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Factorization method for solving nonlocal
boundary value problems in Banach space

This article deals with the factorization and solution of nonlocal boundary value problems in a Banach
space of the abstract form

B1u = Au− SΦ(u)−GΨ(A0u) = f, u ∈ D(B1),

where A, A0 are linear abstract operators, S,G are vectors of functions, Φ,Ψ are vectors of linear bounded
functionals, and u, f are functions. It is shown that the operator B1 under certain conditions can be
factorized into a product of two simpler lower order operators as B1 = BB0. Then the solvability and
the unique solution of the equation B1u = f easily follow from the solvability conditions and the unique
solutions of the equationsBv = f andB0u = v. The universal technique proposed here is essentially different
from other factorization methods in the respect that it involves decomposition of both the equation and
boundary conditions and delivers the solution in closed form. The method is implemented to solve ordinary
and partial Fredholm integro-differential equations.

Keywords: boundary value problems, nonlocal conditions, factorization, linear operators, integro-differential
equations, closed-form solutions.

Introduction

Let X be a complex Banach space and X∗ the adjoint space of X, i.e., the set of all complex-valued linear
bounded functionals φ on X. Let A, A0 : X → X be linear operators with boundary conditions incorporated,
Φ = col(φ1, φ2, ..., φm), Ψ = col(ψ1, ψ2, ..., ψm) vectors of linear bounded functionals φi, ψi, i = 1, 2, ...,m, and
S(s1, s2, ..., sm), G = (g1, g2, ..., gm) vectors of functions si, gi ∈ X, i = 1, 2, ...,m. Let the operator B1 : X → X
be defined by

B1 = A− SΦ−GΨ(A0),

and consider the boundary value problem

B1u = Au− SΦ(u)−GΨ(A0u) = f, u ∈ D(B1),

where f ∈ X is a given forcing function and u is the unknown function.
The primary objective of the paper is to establish factorization conditions under which this problem can

be decomposed into two simpler lower order boundary value problems and derive the unique solution in closed
form. The second goal is to implement this procedure to solve boundary value problems for ordinary and
partial Fredholm integro-differential equations with nonlocal boundary conditions. In this case B1 is an integro-
differential operator, A is a differential operator of order n with nonlocal boundary conditions incorporated,
and the functionals φi, ψi, i = 1, ...,m are integrals with constant limits.

Integro-differential equations model many situations in biology, physics, economics, engineering and appli-
ed mathematics. Boundary value problems involving an integro-differential equation and nonlocal boundary
conditions are very difficult to solve analytically and therefore very often numerical methods are employed.
Factorization methods, where they can be applied, can reduce the problem to simpler lower order problems
which can be solved and thus construct the solution of the initial complex problem [1–20].

The novelty of the factorization method presented here differs from other factorization methods in the
literature in the respect that it involves decomposition of both the equation and boundary conditions and

*Corresponding author.
E-mail: paras@uth.gr

76 Bulletin of the Karaganda University



Factorization method for solving ...

delivers the solution in closed form. The technique is new development in Banach spaces and an extension of a
procedure used successfully by the authors to solve various other boundary value problems [21–24] and [25–27].

The method is simple to program to any Computer Algebra System.
The rest of the paper is organized as follows. In Section 1 some preliminary results are quoted. In Section 2

the solvability, uniqueness and decomposition conditions are established and the factorization solution method
is explicated. In Section 3 two example problems are solved to show the implementation and efficiency of the
method.

Preliminaries

Let X,Y be complex Banach space and A : X → Y a linear operator with D(A) and R(A) denoting
its domain and range, respectively. We recall that A is said to be injective (or uniquely solvable) if for all
u1, u2 ∈ D(A) such that Au1 = Au2, follows that u1 = u2; alternatively, A is injective if and only if kerA = {0}.
The operator A is called surjective (or everywhere solvable) if R(A) = Y . The operator A is called bijective if
A is both injective and surjective. Lastly, A is said to be correct if A is bijective and its inverse A−1 is bounded
on Y . The problem Au = f is called correct if the operator A is correct.

