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Models of interaction of cryptography and chaotic dynamics

Cryptography deals with the problem of information protection by its transformation, providing the
protection of information (by means of computational techniques), i.e. a set of agreed encryptian tools.
Under the cryptosystem in the narrow sense we will understand dynamical systems with a nonlinear function
and spatial states, it is represented by a differential equation. Some conditions of the dynamic system, the
Lyapunov exponent, as a measure of sensitivity are considered. Identification of the interconnection between
objects of study in the theory of chaos and cryptography is revealed; the conclusions about the possibility
of using the trajectory of dynamical systems with the chaos for the representation and the transmission of
information.

Keywords: cryptography, information protection, encryption, nonlinear function, dynamical system, cryptosystem,
parameters, trajectory, transformation, chaotic system, measure of sensitivity.

Introduction

Cryptography deals with the protection of information data through its transformation. Cryptography solves
the problems of confidentiality, integrity, authentication, and a number of others that are associated with them.
Cryptography actually examines methods for encrypting information, generating digital signatures, and key
management certificates.

A cryptographic system, in a broader sense, is an infrastructure that guarantees the protection of information
data by means of computer technology, a set of coordinated methods of encryption, transfer and key management,
authentication and other elements. A cryptosystem is a hardware-software complex that interacts with a person.
It should be noted that scientists working on the protection of information in the conditions of deterministic
chaos, the formation of models and descriptions of software applications: E.N. Lorenz [1], M.S. Baptista [2],
A. Abel, W. Schwarz [3], K.M. Cuomo, A.V. Oppenheim, S.H. Strogatz [4], K.M. Cuomo, A.V. Oppenheim,
S.H. Strogatz [5], L. Kocarev, U. Parlitz [6], Jr.E. Rosa, S. Hayes, C. Grebogi [7], I.P. Marino, Jr.E. Rosa,
C. Grebogi [8], I.P. Marino, L. Lopez, M.A.F. Sanjuan [9], L. Kocarev, K.S. Halle, K. Eckert, L. Chua, U. [10],
A. Dmitriev, A. Panas, S. Starkov [11], L.A.B. Torres, L.A. Aguirre [12], A.Yu. Loskutov, A.I. Shishmarev [13],
A.Yu. Loskutov, V.M. Tereshko, K.A. Vasiliev [14], L. Mariot, A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca,
C. Zandron [15], L. Mariot, A. Leporati, A. Dennunzio, E. Formenti [16], A. Leporati [17], L. Mariot, S. Picek,
A. Leporati, D. Jakobovic [18].

Purpose of the study. Analyze the relationship for the transmission and presentation of information in terms
of cryptography between chaos and objects of complex dynamic systems.

Material and research methods

In the mathematical representation, the cryptosystem S = (XY, K, f) is a kind of information conversion
f: X x K =Y, set on the sets of initial states X, keys K and final states Y. The state x € X encodes some
useful information. The sets X =Y =C {0,1}x, K C {0, 1}* had been studied in computer cryptography, and
the transformation f had been studied by means of an algorithm (program) implemented on a Turing machine.

Transformation f is studied as iterations of a cryptographic algorithm (Fig. 1). In this case, the cryptosystem
implements a sequence of the set of states xq, 1, ..., i, ..., where x; = f(x_1),k) = fi(zo, k), w0 € X,k € K,
and the sequence of the set of states is called the system trajectory in Figure 1. The entire trajectory to the
same is found by the parameter k and the initial state of the system xq.
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Figure 1. Model of a cryptosystem

The successive transformation of the system states as a result of the use of a certain elementary function
of the same typef can be observed in in-line and block ciphers, one-way functions, and pseudorandom number
generators. These systems are components of a cryptosystem in a broad sense [19].

The cryptosystem, in a broader sense, is a dynamic system (f, X, k) with a non-linear function f, the state
space X and the parameter space K.

The dynamic system of continuous time and continuous state S = (X, K, f), depends on the parameters
and is given in the form of a differential equation:

%:f(x,k)7meXng7kgKngk, (1)
where f : X x K — Y is a smooth vector function, K is the space of control parameters and X is the state space.
The system (1) for a separate initial requirement xq satisfies the requirement of the presence and uniqueness
of the solution = (t,2z9) = zo, where z (0,20) = xo. The curve ¢;(¢,x¢) corresponding to this solution is a
trajectory.

The dynamic system of discrete time (continuous state) can be specified as an iterative function:

Tpy1 = f(zn, k),2n € X CRLECR® n=0,1,2.., (2)

where z; is discrete states of the system. The trajectory (i, zo) is a sequence of the set xg, z1, .... Expression (2),
you could notice that it seems with a cryptographic iteration function used in block ciphers, in cryptographic
and dynamic systems, pseudo-random generators, studied in iterative transformation of information data that
depend on the parameter [20]. Then, the parameter k is reduced in the notation of the system (X, f), and the
iteration function f(x). The result of the n-times use of f(z) is written in the form:

n = f((...(x0)...)) = f"(z0), x0, zn, € X.

