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To solving the fractionally loaded heat equation

In this paper we consider a boundary value problem for a fractionally loaded heat equation in the class of
continuous functions. Research methods are based on an approach to the study of boundary value problems,
based on their reduction to integral equations. The problem is reduced to a Volterra integral equation of the
second kind by inverting the differential part. We also carried out a study the limit cases for the fractional
derivative order of the term with a load in the heat equation of the boundary value problem. It is shown
that the existence and uniqueness of solutions to the integral equation depends on the order of the fractional
derivative in the loaded term.
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Introduction

The study of fractional differential equations was actively carried out as in previous decades [1-4], and now
interest in this area continues to grow [5-7]. This is due both to the development of the fractional integration
and differentiation theory, as well as applications of the apparatus of fractional integration and differentiation
in various fields of science. The physical interpretation for fractional differential equations was considered in [3]
from the point of view of the Riemann-Liouville’s derivatives, as well as in [4]. In [6] a boundary value problem
with integral conditions is considered for one class of fractional differential equations involving impulses. Some
results of the existence of a solution for higher order differential equations with integral conditions can be
found in [5]. Also an important section in the theory of differential equations is the class of loaded equations:
Ku = Lu(z)+Mu(x) = f(x) in a domain @ from R"™, where L is a differential operator, and M is a differential or
integro-differential operator, including the operation of taking the trace of the function u(x) on manifolds from
the closure Q of dimension strictly less than n. Solving many important problems, for example, on the optimal
management of the agroecosystem, is reduced to the study of such equations. In [§8] on numerous examples
A.M. Nakhushev showed the practical and theoretical importance of studies on loaded equations. In the papers
of M.T. Jenaliev and students of his scientific school, the theory of loaded equations was further developed
[9-12]. In [11], [12] loaded differential equations are interpreted as weak or strong perturbations of differential
equations.

Of interest are boundary value problems for the fractionally loaded heat equation when the loaded term is
presented in the form of a fractional derivative. The goal of papers [13—14] is to clarify the character of the
fractional load on the solvability issues of the first boundary value problem for the heat equation, the load moves
with a constant velocity. The loaded term is the trace of the fractional order derivative on the manifold z = ¢,
namely, the loaded term is represented as a Riemann-Liouville fractional derivative. The resulting Volterra
singular integral equation has a nonempty spectrum for certain values of the fractional derivative order. In the
papers [15-16] the loaded term is represented in the form of the Caputo fractional derivative with respect to
the time variable and the spatial variable, and the order of the derivative in the loaded term is less than the
order of the differential part.

In this paper, we study a boundary value problem for a fractionally loaded heat equation (the loaded term
of the equation is represented as a Riemann-Liouville fractional derivative, the load moves according to an
arbitrary law). The boundary value problem is reduced to a Volterra integral equation of the second kind with
a kernel containing a special function, namely, the degenerated hypergeometric Tricomi function. The limiting
cases of the order of the fractional derivative in the term with the equation load are also investigated, and
continuity in the order of the fractional derivative is shown. The solvability of the integral equation in the class
of continuous functions is established depending on the nature of the load for small values of time.
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1 Basic definitions and some background

Let us first recall some previously known concepts and results. The first one is the definition of the Ri-
emann—Liouville fractional derivative.

Definition 1 ([1]). Let f(¢) € L1]a,b]. Then, the Riemann-Liouville derivative of the order 8 is defined as
follows

s 1At () )
Da,tf(t)—r(n_ﬁ) dtn/ (t_T)ﬁ_anT, B,a€R, n—1<pB<n. (1)
When a =0, n =1 we have:
8o L d [t f)
Do,tf(t)— T(1-3) dt/o (t—T)ﬁdT. (2)

From formula (1) it follows that

DY f(t) = f(t), ~Dicf(t)=f"(), neN. (3)
We also give definitions and some properties of special functions that arise in the study of boundary value
problem posed in the work.

f p (—¢?) d( is the integral of probabilities;
o

erfz =

3\

oo

f ( CQ) d( is the additional integral of probabilities.
[

‘ v

erfcz =
Deﬁmtwn 2 [17; 119]) Linearly independent solutions of the equation

d

D? —2)D — =0 = —
2D% + (e~ D —alw(:) =0, D=1
are functions ®(a, ¢; z) and ¥(a,c; z), where ®(a, ¢; z) is the degenerate hypergeometric function:

ala+1)(a+2) 2*
clc+1)(c+2) 3!

z ala+1)2?
11 ce(e+1) 2!