An operator B1 : X → X is said to be factorable if there exist two operators B0, B : X → X such that B1

can be written as a product B1 = BB0. In this case, BB0 is a factorization (decomposition) of B1.
Throughout the paper, we will use the notation Φ(g) to denote the m×m matrix whose i, j-th entry φi(gj)

is the value of the functional φi on element gj , where i, j = 1, ...,m. Note that Φ(gC) = Φ(g)C, where C is a
m × k constant matrix. We will also denote by c the column vector c = col(c1, ..., cm) and by 0m, Im the zero
and identity m×m matrices, respectively.

We recall Corollary 3.11 from [25] which will need to prove the theorems below.
Corollary 1. Let A be a correct operator on a Banach space X and the components of the vectors

G = (g1, ..., gm) and F = col(F1, ...Fm) are arbitrary elements of X and X∗, respectively. Then the operator
B : X → X defined by

Bu = Au−GF (Au) = f, D(B) = D(A), f ∈ X (1)

is correct if and only if
det L = det[Im − F (G)] 6= 0. (2)

If B is correct, then the unique solution of (1) for every f ∈ X is given by

u = B−1f = A−1f +A−1G[Im − F (G)]−1F (f). (3)

The following theorem is the generalization of Theorem 1 in [28] and here we prove it without requiring
the correctness of the operator A and the linear independence of the components of the functional vector
Ψ = col(ψ1, ..., ψm).

Theorem 2. Let X,Y and Z be Banach spaces and A : X → Y be a linear injective operator with
D(A) ⊂ Z ⊆ X. Further let the vector G = (g1, ..., gm) ∈ Y m and the column vector Ψ = col(ψ1, ..., ψm), where
ψ1, ..., ψm ∈ Z∗. Then:
(i) The operator B : X → Y defined by

Bu = Au−GΨ(u) = f, D(B) = D(A), f ∈ X, (4)

is injective if and only if
detW = det[Im −Ψ(A−1G)] 6= 0. (5)

(ii) If B is injective and A is bijective, then B is bijective and for any f ∈ Y, the unique solution of (4) is given
by

u = B−1f = A−1f +A−1GW−1Ψ(A−1f). (6)

(iii) If B is injective and A is correct, then B is correct.
Proof. (i) The sufficient injectiveness condition of the operator B is proved as in [28].
Now, we prove the converse statement “if the operator B is injective, then detW 6= 0” or equivalently ”if

detW = 0, then the operator B is not injective”. Suppose detW = 0. Then there exists a nonzero vector
c = col(c1, ..., cm) such that Wc = 0. Consider the element u0 = A−1Gc. This element is nonzero, because
otherwise we would have

Wc = [Im −Ψ(A−1G)]c = c−Ψ(A−1Gc) = c 6= 0,
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which is a contradiction. Further,

Bu0 = Au0 −GΨ(u0) = Gc−GΨ(A−1G)c = G[Im −GΨ(A−1G)]c = GWc = 0,

which means that u0 ∈ kerB and thus B is not injective.
(ii) Let B is injective and A is bijective. Then (5) holds (detW 6= 0) and for any f ∈ Y from (4) follows

that
u = A−1GΨ(u) +A−1f, (7)

and
Ψ(u) = Ψ(A−1G)Ψ(u) + Ψ(A−1f),

[Im −Ψ(A−1G)]Ψ(u) = Ψ(A−1f),

Ψ(u) = [Im −Ψ(A−1G)]−1Ψ(A−1f). (8)

Substituting (8) into (7), we obtain the unique solution (6). Since this solution is given for arbitrary f ∈ Y ,
then R(B) = Y , i.e., B is surjective. Hence B is a bijective operator.

(iii) If B is injective and A is correct, then from (6) follows that B−1 is bounded since A−1 and Ψ are
bounded. Hence B is correct.

