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On convergence of schemes of finite element method
of high accuracy for the equation of heat
and moisture transfer

In this paper difference schemes of the finite element method of a high order of accuracy for the non-
stationary equation of moisture transfer of Aller are constructed and investigated. The increased order
of accuracy is achieved through special sampling of temporal and spatial variables. The stability and
convergence of the constructed numerical algorithms are proved, the corresponding a priori estimates are
obtained in various norms, which are used later to obtain estimates of the accuracy of the scheme under
weak assumptions on the smoothness of solutions to the differential problem.
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Introduction

As it is known, research in the field of heat and moisture transfer is fundamental in solving many applied
problems, for example, problems of hydrogeology, agrophysics, ecology, building physics, etc. [1]. The interaction
of heat fluxes in the soil-ground and snow cover determines the processes of infiltration, migration and frost
heaving, evaporation and transpiration, metamorphism and snow melting. These processes determine conditions
for overwintering and growing crops. In addition, the role of moisture migration and infiltration in the formation
of productive moisture reserves in agricultural fields is of great importance. Mathematical models of these
processes are described mainly by the Aller or Aller-Lykov moisture transfer equation [2]. This paper considers
numerical methods for solving boundary value problems for the Aller moisture transfer equation written in a
more general form. In this case, difference schemes of the finite element method of the fourth order of accuracy,
constructed and investigated in [3], are used. These schemes have certain advantages over other schemes: a) high
order accuracy scheme (above two); b) in addition to the solution itself, its derivative (velocity) is simultaneously
found with the same accuracy; ¢) using interpolation representation

y(t) =y oo (t) + 9" o (8) +y" Tl ogy () + 5" (1), (1)

Boo(t) = 26> =387 + 1, gy (t) =362 — 282, ¢7,(t) = 7(€3 =267 +€), o1y (t) = 7(&* — &),

if necessary, it is possible to get a solution and its derivative at any time; d) since the scheme is two-layer, it
is possible to use a variable step without loss of accuracy; e) the scheme is conditionally stable and requires 4
times more arithmetic operations than the schemes of the finite difference method, but this scheme allows to
choose large time steps to achieve a certain accuracy. To obtain an estimate of the accuracy a special technique
for obtaining a priori estimates is used. The classical approach to the study of the convergence of difference
schemes based on the Taylor formula imposes high requirements on the smoothness of the desired solution.
Recently a number of results have been obtained on the estimation of the rate of convergence of difference
schemes for equations of mathematical physics. These results can be found in [4-8]. Similar studies for various
non-stationary problems were carried out by the authors in [3, 9-11].
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Statement of the problem

The problems of the thermal and water regime of the root layer of the soil, evaporation, transpiration, etc.
are described by the following equation (the Aller equation in general form) [1]

% = Lw—l—a% (Lou) + f(x,t), (x,t) eQr={ze€Q, 0<t<T}. (2)

Here Q = {z|z = (z1,22), 0 < x4 <la, a=1,2},

Pm 81,[,

0 m m
Lt =3 50— ('f <:c>axa> — " (@), TEQ pn=12,..,
a=1

0<ko<klz)<ky, ¢"(z)>0,m=1,2,

where o, ko, k1 are positive constants.
For equation (2) the initial condition

u(z,0) = uo(x), z€ (3)

is set and some local or non-local boundary conditions are given.
Local conditions are classical boundary conditions, for example, the first boundary value condition

u(z,t) =0, x€09Q, te(0,T). (4)

Conditions are called non-local if the boundary conditions are relations connecting the values of the sought
solution and its derivatives at the boundary and interior points of the domain. Similar conditions arise in the
mathematical modelling of processes of various natural phenomenon, for example, in the study of problems of
moisture transfer, thermal conductivity, mathematical biology, control, etc. For example, for equation (1) in the
one-dimensional case, the non-local boundary conditions

w(0,t) = Mu(l,t), wugy(0,t) = Aug(l,t), t€][0,T]

are given in [1-2].
Let us formulate a generalized statement of problem (2)—(4). We call the generalized solution of problem