D(a,c; z) 142
c

+ + .-

and U(a, c; z) is Tricomi degenerate hypergeometric function [18; 1072]:

r(l--c¢)

L(c—1)
IFa—c+1)

) 7P (a —c+1,2 — ¢ 2).

U(a,c;2) = ®(a,c;2) +

Tricomi degenerate hypergeometric function can be represented as an integral ([19; 365], formula 72.2 (7)):
1 * c—a—1 _
Waez) = s [T AT e [Rea >0 (1)
L' (a) Jo
For large values z, an asymptotic formula holds ([17; 127], formula 4.7 (1)):

1
W (a,62) ~ 2% F (a,l fa—c —) | (5)
z

3
|z| = 00, Jargz| < 5 6 €> 0,
where 5 Fjy (a, 1+a—c —%) is a generalized hypergeometric series defined by the formula [17; 136]

k

k=0 (b1)y; (b2)y, - (bg), K

qu (CL1, A2, ..., Ap; bl, bQ, ceey

where

is the Pohammer symbol.
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Degenerate hypergeometric functions for some values of its arguments are related to a parabolic cylinder
function (Weber function) D, (z) [17; 212]

vy a2 (1 2
D) =2 T u (11 55 -

L2 N ( v 1 z2) 2z (1—V 3 z2)
=2ze 4 L i — @ R 6
{r(lg) 2°2°2) T (-3 2 22 (6)

Formula (6) is the definition of a parabolic cylinder function D, (z).
There is also a representation of the Tricomi degenerate hypergeometric function in terms of the Whittaker
function W ,,(2) ([19; 264| formula 2.20):

U (a,b;z) = 2T ed Wi g1 (2). (7)

For the function W ,(z) z = 0 is a branch point, a z = oo is an essentially singular point [18; 1074].
Therefore, we will consider this function only for |arg z| < 7.

The natural development of fractional calculus is the theory of differential equations with fractional deri-
vatives. At the first stage of the study, we will use the method of integral equations, in which the boundary value
problem is reduced to solving the corresponding integral equation with further transformation of the kernel of
the obtained equation. Such methods make it possible to formulate boundary value problems more compactly
than differential equations, taking into account all the conditions of the problem.

The considered problem is reduced to an integral equation by inverting the differential part.

It’s known [20; 57] that in the domain Q = {(z,t) | >0, ¢ > 0} the solution to the boundary value
problem of heat conduction

w = a%ugy + F (z,t),

u‘t:O :f(x)a u‘xzo :g(x)a
is described by the formula

u(x,t):/oooG(x,@t) f(f)dﬁ—i—/o H(z,t—171) g(r)dr+

+/Ot/OOOG(a:,§,t—T)F({,T)d{dr, (8)

1 (x - &) (z+8)°
ot () 22))

e 1) — 1 22
(2, )72\/ﬂ'at3/2 xp dat)’

The Green function G (z,£,t — 7) satisfies the relation

/Oooc(x,g,t—ﬂdg:erf(w%). )

2 Statement of the fractionally loaded boundary value problem of heat conduction

where

In the domain @ = {(x,t) |z >0, ¢ > 0} we consider the problem
Up — Ugg + A {pDou (x,t)} |I:’Y(t) = f(z,t), (10)
U ‘t:o = 05 u |:6=0 = Oa (11)
where ) is a complex parameter, TDg s u(z, t) is the Riemann- Liouville derivative (2) of an order 5,0 < 8 < 1,

~(t) is a continuous increasing function, v(0) = 0.
The problem is studied in the class of continuous functions.
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3 Reducing the boundary value problem to an integral equation

Lemma 1. The boundary value problem (10)—(11) is equivalently reduced to a Volterra integral equation of
the second kind with a kernel that contains a special function.
Proof. We invert the differential part of problem (10)—(11) by formula (8):

b 1 u(€,9) ,
u(x,t :f)\// Gz, &t —T / dédr+
(=) o Jo ( ){F( — B)dr (7'—0) _
§=(7)
t oo
+ [ [T Gwet-niendar
o Jo
Taking into account relation (9) and introducing the notation
t oS]
fl (.’E,t):/ / G(.’E,§7t—7')f(§77')d7' (12)
o Jo

we get the following representation of the solution to the problem (10)—(11):
u(z,t) = — erf< ),u7'd7'—|—f z,t), 13
(z,1) ; Wi (7) 1 (z,1) (13)

where

(14)