Main results

Theorem 3. Let X and Z0, Z be Banach spaces, Z0, Z ⊆ X, the vectors G0 = (g10, ..., gm0), G = (g1, ..., gm),
S = (s1, ..., sm) ∈ Xm, the components of the column vectors Φ = col(φ1, ..., φm) and Ψ = col(ψ1, ..., ψm)
belong to Z∗0 and Z∗, respectively, and the operators B0, B,B1 : X → X be defined by

B0u = A0u−G0Φ(u) = f, D(B0) = D(A0) ⊂ Z0, (9)

Bu = Au−GΨ(u) = f, D(B) = D(A) ⊂ Z, (10)

B1u = AA0u− SΦ(u)−GΨ(A0u) = f, D(B1) = D(AA0), (11)

where A0 and A are linear correct operators on X and G0 ∈ D(A)m. Then the following statements are satisfied:
(i) If

S ∈ R(B)m and S = BG0 = AG0 −GΨ(G0), (12)

then the operator B1 can be factorized as B1 = BB0.
(ii) If (12) holds, then the operator B1 = BB0 is correct if and only if the operators B0 and B are correct

which means that

detL0 = det[Im − Φ(A−1
0 G0)] 6= 0 and detL = det[Im −Ψ(A−1G)] 6= 0, (13)

and the unique solution of (11) is

u = B−1
1 f = A−1

0 A−1f +
[
A−1

0 A−1G+A−1
0 G0L

−1
0 Φ(A−1

0 A−1G)
]
L−1Ψ(A−1f)

+A−1
0 G0L

−1
0 Φ(A−1

0 A−1f). (14)

Proof. (i) Taking into account that G0 ∈ D(A)m and (9)-(11) we get

D(BB0) = {u ∈ D(B0) : B0u ∈ D(B)}

= {u ∈ D(A0) : A0u−G0Φ(u) ∈ D(A)}

= {u ∈ D(A0) : A0u ∈ D(A)} = D(AA0) = D(B1).

So D(B1) = D(BB0). Let y = B0u. Then for each u ∈ D(AA0) since (10) and (9) we have

BB0u = By = Ay −GΨ(y)

= A[A0u−G0Φ(u)]−GΨ (A0u−G0Φ(u))

= AA0u−AG0Φ(u)−GΨ(A0u) +GΨ(G0)Φ(u)
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= AA0u− [AG0 −GΨ(G0)]Φ(u)−GΨ(A0u)

= AA0u−BG0Φ(u)−GΨ(A0u), (15)

where the relation BG0 = AG0 − GΨ(G0) follows from (10) if instead of u we take G0. By comparing (15)
with (11) it is easy to verify that B1u = BB0u for each u ∈ D(AA0) if a vector S satisfies (12).

(ii) Let the operator B1 be defined by (11), where S = BG0. Then Equation (11) can be equivalently
presented in the matrix form:

B1u = AA0u− (BG0, G)

(
Φ(A−1

0 A−1AA0u)
Ψ(A−1AA0u)

)
= f

or
B1u = Au− GF(Au) = f, D(B1) = D(A),

where A = AA0, G = (BG0, G), F = col(Φ̂, Ψ̂), and

F(v) =

(
Φ̂(v)

Ψ̂(v)

)
=

(
Φ(A−1

0 A−1v)
Ψ(A−1v)

)
.

Notice that the operator A = AA0 is correct, because of A and A0 are correct, and that the vector F is bounded,
since the vector Φ̂ (resp.Ψ̂) is bounded as a superposition of a bounded functional Φ (resp.Ψ) and a bounded
operator A−1

0 A−1 (resp. A−1). Then we apply Corollary 1. In accordance to (2), (3), the operator B1 is correct
if and only if

det L1 = det[I2m −F(G)] = det

[(
Im 0m
0m Im

)
−
(

Φ̂(BG0) Φ̂(G)

Ψ̂(BG0) Ψ̂(G)

)]

= det

(
Im − Φ̂(AG0 −GΨ(G0)) −Φ̂(G)

−Ψ̂(AG0 −GΨ(G0)) Im − Ψ̂(G)

)

