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A new finite difference method for computing
approximate solutions of boundary value problems
including transition conditions

This article is aimed at computing numerical solutions of new type of boundary value problems (BVPs) for
two-linked ordinary differential equations. The problem studied here differs from the classical BVPs such
that it contains additional conditions at the point of interaction, so-called transition conditions. Naturally,
such type of problems is much more complicated to solve than classical problems. It is not clear how
to apply the classical numerical methods to such type of boundary value transition problems (BVTPs).
Based on the finite difference method (FDM) we have developed a new numerical algorithm for computing
numerical solution of BVTPs for two-linked ordinary differential equations. To demonstrate the reliability
and efficiency of the presented algorithm we obtained numerical solution of one BVTP and the results are
compared with the corresponding exact solution. The maximum absolute errors (MAESs) are presented in
a table.

Keywords: finite difference method, transition condition, boundary value problems, second order differential
equation.

Introduction

Sturm-Liouville BVPs arise as mathematical models of many problems in physics and engineering, such as
Newton’s law of cooling, the population growth of decay, Kirchoff’s law in electrical circuits, the steady-state
temperature in heated rod, thermodynamics, resistor, and inductor circuits, etc (see, for example, [1-7] and
references cited therein). It is obvious that not all BVPs can be solved analytically. Even if a BVP can be solved
analytically, the closed-form of the analytical solution may take some complicated form that is unhelpful to
use. Therefore we have to apply various numerical methods for determining the approximate solution. There
have been developed different numerical methods to solve various type of BVPs. One of them, the so-called
FDM, can be applied to a wide class of BVPs, provided that the problem considered has a complete set of
continuty and boundary conditions. In this study we will consider a BVP of a new type. The main feature of
this problem is the nature of the imposed boundary conditions, which include not only the ends of the interval
under consideration but also one inner point of the singularity. Naturally, such type of singular problems is
much more difficult to solve than regular problems. We will develop a new modification of classical FDM to
solve BVPs involving additional transition conditions at the point of singularity. Such type of singular problems
arises in heat and mass transfer problems, in vibrating string problems, and in a varied assortment of physical
transfer problems (see, for example, [8-12] and references cited therein).

A new modification of finite difference method

Let us consider a linear BVP for the second order differential equation given by

"

(@) + pla)u' (z) + q(@)u(e) = f(z), € [a,0)U(c,b], (1)
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subject to the boundary conditions (BCs) at end-points z = a and x = b given by
u(@)=a, u(b)=p (2)
together with additional transition conditions at the interior point of singularity x = ¢ given by
u(c—0) =&u(c+0), u'(c—0)=yu'(c+0), (3)

where p(x), g(z) and f(x) are continuous on [a,c) and (c,b] with the finite limits p(c F 0), ¢(c F0),
fleF0), a, B, & 4 are real constants. For convenience, we will use the notations [a1,b1] = Ia,(],
[az,b2] = [c,b] . To discretize BVTP (1)-(3) the interval [ax,bi],k = 1,2 are divided into finite number f
intervals [zk 0, Zk1], [T,1, Tk,2] 5 .o, [Tk, N—1, Tk, ] With

A = Tro < Tkl < ... < T, N = bk,

where

b _
ROk p—1,92 i=1,2,..,N.

Tk, = Ak + ihkv hk = N ) )

Below we will use the central finite difference discretization. Namely, we will express the first and second
derivatives of the unknown function

ui(x), for € lay,by),
ur) = us(x), for x € (ag,bs]

as
’ uk(a:—i—hk)—uk(a?—hk)
wkle) 2

" Up\T Uk (T Up\T
’LLk:(.’L')'[-U k k ;2 k k
k

respectively. Let us denote the value of the unknown function u(z) at the nodal point j ; by u ; and substitute
in equation (1). We have the following linear system of equations for each k = 1,2

)

1 1
(1 — Qhkpk,z) Upi—1 + (—2+ thQk,i) Ug,; + (1 + zhkuk,i+1> wit1 = b2 f (214), (4)

i=1,2,3,..,N —1,
where
ula) =u0=a, u(b)=usn=07,.

Let us introduce to two new parameters 1 := uj,ny and o := ug that will be calculated later. For
convenience, we will use the notations oy := a and 35 := £5.

Note that each of finite difference equation (4) involves solutions uy ;—1, uk,;, and uy ;41 at the nodal points
Thi-1 > Tk , and xy ;41, respectively.