Researchers identify some properties under which chaotic behavior occurs in the system. Namely, the
required criterion is made by two classical features — topological transitivity and sensitivity to the initial
requirements.

The definition of «chaotic system» has the following interpretation: a dynamic system (X, f) is considered
chaotic when the following criteria are met:

1) The function f is sensitive to the initial criteria, if there is § > 0,n > 0, that for different 2 € Xand its
neighborhood H, there is y € H, for which

fH(@) = f"(y) Vo

2) The function f: X — X on some metric set is topologically transitive X C Ry, if for different open sets
U,V C X there are n > 0, such as

(v #o.

A dynamic system, in other words, is called chaotic, if all its trajectories are the limit, but instantly diverge
at each point of the phase space (Fig. 2).
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Figure 2. Two-dimensional chaotic system

The results of the study and their discussion. The above examples of cryptosystems are similar to chaotic
systems: topological transitivity is necessary, firstly, to maintain the state of the cryptosystem within the limits
allowed by the information carrier, to «cover» the entire set of ciphertext states as well. The susceptibility to the
initial conditions corresponds to the susceptibility of a cryptosystem to a pseudo-random generator or plaintext.
From here, as in cryptography, and in the theory of chaos, they come into contact with systems in which even
a small change in the initial conditions leads to significant changes along the entire trajectory.

The concept of susceptibility to initial conditions is introduced into the understanding of a chaotic system.
This indicator, as a Lyapunov exponent A(xg), determined for each point z € X, becomes a measure of
susceptibility, in other words, determines the speed of the exponential divergence of trajectories, which are
located in the vicinity of point g

(w0 + &) — fM (o) V & % e™M@0)

in a one-dimensional system where ¢ is a small deviation from the initial state of the point z(, and n is a certain
number of iterations (or discrete time). For the general case, the value of A depends on the initial conditions
of the point x(, hence the definition of the averaged value is necessary. For systems that preserve measure, \ is
constant for all trajectories. Lyapunov’s indicator, in practice, can be calculated as the limit

[ (o +¢) — f"(x0)

A(zo) = lim lim —V Vi

r—oot—oo N £

n

1 ¢ 1
Azp) = lim 7210g VI (zk) \/nlggoﬁ H(wk) V.
k

n—o0o N Pl

The derivative f'(zy), for each k, sets how soon the function f will change relative to the growth of the value
of the argument from xy to xx41. The limit will be equal to the average value of the logarithm of the derivative
after n performed iterations and will show the value of the rate of divergence of the trajectories during the
discrete time period. A positive indicator (A > 0) is an indicator of the chaotic behavior of the system [21].

For a d-dimensional system, the set A = {1, ..., A\q} is formed and a more complex behavior is created that
is not qualitatively different from the one-dimensional case.

To take into account the accuracy (resolution) of observation, the Kolmogorov-Sinai-hxg entropy, given
below, becomes more necessary information.

The value of the Lyapunov indicator, from the point of view of cryptography, becomes a measure of the
cryptographic efficiency of the system. More precisely, the larger the value of A\, the smaller the number of
iterations needed to obtain a given degree of mixing or spraying information. Existing traditional cryptosystems
(pseudo-random generators, encryption schemes) should be studied as dynamic systems that transform infor-
mation (Table).
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Table

Relationship between objects of study in cryptography and chaos theory

Cryptography Chaos theory

Pseudo-chaotic system Chaotic system

-finite number of states -infinite number of states

-finite number of iterations -infinite number of iterations

-nonlinear transform -nonlinear transform

Plaintext Initial state

Key Initial conditions and parameters

Entanglement Asymptotic independence of the initial
and final states

Ciphertext Final state

Spraying Sensitivity to initial conditions and
parameters, mixing

From the side of objects and research accents between the theory of chaos and cryptography there are
fundamental differences:

1) cryptography analyzes the obtained result of a finite number of iterative transformations (n < ©0), as
chaos theory (discrete and continuous) studies the asymptotic behavior of the system (n — eco);

2) in cryptography it is advised to use all sorts of combinations for independent variables (the system is as
unpredictable as possible) and work with spaces with integer dimensions (Fig. 3). Regarding classical chaotic
systems, they are displayed in the form of some object or set of phase space, which is endowed with a fractional
dimension (in essence, is a fractal);

3) in computer cryptography, the study of a system is carried out at a certain finite number of states, and
the multiple state space of a chaotic system is formed with an infinite set of continuous or discrete values. It
follows that absolutely all the models of chaos implemented on a computer are very approximate [22].

