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The solvability conditions for the second order nonlinear
differential equation with unbounded coefficients in L2(R)

The article deals with the existence of a generalized solution for the second order nonlinear differential
equation in an unbounded domain. Intermediate and lower coefficients of the equation depends on the
required function and considered smooth. The novelty of the work is that we prove the solvability of a
nonlinear singular equation with the leading coefficient not separated from zero. In contrast to the works
considered earlier, the leading coefficient of the equation can tend to zero, while the intermediate coefficient
tends to infinity and does not depend on the growth of the lower coefficient. The result obtained formulated
in terms of the coefficients of the equation themselves; there are no conditions on any derivatives of these
coefficients.
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Introduction

We investigate the following second-order singular differential equation

−ρ(x) (ρ(x)y′)
′
+ r(x, y)y′ + s(x, y)y = f(x), (1)

where x ∈ R = (−∞,+∞), ρ is a twice continuously differentiable function, r is a continuously differentiable
function, and s is a continuous function, f ∈ L2

def
= L2(R), ‖ · ‖2 is the norm in L2. The singularity of the

equation (1) means that it is given in a non-compact domain, and its coefficients can be unbounded.
The study of the equation (1) and its multidimensional generalizations is related to applications in quantum

mechanics, stochastic analysis and stochastic differential equations [1–4]. In the above references the linear case
is considered and results are obtained for s(x, y) = s(x) > δ > 0, and the growth of |r(x, y)| = |r(x)| at infinity
is bounded by some positive power of s(x). In the following researches [5–8] the linear case of equation (1) is also
considered and it is assumed that the intermediate coefficient r(x) can not grow faster than |x| ln |x| at infinity.
In [5–8] issues on solvability of the equation (1) were considered only for the case ρ(x) > δ > 0. The issue on
solvability of the equation (1) stays unresolved for the case when the growth of |r(x)| is faster than |x| ln |x| and
is not dependent on s, and also when the coefficient ρ(x) approaches zero as x→ +∞ or as x→ −∞.

For the case when ρ ≡ 1 and |r| grows rapidly and does not depend on the coefficient s the equation (1)
was analyzed in [9]. Here it was determined the solvability and the maximal regularity for the solution. The
linear case for the equation (1) with a fast-growing growing intermediate coefficient was studied in [10] (when
f ∈ L2), [11] (when f ∈ L1(R)) and [12] (when f ∈ Lp(R), 1 < p < +∞). In [10–12] the function ρ(x) is
assumed to be separated from zero and bounded, or equal to 1. The study of the solvability of different classes
of partial differential equations with unbounded coefficients is presented in [13–16].

Note that the rapid and independent growth of the absolute value of the intermediate coefficient r makes
a big difference for solvability of the equation (1). Firstly, in this case the coefficient s can be unbounded from
below. Moreover it can approach to −∞ with certain rate [11, 12], where the rate of approaching s to −∞
depends on the growth rate of |r|. Also let us note that in the study of the Sturm-Liouville equation (the case
ρ ≡ 1, r ≡ 0, s(x, y) = s(x)) it is usually assumed that s > −kx2 for some k [2]. Such condition in the case of
equation (1) with unbounded r is not necessary.
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Secondly, due to the growth of the absolute value of r in the equation (1) it turns out we can assume
approaching zero at infinity for the coefficient ρ in the leading term, thereby considering the so-called case of
degeneration. The theorem 1 presented below shows that the rate of approaching ρ to zero also depends on the
growth of |r|.

In the work [17] the results of the correct solvability and also a coercive estimate for the equation (1) was
established in the case r(x, y) = r(x), s(x, y) = s(x) and ρ(x) > 0. In this paper we propose to extend some of
the results obtained in [17] to the case of nonlinear generalization of equation (1).