(2)—(4) as the function u(x,t), in which each t € [0, 7] belongs to Sobolev space H = W4 (£2), has a derivative
%7; € L2(0,T) and satisfies the relations [12]

(dilff),ﬁ) +oay (Chc‘lf),ﬁ) T as(ult),9) = (£(1),9), ¥9(x) € H, u(0) = ug (5)
almost everywhere on (0,7). Here
am(u(t),d) = —(Lyu,9) = /Zm: (km(x) aaxu . 68719 + qm(x)uﬁ) dr, m=1,2.
o am1 oY e}

For bilinear form a,, (u,9) there is an evaluation a,,(9,9) > k[9||°.
Note that the dimension of the operators Ly, Lo can be different, i.e., p; # po, and so L; can be strongly
elliptical and Lo can be a degenerate operator that does not contain all second derivatives of variables z,,.

Discretization in space and time

We discretize problem (2)—(3) with respect to spatial variables using the finite element method. Let H, C H

be many elements of the form ¥, = vazl a;¢i(r). Here {¢; = ¢;(x)}Y, is the basis of piecewise polynomial
functions that are polynomials of degree on each finite element (a segment in one-dimensional case, a triangle

or rectangle in two-dimensional case, etc.).
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Let us write relation (5) a semi-discrete problem for ¢ € [0, T7:

(dugt(t)ﬁh) +o0ay (%,W) +ag (up(t),9%) = (f(t),9%), VI, € Hy, (6)

Uh(O) = UQ,h-

Problem (6) corresponds to the Cauchy problem in time for the system of ordinary differential equations of

the first order for coefficients of the approximate solution uy,(t) = Zf\il a;(t)¢; from Hy, :

da(t)

M
dt

+Ga(t) = ®(t), a(0)=a’.

Here, d(t) = {a:(t)}Y, {Zii(O)}ivzl are dimension vectors N; M = {(¢;, ¢j)}£vj:1 is the mass matrix,
G = {a(¢;, (blj)}?;.:l is the stiffness matrix and ®(t) = {@(t)}fvzl is a vector of the right side.

The same problem can also be written in the form of an operator equation

dup (1)
dt

D

+ Aup(t) = fr(t), un(0) = uo,n, (7)

up(0) = ug,p-
Here up(t) is the element of finite-dimensional space Hy, for any moment in time ¢, operators D and A
operate from Hj, to H,: D = M +0G1, A= Gy, M = ((¢i,¢j))£vj=1 is a subspace coordinate system mass

matrix Hy, and G, = (am(di, ¢j))£vj:1 is a stiffness matrix corresponding to the operator L,,u, m = 1,2 in
Hy,.

We approximate problem (7) with a three-parameter finite element method of the fourth order of accuracy
in time [3]:

a_ 2 ’.‘_. A+ o
Dizk - Ak 4 AR — g,

YDIZE 4 QA=Y 4 BATEL — ¢, (8)

0 _ 50
Yy = uo, Yy = U1,

where p J
n ~ n n Y o n Y
y=y"=yltn), §=y"" =yltn+7), y=9"=—(tn), y=9""" = —(tn + 1),
dt di
A 12
o1 = - / ft)dt, ¢2= =y f(t) <8119§1)+ 82?9%3)> dt,

tn tn

s1 =15y — 35a/3, So = 140y — 350@/3,
ol = 7(E+1/2), of) = 7( —3¢2/24¢/2), £=(t—t,)/T

Scheme (8) obeys the condition of the fourth order of approximation in time
at+B=7v a>0, 0<B<a/(3), a,B = 0%, 0<e<1. (9)
Circuit stability conditions are
a=7%/12, B3>0, v>0, , R>((1+¢)/4)A,
where R = 1 (’yD2 + %(35 + oz)AZ) , A=T1pA%

A high order of accuracy of the scheme is achieved due to a special discretization of temporal and spatial
variables [3].
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Investigation of the accuracy of discretization in space

Let us estimate the accuracy of the solution of problem (2)—(4). All notations are borrowed from [13]. The
following theorem holds.