- 1 u (€, 0)
p(t) =, DOtuft ‘{ y(t) _{F( 5)d7/ (7_9)6 9} e=v(1)

From (13) we take the derivative of the order 8 with respect to the variables ¢ on both sides and put
x = (t). On the left side, we get the function p (t). We also introduce the notation according to formula (14)

_ B 1 d )
f2 () = Do, 1 (2,0 oy = (1=p)dt Jo (t—1)° dT a=7(t) "
We first calculate the derivative:
d [t 1 T T o<o<r|
s = | =) ([ ert (=g niran) am= | 52557 | -
d t t 1 d t
=5 /. #®) (A et (m) dr) do = %A 1 (0) I (x,1,6,8)ds, (16)
where . .
T

I(x,t,G,B) = /0 m@'ff (2 m) dT. (17)

We calculate I (z,t,0, 3).
I(z,t,0,5) :/Gtu_iyjj%/owﬁe—*dm:
:;E/waj)/ot(t_lﬂ Zdez—i—/—shOO /9+ —r e drds —
= [ 00 g [ e

<(t— 0 — 4“’;) —(t— 9)1‘5) dz = m/oﬁ e dzt
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2(t— )"
+( )

422
SVE=0

=07 2

where

oo 9\ 1-8
=(t—0"" ’ Pl R (. dz = ||¢ =22 =
= 2yt — 0

B (t _ 0)1*ﬁ +o0 e o3 22 1-8
2 /Le ¢ (54(t—0)) dz.

10t—0)
To calculate the last integral, we use the formula 2.3.4 (6) from [21; 261]. Then we obtain

(t=6"" .

Il (xataoaﬂ): 2 ( B)

where ¥(a, ¢; z) is Tricomi degenerate hypergeometric function [18; 1072]
Substituting (19) into (18), we get an expression for (17)

(-0 ar(1-pB) (t—0)2" a2 3 a2
I(z,t,0,8) = =5 — exp(—M)qf(Q—ﬂ,, (

2\/T t—

By virtue of the asymptotic formula (5) (as ¢ — 7) and

I E - 0
fim (t=m)* " e |~y ) =

after differentiation operation equality (16) can be rewritten as

| 1-8 2/1
2

o) o )

Let us introduce the notation z = 4(257_2 =>t—T7= ﬁ.
T) 4z
Then

! —Tli'B x — _T%*ﬂ
J(t;x;ﬁ):/oﬂ(t)d[(t ) ra-p)t—mr) y

N

t—7)>

Nl

To calculate the derivative in the second term of equality (20), we use formula (

n=1:
jt((t_ﬂ% Bexp(—ll(th)>\I’(2 ,@,2, (fT)»

4
x1=28 ¢ 1 3
_ B-1 _
- 21-2p dz <Z 2 eXp( Z) < 721 ))
1-1*25 3
—Z Pz - \1/ =
TR exp (—2) Ty T

1 2

= T T (‘45—70 q’(l i)
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Then expression (20) can be rewritten as:

J (t;; 8) /Otu(f) l(t _17)/3 - Q;F(EI_T@LQ exp <4(iﬂ) v <1ﬂ;‘;’;4(:’j7>>} dr. (21

Now from (13) after taking the fractional derivative of order 8 and substituting = (t) taking into account
the notation (14) and (21) we obtain the integral equation:

)+ r(lA— 8) /ot (tﬂ_(T P 2\F/ Bﬂ o <_4?t2—t)7)> :

v (1-55 ) wyar = 1.

So, the boundary value problem (10)—(11) has been reduced to the Volterra integral equation of the second
kind:

£+ A /0 Ky (b7 p(r)dr = fo (1), (22)

with the right-hand side f2(t), defined by formula (15), and the kernel

_ 1 _ v () o [0 53 7
Kﬁ(t’T)*r(l_ﬁ)(t—r)ﬁ o7 (t— 1)+ 3 p( 4(t—7)>\y(1 5’2’4<t—7>)’ (23)

where VU (a,b,y) is the Tricomi degenerate hypergeometric function that can be represented as an integral (4).

