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Factorization method for solving nonlocal
boundary value problems in Banach space

This article deals with the factorization and solution of nonlocal boundary value problems in a Banach
space of the abstract form

Biu= Au— S®(u) — GU(Aou) = f, u € D(By),

where A, Ag are linear abstract operators, S, G are vectors of functions, ®, ¥ are vectors of linear bounded
functionals, and u, f are functions. It is shown that the operator B; under certain conditions can be
factorized into a product of two simpler lower order operators as B1 = BBy. Then the solvability and
the unique solution of the equation Biu = f easily follow from the solvability conditions and the unique
solutions of the equations Bv = f and Bou = v. The universal technique proposed here is essentially different
from other factorization methods in the respect that it involves decomposition of both the equation and
boundary conditions and delivers the solution in closed form. The method is implemented to solve ordinary
and partial Fredholm integro-differential equations.

Keywords: boundary value problems, nonlocal conditions, factorization, linear operators, integro-differential
equations, closed-form solutions.

Introduction

Let X be a complex Banach space and X™* the adjoint space of X, i.e., the set of all complex-valued linear
bounded functionals ¢ on X. Let A, Ay : X — X be linear operators with boundary conditions incorporated,
O = col(g1, P2y ey Om), ¥ = col(wy, 2, ..., Ym) vectors of linear bounded functionals ¢;, 1, i = 1,2, ...,m, and
S(81, 825 s Sm)s G = (91, g2, --., gm) vectors of functions s;,¢g; € X, i =1,2,...,m. Let the operator By : X — X
be defined by

B =A—-5%—-GY(A),

and consider the boundary value problem
Biu= Au — S®(u) — GV (Agu) = f, wu € D(By),

where f € X is a given forcing function and u is the unknown function.

The primary objective of the paper is to establish factorization conditions under which this problem can
be decomposed into two simpler lower order boundary value problems and derive the unique solution in closed
form. The second goal is to implement this procedure to solve boundary value problems for ordinary and
partial Fredholm integro-differential equations with nonlocal boundary conditions. In this case B is an integro-
differential operator, A is a differential operator of order n with nonlocal boundary conditions incorporated,
and the functionals ¢;,;, ¢ = 1, ..., m are integrals with constant limits.

Integro-differential equations model many situations in biology, physics, economics, engineering and appli-
ed mathematics. Boundary value problems involving an integro-differential equation and nonlocal boundary
conditions are very difficult to solve analytically and therefore very often numerical methods are employed.
Factorization methods, where they can be applied, can reduce the problem to simpler lower order problems
which can be solved and thus construct the solution of the initial complex problem [1-20].

The novelty of the factorization method presented here differs from other factorization methods in the
literature in the respect that it involves decomposition of both the equation and boundary conditions and
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delivers the solution in closed form. The technique is new development in Banach spaces and an extension of a
procedure used successfully by the authors to solve various other boundary value problems [21-24] and [25-27].

The method is simple to program to any Computer Algebra System.

The rest of the paper is organized as follows. In Section 1 some preliminary results are quoted. In Section 2
the solvability, uniqueness and decomposition conditions are established and the factorization solution method
is explicated. In Section 3 two example problems are solved to show the implementation and efficiency of the
method.

Preliminaries

Let X,Y be complex Banach space and A : X — Y a linear operator with D(A) and R(A) denoting
its domain and range, respectively. We recall that A is said to be injective (or uniquely solvable) if for all
uy,us € D(A) such that Auy = Aug, follows that u; = ug; alternatively, A is injective if and only if ker A = {0}.
The operator A is called surjective (or everywhere solvable) if R(A) =Y. The operator A is called bijective if
A is both injective and surjective. Lastly, A is said to be correct if A is bijective and its inverse A~! is bounded
on Y. The problem Au = f is called correct if the operator A is correct.

An operator By : X — X is said to be factorable if there exist two operators By, B : X — X such that B;
can be written as a product By = BBjy. In this case, BBy is a factorization (decomposition) of Bj.

Throughout the paper, we will use the notation ®(g) to denote the m x m matrix whose i, j-th entry ¢;(g;)
is the value of the functional ¢; on element g;, where i,j = 1,...,m. Note that ®(gC) = ®(g)C, where C is a
m x k constant matrix. We will also denote by ¢ the column vector ¢ = col(cy, ..., ¢;,) and by Oy, I, the zero
and identity m X m matrices, respectively.

