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The solvability conditions for the second order nonlinear
differential equation with unbounded coefficients in L,(R)

The article deals with the existence of a generalized solution for the second order nonlinear differential
equation in an unbounded domain. Intermediate and lower coefficients of the equation depends on the
required function and considered smooth. The novelty of the work is that we prove the solvability of a
nonlinear singular equation with the leading coefficient not separated from zero. In contrast to the works
considered earlier, the leading coefficient of the equation can tend to zero, while the intermediate coefficient
tends to infinity and does not depend on the growth of the lower coefficient. The result obtained formulated
in terms of the coefficients of the equation themselves; there are no conditions on any derivatives of these
coefficients.
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Introduction

We investigate the following second-order singular differential equation

—p(z) (p(x)y) +r(z,9)y + s(z,y)y = f(z), (1)

where x € R = (—o00,+00), p is a twice continuously differentiable function, r is a continuously differentiable

function, and s is a continuous function, f € Ly & Ly(R), || - ||2 is the norm in Ly. The singularity of the
equation (1) means that it is given in a non-compact domain, and its coefficients can be unbounded.

The study of the equation (1) and its multidimensional generalizations is related to applications in quantum
mechanics, stochastic analysis and stochastic differential equations [1-4]. In the above references the linear case
is considered and results are obtained for s(z,y) = s(z) > § > 0, and the growth of |r(z, y)| = |r(x)| at infinity
is bounded by some positive power of s(x). In the following researches [5-8] the linear case of equation (1) is also
considered and it is assumed that the intermediate coefficient r(x) can not grow faster than |z|ln |z| at infinity.
In [5-8] issues on solvability of the equation (1) were considered only for the case p(z) > § > 0. The issue on
solvability of the equation (1) stays unresolved for the case when the growth of |r(x)| is faster than |x|In|z| and
is not dependent on s, and also when the coefficient p(z) approaches zero as x — 400 or as & — —o0.

For the case when p = 1 and |r| grows rapidly and does not depend on the coefficient s the equation (1)
was analyzed in [9]. Here it was determined the solvability and the maximal regularity for the solution. The
linear case for the equation (1) with a fast-growing growing intermediate coefficient was studied in [10] (when
f € Ly), [11] (when f € L1(R)) and [12] (when f € L,(R), 1 < p < 400). In [10-12] the function p(x) is
assumed to be separated from zero and bounded, or equal to 1. The study of the solvability of different classes
of partial differential equations with unbounded coefficients is presented in [13-16].

Note that the rapid and independent growth of the absolute value of the intermediate coefficient r» makes
a big difference for solvability of the equation (1). Firstly, in this case the coeflicient s can be unbounded from
below. Moreover it can approach to —oo with certain rate [11, 12|, where the rate of approaching s to —oo
depends on the growth rate of |r|. Also let us note that in the study of the Sturm-Liouville equation (the case
p=1,7=0, s(x,y) = s(x)) it is usually assumed that s > —kx? for some k [2]. Such condition in the case of
equation (1) with unbounded r is not necessary.
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Secondly, due to the growth of the absolute value of r in the equation (1) it turns out we can assume
approaching zero at infinity for the coefficient p in the leading term, thereby considering the so-called case of
degeneration. The theorem 1 presented below shows that the rate of approaching p to zero also depends on the
growth of |r|.

In the work [17] the results of the correct solvability and also a coercive estimate for the equation (1) was
established in the case r(x,y) = r(z), s(z,y) = s(x) and p(z) > 0. In this paper we propose to extend some of
the results obtained in [17] to the case of nonlinear generalization of equation (1).

Preliminaries

Let C’(()k)( R)(k = 1,2,...) be the set of k times continuously differentiable functions on R with compact

support and C’(])( R) def{ ty € C(J)( R), V¢ € Céj)(R)} (j = 1,2). Consider the following linear equation

loc

—p(@) (p(x)y') + r(@)y + s(x)y = F(x). (2)
Let g and h # 0 be given continuous functions. We denote

def

o ® L lallaon 1 iy >0 Bon® Zllgllsirny 10 sy (7 <0,

def def def
agn = supagp(t), Ben = sup Byn(T), Yor = max (agn,Ben) -
t>0 7<0

The following statement is proved in [9].
Lemma 1. If g and h are continuous functions such that v, < +oo. Then for y € C(gl)(R) the following

inequality holds
/Ig o) dx < 01/|h o) da.

Moreover we have (min (¢ p, 5g7h)) <Cp <4 (’ygyh) .