Theorem 1 Let u(z,t) € Lo {[O,T]; W@ n W %(Q)} If a narrowing of space Hj, into a single finite

element is a polynomial of degree k, then for the solution of problem (7) there is an estimation of accuracy

t t
/ (e, ) — wn(a, )2 de’ + o0 / (e, #) — un(z, )| dt
0 0

t
+ /[U(x,t') —up(z,t)]dt'|| < ME* {[lu(z, 0], + ollu(z, 0)];,
0 1

t
+ [ 0) [t 0]y, de b o Vee 0.T) M = Mo b ).
0

Proof. We integrate identity (5) over ¢ from ¢, = n7, n = 0,1, ... to t,+1 = t, + 7 and apply the formula
for integration by parts

tn+t1

[ (), §) = o a1 (u(t), §) + az(u(t), 9)] di+ [(u(t),9) + o ax (u(t), V)] ;2"

tn
Lot
- (f(t),9)dt, ¥O(z) € H (11)
tn
Similar actions for identity (6) give
o1 29
[—(uh, Oy) — oay (up, 95) + ag(uh,ﬂh)} dt + [(un,9n) + oar(up, 9p)] [, = / (f,0p)dt, YO, (x) € Hy.
tn tn

Here and further @ = du/9dt. Choosing ¥ = ), € Hp, C H in (11) and subtracting both obtained identities, we

have
trnt1

{—(u — uh,ﬁh) —oai(u— uhﬂ?h) + as(u — uh,ﬁh)} dt
tn
+ [(w — up, ) + o a1 (v — up, )] \i:“ =0, Vy(x)€ Hy. (12)

Let z = u — up = e, + &, Let us choose a trial function
In(t) = —/fh(t’)dt’ € Hy, t<s; On(t) =0, t>s, In(t) = En(t), Dn(s) = 0. (13)
t

Taking into account the introduced designations, identity (12) can be written in the form:

tnt1

{*(Emfh) — o ay(€n,&n) + ag(Dn, 9p) | dt+ [(En, On) + o ar(En, 9n)] i:“

tn

trnt1

- / [(en,&n) + o ai(en,&n) — az(en, In)] dt— [(en, Vn) + Ual(eh’ﬂh)”izﬁ :

tn
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Since Clg(’léh,’l?h) = %%ag(’ﬁh,ﬂh), then the last identity can be written as:

tnt1 tn+1

[ (entdt—o [ @) di+ oa0n 0 tn) + (6h00) + oar(en )

tnt1

= — [(en,Un) + Ual(eh’ﬁh)m:“ + %‘12(1% In)(tn) + / [(en,&n) + oai(en,En) — azlen, Vn)] dt.

tn

(14)

Let us sum up (14) by n = 1, m — 1, where is the number m corresponds to the moment in time s = m7:

S S

~ [ (et = o [ ar(6n )it + 500,046 + (66,00 + ran n, 0]

0 0

S

— [(eh, ﬁh) + O’(ll(h,ﬁh)“(s) + %az(ﬂmﬁh)(()) + / [(eh,gh) + U(ll(e;“fh) — ag(eh, 19}1)] dt.
0

Considering the properties of the function ¥ (t) (see eq. (13)) and the initial condition &, (0) = 0, from the

last identity we have
S S

/(fhvfh)dt'f‘o'/al(gh»fh)dt"‘%GQ('ﬁh,'ﬁh)(O)
0 0

S

= —[(en, 9n)(0) + oai(en, ¥1)(0)] — / [(en,&n) + aar(en, &n) — az(en, Vp)] dt.
0

Let us introduce one more function
t
wy(t) = /gh(t’)dt’ € Hy, t <s; wp(t) =0, t>s.
0

Then ¥, (t) = wp(t) — wr(s), and, finally, we have the energy identity:

S S

[ @i+ o [arengi+ Sasonun)(s) = e0).un(s)

0 0

S

o (en(0), wn(s)) - / [(ens &) + o ar(en, €) — as(en, wn (t) — wn(s))] dt.
0

Let us estimate the terms on the right hand side of (15):