= det

(
Im − Φ(A−1

0 G0 −A−1
0 A−1GΨ(G0)) −Φ(A−1

0 A−1G)
−Ψ(G0 −A−1GΨ(G0)) Im −Ψ(A−1G)

)
= det

(
Im − Φ(A−1

0 G0) + Φ(A−1
0 A−1G)Ψ(G0) −Φ(A−1

0 A−1G)
−Ψ(G0) + Ψ(A−1G)Ψ(G0) Im −Ψ(A−1G)

)
6= 0. (16)

Multiplying by Ψ(G0) from the left the second column of the matrix in (16) and then adding to the first column,
we get

det L1 = det

(
Im − Φ(A−1

0 G0) −Φ(A−1
0 A−1G)

0m Im −Ψ(A−1G)

)
= det[Im − Φ(A−1

0 G0)] det[Im −Ψ(A−1G)] = detL0 detL 6= 0.

So we proved that the operator B1 is correct if and only if (13) is fulfilled. From (13), by Theorem 2, follows
that the operators B and B0 are correct.

Let now u ∈ D(AA0) and B1u = BB0u = f . Then, by Theorem 2 (ii), since B,B0 are correct operators, we
obtain

B0u = B−1f = A−1f +A−1GL−1Ψ(A−1f),

u = B−1
0

(
A−1f +A−1GL−1Ψ(A−1f)

)
.

Denote g = A−1f + A−1GL−1Ψ(A−1f). By using Theorem 2 (ii) again, with A0, G0,Φ, L0, g in place of
A,G,Ψ, L, f respectively, we get

u = B−1
0 g = A−1

0 g +A−1
0 G0L

−1
0 Φ(A−1

0 g) = A−1
0

(
A−1f +A−1GL−1Ψ(A−1f)

)
+A−1

0 G0L
−1
0 Φ

(
A−1

0 (A−1f +A−1GL−1Ψ(A−1f))
)

= A−1
0 A−1f +A−1

0 A−1GL−1Ψ(A−1f)

+A−1
0 G0L

−1
0

[
Φ(A−1

0 A−1f) + Φ(A−1
0 A−1G)L−1Ψ(A−1f)

]
,

which implies (14). The theorem is proved.
The next theorem is useful for applications and is proved by using Theorem 3.
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Theorem 4. Let the spaces X,Z0, Z, the vectors S,G,Φ,Ψ be defined as in Theorem 3 and the operator
B1 : X → X by

B1u = Au− SΦ(u)−GΨ(A0u) = f, u ∈ D(B1), (17)

where A0 is a correct m-order differential operator with D(A0) ⊂ Z0 and A is a n-order differential operator,
m < n. Then the next statements are fulfilled:

(i) If there exists an n−m order differential bijective operator A : X → X such that

A = AA0, D(B1) = D(AA0), D(A) ⊂ Z ⊆ X, (18)

detL = det[Im −Ψ(A−1G)] 6= 0, (19)

then the operator B1 is factorized as B1 = BB0, where B0, B are defined by (9), (10),

G0 = A−1S +A−1GL−1Ψ(A−1S), (20)

the operator A and vectors G,Ψ are determined from (18) and (17), respectively, and the operator A0 and a
vector Φ from (17).

(ii) If in addition to (i) A is correct, then the operator B1 = BB0 is correct if and only if

detL0 = det[Im − Φ(A−1
0 G0)] 6= 0 (21)

and the unique solution of (17), (18) is given by

u = B−1
0 B−1f = B−1

0 v = A−1
0 v +A−1

0 G0L
−1
0 Φ(A−1

0 v), (22)

where
v = A−1f +A−1GL−1Ψ(A−1f). (23)

Proof. (i) Suppose that there exist the operators A,B,B0, defined in (i). Acting by the operator B on the
vector G0, defined by (20), we get.

BG0 = AG0 −GΨ(G0)

= A
(
A−1S +A−1GL−1Ψ(A−1S)

)
−GΨ

(
A−1S +A−1GL−1Ψ(A−1S)

)
= S +GL−1Ψ(A−1S)−GΨ(A−1S)−GΨ(A−1G)L−1Ψ(A−1S)

= S +G[Im −Ψ(A−1G)]L−1Ψ(A−1S)−GΨ(A−1S) = S.