Preliminaries

Let C(k)
0 (R)(k = 1, 2, . . .) be the set of k times continuously differentiable functions on R with compact

support and C(j)
loc(R)

def
=
{
y : ψy ∈ C(j)

0 (R),∀ψ ∈ C(j)
0 (R)

}
(j = 1, 2). Consider the following linear equation

−ρ(x) (ρ(x)y′)
′
+ r(x)y′ + s(x)y = F (x). (2)

Let g and h 6= 0 be given continuous functions. We denote

αg,h(t)
def
= ‖g‖L2(0,t)

∥∥h−1
∥∥
L2(t,+∞)

(t > 0), βg,h(τ)
def
= ‖g‖L2(τ,0)

∥∥h−1
∥∥
L2(−∞,τ)

(τ < 0),

αg,h
def
= sup

t>0
αg,h(t), βg,h

def
= sup

τ<0
βg,h(τ), γg,h

def
= max (αg,h, βg,h) .

The following statement is proved in [9].
Lemma 1. If g and h are continuous functions such that γg,h < +∞. Then for y ∈ C(1)

0 (R) the following
inequality holds

+∞∫
−∞

|g(x)y(x)|2 dx 6 C1

+∞∫
−∞

|h(x)y′(x)|2 dx.

Moreover we have (min (αg,h, βg,h))
2 6 C1 6 4 (γg,h)

2.
Let the operator l0y = −ρ(x)(ρ(x)y′)′ + r(x)y′ + s(x)y is defined on the set C(2)

0 (R), we denote the closure
of the operator l0 by l in L2. The function y ∈ D(l) such that ly = f is said to be a solution of the equation (2).

The following statement is proved in [17].
Lemma 2. If 0 < ρ(x) < +∞ is a twice continuously differentiable function, r(x) > 1 is a continuously

differentiable function, and s(x) is a continuous function, r(x) > ρ2(x), γ1,
√
r < +∞, γs,r < +∞ and there

exists a ∈ R such that

sup
x<a

ρ(x) exp

− a∫
x

r(t)

ρ2(t)
dt

 < +∞.

Next, let there be C2 > 1 such that

C−1
2 6

ρ(x)

ρ(ν)
6 C2, C−1

2 6
r(x)

r(ν)
6 C2, as |x− ν| 6 1.

Then for any right-hand side F ∈ L2 the linear equation (2) has a unique solution y and for y the following
inequality holds ∥∥∥−ρ (ρy′)

′
∥∥∥

2
+ ‖ry′‖2 + ‖sy‖2 6 C3‖F‖2,

where C3 depends only on C2, γ1,
√
r and γs,r.

The solvability conditions for the second order non-linear differential equation

For continuous functions of two variables g(x, y) and h(x, y) 6= 0 we denote

αg,h(t, y)
def
=

 t∫
0

|g(x, y)|2dx


1
2
 +∞∫

t

dx

|h(x, y)|2


1
2

(t > 0),
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βg,h(τ, y)
def
=

 0∫
τ

|g(x, y)|2dx


1
2
 τ∫
−∞

dx

|h(x, y)|2

 1
2

(τ < 0),

αg,h(y)
def
= sup

t>0
αg,h(t, y), βg,h(y)

def
= sup

τ<0
βg,h(τ, y),

γg,h(y)
def
= max (αg,h(y), βg,h(y)) .

Definition 1. Let y ∈ L2. y is said to be a solution of the equation (1), if there exist a sequence {yn} ⊂ C(2)
loc (R)

such that

‖ψ(yn − y)‖2 → 0 and ‖ψ(Lyn − f)‖2 → 0 as n→ +∞, ∀ψ ∈ C(∞)
0 (R).

Theorem 1. Let ρ(x) be a twice continuous differentiable and bounded function, r(x, t) be a continuous
differentiable function, s(x, t) be a continuous function and

inf
t∈R

r(x, t) > ρ2(x), sup
y∈R

γ
1,
√
r(x,y)

< +∞, sup
t∈R

γs(·,t),r(·,t) < +∞,

there exists a ∈ R such that

sup
x<a

ρ(x) exp

− a∫
x

inf
t∈R

r(v, t)

ρ2(v)
dv

 < +∞.