(en(0), wn(s)) < er(wn(s), wn(s)) + L(6h(0), en(0)),

461
aa(en(0),wn(s)) < exan(wn(). wn(s)) + 1 ar(en(0),(0))
/(6h,§h)dt Sé‘s/ (§h,§h)dt+é/ (en,en)dt,
0 0 0
/Ch (en,&n)dt| < 84/ ax (£h7§h)dt+é/ a1 (en, ep)dt,
0 0
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S

/ as(ep, wp(t) —wp(s))dt
0

1

< 55/ ag(wp (1), wy(t))dt + sesaz(wp(s), wr(s)) + E/ as(ep, ep)dt.
0 0

Choosing 1 = €3 = €3 = €4 = 1/2, and €5 from condition €1/2+¢e5T < 1/4, from (15) we get the estimate

/(fmfh)dt‘f'o'/al(fhafh)dt+a2(wh7wh)(5)

0 0

<M / az(wp, wy)(t)dt + (ex(0),er(0)) + cai(en(0), en(0))+ (wn(s), wn(s))
0

S S S

+oay(wp(s), wn(s)) +/ (eh,eh)dt—i—a/ al(eh,eh)dt—i—/ as(en, ep)dt |,
0 0 0
where M = max(8, 1/T, 16T'). Applying Gronwall’s lemma, we obtain the error estimate
/ (Eny En)dt + 0/611(&” En)dt + az(wp, wp)(s)
0 0

< M [(en(0),€n(0)) + oar(en(0), en(0))] + (wa(s), wn(s)) + oai(wa(s), wn(s))

—|—/ (emeh)dt—f—a/al (eh,eh)dt+/ as (e, ep)dt).
0 0 0

It’s obvious that ko [[wp(s)]|] < am(wh,wn)(s) < k1w (s)|3, (€n,€n)(s) = ||€n(s)]lo- Therefore, we have the
final estimate for the error

S S S 2
[+ o [l | [ oo
0 0 0 1

<M en @I + 0 lentOl + [ sl e+ [ len®lZat+ [ lentoliar). ()
0 0 0

For solutions u(z,t) € WEt1(Q), Vt € [0, T], there is an evaluation [13]:
len(0)llg < ME*luolly, len(O)ly < MA*Hfuolly 4,

llen(®llg < MA@y, llen(®)lly < MA|fu(t)]4s-

Therefore, based on (16) and the triangle inequality ||zp| < |len| + ||€r|| the statement of the theorem holds.
The theorem uses the standart notation for the Sobolev space WA ™! from [13].

Accuracy research of discretization in time

Let us now turn to the estimation of the discretization error for problem (7) in time. Investigation of the
error in approximating scheme (8) using the Taylor formula, as already mentioned, leads to overestimated
requirements for the smoothness of the solution to the original problem. An alternative to this method of
estimating the accuracy is the application of the Bramble-Hilbert lemma. This method of accuracy estimation
is the main one in the theory of the finite element method for solving elliptic equations [13-16]. We also note the
paper [8], in which the Bramble-Hilbert lemma is used to estimate the accuracy of solving difference schemes
for elliptic problems.
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Let us apply the Bramble-Hilbert lemma to estimate the accuracy of the solution to the original problem
with respect to the time variable. Recall that the solution wuy, () of semi-discrete task (7) for each ¢ is an element
of the discrete subspace up(t) € Hp,.

The following theorem holds.

Theorem 2.Let A* = A >0, D*=D >0, AD = DA and the conditions of approximation (9) and stability
(10) are fulfilled. Then to solve the scheme (8) approximate solution to problem (7) such that d;;ﬁlh( t) € L2[0,T]
and the accuracy estimate

t
/||uh () — y(t)|2 dt' + o /Huh () — y()| dt" + / ¢)] dt’
0

d4
< M7t lur (0)]lg + ollun(0)]; + 1+0/H Un )

dt’ (17)

is correct.