So BG0 = S. From (17) for A = AA0 and BG0 = S we get

B1u = AA0u−BG0Φ(u)−GΨ(A0u) = f, u ∈ D(AA0). (24)

Denote y = A0u. Then from (24) for any u ∈ D(AA0) follows that

B1u = Ay −GΨ(y)−BG0Φ(u) = By −BG0Φ(u) = B (A0u−G0Φ(u)) = BB0u.

In Theorem 3 (i) we proved that D(BB0) = D(AA0) = D(B1). Consequently, B1 is factorized in B1 = BB0.
(ii) Let A be a correct operator. Then by Theorem 2, since (19), (21), the operators B,B0 are correct too.

Remind that for G0, defined by (20), we proved in (i) that BG0 = S. Then by Theorem 3 (i), (iii), we have the
factorization B1 = BB0 and B1 is correct if and only if detL 6= 0 and detL0 6= 0. But by assumption detL 6= 0.
Thus B1 is correct if and only if (21) holds. Let BB0u = f for any f ∈ X. Then because of the operators B,B0

are correct, we obtain
B0u = B−1f = A−1f +A−1GL−1Ψ(A−1f).

From the above, denoting v = A−1f +A−1GL−1Ψ(A−1f), follows that

B0u = v, u = B−1
0 v = A−1

0 v +A−1
0 G0L

−1
0 Φ(A−1

0 v),

which give (23) and (22). So the theorem is proved.
Remark 5. Usually in applications X is the space C[a, b] or Lp(a, b), p = 1, 2, ..., and Z0, Z are the spaces

Ck[a, b] orW k
p (a, b), k = 1, ..., n, respectively. Problem (17) can be solved by factorization method if it is possible

to determine from (17) the vectors S,G,Φ,Ψ and the operators A0, A such that

A = AA0, D(B1) = D(AA0), D(A) ⊂ Z, D(A0) ⊂ Z0, detL 6= 0, detL0 6= 0.

If the above conditions are fulfilled, then a unique solution to (17) can be found by (22), (23), where G0 is given
by (20).
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Illustrative Examples

To explain the implementation of the factorization method and to show its efficiency, we solve two example
problems.

Example 1. Let us find the solution of the nonlocal boundary value problem

u′′(t)− (t+ 1)

∫ 1

0

(t− 1)u(t)dt− t2
∫ 1

0

t3u′(t)dt = 2− 3t, 0 < t < 1,

u(0) + u(1) = 0, u′(0)− 4u′(1) = 0. (25)

The operator B1 : C[0, 1]→ C[0, 1] corresponding to the problem is correct. The unique solution to problem
(25) is given by the formula

u(t) = −5(1204t4 + 402256t3 − 811850t2 + 549488t− 70549)

4037236
. (26)

Proof. First we need to find the operators A,A0 and check the condition D(B1) = D(AA0). If we compare
equation (25) with Problem (17), (18), it is natural to take X = C[0, 1], m = 1, Im = 1,

Au = AA0u = u′′(t), (27)

D(B1) = {u(t) ∈ C2[0, 1] : u(0) + u(1) = 0, u′(0)− 4u′(1) = 0},

A0u(t) = u′(t), D(A0) = {u(t) ∈ C1[0, 1] : u(0) = −u(1)},

Φ(u) =

∫ 1

0

(t− 1)u(t)dt, Ψ(A0u) =

∫ 1

0

t3u′(t)dt, (28)

S = t + 1, G = t2. Let us denote A0u(t) = u′(t) = y(t) = y. Then from (27) we have y ∈ D(A),
AA0u = (u′(t))′ = y′(t) = Ay(t), y(0)− 4y(1) = 0. So we proved that

Ay = y′(t), D(A) = {y(t) ∈ C1[0, 1] : y(0)− 4y(1) = 0}.

