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On the solvability of the tracking problem in the optimization
of the thermal process by moving point controls

In the present article we investigate problems of tracking in the moving point control of thermal processes
described by Fredholm integro-differential equations in partial derivatives with the Fredholm integral
operator, in the case when the functions of point sources are nonlinear with respect to the control function.
It is found that optimal controls are defined as solutions to a system of linear integral equations, and
an algorithm for constructing its solution is developed. Sufficient conditions for the unique solvability of
the tracking problem are found and an algorithm for constructing a complete solution to the nonlinear
optimization problem was indicated.
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Introduction

Problems of tracking are an interesting branch of optimal control theory. Control problems, where the process
should be controlled so that the deviation of the state of the controlled process differs little from the specified
trajectory during the entire control time, are called tracking problems. Such problems are encountered in various
branches of science and are of great practical importance. Few works are devoted to the research of tracking
problems for optimal control of processes described by integro-differential equations in partial derivatives, in
particular with the Fredholm integral operator [1: 55-60; 2|. In the article solvability of the tracking problem is
investigated for moving point controls of thermal processes described by integro-differential equations in partial
derivatives with the Fredholm integral operator in the case when the functions of point sources are nonlinear in
control.

In this article we will use the concept of a generalized solution of a boundary value problem for controlled
process, as such approach allows us to adequately describe the actually occurring process. The quality criteria
of control is the minimization of the generalized quadratic functional. It is established that optimal controls are
defined since solutions of a system of nonlinear integral equations containing unknown functions, both under
the integral and outside the integral. An algorithm for constructing a solution to this system was developed
and sufficient conditions for its unique solvability were found. A complete solution of the tracking problem is
constructed.

Statement of the tracking problem and optimality conditions

We consider a case when mathematical formalization of the tracking problem for optimal control of the
thermal process is reduced to the problem of minimizing the integral generalized quadratic functional

T ,1 T m
TurO)esin(®] = [ [ Wito) — geo)Pdode+5 [ S slaolir, 5>0 1)
0 Jo (V—
on the set of solutions of the boundary value problem

T m
Vi :Vm—f—)\/o K(t,T)V(T,x)dT—i-ng(x)é(x—xk(t))fk[uk(t)], 0<x<l 0<t<T, (2)
k=1
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V(0,z) =p(z), =€(0,1), 3)

Vo(t,0)=0, Vi(t,1)+aV(t1) =0, 0<t<T, a>0, (4)

where £(t,2) € H(Qr) function describing a given trajectory, @7 = (0,1) - (0,7), gx(z) € H(0,1), (x) €

H,(0,1), K(t,7) € H(D) are given functions, D = {0 < ¢,7 < T'}; §(x) is Dirac Delta function, xj(t) are given

functions that describe the laws of motion of the points of application of external forces and take values from

[0, 1]; functions fx[uk(t)] € H(0,T), prluk(t)] € H(0,T) for any controls ug(¢) € H(0,T) and have the property
of monotony, i.e.

Srw [ur(®)] # 0, pru, [ue(t)] # 0, Vt € [0,T]; ()

A is a parameter, T is fixed point in time; H(Y") is Hilbert space of quadratically summable functions defined
on the set Y; H1(Y) is Sobolev space of the first order.

Note that according to condition (5) one-to-one correspondences are established between the elements
{ur(t),...;um(t)} € H™(0,T) = H(0,T) x ... x H(0,T) of the control space and the elements V (¢, x) of the state
controlling process {V (¢, z)} space.