Proof. Denote by H, argument function subspace ¢, which are a cubic Hermitian spline of the form (1) on
the interval [t,,,t,+1] , » =0,1,2,.... Consider scheme solution (8) to y(t) € H,. Simultaneously for each ¢, y(t
is an element of the subspace Hj,. Actually y(z,t) € Hf = H, ® H,.

Difference scheme (8) corresponds to the following weak setting

tn+1

[~ (0). ) = 0 a(y(6),9:) + ax(y(t), 0-)| db

(), 95) + o an(y(t),0.)] [+ = / (f,0,)dt, ¥0,(x) € HY, (18)

where y(t) is the cubic Hermitian spline (1).
In (18) select

—/gf(t)dtﬁ t<s; 9.(t)=0, t>s.
t

It’s clear that U,(t) = &-(t), t < s and 9,(s) = 0. Substituting the function 9, (t) into (18) and performing
same transformations with the resulting identity that we used when evaluating z, = u — up = ep + &, we get
the following energy identity

[ i+ o [are g+ Jax(on,0.0)
0 0
= (er,9:)(0) + oay(er, V) / (er, &) +oar(er, &) — as(er, V)] dt.
0

Denote by
t

we(t) = /{T(t’)dt’ EHpt<s, w(t)=01t>s
0

and note that e,(0) = up(0) — u](0) = up,p, — up,r, = 0. Then the last identity becomes

t t
[ i+ o [ a6 e+ Jartunw)s)
0 0
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S

= _/ [(er, &) + oar(er, &) — az(er, wr(t) — w-(s))] dt. (19)
0

Applying the Cauchy-Bunyakovsky inequality, e-inequality and Gronwall’s lemma, as in the estimate &, (¢), we
obtain from (19) the following estimate

S S S 2
/ (]2 dt + 0 / & (1)1 dt + / &, (t)dt
0 0 0 1

<M /neT(t)n%dtw/ ||ef<t>|\?dt+/ lea ()2t | - (20)
0 0 0

Now let us estimate the error of the scheme (8) (.(t) = &-(t) + e-(t). By the triangle inequality and
(a+b)* < 2(a? + b2) we have

S S S 2 S S
Jiceiiaero [icika| [ cwa| <2{ [leiao [ el
0 0 0 1 0 0

S 2 S S S 2
+ /eT(t)dt +/||er(s)||gdt+a/||eT(s)||?dt+ /eT(t)dt
0 1 0 0 0 1

For the last term, we apply the Cauchy-Bunyakovsky inequality and get

2
s 2

/eT(t’)dt’ < /1dt’ /eg(t/)dt' gs/neT(t’)Hfdt’.
0

0 1 0 0 )

From this and (20) we have the estimate

S S S 2
Jlclide+o [1colta | oo
0 0 0 1

<M \Ier(8)||§+0\\er(8)llf+/Her(t)\lgdtﬂffﬂ)/Hef(t)\lfdf . (21)

Consider the linear functional e, (up) = up — u7. We introduce the change of variable ¢t = t,, + nr,
0 <n < 1. Then, we get

ér(un(n)) = er(un) = up(tn +n7) — uj(ty +n71) = Un(n) — a7 (n).

This functionality is limited for continuous functions wp(n) € C[0,1]. Moreover, it is limited for
an(n) € W20,1]. So it is written as

1/2

&7 ()| = Jiin(n) — a7 ()] < M / (dmﬂh)zd
0

m=0 dnm

This functional vanishes on polynomials up to the third degree inclusive in the variable 7, i.e., on the segment
[0,1] 4] a third-degree polynomial that interpolates @y. Based on the Bramble-Hilbert lemma, from the last

estimate one can obtain 1/2
1

@) = fan(o) - ar) < 07 | | (ddj;’)dn
0
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Returning to the previous variables we have the estimate