We recall Corollary 3.11 from [25] which will need to prove the theorems below.

Corollary 1. Let A be a correct operator on a Banach space X and the components of the vectors
G =(91,...,9m) and F = col(F1,...F,,) are arbitrary elements of X and X*, respectively. Then the operator
B : X — X defined by

Bu=Au—-GF(Au)=f, D(B)=D(A), feX (1)

is correct if and only if
det L = det[],,, — F(G)] # 0. (2)

If B is correct, then the unique solution of (1) for every f € X is given by
uw=B7'f=AT' f+ AT'GlL, — F(Q)] ' F(f). (3)

The following theorem is the generalization of Theorem 1 in [28] and here we prove it without requiring
the correctness of the operator A and the linear independence of the components of the functional vector
U = col(¢1, eeey Vim)-

Theorem 2. Let X,Y and Z be Banach spaces and A : X — Y be a linear injective operator with
D(A) C Z C X. Further let the vector G = (g1, ..., gm) € Y™ and the column vector ¥ = col(1, ..., ¥ ), where
Y1, ooy YUy € Z. Then:

(i) The operator B : X — Y defined by

Bu=Au—-GY(u)=f, D(B)=D(A), felX, (4)

is injective if and only if
det W = det[I,, — U(A™'G)] # 0. (5)

(ii) If B is injective and A is bijective, then B is bijective and for any f € Y, the unique solution of (4) is given
by
u=Blf=A"1f+ AW U(ATLS). (6)

(iii) If B is injective and A is correct, then B is correct.

Proof. (i) The sufficient injectiveness condition of the operator B is proved as in [28§].

Now, we prove the converse statement “if the operator B is injective, then det W # 07 or equivalently "if
det W = 0, then the operator B is not injective”. Suppose det W = 0. Then there exists a nonzero vector
¢ = col(ey, ..., ¢) such that We = 0. Consider the element ug = A~!Ge. This element is nonzero, because
otherwise we would have

We=1[I, —¥(A'G)c=c— V(A" 'Gec) =c #0,
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which is a contradiction. Further,
Bug = Aug — G¥(ug) = Gec — GY (A G)c = G[I,,, — GY (A G)]c = GWe =0,

which means that ug € ker B and thus B is not injective.
(ii) Let B is injective and A is bijective. Then (5) holds (det W # 0) and for any f € Y from (4) follows
that
u=A"1GU(u) + A7f, (7)

and
U(u) = V(A GV (u) + U(ATLf),
L — WAL O W(u) = V(AL ),
U(u) = (I — U(ATIG)] (A7), (8)
Substituting (8) into (7), we obtain the unique solution (6). Since this solution is given for arbitrary f € Y,
then R(B) =Y, i.e., B is surjective. Hence B is a bijective operator.

(iii) If B is injective and A is correct, then from (6) follows that B~! is bounded since A~! and ¥ are
bounded. Hence B is correct. O

Main results
Theorem 3. Let X and Zy, Z be Banach spaces, Zy, Z C X, the vectors Go = (910, -+, gmo0)s G = (g1 -+ Im),

S = (81,...,8m) € X™, the components of the column vectors ® = col(¢1, ..., 0m) and ¥ = col(¢1, ..., )
belong to Z; and Z*, respectively, and the operators By, B, B : X — X be defined by

Bou = Aou — GO(I)(U) = f, D(BO) = D(Ao) - Zo, (9)
Bu=Au—GU(u)=f, D(B)=D(A)C Z, (10)
B1U = AAQU - S(I)(’LL) - G\I/(AQU) = f, D(Bl) = D(AA0)7 (11)

where Ag and A are linear correct operators on X and Gy € D(A)™. Then the following statements are satisfied:
(i) It
SeR(B)™ and S = BG,=AGy— GY(Gy), (12)

then the operator B; can be factorized as By = BBy.
(ii) If (12) holds, then the operator By = BBy is correct if and only if the operators By and B are correct
which means that

det Ly = det[I,, — ®(A;'Go)] #0 and det L = det[l,, — ¥(A'G)] £ 0, (13)
and the unique solution of (11) is
u=B{'f=A"AT f+ [AgTATIG + Ay GoLg ' R(Ag T ATIG) [ LTI WA )
+ A GoLy ' (A AT, (14)
Proof. (i) Taking into account that Gy € D(A)™ and (9)-(11) we get
D(BBy) = {u € D(By) : Bou € D(B)}