Let the operator loy = —p(x)(p(x)y') + r(x)y’ + s(z)y is defined on the set C’éz)(R), we denote the closure
of the operator Iy by ! in Lo. The function y € D(1) such that ly = f is said to be a solution of the equation (2).

The following statement is proved in [17].

Lemma 2. If 0 < p(x) < 400 is a twice continuously differentiable function, r(z) > 1 is a continuously
differentiable function, and s(x) is a continuous function, r(z) > p*(z), Y,y < +00, Vs,r < +00 and there
exists a € R such that

[ r(t)
su r)exp | — dt < +00.
sup 3 ptwresp | = [ s

x

Next, let there be Cy > 1 such that

G <@ <o <™, as pov<t
p r(v)

Then for any right-hand side F' € Loy the linear equation (2) has a unique solution y and for y the following
inequality holds

|=p(ew)' |, + ry/lls + syllz < o P,
where Cs depends only on C2, 7,7 and s r.

The solvability conditions for the second order non-linear differential equation

For continuous functions of two variables g(x,y) and h(z,y) # 0 we denote

1
2

t 400
def dx
Oég7h(t7y) = /‘g(l‘7y)‘2dl‘ / W (t > 0),
0 t
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[ dz
Par | | [ i 0

=

agn(y) d:efb;;llo)ag,h(tay) Bg.n(y) &4 bupﬁg, (1,9),

Yon(y) & max (ag (), Bon()) -

Definition 1. Let y € Ly. y is said to be a solution of the equation (1), if there exist a sequence {y, } C CZ(OQC) (R)
such that

1 (yn — y)ll2 = 0 and ||¢o(Ly, — f)]l2 — 0 as n — 400, Vi) € C(OO)( R).

Theorem 1. Let p(x) be a twice continuous differentiable and bounded function, r(x,t) be a continuous
differentiable function, s(z,t) be a continuous function and

£ 2
r@t) > e @), sy gy <00 SID s < oo

there exists a € R such that

sup ¢ p(z)exp | — / Mdv < 400
z<a J p?(v) '
Also for some § > 0 and VA > 0 the inequalities holds
r(z,y) > (14a%)1, 3)

_1_ pla)
sup sup <T(A) <400, C'<Z=L<KC0y, a8 |z—v <1
le—v|<1|C/—C"|<A 7‘( C") ! p(v

Then the equation (1) have a solution y, and for y the following inequality holds
1= p(@)(p(@)y )2 + lIr (2, 1)y [l5 + Is(z, y)yll2 < +o0.

Proof. Let C(R) be a space of continuous and bounded functions with the norm |[|y||c () 1/ sup |y(t)|, and
teRr

¢ and A are given positive numbers. We consider the following set

Ba“ {2 € CR): |2llew < A}-
Let v € By, and L, . be a closure in Ly of linear differential operator
loe = =p(@)(p(@)y) + (r(z,v(x)) + (1 + %))y’ + s(z, v(2))y,
defined on the set 0(2)( R). Now we consider the equation
Lyey=f. (4)

A function y € D(L, ) satisfying the equation (4) we call a solution of that equation. Since the conditions of
lemma 2 hold for the functions p(z), 7(z,v(z)) + (1 + 22), s(z,v(z)) then for any f € Ly the equation (4) has
unique solution y = y.(z), and for y the following estimate holds

I = p(@)(p(@)y') |2 + || (r(z, v(@)) + (1 + %)) /||, + [|s(z, v(2))yll2 < Cs]If]2- ()
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Let £ > 0. Using the Holder’s inequality we get

|(1+2?)Fy| = /((1+t2)ky)'dt< /(1+t2)k|y’|dt+k /(1+t2)k|y|dt:
—00 —0o0 —00
x x
= /(1+t2)*a(1+t2)’“+a|y’|dt+k /(1+t2)*5(1+t2)’“+ﬁ\y|dtg
- z 3 xioo 3
< /(1—|—t2)‘2"‘dt /(1—|—t2)2(k+°‘)|y’|2dt +
T 2 x %
+ /(1+t2)_25dt /(1+t2)2(k+5>|y|2dt . ()

We choose the numbers o and 3 so that % < a, % <pf<La-— % Then

1 1
x 2 x 2
/(1+t2)’2adt /(1+t2)2(k+“)|y’|2dt +
x 2 x 2
- /(1+t2)*25dt /(1+t2)2<k+ﬁ)|y|2dt <