: 1/2
n+1 d4u 2
- - h
ertn )] = n(0) ~ 0] < 72| [ () ) et
tn
Then
S m—1 tnt1 m—1 tnt1 d
/wMMM:Z/meWSZ/MW i dm
0 n=0 tn n=0 tn

tny

d*u
dt*

~ (1)

m—1
=3 w2
n=0

duh
M2 8/
ﬁ Hﬁ4

Similarly, the estimate

dt

d*u
28 h
/H@ Wt < b1°r |MM

holds. If limitations H d;;ﬁﬁ (t)H are required for each t , then we obtain
0

t
s 4 2 4 2
2 -2 7 d Up 2 8 d Up
lex(s)]2 < 1%r / (dt4> il < 3t | T
m—1 0
L, 2

HeT(s)H1 M27'8max

Tdr
Further, based on these estimates we obtain the statement of the theorem from (21).
On the convergence of the scheme
In order to estimate the approximation error we need to go from uy; to the solution w in the right-hand sides
of z=u—y=(u—up) = (y—un).
For k = 0,1 the following estimate holds [13]:
lunlly = llu —w+unll, < [lull, + llu—unll, < llull, + Mhbjlull,, < M||u||k+1'

Therefore, estimate (17) has the form

t
/||uht’ ()2 dt + o /||uht’ ()2 dt + / )] dt’
0

4 2
ey |

< M7 uO)lly + ()l + | @+ 1) [ |55

Thus, we formulate an assertion about the convergence of the solution of the vector scheme (8) to the
solution of the original problem (2)—(4).

Theorem 8. Let A* = A >0, D* =D >0, AD = DA and the conditions of approximation (9) and
stability (10) of scheme (8). Then for its solution, which approximates the solution to problem (2)—(4) such that

4

0*u
) o

(o)

u(, 1) € Lo {[0,T); WET (@) W 3(9) (2,6) € Lo {[0,T]; W 3(Q)},
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the accuracy estimate

t
/||ux v =y )2t + o /||ux ) — y(a, )2 dt’ + / y(z, )] dt’
0

1

4

<M {7t | ul, 0)lly + ollu(z, 0)[l, + | (1+0) / Ha“@c )

2
dt’
ot 5

0

5 | Ntz Ol + olue O lr + | (1+0) [ )] d
0

is correct.
Algorithm for implementing the scheme
We consider one of the possible algorithms for implementing the scheme (8). We rewrite it as
Mg+ My = p1, M2+ maay = o, (22)
where
T T2 . T )
pr=7¢1 + (D + EA) y— A% p2=1é2tady+ (’YD + 561‘1) 2
T 72 T
mi1 = D -+ 514, mig = 75‘4, mo1 = OéA, Moo = ’)/D -+ 5[314

Integrals in ¢y and ¢9, for example, are calculated by Simpson’s formula. Assuming that the operators A and
D commute and excluding ¢ from equation (22), we obtain

Cj=F. (23)

Here C =y D? 4+ 5(8+7)AD + %(35 +a)A?, F =mapr — miaps.
Equation (23) can be solved either directly by inverting the operator C' or by factoring it as

C =~C1Co =7 [D? — (z1 + 22)TAD + 32272 A%],  Cp = (D —m7A), k=12
Then equation (23) is solved using an algorithm
nCiy=F, Cy=y. (24)
After finding ¢ from (24) solution g; is calculated, for example, from the equation ('yD +3 BA) g; = s — aAg.
Conclusion

Problems for the Aller moisture transfer equation are considered. On the basis of the finite element method
difference schemes of high order of accuracy are constructed and investigated. The high order of accuracy of
the circuit is achieved through special discretization of temporal and spatial variables. The convergence of the
constructed algorithms is proved. Estimates for the accuracy of the scheme are obtained under weak assumptions
on the smoothness of solutions to differential problems. Other boundary value problems can be studied similarly,
in particular, nonlocal boundary value problems for equation (1). In addition, these results can be carried over
to loaded equations with nonlocal boundary conditions.

Remark

A separate article will be devoted to computational experiments for test problems with local and non-local
boundary conditions.
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II. Otebaes!, I X. Yren6eprenosa!, K.O. Treyos?