= {u S D(Ao) 2 Agu — G0<I>(u) S D(A)}
={ue D(Ay): Apu € D(A)} = D(AAy) = D(By).
So D(B;) = D(BBy). Let y = Bou. Then for each u € D(AAp) since (10) and (9) we have

BByu = By = Ay — G¥(y)

= AlAgu — Go®(u)] — GU (Agu — Go®(u))
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= AAou — [AGy — GT(Go)]B(u) — G (Agu)
= AA()U - BG()(I)(u) - G\I/(Aou), (15)

where the relation BGy = AGy — GVU(Gy) follows from (10) if instead of u we take Gy. By comparing (15)
with (11) it is easy to verify that Byu = BBgu for each u € D(AAy) if a vector S satisfies (12).

(ii) Let the operator B; be defined by (11), where S = BGy. Then Equation (11) can be equivalently
presented in the matrix form:

—14-1
Biu = AAgu — (BGy, G) (‘I’<A0 4 AAO“)> =f

(AT AAgu)

or

Biu= Au—GF(Au) = f, D(By) = D(A),
where A = AAy, G = (BGy,G), F = C01(§’>‘i’)» and

d(v) (A, A )

Fl)={ = 0 .

0= (ae) = ("Wt

Notice that the operator ./fl = AA, is correct, because of A and Ag are correct, and that the vector F is bounded,
since the vector ® (resp.¥) is bounded as a superposition of a bounded functional ® (resp.¥) and a bounded

operator AgtA~! (resp. A~1). Then we apply Corollary 1. In accordance to (2), (3), the operator B is correct
if and only if

dot 14— et~ 7(6) g [ (1 ) (LG )

— det <Im — ®(AGy — GU(Gy))  —9(G) )
- ~U(AGo — GU(Gy)) I, — ¥(G)

et (T~ B(Ay Gy — AgTATIGU(Gy)) —B(A,1ATIG)
- —U(Gy — A~IGY(Gy)) In — U(ATIG)

— det (Im — B(Ay " Go) + B(Ag A~ G)U(Go) —¢>(A01A—1G)> o,

_W(Go) + U(A~LG)W(Go) I — U(A-1G) (16)

Multiplying by ¥(Gg) from the left the second column of the matrix in (16) and then adding to the first column,
we get

B I, — ®(A;'Go) —®(A;1ATG)
det L = det < 0, I — \I/(A‘lG)

= det[I,,, — ®(Ay ' Go)] det[L,, — (AT G)] = det Lo det L # 0.

So we proved that the operator Bj is correct if and only if (13) is fulfilled. From (13), by Theorem 2, follows
that the operators B and By are correct.
Let now u € D(AAp) and Byu = BBou = f. Then, by Theorem 2 (ii), since B, By are correct operators, we
obtain
Bou=B'f=A"f+AT'\GL'U(ATS),

u=By' (A f+ATIGLTI (AT ).

Denote g = A~'f + A7'GL 'W(A~1f). By using Theorem 2 (ii) again, with Ag, Go,®, Lo, g in place of
A, G,V L, f respectively, we get

u=Bylg=Ag'g+ Ay GoLy ' ®(Aytg) = Ag (AT f+ ATIGLTIU(AT )
+A GoLg '@ (Ag (AT f+ AT GLTI (AT ) = Ag AT F+ AJTATIGLT (AT )
+ A5 GoLy t[R(ATAT ) + @(AgTATIG) LT (AT )],

which implies (14). The theorem is proved. O
The next theorem is useful for applications and is proved by using Theorem 3.
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Theorem 4. Let the spaces X, Zy, Z, the vectors S, G, ®, ¥ be defined as in Theorem 3 and the operator

By : X —- X by
Biu= Au — S®(u) — GV (Agu) = f, wu € D(By), (17)
where Ay is a correct m-order differential operator with D(A4g) C Zy and A is a n-order differential operator,

m < n. Then the next statements are fulfilled:
(1) If there exists an n — m order differential bijective operator A : X — X such that