Further by definition we find
D(AA0) = {u(t) ∈ D(A0) : A0u(t) ∈ D(A)}

= {u(t) ∈ C1[0, 1] : u(0) = −u(1), u′(t) ∈ C1[0, 1], u′(0)− 4u′(1) = 0}

= {u(t) ∈ C2[0, 1] : u(0) + u(1) = 0, u′(0)− 4u′(1) = 0} = D(B1).

So D(B1) = D(AA0). It is easy to verify that the operators A,A0 are correct on C[0, 1] and that for every
f(t) ∈ C[0, 1] the following formulae hold true

A−1f(t) =

∫ t

0

f(x)dx− 4

3

∫ 1

0

f(x)dx, (29)

A−1
0 f(t) =

∫ t

0

f(x)dx− 1

2

∫ 1

0

f(x)dx. (30)

From (28) we have

Φ(f) =

∫ 1

0

(x− 1)f(x)dx, Ψ(f) =

∫ 1

0

x3f(x)dx. (31)

Then |Φ(f)| ≤ 1
2 ||f(x)||C , |Ψ(f)| ≤ 1

4 ||f(x)||C , that is Φ,Ψ ∈ C∗[0, 1] and Z0 = Z = C[0, 1]. Using (29),
(31) and (19), we obtain

A−1G =

∫ t

0

x2dx− 4

3

∫ 1

0

x2dx =
t3

3
− 4

9
,

Ψ(A−1G) =

∫ 1

0

x3

(
x3

3
− 4

9

)
dx = − 4

63
,

detL = det[Im −Ψ(A−1G)] = 1 + 4/63 = 67/63, L−1 = 63/67.
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So (19) is fulfilled. Further using (20), (23), (29), (31) for S = t+ 1, G = t2 and f(t) = 2− 3t we find

A−1f = −3t2

2
+ 2t− 2

3
, Ψ(A−1f) = − 1

60
,

v = A−1f +A−1GL−1Ψ(A−1f) = −7t3 + 2010t2 − 2680t+ 884

1340
, (32)

A−1S =

∫ t

0

(x+ 1)dx− 4

3

∫ 1

0

(x+ 1)dx =
t2

2
+ t− 2,

Ψ(A−1S) =

∫ 1

0

x3

(
x2

2
+ x− 2

)
dx = −13

63
,

G0 = A−1S +A−1GL−1Ψ(A−1S) = −273t3 − 2010t2 − 4020t+ 7676

4020
.

Taking into account (30), (31), we obtain

A−1
0 G0 = −546t4 − 5360t3 − 16080t2 + 61408t− 20257

32160
, Φ(A−1

0 G0) = − 44509

964800
.

Since
detL0 = det[Im − Φ(A−1

0 G0)] =
1009309

964800
6= 0, then L−1

0 =
964800

1009309
,

and by Theorem 4 (ii), Problem (25) is correct. By (30)-(32) we calculate

A−1
0 v = −14t4 + 5360t3 − 10720t2 + 7072t− 863

10720
, Φ(A−1

0 v) =
1223

107200
.

Substituting these values into (22), i.e.,

u = A−1
0 v +A−1

0 G0L
−1
0 Φ(A−1

0 v),

we obtain the unique solution to (25), which is given by (26).

Example 2. Let Π = {(t, s) ∈ R2 : 0 ≤ t, s ≤ 1}, u = u(t, s), u′t, u
′′
ts ∈ C(Π). The operator B1 : C(Π)→ C(Π)

corresponding to the problem:

u′′ts(t, s)− (2t− s)
∫ 1

0

∫ 1

0

u(t, s)dtds− (t+ s)

∫ 1

0

∫ 1

0

tsu′t(t, s)dtds (33)

= −213s+ 149t− 600

220
,

u(0, s) = s

∫ 1

0

∫ 1

0

t2u(t, s)dtds,

u′t(t, 0) = (2t− 1)

∫ 1

0

∫ 1

0

(s+ 3)u′t(t, s)dtds

is correct. The unique solution to Problem (33) is given by the formula

u(t, s) =
6s(25t+ 1) + 275t(t− 1)

55
. (34)