4 Continuity in the order of the derivative in the loaded term of the problem

Lemma 2. For boundary value problem (10)—(11) there is continuity in the order 5 of the derivative in the
loaded term of equation (10).

Proof. We consider the limiting cases for the fractional derivative order of the term with the load in the
equation (10).

I. B=0. Then from (2) and (3) we have

Dg,tu (,’E, t) ’z:—y(t) =u (337 t) |gg:»y(t) =u (’)’ (t) ,t) .

From (10)—(11) we get a boundary value problem when 8 = 0:

ut*“ﬂchF)‘/‘(t) :f(:c,t),
u(z,0)=0; u(0,¢t)=0,

where p (t) = u (v (t),t).
We write down its solution inverting the differential part by formula (8):

u(z,t) = — /Oterf <2F) () dr + fi (=), (24)

where P
fl(m):/O/O G (.6t —7) f (€,7) dédr.

When 2z = v (t) taking into account the notation u (7 (t),t) = p (¢) from (24) we obtain the Volterra integral
equation of the second kind:

w2 [ et (53 i =10 (25)

where fs (t) = f1 (7 (t),1).
Now we find lim from (23).

B—0+0
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The function under the limit sign is definite and continuous for g8 = 0, therefore, we can make the passage
to the limit taking into account formula (4) and formula 2.3.4 (5) [21; 260]

v (1) 72 (1) 3.7
a0 (072 1‘mexp<‘w)‘l’(l i) -

)
- Mvétt)f p( >>/

" p( Z;t)ﬂ)dg‘
)

So, ﬁh{)nw Kg(t,7)=erf ( ) ) Then equation (22) coincides with equation (25) for 5 = 0.
—
II. p=1. Then from (2) and (3) we have

du (z,t)
Dy (2,1) [a=y) = =7 le=r(r) = 1 (@:8) [a=yq0) -
From (10)—(11) we get a boundary value problem when § =1

U — Ugy + )‘N(t) = f(x,t),
u(x,0)=0; u(0,t) =0.
where p (t) =ug (2,1) [pmrye) -

We write down its solution inverting the differential part by formula (8)

- /Oterf<2\/7) (1) dr + 1 (2,1),

where the function fi (x,t) is defined by formula (12).
We calculate the derivative with respect to ¢ of (26):

¢ 2 T
ug (2,t) = /\{N(t) +/0 %GXP (4(t—7)> (W) () dT} + fie (@, ).

Substituting # =~ (t) and taking into account the notation w; (#,t) [,—) = s (t) we obtain the Volterra
integral equation of the second kind:

pit) — 2 0

2(t
1+ A 0 Qﬁ(t—T)S/Z exp <_4’Zt_)7_))/$(7—)d7—:f2 (t), (27)
where f.Q (t) = H%flt (v (t),1).

Taking into account formula (4) and the well-known relation lim0 INa) =
a—r
B — 1—0 from (23) we get:

oo when taking the limit at

(1) 7 ()
ﬁgrlnoKB (t,7) = 7)3 exp <4> X

2
Xﬁgrlnol“ 1-p / & +§ﬂ 2exp( Mt))g)dg,

To calculate the last integral, we use the formula (12) from [21; 262]
Then the limit relation (28) can be rewritten as

(28)

1 2® 0\ . 22T -pB) 7 (1)
ol (K (6,7) = = ooy o <_8(t—7-) ) S o Pw <>

(1 2(t—1)
SR ) LI W 1 BN A Gl )
ﬁ“‘ﬂep( 8“—T>>Dl< 2<t—7>> 2ﬁ<t_7>3/2€p< 4<t—7>>'

Mathematics series. Ne 1(101)/2021 71



M.T. Kosmakova, S.A. Iskakov, L.Zh. Kasymova

Here, for the parabolic cylinder function Dog_1(2), we used formula 9.251 from [18; 1080] when 8 = 1:
2 d _z22 _z2
Dy (z) = —e1 %(e 2):2:6 T,
So for equation (22)

| S ) (- 220
é;rrﬁKﬁ(taT)— 2\/7?@77)3/2 p( 4(t—7))‘

The obtained result coincides with the kernel of integral equation (27).

Lemma 2 is completely proved.