< o [[(1+a®) oy ||, + Cr [|(1+22)" Py,

y'll,

Using the lemma 1 and the condition a > 8 + % we obtain

Co [|(1+2*)**2y/[|, + Cr |1+ %)y, < Cs (1 + )Ty

I 2

Leta:%—t—

\els)

and 8= 1+ ¢, where ¢ is the number from the condition (3). Then from (6) and (7) we receive

sug |(1 + x2)’“y} < Cy H(l + z?)
S

Finally, by putting k = % and taking into account the condition (3), we obtain the following estimate

5
sup |(1+ 2%) 3| < Cs Iyl
z€R

Therefore due to (5), lemma 1 and the condition (3) we have

ol <1 = p@) @)y 12 + || (@ v(@)) + (1 +27) o/||, +

+H(s(:v,v(x))+(l+fr )yH +sup (1+2%)

s
2

y(@)| < Colfll2, (&)

where the constant Cy does not depend on y.

Let A = Cq| f|l2, and Ll be an operator inverse to L, .. We denote P.(v) = 2/ L;Lf. It follows from (8)
that P.(v) maps the ball B, into itself. Moreover B4 is mapped to the set

def

{y:lylw < Gollfll2}-

1. Since Q@4 C By then the set of the functions @ 4 is uniformly bounded
2. According to Morrey’s inequality [18, p. 282] with p = 2 for the functions y € W3 (R) the following
inequality holds

Hy”c"%(n@) < Cho ||y||W21(R) ,
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where C%2 (R) is a Holder space with a norm

Iyl o2 = sup M.
@) afeR, Vi]a—b|
a#b
Therefore, for any y € Q4

ly(t+h) — y(t)| < Cuv/Ih],

and hence functions from @Q 4 are equicontinuous.
3. It follows from the estimate (8) that

S
2

sup (1 + xz) y(a:)‘ < A,
z€R
therefore, for any y € Q4 we have
sup |y(z)| < = — 0 as |z] = +oo.
z€R (1 +x2)§

Hence, the set 4 is compact in C(R).
We consider a sequence of functions {v,},> C Ba such that [Jv — Unllc®) — 0 as n — +o0, and denote
P.(vy) = yn. Then L, .y, = f and by virtue of linearity of L, . we receive

Ly e(yn —y) = (r(z,v(z)) = r(z,va(2)))y;, + (s(z,v(2) — s(z, va(2))) Y-

Therefore, for any N > 0, taking into account that the functions r(z,v(z)) — r(z,v,(x)) and s(z,v(z)) —
—s(x,v,(x)) are continuous in R, we get

lyn — y||L2(7N’N) < Cio max ( sup ‘r(m,v(m)) —r(x,v,(x))|, sup ‘s(m,v(m)) — s(x,vn(x))o X
|z|<N lz|<N

X (”y;LHLg(—N,N) + ||yn||L2(—N,N)> — 0,

as n — +o0.

As v, € By then y, € Q4. Since Q4 is a compact in Lo, and the operator L, . is closed then the Cauchy
sequence {y, fli’j converges to the element y € Q4 (due to the uniqueness of the limit). Therefore P, is a
continuous operator.

Thus, the continuous operator P, : By — B4 maps the ball B4 into itself, hence according to the Schauder
theorem it has a fixed point, i. e. 3y € B4 : P.(y) = y. In other words y satisfies the equation

—p(@)(p(@)y) + (r(w,y) + (1 + %))y + s(z,y)y = f(@),
by virtue of (8) the following estimate holds
I = p(@)(p(@)y') |2 + || (r(2,y) + (L +2)y/[|, + s(z. y)yll2 < Coll 2.

We consider a sequence of positive numbers {sk}:fl tending to 0. If y,, € B4 is a fixed point of the operator
P;, then
—p(@)(p(@)yr,)" + (r(z,yr) +ex(1+22))yi + sz, yu)ye = f(=),
and
I = p(@)(p(@)yi) |2 + || (r(2, yo) + el +2))yi|, + lIs(z, yn)yrllz < Crs(er)llfll2- (9)

Let [a,b] C R be a finite segment. Since the space W3 (a, b) is compactly embedded to La(a,b) then there is
a subsequence {yx, }:1°7, converging to y by the norm of L (a,b), that is

legloo Hykl - y||L2(a,b) =0.