Given this commitment, we calculate the increments of the functional (1). By direct calculation we have the
equality

ATup(t), ooy tum ()] = Tug (t) + Aug (t), ooy um (t) + Aty (8)] — Tur (8), .o, um (t)] =
=— ! x),w(t,x 2(t, x)dadt, (6)
—— [ Ane Vo)., w o). dt+/ /Av

where

AT, V(¢ ), w(t, z),ur (t), ..., um (t)] =
= H[t’ V(t’ x),w(t, x)v U1 (t) + Auy (t)a B3] um(t) + Aum(t)] - H[tv V(ta x)’w(ta CC), ul(t)v sy um(t)]7 (7)

H[t7 V(t,x),w(t, x) ul(t Z{gk xk t xk( )]fk[uk(t)] - Bpi[uk(t)]L

function w(t, z) is a generalized solution to a boundary value problem

T
Wi + Wag = —)\/ K(r,t)w(r,z)dr + 2[V(t,z) —&(t,x)], O0<az<1l, 0<t<T,
0

w(Tx)=0, 0<z<l,
we(t,0) =0, wy(t,1)+aw(t,1)=0, 0<t<T, (8)

V(t, x) is a generalized solution to the main boundary value problem (2-5). The problem (8) is called a conjugate
boundary value problem.

From (6) and (7) it follows that Al uy (%), ..., um(t)] > 0 on the controls satisfying the condition AII[t, V (¢, x),
w(t, x), u1(t), ..., um(t)] < 0. These relations are at the basis of maximum principle for the considered problem
of optimal control, i.e., on controls, where the function II() reaches its maximum, and I[uy(t), ..., um (t)] reaches
its minimum.

We investigate the function II[t, V (¢, ), w(t, x), u1 (), ..., um(t)] for the maximum. For each fixed ¢ € [0, T
and z € (0,1) it turns into a function of m variables {uy, ..., u;,} € R™ - m dimensional Euclidean space.

Consider the case when the set of admissible values of variables ug, ..., u,, are open sets. Then, by applying
the classical method of research for the extremum, we obtain the following relations

o [ wn (8)s oo um (0] = grlwn (O))lt, 2x (8)] frui [ur ()] = 28k [wn (O)]pru [ur (8)] = 0,

k=1,2,...,m, a necessary condition of the extremum of the first order [3: 379-380].
From this we obtain the necessary first-order optimality condition

Pre[1r ()] Preusy, [ (1)]
Frug [ur(t)]

that is valid for almost all ¢ € [0, T].

23 = gr[zr(O)]w(t, 2 ()], k=1,2,...,m, (9)
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The Hess matrix for the function II(-, u1, ..., 4, ) has the form

DI, ws e um)] = diag{gr[zx(D)]w[t, 2 (0] Frugus [un (0] — 26 (Pr[ur (8) ] prus [t ()] }-

Then the necessary second-order optimality condition for the maximum, according to Sylvester’s criterion,
has the form of the inequality [3: 379-380]

U1 . Dol ()i [ (£)] N .
(1) kl;[lfkuk[ k(t)]< Frue [ (t)] )Uk >0, j=1,2,.., (10)

which was obtained taking into account of the condition (9) and it is for almost all ¢ € [0, T7.
Relations (9) and (12), which are realized almost at all ¢ € [0, T] are called optimality conditions.

Since the remainder fOT fol AV?2(t,z)dzdt in relation (6) takes on a sufficiently small value, the condition

ATI[-,u] < 0 is both necessary and sufficient for the optimality controls uy, ..., ty,.

To determine the optimal controls u§(t), ...,u% (t) it is necessary to use the first order optimality condition

coey Upy

of equality (9). For this purpose we use generalized solutions of both the main and adjoint boundary value
problems.

Generalized solutions of the main and conjugated boundary value problems of a controlled process

The generalized solution to the boundary value problem (2)—(5) has the form [4]

o0

V(t,2) =Y Va(t)zn(z)

n=1

- g ()\ /OT Ry (t, 5, N)an(s)ds + an(t)> Zn(2), (11)

where R, (t,s,A) is the resolvent [5: 98-101] of the kernel K, (t,s) = fot e ="K (7, s)dr,

m

an(t) = e o, + / e YN gl (7)o (7)) fulun (7)) dr.

k=1
The solution of the conjugate boundary value problem has the form

oo

T
witr) =3 (A / Byt N ()7 + qn<t>)zn<x>, (12)

n=1

where B,,(7,t,A) is the resolvent [5; 98-101] of the kernel G, (7,t) = ftT e*Ai(S*t)K(T, s)ds,