5 Connection of the singularities of the integral equation kernel with the fractional derivative order in the
problem loaded term and with the load behavior. Main result

To establish the main result of the paper we investigate kernel (23) of integral equation (22), which has
singularities for 7 = ¢ and ¢ = 0.

Direct investigation of kernel (23) is difficult, since the kernel contains the degenerate hypergeometric Tricomi
function. Therefore we find

¢
tl}(r)r_}_o/o Kg(t,7)dr.

Theorem. Integral equation (22) with kernel (23) for 0 < 8 < 1 and with 7(¢) ~ ¢“ in the neighborhood of
t = 0 is uniquely solvable in the class of continuous functions for any continuous right-hand side f2(t) defined
by formula (15), if 1 <w <1-28or0<w<i, 0<B<I

Proof. We have . .
AAKﬂuﬂderw{iﬂ)A @dif—

and when 0 < 8 < 1:
todr 1 1
= =8, 30
A t—7) 1-8 (30)

To calculate the integral in the 2nd term of expression (29), we use the representation of the Tricomi function
in terms of the Whittaker function by formula (7):

Then the integral in the 2nd term of the expression (29) takes the form

f(amz/otmexp(_m> @(1_[3;2;4?:%%7:
)

23/2 t 1 2 n 2 "
:73/2/ (t—T)i 5exp<_ 2 ) )Wﬁl.l (’Y) dr =
(v ()" Jo 8(t—r7) w1 \4(t—1)
22571 +oo e . 23/2 t%7 ,YQ t 72 t
- 26-1 /2 Fies Ws_1.1(2)dz = ———7 exp (— ( )> Ws 5.1 < 4( )> . (31)
(v (1)) =8 (v (1)) 8t t
In the calculation, we have introduced the replacement z = 74’59) and used formula 2.19.5 (13) from [19;

217.
Let (t) ~ t“ when t — 0+ 0. Then (31) can be rewritten as (in the neighborhood of the point ¢ = 0):

1 1
w 2w—1 2w—1
exp <—8t ) LLB*%;% <4t ) .
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For Whittaker function, we use formula 7.2.2 (5) from [19; 366]:

12w—1 _o—2,1 1ot ,312w1
WB_%J% <4t ) =2"21¢2 eXp <—8t v 2_ﬁ7§’it .

I(t:B) =t exp (—it2“_1> <2 ﬁ,§ 1152“’— )

For Tricomi function ¥ (a, b, z), we use representation (4) and then we apply formula (12) from [21; 262|:

$—B-w o0 3
I(t;8)= ﬁ exp (—it2“1> /0 IS +§)’B_5 exp <—it2w1§> d¢ =

€
|
oo

Then

5 1 1 .
— 938 1262w o (_th—1> Don (t”_'z) . .
PA78 -3\ 2 (32)
So, substituting (30) and (32) into (29), we get 0< 3 <1 when t— 0:
P8 28 d 1 1,
Ky (t,7) -~ A-26-w o (_t2w1) Don (t“z) . 23
Kot = gy = 7 e () P (3 -

Cases are possible (when 0 < 8 < 1):
1)2w—1>0.1f0< B <1, then -1 -28—w < 3.
We first calculate Dog_3 (0) using formula 8.3 (1) from [22; 125] and formula 194 (3) from [18; 299].
26-5 [ 2 26-3 3 1\ 2°-37
Dag—5(0) = 7/ 2P (1+6)" P dt = —5——B ( _g;) =2 VT
’ L (3-8)Jo rZ-p) \2 72) TE-5)

2 2

Then from (33) when w > £ and 1 =28 —w >0 (0 < < 1) we have:

: if 1-28—w>0, w>3i 0<B8<1,;
}in%/ KBtTdT{ ey i 1-28-—w=0, w>3, 0<B< (34)
- 00; if 1-20-w<0, w>1i 0<B<1.

We consider the case 8 = 1. It was shown above that

S [ N (i OB
K (t,7) = Qﬁ(t*T)B/Q XP< 4(1&—7)).