Also for some δ > 0 and ∀A > 0 the inequalities holds

r(x, y) > (1 + x2)
3
4 +δ, (3)

sup
|x−ν|61

sup
|C′−C′′|6A

r(x,C ′)

r(x,C ′′)
6 T (A) < +∞, C−1

4 6
ρ(x)

ρ(ν)
6 C4, as |x− ν| < 1.

Then the equation (1) have a solution y, and for y the following inequality holds

‖ − ρ(x)(ρ(x)y′)′‖2 + ‖r(x, y)y′‖2 + ‖s(x, y)y‖2 < +∞.

Proof. Let C(R) be a space of continuous and bounded functions with the norm ‖y‖C(R)
def
= sup

t∈R
|y(t)|, and

ε and A are given positive numbers. We consider the following set

BA
def
=
{
z ∈ C(R) : ‖z‖C(R) 6 A

}
.

Let v ∈ BA, and Lv,ε be a closure in L2 of linear differential operator

lv,ε = −ρ(x)(ρ(x)y′)′ + (r(x, v(x)) + ε(1 + x2))y′ + s(x, v(x))y,

defined on the set C(2)
0 (R). Now we consider the equation

Lv,εy = f. (4)

A function y ∈ D(Lv,ε) satisfying the equation (4) we call a solution of that equation. Since the conditions of
lemma 2 hold for the functions ρ(x), r(x, v(x)) + ε(1 + x2), s(x, v(x)) then for any f ∈ L2 the equation (4) has
unique solution y = yε(x), and for y the following estimate holds

‖ − ρ(x)(ρ(x)y′)′‖2 +
∥∥(r(x, v(x)) + ε(1 + x2)

)
y′
∥∥

2
+ ‖s(x, v(x))y‖2 6 C5‖f‖2. (5)
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Let k > 0. Using the Hölder’s inequality we get

∣∣(1 + x2)ky
∣∣ =

x∫
−∞

((1 + t2)ky)′dt 6

x∫
−∞

(1 + t2)k|y′|dt+ k

x∫
−∞

(1 + t2)k|y|dt =

=

x∫
−∞

(1 + t2)−α(1 + t2)k+α|y′|dt+ k

x∫
−∞

(1 + t2)−β(1 + t2)k+β |y|dt 6

6

 x∫
−∞

(1 + t2)−2αdt

 1
2
 x∫
−∞

(1 + t2)2(k+α)|y′|2dt

 1
2

+

+

 x∫
−∞

(1 + t2)−2βdt

 1
2
 x∫
−∞

(1 + t2)2(k+β)|y|2dt

 1
2

. (6)

We choose the numbers α and β so that 3
4 < α, 1

4 < β 6 α− 1
2 . Then x∫

−∞

(1 + t2)−2αdt

 1
2
 x∫
−∞

(1 + t2)2(k+α)|y′|2dt

 1
2

+

+

 x∫
−∞

(1 + t2)−2βdt

 1
2
 x∫
−∞

(1 + t2)2(k+β)|y|2dt

 1
2

6

6 C6

∥∥(1 + x2)k+αy′
∥∥

2
+ C7

∥∥(1 + x2)k+βy
∥∥

2
. (7)

Using the lemma 1 and the condition α > β + 1
2 we obtain

C6

∥∥(1 + x2)k+αy′
∥∥

2
+ C7

∥∥(1 + x2)k+βy
∥∥

2
6 C8

∥∥(1 + x2)k+αy′
∥∥

2
.

Let α = 3
4 + δ

2 and β = 1
4 + δ

2 , where δ is the number from the condition (3). Then from (6) and (7) we receive

sup
x∈R

∣∣(1 + x2)ky
∣∣ 6 C8

∥∥∥(1 + x2)k+ 3
4 + δ

2 y′
∥∥∥

2
.

