multiply the Boltzmann equation (1) by the function 1+ In f(¢,x,v). Then integrate over
the domain G x V3 and, considering mass conservation [2]|, we find

— / fln fdvdx + /(V,V)flnfdvdx:

GxV3 GxV3
= / /lnf(f/f{—ffl)K(O,w)dadvldvdx. (33)
GxV3 V3xX

Hence, the second summand of the left part, integrating over the parts, taking into account the
boundary condition (3) and using the lemma 1, we have:

/ (v,V)fln fdvdx = 0. (34)

GXVg

Using the involutive transformation P (see note 2), the integral in the right-hand side (33) can be
written as

/ / In f(f’f{ - ffl)K(G,w)dadvldvdx =
GxV3 V3xX

—% / <1nf/+lnf{—lnf—lnfl)(f/f{—ff1)K(9,w)do—dv1dvdx:

GXVZxZT

_ 1 N L(f'fi — ff1)K(0,w)dodvidvdx. (35)
4 fi

GXVZxE

Wherefore, using the signequivalence of the function Inif f f ( =1 fl) and denoting

/ flt,x,v)In f(t,x,v)dvdx,

GxV3
considering (34), (35) from (33), we find
First case:
—H —= / / In 2f’ flK 0, w)dodvidvdx < 0.
G>< V3 Vax X ffl

Second case:

—H —= / / ff1 ffl K(0,w)dodvidvdx < 0.
GXV5 VgXZ
From these cases it follows that

Mathematics series. Ne3(107)/2022 13
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Lemma 4. 1If the positive initial function ¢(x,v) is an additionally function to the requirements
(4) and satisfies the condition

/ o(x,v)|[In p(x, v)|dvdx < oo,
GXVg

then the following inequality holds

| / ft,x,v)In f(t,x,v)dvdx| < / o(x,v)|Inp(x,v)|dvdx < oo, Vi. (37)
G'><V3 GXVg

Integrating inequality (36) over ¢ in the range from 0 to ¢, we obtain (37).

Above we proved the strict positivity of the solution f(¢,x,v) to problem (1)-(3), when the initial
function p(x, v) is positive, thus the logarithm function of the distribution is lawful and, moreover, it
follows from (30), (37) that 31In f(¢,x, v) for all (¢,x,v) € Q.

It follows from (36) that the H(¢) function never increases in time and is constant if and only if
the distribution function is locally-Maxwellian. Indeed, the equality in (36) is achieved, if and only if:

in the first case In? % =0,— In % = 0, from here

In f(v/) 4+ In f(v}) = In f(v) — In f(v1) = 0, (38)
and in the second case f’f] = ff1, By logarithmizing both parts of the latter, we have the ratio

In f(v) +In f(vi) —In f(v') —In f(v]) = 0. (39)

Eventually, we see that equations (38), (39) coincide and it follows from them that In f(¢,x,v) is a
summator invariant, i.e.,

In f(t,x,v) = a+bv+cv|]?, ¥(t,x) €[0,T) x G,
where a, ¢ are scalar function and b is a vector constant. Hence, following [2], we obtain

f=fo=Cexp([—allv] = [vo])?]),
where fj is the local-Maxwell distribution.

C>0 and o> 0,anda =1/(2kT),

k is the Boltzmann constant, 7" is the temperature, vy is the average velocity, C = p(27rk:T)7%, p is
the density. p, T, vo can depend on (t,x).

References

1 Boabmman JI.9. Jleknun o Teopun razos / JI.9. Boabiman. — M.: T'ocrexusnar, 1953. — 554 c.

2 Kapneman T. Maremarnveckne 3a1aun kunerndeckoii reopun razos /| T. Kapmeman. — M.: Uz-
Bo MJI, 1960. — 150 c.

3 I'pax I Kunernveckasi reopust razos / I. I'pax // C6. cr.: Tepmomunamuka razos. — M.: Ma-
muuocrpoenue, 1970. — C. 5-109.

4 JIubosur [Ix.JI. Hepasrosecubie siierusi. Y papuerue Bosbivana / JIxx.J1. JTubosui, E. Y. Mon-
Tposut (pen.). — M.: Mup, 1986. — 272 c.

14 Bulletin of the Karaganda University



Global solvability of a nonlinear

5 Mapuyk I"U. Merogasr pacmemiennst / I.11. Mapuayk. — M.: Hayka, 1988. — 263 c.

6 Tomynos C.K. O muckpeTHbIX MOseIax KuHeTHaeckoro ypasuennst Boabivana / C.K. ['oxynos,
Y.M. Cynranrazun // YMH. — 1971. — T. 26. — Bom. 3(159). — C. 3-51.