T
i(®) =2 [ O - gas)ds, (13)
t
where V,,(t) and &, (¢t) are the Fourier coeflicients of the functions V' (¢, x) and £(¢, x), respectively.
System of nonlinear integral equations of optimal controls

The desired controls {uf(t),...,u2 (t)} we find are according to the optimality conditions (9) and (10).
Note that the optimality condition (10) restrict the functions class {fi[ux(t)], prur(t)]}. We assume that the
functions {fy[ux(t)], px[ur(t)]} satisfy the condition (10). Then the controls {u§(t),...,u2 (¢)} defined by the
condition (11) will be the desired optimal controls. In the formula (9) we replace the function w(t, z) according

to the formulas (12), (13) and obtain a system of equalities

iU (t) Prw, [ur(t)] .- !
26 Frowg [ (1)) = glon(0)] nZ::l (A/o Buls - Man(s)ds + qn(t)) anlon(] )

k=1,2,....m.
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Now we transform this system of integral equations (14) to the form

Pie [ ()] Preusy [ (1))

B
fkuk[uk(t)]
= gl (t Zznfck n(t,A) = ge[ze(t Zzn:vk / Wi (t, n, A Z n)]dn, (15)
n=1 j=1

k=1,2,...,m, where

T
Wo(t,n,A) = / en £, N Yo (4,7, Ny,
0

Ay By(s,t, Ne “N=9)ds, 0<y<t,
€n(t77—a >\) =
=) 4\ [V B (s,t, e W) ds, t <y < T

A=) 4 /\fn Ry, 7, Ne ™ (7=0dr, 0<n<y,

Yo (y,m,A) =
AT Ru(y, 7, Ne M 00dr, y <n<T.

Next, we investigate the unique solvability of the nonlinear integral equations system (15). This system
nonlinearly contains unknown functions wuq (t), ..., 4., () under the integral and outside the integral.
Suppose

Then, according to the condition (10) there is a function [-] such that
ug(t) = Yilt,on(t), 8], k=1,2,...,m. (17)

Taking into account (16) and (17), we rewrite the system (15) in the form

t) = Z O[5 (1)] <hn(t, A)

T
- [ Wt Zemxj L6 (sl B)dn) . k=T (18)

where
le[a:k(t)] = gk[a:k(t)]zn[xk(t)], k=1,2,....m
Now, we compose the vector-functions

o(t) = {o1(t), . om(®)}, Onlt] = {B1nfz1 ()], s Omnwm (1)},
Plt, o(t), F {ihalt, o1 (), B, s Ymlt, om (1), B},
F(lt,o(t), B]) = {f1(Walt, o1(t), Bl), - fon (Ymlt, o (t), B]) }

and rewrite the system of equalities (18) in the vector form
o T .
=Y ) (hnw) - [ Wattn 0, <n>f(w[n,a(n>,m)dn), (19)
n=1 0

where o (t), 0,(t), f (¢[n,a(n), B]) are the column vectors, symbol * is a transposition sign.
Further, the following lemmas are proved by direct calculations.
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Lemma 1. Vector function
h(t, A) = {8, 0), o AU (N} =D 0n()hn(t, N) (20)
n=1

is an element of space H™(0,T), i.e., h*)(¢t,\) € H(0,T) for each k = 1,2, ...,m.
Lemma 2. Vector function
Wlo )] = {Wile(t)], ..., Wm[o(t)]}, (21)

where

Wilo(8)] = Z9nk(t)/0 W (t,m, M) () f (1, (), B]) dn

m

00 T
= ng[xk(t)}zn[%(t)]/o W (t,m,0) D gl (D) za 2 (0] £ (510, 05 (), B]) dny (22)

n=1 Jj=1

is an element of space H™(0,T), i.e., Wi[o(t)] € H(0,T), k=1,2,...,m.
According to Lemmas 1 and 2, equation (19) is considered in space H™(0,T'). Taking into account formulas
(20) and (21) system of integral equations (19) is rewritten in operator form as

o =Wo] + h. (23)

Lemma 3. Let the functions fi[ug(t)] and [t, ok (t), 8] satisty the Lipschitz condition with respect to the
functional variable, i.e.