Proof. First we need to find the operators A,A0 and check the condition D(B1) = D(AA0). If we compare
(33) with Problem (17), (18), it is natural to take X = C(Π), m = 1, Im = 1,

AA0x = u′′ts(t, s), (35)

D(B1) = {u(t, s) ∈ C(Π), u′t, u
′′
ts ∈ C(Π), u(0, s) = s

∫ 1

0

∫ 1

0

t2u(t, s)dtds,
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u′t(t, 0) = (2t− 1)

∫ 1

0

∫ 1

0

(s+ 3)u′t(t, s)dtds}, (36)

A0u(t, s) = u′t(t, s), (37)

D(A0) = {u(t, s) ∈ C(Π) : u′t(t, s) ∈ C(Π), u(0, s) = s

∫ 1

0

∫ 1

0

t2u(t, s)dtds},

Φ(u) =

∫ 1

0

∫ 1

0

u(t, s)dtds, Ψ(A0u) =

∫ 1

0

∫ 1

0

tsu′t(t, s)dtds, (38)

S = 2t−s, G = t+s, f = −(213s+149t−600)/220. In (37), denote A0u(t, s) = u′t(t, s) = y(t, s) = y. Then from
(35), (36) we have y ∈ D(A), AA0u = (u′t(t, s))

′
s = y′s(t, s) = Ay(t, s) and y(t, 0) = (2t−1)

∫ 1

0

∫ 1

0
(s+3)y(t, s)dtds.

So we proved that

Ay = y′s(t, s), D(A) = {y(t, s) ∈ C(Π) : y′s ∈ C(Π), y(t, 0) = (2t− 1)

∫ 1

0

∫ 1

0

(s+ 3)y(t, s)dtds}.

Then by definition
D(AA0) = {u(t, s) ∈ D(A0) : A0u(t, s) ∈ D(A)}

= {u(t, s) ∈ C(Π) : u′t ∈ C(Π), u(0, s) = s

∫ 1

0

∫ 1

0

t2u(t, s)dtds,

u′t(t, 0) = (2t− 1)

∫ 1

0

∫ 1

0

(s+ 3)u′t(t, s)dtds, u′′ts(t, s) ∈ C(Π)}

= {u(t, s) ∈ C(Π), u′t, u
′′
ts ∈ C(Π), u(0, s) = s

∫ 1

0

∫ 1

0

t2u(t, s)dtds,

u′t(t, 0) = (2t− 1)

∫ 1

0

∫ 1

0

(s+ 3)u′t(t, s)dtds} = D(B1).

Thus D(B1) = D(AA0). It is easy to verify that the operators A,A0 are correct on C(Π) and for every
f(t, s) ∈ C(Π) hold true

A−1f(t, s) =

∫ s

0

f(t, x)dx+ (2t− 1)

∫ 1

0

∫ 1

0

∫ s

0

(s+ 3)f(t, x)dxdtds, (39)

A−1
0 f(t, s) =

∫ t

0

f(z, s)dz +
6s

5

∫ 1

0

∫ 1

0

∫ t

0

t2f(z, s)dzdtds. (40)

From (38) we get

Φ(f) =

∫ 1

0

∫ 1

0

f(t, s)dtds, Ψ(f) =

∫ 1

0

∫ 1

0

tsf(t, s)dtds. (41)

Then Φ,Ψ ∈ C∗(Π) and Z0 = Z = C(Π). Using (39), (41) and (19) we obtain

A−1G =
s2

2
+ st+

37(2t− 1)

24
, Ψ(A−1G) =

29

96
, L = 1−Ψ(A−1G) = 67/96, L−1 = 96/67.

So (19) is fulfilled. Further, using (39), (41), (23), (20) for S = 2t − s,G = t + s and f(t) = −(213s + 149t −
−600)/220 we find

A−1f = −2556s2 + 24s(149t− 600)− 19927(2t− 1)

5280
, Ψ(A−1f) =

2675

4224
,

v = A−1f +A−1GL−1Ψ(A−1f) = −336s2 − 6s(424t+ 5025)− 57187(2t− 1)

11055
, (42)

A−1S = −s
2

2
+ 2st+

29(2t− 1)

24
, Ψ(A−1S) =

25

96
,
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G0 = A−1S +A−1GL−1Ψ(A−1S) = −42s2 − 318st− 239(2t− 1)

134
.