A= AAy, D(B;)=D(AAy), D(A)cCZCX, (18)
det L = det[I,, — V(A™'G)] # 0, (19)

then the operator Bj is factorized as By = BBy, where By, B are defined by (9), (10),
Go=A"'S+ A'GL™'u(A™LS), (20)

the operator A and vectors G, ¥ are determined from (18) and (17), respectively, and the operator Ay and a
vector ® from (17).
(ii) If in addition to (i) A is correct, then the operator By = BB is correct if and only if

det Ly = det[I,,, — ®(A;'Go)] # 0 (21)
and the unique solution of (17), (18) is given by
u=DBy'B7'f =By'v=Ay"v+ Ay 'GoLy ' ®(Ay '), (22)
where
v=AT1f+ ATIGLTIU (AT ). (23)

Proof. (i) Suppose that there exist the operators A, B, By, defined in (i). Acting by the operator B on the
vector Gy, defined by (20), we get.
BGy = AGy — G¥(Gy)

=A(AT'S+AT'GLTU(ATIS)) — GU (ATIS + ATIGLTIU(ATS))
=S+GL'U(ATIS) —GU(ATS) - GU(AIG) L U (ATLS)
=S+ G — V(ALY (ATLS) - GU(ATLS) = S.
So BGy = S. From (17) for A = AAp and BGy = S we get
Biu= AAou — BGy®(u) — GU(Apu) = f, u € D(AAp). (24)
Denote y = Agu. Then from (24) for any u € D(AAy) follows that
Biu= Ay — GY(y) — BGy®(u) = By — BGo®(u) = B (Aou — Go®(u)) = BByu.

In Theorem 3 (i) we proved that D(BBj) = D(AAp) = D(B;). Consequently, Bj is factorized in By = BB,.

(ii) Let A be a correct operator. Then by Theorem 2, since (19), (21), the operators B, By are correct too.
Remind that for Gy, defined by (20), we proved in (i) that BGy = S. Then by Theorem 3 (i), (iii), we have the
factorization By = BBy and Bj is correct if and only if det L # 0 and det Ly # 0. But by assumption det L # 0.
Thus By is correct if and only if (21) holds. Let BBou = f for any f € X. Then because of the operators B, By
are correct, we obtain

Bou=B 'f=A"'f+ ATI\GL7' U (AT ).
From the above, denoting v = A= f + A"'GL='W(A~Lf), follows that
Bou=v, u=Bj'v=A;'v+ Ay GoLy ' ®(Ay ),

which give (23) and (22). So the theorem is proved. O

Remark 5. Usually in applications X is the space Cla,b] or L,(a,b), p = 1,2, ..., and Zy, Z are the spaces
C*la, b] or WZ’f(a, b), k =1, ...,n, respectively. Problem (17) can be solved by factorization method if it is possible
to determine from (17) the vectors S, G, ®, ¥ and the operators Ay, A such that

A= AA, D(Bl) = D(z4x40)7 D(A) C Z, D(Ao) C Zy, detL 75 0, detLg 7& 0.

If the above conditions are fulfilled, then a unique solution to (17) can be found by (22), (23), where Gy is given
by (20).
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Illustrative Examples

To explain the implementation of the factorization method and to show its efficiency, we solve two example
problems.
Ezxample 1. Let us find the solution of the nonlocal boundary value problem

1 1
u (t) — (t + 1)/ (t — Du(t)dt — t2/ Bu'(t)dt=2-3t, 0<t<l,
0 0

w(0) +u(1) =0, «(0)— 4u'(1) = 0. (25)

The operator By : C[0,1] — C[0, 1] corresponding to the problem is correct. The unique solution to problem
(25) is given by the formula

5(1204t4 + 40225613 — 81185012 + 549488¢ — 70549
u(t) = — 2 + + ). (26)
4037236

Proof. First we need to find the operators A, Ay and check the condition D(B;) = D(AAy). If we compare
equation (25) with Problem (17), (18), it is natural to take X = C[0,1], m =1, I, = 1,

Au = AAgu = u" (1), (27)

D(By) = {u(t) € C?[0,1] : u(0) + u(1) =0, «/(0) —4u'(1) = 0},
Apu(t) = u/(t), D(Ag) = {u(t) € C'[0,1] : u(0) = —u(1)},

B(u) = /0 (t— Du(t)dt, U(Agu) = /0 Bl (t)dt, (28)

S =t+1,G = t2. Let us denote Agu(t) = u'(t) = y(t) = y. Then from (27) we have y € D(A),
AAou = (W' (t)) = y'(t) = Ay(t),y(0) — 4y(1) = 0. So we proved that
Ay =y'(t), D(A)={y(t) € C'[0,1] : y(0) — 4y(1) = 0}.