L Bepdax amvindaes. Kapakarnax, memaexemmir yrusepcumems, Hywic, Oz6excman;
20n-Xopeamu amoindaes. Tawskenm axnapammoms mMerHoA02UANLD
yrusepcumeminiy, Hyxicmeei 6oaimweci, Hyxic, O3bexcman
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3JIEMEHTTEP J/IICiHIH, CXeMaChIHBbIH, YKNHAKTBLJIBLIFbI TYPaJibl

MaxkaJsaga Ajiepain bLIFaJI TachbIMaJIIay OeficTalmOHAPIIBIK, TEHIAEY1 YIIH XKOFaphl J9/IIIKTErl aKbIPJIbI dJ1e-
MEHTTEp OIICiHIH afbIPBIMJIBIK CXeMaJiapbl KYPbUIBII 3epTTesai. JoIiKTiH Koraprbl peTiHe yaKbIT YKOHE
KEHICTIKTIK alHbIMAJIbLIAPBIH apHAWBl JUCKPETU3AIUAIAY apKbLIbI KOJI »KeTkisineni. Kypbuiran canabik
aJIPOPUTMJIEP/IH TYPAKTBLIBIFBI MEH YKUHAKTBLIBIFBI JIDJIeIEH T, JuddepeHnaliIblK, eCenTiH, memrimIepi-
HiH TericTiri TypaJjbl 9Jici3 Oo/KaMIapMeH CXeMaHbIH, JIJIIIK Oarasiay/iapblH ajly YIIiH Mali aJIaHbLIFaH,
OPTYPJIi HOpMaJIap/ia COMKeC alprOPJIbIK Oarasayiap aJIbIH/IbL.

Kiam cesdep: Annep TeHeyi, aKbIPJIbl 3JIEMEHTTED SIICI, albIPBIMIIBIK, CXEMAJIAPDI, TYPAKTHIIBIK, allpuop-
JIBIK, Oarasiaysiap, YKUHAKTBLIBIK, JTOJITIK.

J. Vrebaes!, I'X. Vrenteprenosa!, K.O. Tneyos?

! Kapaxaanaxcruti zocydapemeennudl yrusepcumem um. Bepdaza, Hyxyc, Ysbexucman;
2 Hyxyceruti puavan Tawrenwmckoeo yrusepcumema
UHPOPMAYUOHHBLT MeTHOA02UT UM. anb-Xopeamu, Hykyc, Ysbexucman

O CXOAMMOCTHU CXeMbI MeTOoJa KOHEYHbIX 3JIeMEHTOB IOBBIIIIEHHO

TOYHOCTHA [IJId YpaBHE€HUA TEIlJIO-BJiaroriepeHoca

B crarpe mocTpoeHs! u HCCIeI0BaHBI PA3HOCTHBIE CXEMBI METOA KOHEYHBIX 3JIEMEHTOB BBICOKOI'O IIOPHAI-
K& TOYHOCTH Il HECTAIMOHAPHOIO ypaBHEeHUs Biarornepenoca AJuiepa. [TOBBIMIEHHBIA MTOPSIIOK TOYHOCTH
JOCTUTAETCS 33 CYeT CHEIUATHHON IUCKPETH3AIllNd BPEMEHHBIX M IPOCTPAHCTBEHHBIX NepeMeHHBIX. [lo-
Ka3aHa YCTOHYMBOCTBb M CXOJUMOCTb IIOCTPOEHHBIX YHMCJICHHBIX aJTOPUTMOB, IOJIy4YeHBbl COOTBETCTBYIOIIUE
aIIpUOPHBIE OIEHKN B Pa3JIMYHBIX HOPMaX, KOTOPbIE NCIIOJIb30BaHbI B TAJbHENIIIEM /I IIOJIYyYEHUSI OIIEHOK
TOYHOCTU CXE€MBI IPHU CJIAOBIX MPE/ITOIOKEHUIX O TVIAJKOCTH peleHuit quddepeHnnaabHoil 3a1a4un.

Karoweswie caosa: ypaBaeHue Ajuiepa, MeTOJ| KOHEYHBIX 3JIEMEHTOB, PA3HOCTHBIE CXEMBI, YCTONYIMBOCTS,
AIPUOPHBIE OLIEHKHU, CXOAUMOCTDb, TOYHOCTb.
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