Taking into account (40), (41) we obtain

A−1
0 G0 = −2100s2t− 3s(2650t2 + 9)− 11950t(t− 1)

6700
, Φ(A−1

0 G0) = − 6019

40200
.

Since
detL0 = det[Im − Φ(A−1

0 G0)] =
46219

40200
6= 0,

then L−1
0 = 40200

46219 , and hence by Theorem 4 (ii), problem (33) is correct. By (40)-(42) we calculate

A−1
0 v = −8400s2t− 6s(5300t2 + 125625t+ 5043)− 1429675t(t− 1)

276375
,

Φ(A−1
0 v) = − 92438

829125
.

Substituting the above values into (22), we obtain, by Theorem 4 (ii), the unique solution of (33)

u = A−1
0 v +A−1

0 G0L
−1
0 Φ(A−1

0 v) =
6s(25t+ 1) + 275t(t− 1)

55
,

which is (34).
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Банах кеңiстiгiнде локальдi емес шекаралық есептердi
шешуге арналған факторизация әдiсi

Мақала банах кеңiстiгiнде абстрактiлi операторлары бар

B1u = Au− SΦ(u)−GΨ(A0u) = f, u ∈ D(B1),

түрiндегi локалды емес шектiк есептердi факторизациялау және шешуге арналған, мұндағы A, A0

сызықтық дерексiз операторлар, S,G функция векторлары, Φ,Φ сызықтық шектеулi функционалды
векторлар және u, f функциялар. B1 операторы белгiлi бiр жағдайларда B1 = Bb0 кiшi екi қара-
пайым оператордың көбейтiндiсiне факторлануы мүмкiн екендiгi көрсетiлген. Содан кейiн B1u = f
теңдеуiнiң шешiмi мен жалғыз шешiмi Bv = f және b0u = v теңдеулер шешiмдерiнiң шешiмдiлiгi мен
бiрегейлiгi шарттарынан оңай туындайды. Ұсынылған әмбебап әдiс басқа факторизация әдiстерiнен
айтарлықтай ерекшеленедi, өйткенi оған теңдеу мен шекаралық шарттардың факторизациясы кiредi
және шешiмдi жабық түрде ұсынады. Бұл әдiс Фредгольмның қарапайым және жартылай интегро-
дифференциалдық теңдеулерiн шешуге арналған.

Кiлт сөздер: шекаралық есептер, жергiлiктi емес жағдайлар, факторизация, сызықтық операторлар,
интегро-дифференциалдық теңдеулер, жабық түрдегi шешiмдер.

И.Н. Парасидис, Е. Провидас

Университет Фессалии, Лариса, Греция

Метод факторизации для решения нелокальных
краевых задач в банаховом пространстве

Статья посвящена факторизации и решению нелокальных краевых задач с операторами абстрактного
вида

B1u = Au− SΦ(u)−GΨ(A0u) = f, u ∈ D(B1),

в банаховом пространстве, где A, A0 — линейные абстрактные операторы; S,G — векторы функций;
Φ,Ψ — векторы линейных ограниченных функционалов; а u, f —функции. Показано, что оператор B1

при определенных условиях может быть факторизован в произведение двух более простых операторов
меньшего порядка B1 = BB0. Тогда разрешимость и единственное решение уравнения B1u = f легко
следует из условий разрешимости и единственности решений уравнений Bv = f и B0u = v. Предлага-
емый универсальный метод существенно отличается от других методов факторизации, поскольку он
включает факторизацию уравнения и граничных условий и предоставляет решение в замкнутой фор-
ме. Метод разработан для решения обыкновенных и частных интегро-дифференциальных уравнений
Фредгольма.

Ключевые слова: краевые задачи, нелокальные условия, факторизация, линейные операторы, интегро-
дифференциальные уравнения, решения в замкнутой форме.
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