Then according to the definition 1, y is the solution of the equation (1), and by virtue of (9) the following
estimate holds

| = p(@)(p(x)y") l2 + Ir(z, )y [l + (2, y)ylla < +oo.
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Conclusion

In this work we considered the conditions of the correct solvability as well as established a coercive estimate
for the second-order differential equation (1) in a non-compact domain, and with coefficients that can be
unbounded. In the case of a Hilbert space, this work generalizes the results of [17] to the nonlinear differential
equation.
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A.H. Ecbaes, M.H. Ocmanos

Ly(R)-me nrenesnmeren kosdduiimenrrepi 6ap
eKiHIIl peTTi ChI3bIKThIKeMecC AnddepeHIaIabIK,
TEeHJIEY/IiH eIy IIapTTapbl

MakaJjtazia meHesMeres 06JIbICTa ChI3BIKThIEMEC eKiHII peTTi JuddepeHImaaIblK TeHIeYIiH KAl II1e-
mriMinig 6ap 601y Mocesreci KapacThIpbLIFaH. TeHIey/IiH apaJiblK, KoHE eH Killli Ko3dUIHEeHTTep] i3/1e/reH
bYyHKIUSAFa TOYEJIl *KoHe Teric 6obin canamaabl. 2K YMBICTBIH >KAHAIIBLIIBIFBI — YIKEH Koddduiimen-
Ti HOJIIEH e3re OOJIATBIH CHI3BIKTBIEMEC CHUHTYJISAPJIBIK TEHJEY/iH IIeNJIeTiHrH goesaeTinairimisae.
Bypein kapacTeIpbuIFaHIapIaH ARBIPMAIIBLIBIFLL, TEHIEY/IH VIKEH KOd(MDMUIMEHTI HOITe YMTBLIYBI MYM-
KiH, aJ1 apaJIbIK, KOI(MDDUIMEHT MEKCI3MIKKe YMThLUIA b 2JKOHE eH, Kirli KoadduimenTTin ecyine 6arbrHOaNIbI.
AtbIHFaH HOTHXKE TEHIEY/IiH KO3(DPUuIumeHTTepi G0MBIHINA TYKBIPBIMIAIFaH; Oy KO3(pDUIMEHTTEPIIH Ke3-
KeJITEH TYBIHBIIAPBIHA MapTTap KOWBLIMANIBI.

Kiam cesdep: exiumi perti nuddepeHNnaIIbIK TEHIEY, ChI3BIKThIeMeC AudMOEPEHITNAIBIK, TEHIEY, TEeHET-
MereH o0JIbICTarbl i OEPEHITUATIIBIK, TeHIEY, KaJIIIbl IIeNIiM, TIeIiM I iTiK.

A .H. Ecbaes, M.H. Ocmanos

VciioBusi pa3peniuMocT HeJnHeiHoro auddepeHnnaaibHoro
ypaBHEHHsI BTOPOTO TMOPSI/IKA C HEOTPAHUIEHHBIMU
ko3 dunmentamu B Lo(R)

B craTbe paccMmorpen Bompoc cyrecTBOBaHUsT 0OOOIIEHHOTO PENTEeHNsT HEJIMHEHOTO MuddEPEHITNATEHOTO
ypaBHEHUsI BTOPOTO MOPs/IKA B HEOrpaHUYEHHON obsiactu. [TpomMe:KyToOIHbIN U M IINi KO3(DDUIIUEHT
YPaBHEHUST 3aBUCAT OT MCKOMOU (DYHKIIMM W CYUTAIOTCS Tyiaakumu. HoBusHa paboOTBI COCTOUT B TOM, UTO
MBI JIOKA3BIBAEM DPA3PEINMOCTb HEJIMHEHHOTO CHHTYJISPHOTO YPABHEHUsI C HEOTIETEHHBIM OT HYJIsT CTap-
mmM KodddurmenroM. B ormvune or paboT, pacCMOTPEHHBIX paHee, CTapIInii KO3MpUIMEHT ypaBHEHUs
MOYKET CTPEMUTBCS K HYJIIO, & TMPOMEXKYTOUHBI — K OGECKOHEYHOCTH U HE TOIYUHSATHCS POCTY MJIAJIIIETO
kodddurmenTa. [lomydernsrit pedysnbrar cpOpMyIMPOBAH B TEPMUHAX CAMHUX KOI(DMOUIIMEHTOB yPABHEHNS,
B HEM HE CTaBSITCsl YCJIOBHUs Ha KaKHe-JTUOO MPOU3BOJIHBIE 3TUX KOIDDUIIMEHTOB.

Karoueswie crosa: muddepennmalibHOe ypaBHEHIE BTOPOro OpsiaKa, HejuHelHoe quddepeHimaibHoe ypas-
Henne, nudHepeHInaIbHOe YpaBHEHE B HEOIPAHUIEHHON 061acTr, 0O0OIIEHHOE PeIlleHne, PA3PENInMOCTh.
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