Further by definition we find
D(AAp) = {u(t) € D(Ao) : Aou(t) € D(A)}

= {u(t) € C'[0,1] : w(0) = —u(1), v'(t) € C*[0,1], u'(0) — 4/(1) = 0}
= {u(t) € C?[0,1] : w(0) + u(1) =0, /(0) —4u'(1) =0} = D(By).

So D(B;) = D(AAy). Tt is easy to verify that the operators A, Ay are correct on C[0,1] and that for every
f(t) € C[0,1] the following formulae hold true

» o 4 1
A7) = [ s@is =3 [ pwys, (29)
4510 = [ sy =3 [ fajan (30)
From (28) we have
1 1
o) = [ @ 1f@ds, W5 = [ afla)da. (31)

Then [®(f)| < 3||f(@)|lc, [¥(f)] < 1]|f(z)||c, thatis @, ¥ € C*[0,1] and Zy = Z = C[0,1]. Using (29),

(31) and (19), we obtain
‘ 4 [ 4
A_lG:/ xzdx—f/ idr = — — -,
0 3 Jo 3 9

1 34 4
U(A~G :/ x° (x—> de = ——,
( ) 0 3 9 63

det L = det[I,, — V(A7 G)] = 1+4/63 = 67/63, L' =63/67.
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So (19) is fulfilled. Further using (20), (23), (29), (31) for S =t +1,G =t? and f(t) =2 — 3t we find

3t 2 1
AN f=—" 2 — 2, WATf)=——
f 5 T 3 (A7) 50’
_79—%ﬂnm2—26&ﬁ+884

v= AT+ ATIGLT (AT ) = (32)

1340 ’

t 4 1 t2
A_lS:/(x—l—l)dx—f/(sc—i—l)d:cz——i—t—?,
0 3Jo 2

1 2
—lay 3 (% _ _ 1
U(A S)—/O:r (2—1-:10 Q)dx— &3’

3 _ 2
Go = A-15 + A-\GL-Tw(A-1g) — _ 273t = 20106 — 4020t 4 7676

4020
Taking into account (30), (31), we obtain
546t* — 5360t — 16080t% + 61408t — 20257 44509
A—l — _ [0)) A_l = — .
o Go 32160 > 2(Ag Go) 964800
Since 1009309 964800
det Ly = det[l,,, — (AT Gy)] = —— #£0, then Lj'= ——
et Lo = det| (Ao Go)l = Gergoo 7 O then Lo = 1559309"
and by Theorem 4 (ii), Problem (25) is correct. By (30)-(32) we calculate
. 14¢4 + 5360t3 — 10720¢2 + 7072t — 863 . 1223
Ay v =— , (A 'v) = .
10720 107200

Substituting these values into (22), i.e.,
u=Ay'v+ Ay GoLy ' (A ),
we obtain the unique solution to (25), which is given by (26).

Ezample 2. Let T = {(t,s) € R?: 0 < t,s < 1}, u = u(t, s), u}, u, € C(I). The operator By : C(IT) — C(II)
corresponding to the problem:

up(t,s) — (2t — ) /01 /01 u(t, s)dtds — (t + s) /01 /01 tsuy(t, s)dtds (33)

213s + 149t — 600

7

220
11
u(O,s):s/ / t2u(t, s)dtds,
o Jo

11
uy(t,0) = (2t — 1)/ / (s + 3)uy(t, s)dtds
0o Jo
is correct. The unique solution to Problem (33) is given by the formula

6s(25¢ + 1) 4+ 275¢(t — 1
u(t,s) = 5(25t+1) + ( ) (34)
55
Proof. First we need to find the operators A, Ay and check the condition D(B1) = D(AAy). If we compare
(33) with Problem (17), (18), it is natural to take X = C(II), m =1, I, = 1,

AApz = u:f/s (ta S)a (35)

1,1
D(By) = {u(t,s) € C(ID), u},uy, € C(I), u(0,s) = S/o /0 t2u(t, s)dtds,
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WL 0) = (26— 1) /0 1 /0 (s 4 3)ul (4, s)deds) (36)

Aou(t, s) = uj(t, s), (37)
D(4) = {ult, s) € C(TD) : l(t,) € C(TD),  u(0, s —s/ / Pu(t, s)dtds),

_ /0 1 /O ot s)dids, W(Agu) /O /0 tsul (¢, s)dtds, (38)

S =2t—s, G=t+s, f =—(21354+149t—600)/220. In (37), denote Agu(t,s) = uj(t,s) = y(t,s) = y. Then from
(35), (36) we have y € D(A), AAou = (ui(t,s))s = y.(t,s) = Ay(t, s) and y(t,0) = (2t—1) fol fol (s+3)y(t, s)dtds.
So we proved that

1 1
Ay =yl(t.s), D(A) = {y(t,s) € C() : o, € C(TD), y(t,0) = (2t — 1) / / (s + B)y(t, s)dtds}.