If v(t) ~t¥ at t — 0+ 0 then

/ Ky (t, 1) /0 2\f(ttw—7-)3/2 exp (—4(:257_>> dr. (35)

After introducing the replacement

_ t2w _ _ ﬂ'
z= \/ 4(t—7) T)’ t—7= 4220 dr 223 dZ

2w—1
7'=0:>z—%t 2, T=t=2z— +00

integral (35) takes the form:

o [ee 23,3 42 9 1 201
/ Ky (t,7)dr = 2\f e e ﬁexp(—z )dz:—erfc <2t 2 >
Then . )
. e & if w>35;
tLI(I)I}rO/O K (t7)dr = { 0; if 0<w<i. (36)
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By the condition stated, the function ~(¢) increases in the domain () and v (0) = 0. Therefore, the case
w < 0 is not considered.

Consider the case 0 < w < % and 0 < 8 < 1. Then in (33) argument of the parabolic cylinder function
— 400 if t = 0+ 0. Since there is an asymptotic expansion of the function (see formula 9.246 (1) [18; 1079])

we obtain

t1=p s 1
i = 1 U — 1 27 w(l_ﬂ)_?’ﬁ _ —
til%ﬂo/o Kp(t;m)dr = lim T 2-8) w g, B P ( 4té—w> 0 (87)

1
It remains to investigate the case w = 3 for different values .

Let be 0 < 8 < 1. For = = 7y (t) = v/t equation (22) has the kernel:

I S I
B = a7 2vma_n P ()

and the right side according to formula (15) when x = v/t. Kernel (38) has singularities at 7 = ¢ and ¢ = 0. We
find

=5 t 3 t
Kp (t, — |V (1-0;=;——— | dT.
/ s (t:7) T(2-5) 2\[ t_76+§ eXp( 4(t—7’)) ( 6’2’4(15—7)) i
Repeating the above calculations, we get a formula similar to (33), when 0 < 8 < 1
t1=p 23~ 1 1
Kg(t,7)d - 2720 ex <—>D _ <> 39
[ et = g -2 P7s) P\ )
We calculate Dag_3 (%) using formula 9.241 (1) from [18; 1078].
Dog_3 <1> - ; 9%=% =526~ 3 /+°° 21 672m2+%id1‘.
P\Vva) T Ve .

To calculate the integral

+oo .
J(8) :/ e g

we use the formula 3.462 (3) from [18; 352]
2526

1 e 28—1  —2z%—i % _i 1
TB) = [ 07 e Ve = S VR Dags { o5 ) -

Then ) )
pass (75) = (5=0) P (53

Note that the argument of the parabolic cylinder function decreases exponentially with the denominator >

remaining positive. It was previously calculated that

25-5 /7

D2B73(0) = T (2 _ ,B) .

So we obtain that Dsg_3 (%) is a finite constant depending on .

1
Then from (39) we have (when 0 < 5 <1 and w = 5)

¢ 0; if 0<

lim Ky (t,7)dr = { const #0; if B ; (40)
e 1
4
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Now consider the case for v (t) = v/t and 8 = 1:

¢ t [t d t
/ Ky (t,7)dr = — Vi / T 5 exp(—) dr=| z=Vt—1,7=t—-22, || =
0 2V Jo (t—7)2 A(t-17) dr = —2zdz

N 2 [t . 1
= —ﬁ . ?e 422 dZ = _ﬁ % e dg = —eTfC 5 .
Then
. 1
%1_1}(1) ; Ky (t,7)dr = —erfc <2> #0, (41)

if v(t) = v/t and 8 = 1.
Summarizing results (34)—(41), we get the main result. The theorem is completely proved.

Conclusions

Under the conditions of the theorem, kernel (23) of the integral equation has a weak singularity. Therefore,
the method of successive approximations can be used to find a unique solution to the equation (22) in the class
of continuous functions. And the corresponding boundary value problems are well-posed in natural classes of
functions, i.e. loaded term is a weak perturbation.