7 Akysh A.Sh. Convergence of a splitting method for the nonlinear Boltzmann equation
/ A.Sh. Akysh // Numerical Analysis and Applications. — 2013. — 6. — No. 2. — P. 111-118.

8 Axwsimt A.III. O paspemunmoctu HesumHeitHOro ypaBuenust Boabivana / ALl Akbin // B kaure:
Hexknaccuaeckue ypaBuenust mareMarndeckoil pusuku. — HoBocubupck: UH-T MaremMaTuku um.

C.JI. Cobonesa CO PAH, 2007. — C. 15-23.

O.11. Axprimn (Akpires)

Aamamoi, Kasaxcman

Beiicb3pikThl BosibliMaH TeH/ieyiHiH 0apJIbIK YaKbITTa IIEINiJIeTiHiri

2KywmpicTa bIabIpaTy 9/IiCiHIH, HETi3iHIEe TOJBIK OeMCHI3BIKTHI BosMan TeHIeyiHiH 6apJIblK YaKbIT apaJibli-
reiazga t € [0,7), T < 0o MOJIeKy/IaIapIblH TEIEeTEeHIIKCI3 KYiil OPTAChIHIA XKOHE OJIAP/IBIH 9CEPJIeCyi KATThI
chepagibl MosieKystajiap 00jica HeMece KAKTBIFBICYbl OPTAJIBIK, KYIIT apKbIJIbI OPBIH/IAJICA KAJIKbI IIEeITyiHiH
6OJTATHIHIBIFBI TEOPEMACHI JIJIEJIIEHTeH. Y 3imicci3 PYHKIMIap KeHICTITiHIe TYNBIK MIentyi 60IFaHIBIKTaH
OefichI3bIKTE Bosvan TeHeyiHiH OacTamkbl MIApPTHI OH OOJIFAHA, MIEIIY/IiH OPKAIIAHIA OH OOJIATHIHDI
monenneni. CourbiabIg Herizinge Bosmyan H —TeopeMachIHbIH KEHOIp MaTeMaTUKAJIBIK HET13/1ey1 KopCeTi-
PeH.

Kiam cesdep: Touiblk GefChbI3BIKTBI BosiMan TeHeyi, biabIpaTy 9/1ici, 6apJiiblK, yaKbIT apaJibIFbIHIa Oeii-
CBI3BIKTHI BoJiiiMaH TeH/1eyiHiH >KaJIKbl MIeNyiHiH 00JaTBIHIBIFBI T€OPEMAChl, OEHCHI3BIKTHI BosiiiMan TeH-
neyiuig oy menryi, bosvan H —TeopeMachIHBIH MaTeMaTHKAJIBIK, HETi31eMeci.

ATII. Axkbin (Akwuies)

Asamamo, Kasazcman

I'mobGasbHAs pa3penmmMocTh HeJIMHeITHOTro ypaBHeHust Boabiimana

B crarbe ¢ moMomipio cxembl METO/A PACHICIIEHUSI JOKA3aHA TeopeMa CYIIECTBOBAHUS U €IUHCTBEHHOCTU
Ha BceM npoMexxyTke Bpemenu t € [0,7), T < oo, sl IOJHOrO HEJIMHEHHOroO ypapHeHus BosbiMaHa B
HEPABHOBECHOM CJIydae, KOT/Ia MEXKMOJIEKY/ISIDHBIE B3aUMOIEHCTBUS SIBJISIFOTCST MOJIEKYJI-TBEPIABIMU Cde-
paM¥ U UEHTPaJIbHbIMEU cuyiaMu. Ha OCHOBe CyliecTBOBaHUsI ONPAHUYEHHOrO pelenusi B npocrpancrse C
MO/ITBEPKJIeHA CTPOTasl MOJIOXKUTETBHOCTh PEIIEHN MOJHOTO HEJIMHEHHOTO ypaBHeHUsI BosbiMana, Koria
HadaJIbHas (DYHKIUS TOJIOKUTEbHA. Ha OCHOBaHWM 3TOr0O MOKA3aHO HEKOTOPOE MaTeMaTHIeCKOe 0OOCHO-
Banue H—reopembl Bosibiimana.

Karoweswie caosa: monHoe HenuHelHOe ypaBHeHue BosbliMana, MeTo paciliellyIeH s, TeOpeMa CyIIecTBOBa-
HUSI U €IMHCTBEHHOCTH HA BCEM MPOMEXKYTKE BPEMEHU JJIsi HEJIMHEIHOTO ypaBHeHNsT BobiMana, momoxm-
TEJILHOCTh PEIeHn HeJIMHEeHHOTro ypaBHeHust bosbimana, H-reopema Bosibiimana.
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