Then by definition
D(AAp) = {u(t,s) € D(Ay) : Apu(t,s) € D(A)}

= {u(t,s) e C(I) : u, € C(I0) Ost//tQ (t, s)dtds,
11
uy(t,0) = (2t — 1)/0 /0 (s + 3)uy(t, s)dtds, wuj,(t,s) € C(II)}
= {u(t,s) € C(I), u},uy, € C(I), u(0,s) = s/ / t2u(t, s)dtds,

uy(t,0) = (2t — 1)/O /O (s + 3)uy(t, s)dtds} = D(By).

Thus D(B;) = D(AA). It is easy to verify that the operators A, Ay are correct on C(II) and for every
f(t,s) € C(II) hold true

s 1 1 s
-1 . .
A7 f(t,s) = /0 f(t,z)dx + (2t 1)/O /0 /0 (s +3)f(t, z)dzdtds, (39)
t 11 gt
Agtf(t,s) = /0 f(z,s)dz + %/0 /o /0 t2f (2, s)dzdtds. (40)
From (38) we get
1,1 1 1
)= /0 /0 F(t,s)dids, W(f) = /O /0 15 (1, )dtds. (41)
Then ®, ¥ € C*(II) and Zy = Z = C(II). Using (39), (41) and (19) we obtain
. s 37(2t — 1) 29 e i
A6 = 5 bt —o v(AT'G) = %’ L=1-9(A"'G)=67/96, L~'=096/67.

So (19) is fulfilled. Further, using (39), (41), (23), (20) for S =2t — s,G =t + s and f(t) = —(213s + 149t —
—600)/220 we find

2675
4224’

2 _ _ _
a-if 2556 +248(149t52§80) 19927(2¢ — 1) B(ALf) =

33652 — 6s(424t + 5025) — 57187(2t — 1)

_ 41 -1 -1 —1p
v=A"1f+ ATTGLTIW(AT ) = T0Er ; (42)
ATLS = & + 25t + HE-1) V(A™LS) = 25
2 24 96°
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4252 — 318st — 239(2t — 1
Go— A1S + A-LGL-1p(A-Lg) — 4257 31851 ~ 28902 — 1)

134
Taking into account (40), (41) we obtain
210052t — 35(2650¢2 + 9) — 11950¢(¢ — 1) 6019
A'Gy = — P(ATIGY) = ———.
0 0 6700 + ®(4o Go) = 15500
Since 16219
det Ly = det[],, — ®(A; ! =
et Lo = det{lm = ®(4y"Go)] = 55555 7 0

then Ly ' = 49200 "and hence by Theorem 4 (ii), problem (33) is correct. By (40)-(42) we calculate

462197

ALy — 840052t — 65(5300t2 + 125625t 4 5043) — 1429675t (t — 1)
o 276375 ’
92438

829125

d(Ay M) =

Substituting the above values into (22), we obtain, by Theorem 4 (ii), the unique solution of (33)

65(25¢ + 1) + 275¢(t — 1)

u=Ag'v+ Ay GoLy ' ®(Ay ) = = ,

which is (34).
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N.H. ITapacuauc, E. [IpoBumac

Deccanusn ynusepcumemst, Jlapuca, I'peyus

Banax keHICTirinje JJoKaJabJi eMec MieKapaJibIK ecenTep/i
mIenryre apHaJjiran paKTopu3alius dIiCi

Maxkasia 6aHax KeHICTiriHge abCcTpakTiii omepaTopaapbl 6ap
BlU:A’U/—S@(U) —G\I/(Aou) :f, u € D(B1),