Finally, by putting k = δ
2 and taking into account the condition (3), we obtain the following estimate

sup
x∈R

∣∣∣(1 + x2)
δ
2 y
∣∣∣ 6 C8 ‖ry′‖2 .

Therefore due to (5), lemma 1 and the condition (3) we have

‖y‖W
def
= ‖ − ρ(x)(ρ(x)y′)′‖2 +

∥∥(r(x, v(x)) + (1 + x2)
)
y′
∥∥

2
+

+
∥∥∥(s(x, v(x)) + (1 + x2)

1
4

)
y
∥∥∥

2
+ sup
x∈R

∣∣∣(1 + x2
) δ

2 y(x)
∣∣∣ 6 C9‖f‖2, (8)

where the constant C9 does not depend on y.
Let A = C9‖f‖2, and L−1

v,ε be an operator inverse to Lv,ε. We denote Pε(v)
def
= L−1

v,εf . It follows from (8)
that Pε(v) maps the ball BA into itself. Moreover BA is mapped to the set

QA
def
= {y : ‖y‖W 6 C9‖f‖2} .

1. Since QA ⊂ BA then the set of the functions QA is uniformly bounded
2. According to Morrey’s inequality [18, p. 282] with p = 2 for the functions y ∈ W 1

2 (R) the following
inequality holds

‖y‖
C0, 1

2 (R)
6 C10 ‖y‖W 1

2 (R) ,
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where C0, 12 (R) is a Hölder space with a norm

‖y‖
C0, 1

2 (R)
= sup
a,b∈R,
a 6=b

y(a)− y(b)√
|a− b|

.

Therefore, for any y ∈ QA
|y(t+ h)− y(t)| 6 C11

√
|h|,

and hence functions from QA are equicontinuous.
3. It follows from the estimate (8) that

sup
x∈R

∣∣∣(1 + x2
) δ

2 y(x)
∣∣∣ 6 A,

therefore, for any y ∈ QA we have

sup
x∈R
|y(x)| 6 A

(1 + x2)
δ
2

→ 0 as |x| → +∞.

Hence, the set QA is compact in C(R).
We consider a sequence of functions {vn}+∞n=1 ⊂ BA such that ‖v − vn‖C(R) → 0 as n → +∞, and denote

Pε(vn) = yn. Then Lvn,εyn = f and by virtue of linearity of Lv,ε we receive

Lv,ε(yn − y) =
(
r(x, v(x))− r(x, vn(x))

)
y′n +

(
s(x, v(x))− s(x, vn(x))

)
yn.

Therefore, for any N > 0, taking into account that the functions r(x, v(x)) − r(x, vn(x)) and s(x, v(x)) −
−s(x, vn(x)) are continuous in R, we get

‖yn − y‖L2(−N,N) 6 C12 max

(
sup
|x|6N

∣∣r(x, v(x))− r(x, vn(x))
∣∣, sup
|x|6N

∣∣s(x, v(x))− s(x, vn(x))
∣∣)×

×
(
‖y′n‖L2(−N,N) + ‖yn‖L2(−N,N)

)
→ 0,

as n→ +∞.
As vn ∈ BA then yn ∈ QA. Since QA is a compact in L2, and the operator Lv,ε is closed then the Cauchy

sequence {yn}+∞n=1 converges to the element y ∈ QA (due to the uniqueness of the limit). Therefore Pε is a
continuous operator.

Thus, the continuous operator Pε : BA → BA maps the ball BA into itself, hence according to the Schauder
theorem it has a fixed point, i. e. ∃y ∈ BA : Pε(y) = y. In other words y satisfies the equation

−ρ(x)(ρ(x)y′)′ +
(
r(x, y) + ε(1 + x2)

)
y′ + s(x, y)y = f(x),

by virtue of (8) the following estimate holds

‖ − ρ(x)(ρ(x)y′)′‖2 +
∥∥(r(x, y) + ε(1 + x2)

)
y′
∥∥

2
+ ‖s(x, y)y‖2 6 C9‖f‖2.