This system of linear equations can be written in matrix form

AUy =By, k=12, (5)
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where Ay, is the (N — 1) x (N — 1) matrix given by

-2+ thQk,l 1+ %hkpk,l 0 e 0 0
— Shepke =2+ P%rar2 14 $hapro N 0 0
0 1= 2hipes  —24 h%eqes . 0 0
Ay, =
0 0 e =2+ WPqen-3 1+ theprn—s 0
0 0 E L= Shaprn—2  —2+hgen—2 1+ Shipren—2
0 0 e 0 1= Shipen—1  —2+ h2kqu,N—1

and Uy and By, are column vectors given by

br 1
Uk,1 ’
br2
Uk, 2 ’
br,3
Uk,3 ’
Ui = : and By = ,
Uk, N—3 b
k,N—3
Uk, N—2 b
K N—2
Uk, N—1 b
k,N—1
where
2 1 )
R frq — (1= $hpe) =1,
2 )
b = 2k fris i=2,3,...N -2,

thfk:,Nfl - (1 + %hpk,]\pﬁ Bk, i=N-1

Since the linear system of algebraic equations (5) is tridiagonal, it can be solved by the Crout or Cholesky
algorithm (see [2]). To satisfy transition conditions (3) we have the following equations

up, N = &u20,

U, N — UL, N-1 wUQ,l —Uu2,0
h1 N ho ’
From which we can easily find the numerical solutions u; x and ug . Thus we find all the numerical solutions
Uk,05 Wk, 1y oy Uk, N, K = 1,2,

Numerical illustration

Let us consider the following BVP on the disjoint intervals [—1,0) and (0, 1] consisting of linear differential
equation

v’ = (14 2tan(z)*)u, z€[~1,0)U(0,1] (6)
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together with boundary conditions at the end-points x = —1,1 given by
u(-1)=2, u(l)=-1 (7)
and with additional transition conditions at the interior point of singularity z = 0 given by
u(—0) = 5u(+0), 3u/(—0) =u/(40). (8)

At first we will investigate this problem without transition conditions.We can show that the exact solution of
the BVP (6) and BVP (7) is

3cos(1)
2 + 2sin(x)

(sin(x) + xzsec(x)) . (9)

Consider the uniform cartesian grid z; = —1+1th, i =1, ...,49 for N =50, i.e,
h = #5520 = 175()071) = 0,04 where in particular xg = —1, x99 = 1, ug = 2, u59 = —1. By using the central FDM

at a typical grid point x;, we obtain

Uj—1 + (—2 — ]’L2(1 + 2tan2(aji)))ui +uip1 =0 (10)

for i =1,2,...,49. Consequently, the finite difference solution u; = u(x;) is defined as the solution of the linear
algebraic system of equations (10). In a tridiagonal matrix-vector form, this linear algebraic system of equations
can be written as

Au = B, (11)
where
—2 — h2(1 + 2tan?(z1)) ! 0 - 0
1 —2 — h2(1 4 2tan?(z3)) 1 --- 0
A= 7
0 0 0o --- 1
0 0 0 - —2—h2(1+2tan?(z49))
U1 —2
('5) O
u = us3 ) B - 0
U48 0
U49 1
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Figure 1. Comparison of FDM-solution and exact solution for the equation (6) and equation (7) for N=>50.

Now we shall investigate of BVP (6) and BVP (7) under additional transition conditions (8). We can find
the exact solution of this problem in the following form:

72561065(1)566(‘1) - 78(275_‘22()1)) (sin(x) + xsec(z)) , = € [-1,0),
u =
750(1%(1)560(33) - 78(221f§;52)) (sin(z) + zsec(x)) , x €][0,1).

Letting N = 49 and applying the transition conditions (8) we have two additional algebraic equations

U24 — 57.L25 = O, 3UQ3 — 3U24 — U25 + Ugg = 0. (12)

The solution of the algebraic system of equations (11) and (12) is obtained by MATLAB/Octave.

25

24

-05

&
-1 -05 0 05 1

Figure 2. Comparison of FDM-solution and exact solution of BVTP (8)-(10) for N=49.
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Conclusion

We have considered BVTP (6)—(8) to test the computational efficiency of the proposed modification of the
classical FDM. When solving BVTP (6)—(8) numerically for different values of N = 20, 50, 100, 1000 presented
in Table 1, we observed that if N increases, h decreases, then maximum absolute error in computed solution
decreases.

Table 1
Maximum absolute error
h=2/N N MAE
1/10 20 0.0039503
1/25 50 0.00064601
1/50 100 0.00016199
1/500 1000 0.0000016217
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3 Dsipbatiorcar ¥ammows eviavim axademuacoiony Mamemamuka orcone mexanuka unemumymuo, Baxky, D3ipbatiocan

60

C. Yasymormny!, O.II1. MyxTapos®?

! Tokam Tasuocmannawa yrusepcumemi;
Kapamwiavicmany otcone Koadarbanv, eviavimdap orcoeapo. mexmebi, Toxam, Typrus;
2 Toxam Tasuocmannawa yrusepcumemi, Toxam, Typrus;

AybIicy miapTTapblH KAMTUTBIH MIETTIK €CelTePIiH, >KYbIK,
IIeNIiMJIepiH ecelnTey YHIiH aKbIPJibl allbIPbIMIAP/AbIH »KaHa dJIiCi