TYpIHJEri JIOKAIBI eMeC IIEeKTIK ecentep/i (pakTopusanusjay >KoHe INelryre apHajran, MyHmarsl A, Ag
CBI3BIKTBIK JepeKci3 oneparopiaap, S, G dyukmus Bekropsapbl, $, ¢ ChIBBIKTHIK, KTy (YyHKIUOHAJIBI
BEKTOpPJIAp KoHe u, [ PyHKImsaap. Bi omeparopsl 6esrii 6ip xkarmaitnmapma B1 = Bbo kimi eki Kapa-
maifibIM OIEepPATOP/IbIH, KOOeUTiHIiciHe dhaKTOpIaHybl MyMKiH eKeHiri kepcerinren. Coman keitin Biu = f
TeHJeyiHiH memnimMi MeH »KaJrb3 memmiMi Bv = f xkone bou = v TeHaeysep IemiMAepiHiy memiMaiIiri mex
Gipereiriri maprrapblHaH OHAll TYBIHIAMIBI. ¥ ChIHBLIFAH oMOebar oic 6acka pakTopusalus 9iiCTepiHeH
afiTap/IBIKTall epeKIeeHe T, OTKEHI OFaH TEHIEYy MEH IMIEKaPAJIBIK, MAPTTAPIABIH, (haKTOPUBAIUSICHI KipeTi
JK9He mrermiMi xKabbIK Typ/e yebiHaabl. by omic PpearosbMHBIH KapanaiibM yKoHE YKapPThLIail HHTErpo-
nuddepeHTIANIBIK, TEHJIEYIEPIH IIellyre apHaJjFaH.

Kiam ceadep: mekapabiK, ecenTep, JKePriiiKTi eMec KaFaaiiap, paKTOPU3aIlHsl, CI3BIKTHIK, OlepaTopIap,
uHTErpo-1uddepeHnnaIblK, TeHIeyIep, Ka0bIK, TyPeri memnmiMaep.

W.H. Ilapacunuc, E. IIpoBuaac

Vwnusepcumem Deccanruu, Jlapuca, I'peyus

Metona dpakTOpuU3anmum AJIsd pernieHns HeJIOKAJIbHBIX
KpaeBbIX 33/1a49 B 0AaHAXOBOM IIPOCTPAHCTBE

CraTbs MOCBsIIeHa (PAKTOPUIAINN U PEIIEHUIO HEJIOKAJIBHBIX KPAEBbIX 33/1a4 C OlrepaTopaMu abCTPaKTHOTO
BUIA
BlU:A’U/—S@(U) —G\I/(Aou) :f, u € D(B1),

B 6aHAXOBOM IpOoCcTpaHCTBe, rue A, A9 — juHeinble abcrpakTHbIe onepaTopbl; S, G — BeKTOPbI MYHKINIL;
®, U — BeKTOPHI IMHEHHBIX OTPAHUIEHHBIX (DYHKIIMOHAJNOB; & U, f — dyuknuu. [lokaszano, aro omeparop Bi
[IpU OTIPeIeIEHHBIX YCJIOBUSAX MOXKET OBITh (PaKTOPU30BAH B IPOU3BE/IEHNE ABYX 00JIee TPOCTHIX OIIEPATOPOB
MenbIero nopsiyika B1 = BBy. Torja pa3pemmMocTs 1 €JIMHCTBEHHOE pelllenre ypaBHenus Biu = f jerko
cJIeTyeT U3 yCJAOBHUI Pa3pennMOCTH U € UHCTBEHHOCTH pertennit ypasuenuit Bv = f u Bou = v. [Ipegnara-
€MBblif YHUBEPCAIbHBII METOJT CYIIECTBEHHO OTJINYIAETCHA OT APYTUX METOAO0B (DaKTOPU3AINHU, TTOCKOIbKY OH
BKJIIO4YaeT (haKTOPUSAIUIO YPABHEHNS U FPAHUYHBIX YCJIOBUN U IIPEIOCTABIISIET PENleHre B 3aMKHYTOU dop-
me. Merom paspaboTan Jjisi pelieHnst OOBIKHOBEHHBIX M YACTHBIX WHTErpO-IrpdhepeHITnaIbHbIX yPABHEHUT
®Dpearosbma.

Karowesvie crosa: KpaeBble 33/1a41, HEJIOKAJIbHBIE YCI0BUA, (DAKTOPU3alisl, TNHEHHbIE OIIePATOPbI, HHTErPO-
nuddepeHnpaIbHble ypaBHEHNs, PEIIeHUsT B 3aMKHYTOI (hopme.
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