We consider a sequence of positive numbers {εk}+∞k=1 tending to 0. If yk ∈ BA is a fixed point of the operator
Pεk then

−ρ(x)(ρ(x)y′k)′ +
(
r(x, yk) + εk(1 + x2)

)
y′k + s(x, yk)yk = f(x),

and
‖ − ρ(x)(ρ(x)y′k)′‖2 +

∥∥(r(x, yk) + εk(1 + x2)
)
y′k
∥∥

2
+ ‖s(x, yk)yk‖2 6 C13(εk)‖f‖2. (9)

Let [a, b] ⊂ R be a finite segment. Since the space W 2
2 (a, b) is compactly embedded to L2(a, b) then there is

a subsequence {yki}+∞i=1 , converging to y by the norm of L2(a, b), that is

lim
i→+∞

‖yki − y‖L2(a,b) = 0.

Then according to the definition 1, y is the solution of the equation (1), and by virtue of (9) the following
estimate holds

‖ − ρ(x)(ρ(x)y′)′‖2 + ‖r(x, y)y′‖2 + ‖s(x, y)y‖2 < +∞.
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Conclusion

In this work we considered the conditions of the correct solvability as well as established a coercive estimate
for the second-order differential equation (1) in a non-compact domain, and with coefficients that can be
unbounded. In the case of a Hilbert space, this work generalizes the results of [17] to the nonlinear differential
equation.
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L2(R)-де шенелмеген коэффициенттерi бар
екiншi реттi сызықтықемес дифференциалдық

теңдеудiң шешiлу шарттары

Мақалада шенелмеген облыста сызықтыемес екiншi реттi дифференциалдық теңдеудiң жалпы ше-
шiмiнiң бар болу мәселесi қарастырылған. Теңдеудiң аралық және ең кiшi коэффициенттерi iзделген
функцияға тәуелдi және тегiс болып саналады. Жұмыстың жаңашылдығы — үлкен коэффициен-
тi нөлден өзге болатын сызықтыемес сингулярлық теңдеудiң шешiлетiндiгiн дәлелдейтiндiгiмiзде.
Бұрын қарастырылғандардан айырмашылығы, теңдеудiң үлкен коэффициентi нөлге ұмтылуы мүм-
кiн, ал аралық коэффициент шексiздiкке ұмтылады және ең кiшi коэффициенттiң өсуiне бағынбайды.
Алынған нәтиже теңдеудiң коэффициенттерi бойынша тұжырымдалған; бұл коэффициенттердiң кез-
келген туындыларына шарттар қойылмайды.

Кiлт сөздер: екiншi реттi дифференциалдық теңдеу, сызықтыемес дифференциалдық теңдеу, шенел-
меген облыстағы дифференциалдық теңдеу, жалпы шешiм, шешiмдiлiк.

А.Н. Есбаев, М.Н. Оспанов

Условия разрешимости нелинейного дифференциального
уравнения второго порядка с неограниченными

коэффициентами в L2(R)
В статье рассмотрен вопрос существования обобщённого решения нелинейного дифференциального
уравнения второго порядка в неограниченной области. Промежуточный и младший коэффициенты
уравнения зависят от искомой функции и считаются гладкими. Новизна работы состоит в том, что
мы доказываем разрешимость нелинейного сингулярного уравнения с неотделённым от нуля стар-
шим коэффициентом. В отличие от работ, рассмотренных ранее, старший коэффициент уравнения
может стремиться к нулю, а промежуточный — к бесконечности и не подчиняться росту младшего
коэффициента. Полученный результат сформулирован в терминах самих коэффициентов уравнения,
в нём не ставятся условия на какие-либо производные этих коэффициентов.

Ключевые слова: дифференциальное уравнение второго порядка, нелинейное дифференциальное урав-
нение, дифференциальное уравнение в неограниченной области, обобщённое решение, разрешимость.
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