If w> % and w > 1—28 when 0 < § <1 for v(t) ~ t“ at t — 0+ 0 integral equation (22) is not solvable
by the method of successive approximations. It can be shown that the corresponding homogeneous equation
for some values of the parameter A\ will have nonzero solutions. If the uniqueness of the solution to the first
boundary value problem is violated, then in this case the load can be interpreted as a strong perturbation.
So, the existence and uniqueness of solutions to the integral equation depends on the order of the fractional
derivative in the loaded term.
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M.T. Kocmaxkosa, C.A. Nckakos, JI.2K. Kacbimora
2Koifb1aThiH OOJIBICTAFBI >KbLITYOTKIBTIITIKTIH
eKieJmeM/Ii MmeKapaJablK eceOiHiH ImelnryiHe
Makamaga ysimiccis dyHKIUAIAD KIACBIHAAFBL KBUIYOTKIMIITIKTIH GeJeKTi->)KyKTeMesi TeHeyi yiin
METTIK eCell KAapPaCTBIPBUIFAH. 3€PTTEY OICTEpl IMIETTIK eCenTep/l MHTErPAJIBIK TEeHIEYIepre KeaTipy-
re Herizjie/ireH 3epTrey OOJIbII TadbLIaIbl. KoWblLIran ImeTTiK ecern JuddepeHnua bk OoJiKTi aiHaJI-
JBIPY apKbLIbI eKiHmi TekTi BosbTeppa MHTErpasIblK, TeHeyine KesTipiiareH. AJbIHFaH TEHJEYIiH SIpo-
coiHa apHaiibl Gyuknusa 6ap. CoHpali-aK, KbUIYOTKI3TIMTIK TEHIEYIHIH MeTTiK ecebiHIH XKYKTEIreH KO-
CBUIFBIIIBIHBIH DeuIex TYBIHIBICHI peTlHlH IIEKTIK )Kaf‘,ﬂa.ﬁﬂapbl 3epTTeﬂ,ﬂi. MHTeraﬂﬂbIK Te}meyﬂi}x Ie-
H_IylHlH 6ap 60.Hy])I MEH 2KaJIFbI3IbIFbI 6aCTaHKBI H_IeTTiK eCeHTiH 2KYKTeJI'eH KOCBL/IFbIIIbIH/Iatr'bl 66JIH_IGK

TYBIHBIHBIH, peTiHe OailIaHbICThI €KEH T KOPCEeTIITeH.
Kiam ce3dep: XKyKTeJreH TeHjey, OOJIIIeK TYbIHIbI, KbIIYOTKI3rimTik Teraeyi, Boiapreppa nHTErpasiIbIK,
TeHieyi, apHailbl DOYHKIIHSI.
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M.T. Kocmaxkosa, C.A. Uckakos, JI.ZK. Kacsimora

K pemenuio nByMepHOii TpPaHUYHOI 3a/la9u
TeIJIOIIPOBOAHOCTA B BBIPOXKJAIOIIeiicsa 00JIacTn

B crarne paccmorpena kpaeBasi 3a7ada 11t APOOHO-HATPY2KEHHOTO YPABHEHHST TEIIOMPOBOIHOCTH B KJIAC-
ce HenpepbIBHbIX GyHKImi. MeToibl ucciieoBanus 6a3upyroTcsl Ha IMOAXOE K HCCJIEJOBAHUIO KPAEBBIX
3a/av, OCHOBAHHOM Ha WX CBEJIEHWU K MHTErpajbHbIM ypaBHeHusiM. [locTaBiieHHast KpaeBasl 3aja4a CBeJe-
Ha K WHTErPAJIHHOMY ypaBHEHHIO BosbTeppa BTOpOro poma obpaineHuneM nuddepeHnaibHoi 9actu. S apo
[TOJIy Y€HHOI'0 yPABHEHUsI COJIEPXKUT CllennaibHy0 MyHKIMO. TakKe IPOBEIEHO HCCIIe0BAHNE [IPEEeIbHBIX
CJIydaeB HOPsIIKa IPOOHOMN IIPON3BO/IHOM CIAaraeMoro ¢ Harpy3Koil B ypaBHEHHIH TEIJIOIIPOBOIHOCTH KPAaeBO
3asaun. [lokazaHo, 9TO CyIIEeCTBOBAHKE U €IUHCTBEHHOCTH PEIIEHUs MHTEIPAJIbLHOTO YPABHEHHS 3aBUCST OT
opsiJika JAPOOHOI IPOU3BO/IHOIM B HAIPYKEHHOM CJIAra€MOM HCXOJHOW KPAaeBOil 3a/1avu.

Karoweswie caosa: HArpYKEHHOE ypaBHEHUe, pOo0OHasi IPON3BO/IHAS, YPABHEHNE TEIJIONPOBOJHOCTH, NHTE-
rpajbHOE ypaBHeHme BosibTeppa, crenuanbHast pyHKIIHS.
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