I filur (£)] = Frlin O]l g0 < fillun() —dn®llgor, fi >0, k=1,2,..,m, (24)
[Wklt, on(t), B] — Yklt, % (t), Bl o,y < VR(B)ok(t) — k)l YR(B) >0, k=1,2,...m.

Then, under the condition

A2koT
=T Gy + ) (Van - §|m)2)ﬁfo‘”ow) <t

fO = max{f{)v ey fT(T)I}’ ¢O = maiﬁ{wg, ) ¢9n}7

where the operator W(o]: H™(0,T) — H™(0,T) is contracting.

Theorem 1. Let conditions (22), (23), and (24) be satisfied. Then the operator equation (19) in space
H™(0,T) has a unique solution.

Proof. Since the Hilbert space H™(0,T) is complete [6: 44-45], the operator W] transforms the space
H™(0,T) into itself and becomes contracting, then according to the principle of contracting operators, the
operator W] has a unique fixed point ¢ (¢).

This solution is defined as the limit of a sequence o™ (t), i.e., is determined by the successive approximation
method

c™t) =Wie V] +nt,\), n=1,2,3,..,

where the initial guess o(9) (¢) is chosen arbitrarily, in particular o(%) (t) = h(t, \). Then, as is known, the estimate

2fo%°(8)"

1= 20403 W o O zrm 0,1

l6(t) = ™ Ol rrmor) <

is valid.
Thus, substituting the obtained solution &(t) = {71(t),..., 00 (t)} into (16), we find the desired optimal
controls

ud(t) = Yplt, o (1), 8], k=1,2,...,m.

The solution of boundary value problem (2)—(5) corresponding to these controls, according to (11) is determi-
ned by the formula

Pty = 3 ()\ /0 " Rt 5 0)a0 (8)ds + ag(t>>zn(x),

n=1
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where
m

ad(t) = e vty + / e Y ST gl (7)) 2 (7)) i lud (7))

k=1

Using the found ul(t), k=1,..,m and VO(t,z) we calculate the minimum value of the functional (1)

T 1 T m
TR(E), . (8)] = / / VO(t, ) — E(t, o) 2dodt + 5 [ S pRul(e)dt.

0 k=1

Thus the triple found
{(u?(t),...,u?n(t)), VOt x), Jui(t),...,ud ()]}

is a complete solution to the tracking problem with nonlinear optimal control of the heat propagation process
under the action of moving point sources.

Conclusion

In conclusion, we note some features of the investigated tracking problem for optimal point control of thermal
processes described by integro-differential equations in partial derivatives.

The presence of the integral operator has led to the need in study of the Neumann series that appear when
determining the Fourier coeflicients of the boundary value problem. It was found that the convergence radius of
the Neumann series with respect to the parameter A expands with increasing number of the Fourier coefficient.
The optimization problem can be solved only with a radius of convergence corresponding to the first Fourier
coefficient.

A method for solving a system of nonlinear integral equations of a non-standard form has been developed.
Such the system of equations appears in the case when the functions of external influences are nonlinear with
respect to the control.

Using the property of the Dirac ¢ function, an algorithm has been developed for constructing a complete
solution to the tracking problem using the example of controlling thermal processes, which can be used in solving
and qualitative research of the problems of programmed control of various technological processes, described by
functional equations of a more complex nature.
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A. Kepimbekos!, A.T. Epmek6aesa?, E. Ceitnakmar Kbi3br!