Maxkasia koc GaitIaHBICBIMIBI KapanaibiM audepeHInaIIblK TeHIEYIep YIMH MEeTTIK eCeNTePIiH KaHa
TYPiHiH CAHIBIK IIEIIM/IepiH ecenreyre barbITTaral. MyHIa 3epTTe/IeTiH ecell KJIaCCUKAJIBIK, IIIETTIK ecerl-
TEPJIEH epeKIlle, OH/IA 63apa dPEKETTeCy HYKTECIHJE aybICy IIapTTapbl JEll aTaJaTbIH KOCBIMIIA IIapTTap
6ap. MyHmait ecenTepi KIaCCUKAJIBIK €CENITEPre KaparaHa eIy dJaeKaiia Kubia. KiaccukaabiK, CaHIbIK,
9IicTep/i IIETTIK aybICy eCEeNTepiH OChbl TypPiHe KaJjall KOMJaHy KEPeKTiri TYCiHiKCi3. AKBIPJIBI aiflbIpbIM-
JIbI 9JIiCiHE CYlieHe OTBIPHIN, KOC GalIaHBICHIMIBI KapanaibiM auddepeHInaIIblK TeHIeyep VIIiH MeTTIK
aybICy ecenTep/i IIENTy/IiH, XKaHa CAHIBIK, aJTOPUTMI KYPBLIIbL. ¥ CBIHBLIFAH AJTOPUTMHIH, CEHIMIITITT MeH
THUIMIINH KepceTy VIMH 6ip MIEeTTIK aybICy eCenTiH CAHIbIK IIenriMi TaObLIAbI KOHE HOTHUXKeJep THUIiCTi
JTOJI IIETIMMeH CaJIbICTBIPBLIIBI. MaKkcuMasabl abCoMIOTTI KaTeep KeCTe/le KeJITiplIreH.

Kiam coesdep: aKbIpJibl aflbIPBIMIBIK, OJIiCi, aybICy IIAPThI, KJIACCUKAJBIK CAHJIBIK 9JIICTEP, IIETTIK aybICY
€CeIITepiH MIENIy/IiH aJIrOPUTMI.

C. Yasymormny!, O.II1. MyxTapos®?

! Viuusepcumem Toxam Tasuocmarnauwa; Beicuwas wrois ecmecmeenmsis u npuxiadnss wayk, Toxam, Typuus;

2
Vrnusepcumem Toxam I'aszuocmarnawa, Toxam, Typyusa;

3 Unemumym mamemamusu v mezarnury, Hayuornarvnotl axademuu nayk Asepbatioscana, Baxy, Asepbatidocan

HoBbrit MeTO; KOHEYHBIX PA3HOCTEN A BHIYUCJICHUS
MPUOIN>KEHHBIX penieHnii KpaeBbIX 33a/1ad,
BKJIIOYAIOIINX YCJIOBUS Mepexoaa

CraTbsi HAIIpaBJIeHA HA BBIYUCJIEHUE YMUCIEHHBIX PEITEeHUN HOBOT'O TUIIA KPAEBBIX 33/ Il JBYCBI3HBIX
OOBIKHOBEHHBIX 1M epeHImaIbHbIX ypaBHeHuii. 3ydaemast 371ech 3a/ga49a OTIMIAETCS OT KJIACCHIECKUX
KPaeBbIX 33Ja4 TeM, 4TO OHA COJEPXKUT JOMOJTHUTE/BHBIE YCJIOBUSI B TOUKE B3AMMOJIEHCTBUsI, TAK Ha3bIBAE-
MBI€ TIEPEXOHBbIE YCIOBUSA. KCTECTBEHHO, UYTO TaKWe 331a9M rOpas3o CIOXKHEE PEIaTh, YeM KIACCUIECKUE.
HemnonsaTHo, KAk IPUMEHUTH KJIACCUYECKHUE YUCJICHHBIE METO/bl K TAKOMY THUILY KPaeBBbIX MEPEXOJHBIX 3a-
nad. Ha ocHOBe MeTO/1a KOHEYHBIX PA3HOCTEN paspaboTaH HOBBIN YMC/IEHHBIN aJTOPUTM PEIIeHUs] KPAEBhIX
MEPEXOIHBIX 33129 JIJIsT JIBYCBSI3HBIX OOBIKHOBEHHBIX JAnudDepeHInaabHbIX ypaBHeHuii. s memoncTpa-
MU HAJEXKHOCTH U 3PDEKTUBHOCTH IIPEJICTABJICHHOTO AJI'OPUTMA IIPOBEJIEHO YUCIEHHOE PEeIlleHUue OHON
KpaeBOil MepexoHo 3a/lauu, U pe3y/IbTaThl CPABHUBAJIUCH C  COOTBETCTBYIOIIMM TOYHBIM pPEIIEHUEM.
MaxkcumanbHbIE aOCOTIOTHBIE TTOTPEINTHOCTH TIPE/ICTABIEHBI B TabJHIIe.

Kmovesvie crosa: MeTon KOHEUHBIX Pa3HOCTeEH, YCIOBUE IEPeXoia, KIACCUYeCKHe YUCIeHHbIe METOIBI, ajl-
TOPUTM PeIleHNsl KPAeBbIX IEePEXOAHBIX 3aad.
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