1B.H. Eavyun amwmdaen, Kvpews-Pecet Caasan yrusepcumemi, Biwker, Kovipewscman;
2 0w memaexemmix yrnueepcumemi, Koipeviacman

2KbpL1y mpoliecTepiH KO3FaJMaJibl HYKTeJIIK Oackapy Ke3iHeri
OakbLIay ecebOiHIH MIenTiIiMALTIIr >KeHIH/1e

Maxkamnaga HykTemik kKe3zep (yHKIusapbl 06acKapy QYHKIUSIAPBIHA KATBICTHI CBI3BIKTBIEMEC 0OJI-
raH Karjaiina PperosibM HHTEIPAJJBIK OIEPATOPJbI Jiepbec TYBIHABLIBI (PPEArobMIIK UHTErPAJIIBIK-
udePEHITUANIBIK, TEHIEYIEPMEH CUIIATTAJIATHIH *KbLIY MPOIECTEPIH KO3FAJIMAJBI HYKTEIIK backapy Ke-
3inmeri Kamarasnay ecebiHiH memimimaiairi 3eprrerern. OnruMasiabl 6aCKapy CHI3BIKTHI HHTETPAJIIBIK, TE€H-
neyJiep KyHeciHig mmenriMi peTiHae aHbIKTAJIbI XKoHE IIEeIIIMII TYPFhI3Y aJropuTMi Kypbuiasl. Kajaramsay
ecebiniy GipMOHI] MIENITYiHIH »KEeTKIIIKT] MapThl TaObUIIbI KOHE CHI3BIKTBIEMEC OHTANIAHIBIPY ecenTepi-
HiH HIENIMiH TYPFBI3YAbIH TOJIBIK, aJITOPUTMI KOPCETiJIIi.

Kiam cesdep: xanubutanras memntiM, upak dysknuscel, dyHKInoOHAI, Kajgarauay ecebi, onTumMasiibl 6ac-
Kapy, UHTErPaJJIbIK TEH/JIEY, TOJBIK, [IEIIiM.

A Kepumbexos!, A.T. Dpmexbaena?, . CeitrakmMar KbI3nr!

! Kvipewiacro- Poccutickuti Caasancrkuts yrusepcumem um. B.H. Eaxvuyuna, Buwker, Kupewscman;
2 Quickutl 2ocydapemeenmoti yrusepcumem, Koipevzcman

O Pa3peminMoOCT 3ada9M CJIe2K€HU4d IIPpA IIOABU2KHOM TOY€YHOM
YipaBJ/JI€HAN TEIIJIOBbBIMMU ITpOoIleCcCaMmn

B crarbe nccnemoBana paspenmMoCcTb 3aJa9d CJIEXKEHUSI TIPU TOJBUYKHBIX TOYEYHBIX YIIPABJICHUSX TEII-
JIOBBIMH IIPOIIECCAMHU, OMHICHIBAEMBIMHU (DPEATOJIBMOBBIMUA UHTETPO-AnpDEPeHITNATBHBIMA YPABHEHUSIMU B
YaCTHBIX IIPOU3BOJHBIX C MHTErPAJIbHBIM orepaTropoMm Ppenrospma, B ciydae Korja (yHKIUH TOYEYHBIX
WCTOYHUKOB HEJIMHEWHBI OTHOCUTENHHO (DYHKIINN YIPABJIEHUs. YCTAHOBJIEHO, UYTO ONTHUMAJbHBIE YIIpaBJie-
HUS OTIpPeJeIeHbl KaK PENIeHNs] CUCTEMbI JIMHEWHBIX WHTErPAJbHBIX yPABHEHHUI, U pa3paboTaH aJropuTM
IIOCTPOeHUS ee pentenns. HalineHs! JoCTaTOYHbIE YCIOBHS OTHO3HAYHOMN Pa3PENIMMOCTH 33149 CJIEZKEHNUS,
¥ yKa3aH aJI'OPATM IIOCTPOEHUsI IIOJTHOTO PEIIeHUs 3a/1a4N HEJIMHEIHON ONTUMU3AINH.

Kmouesvie crosa: 060bienHoe perenne, dyHkius Iupaka, GyHKIIMOHAT, 3a/1a9a CJI€YKEHHUsI, ONTUMAIBHOE
yIpaBJIeHNEe, MHTErPAJIbHOE YPABHEHHE, TIOJHOE PEIIeHHe.
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