X,
Xy

Figure 3. Phase portraits of the chaotic and cryptographic systems

Optimal security (perfect security) of an object will take place only in the situation when it is completely
unpredictable for a cryptanalyst (external observer). All of this implies that the likely outcomes (all states) are
very equiprobable and are not dependent on past states. In other words, the sequence of states is established
by a uniform law of probability distribution and it does not have patterns (correlations). The term «absolute
unpredictability» is equivalent to the concept of «true chances. Random sequence is called «white noise». The
source of this white noise can be the chaotic system itself, with a rather large number of degrees of freedom (for
example, a closed system with a so-called ideal gas).

Certain practical security in the current world is formed by cryptography systems, which, to some extent,
will be less than ideal (due to operational and economic feasibility). The definitions of unpredictability and
randomness are respectively replaced by polynomial (computational) and pseudo-randomness, unpredictability.
A pseudo-random object should not at all differ from a truly random object obtained by means of computational
facilities available to an external observer. By analogy, the behavior of a computationally unpredictable object
cannot be predicted by the computational means used by the observer. From here, you can prove that a pseudo-
random object will be computationally unpredictable.

Therefore, a truly random object will be pseudo-random and algorithmically random. The definitions of
algorithmic randomness are also different from each other: pseudo-randomness: a compact generator creates
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a pseudo-random string, but an external observer cannot predict the sequence and create this generator. The
Universe, nature and matter appear as natural chaos, possessing colossal dimensionality, lack of coverage of
the «system of iterative functions» and an infinite number of states. The entropy of these systems, thanks
to self-organization, is much less than that of the «completely random» system of a corresponding scale.
Multidimensional and chaotic systems cannot be used in encryption, since they are not reproduced. Key
generation (without the possibility of repetition), on the other hand, through «natural» chaos (for example, the
thermal noise of a computer in a system unit) is widely used today [23].

The deterministic chaos that we use in encryption is endowed with a very small dimension and an infinite
number of states. Obviously, such systems are likely to be more predictable than the variant of natural
chaos, and they can be modeled by humans in computing systems. To create a calculated estimate of the
randomness of such systems, we will make a consistent consideration of the Kolmogorov-Sinai entropy (tightly
interconnected with the Lyapunov exponent and algorithmic complexity) and find, moreover, that deterministic
chaos leads algorithmically random sequences. In the mixing system, even more so, the numerical sample
Ty Tptks Tnt2ks Tntsk... Will be asymptotically (k — oo) random, that is, with an increase in the value of
k, the members of the sample become all less dependent.

Conclusions

Thus, in our analysis, we found a close relationship between the objects of study in chaos theory and
cryptography; the conclusion is made with evidence about the apparent probability of applying the trajectory
of dynamic systems with chaos for the transmission and presentation of information:

1) the well-known and studied signs of chaotic systems (ergodicity, exponential divergence of trajectories,
mixing) can also be fully applied in cryptography for the development of new encryption schemes;

2) the choice of the value of the control parameter in cryptographic applications makes it possible to set
the unpredictability of the system, in other words, if the chaotic mapping parameter is used as the key, then
the entire space of the probable keys for the assumption of keys is required to correspond to the chaotic one.
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B.K. MTagxmerosa, T.JI. Ten, I'.JI. Koraii, I1I.E. Omapoa

Kpunrorpadusa xkoHe xaoc JUHAMUKAHBIH,
e3apabaiijlaHBIC MOJEJIbaepi

Kpunrorpadust aknapaTTsl KOpFayabl KAMTAMACHL3 eTeTiH (ecenreyill TeXHUKa KypPaJAapbl APKBLIBI) OHBL
TYPJEHIIPY *KOJIBIMEH aKIapaTThl KOPFay MoceseciMeH affHAJIBICA b, SFHNA KeJIiCiareH mudpiay Kypaaga-
PBIHBIH KUABIHTBIFBL. Tap MarbIiHa1a KPUITOXK Y€ — CBI3BIKTHI eMeC (DYHKITHSICHI XK9He KEHICTIK yKarJailapbl
bGap IUHAMUKAJBIK XKYite, omerTe o1 quddepeHInaIIbK, TEHIEYMEH YChIHbLTFaH. JIHHAMUKAJIBIK, Ky HeHIH
Keibip mapTrapsl, Ce3IMTAIBIK, OJ1IIeMi peTiHe JIAmyHOB KOpCeTKiIT KapacThIPBLIALI. Xa0C KOHE KPHUII-
Torpadusa TEOPUACHIHIAFBI 3€PTTEY HBICAHIAPHI apaChIHIAFbl ©3apa OallyIaHBIC AHBIKTAJIIBI; AKIAPATThI
YCBIHY >KoHe Gepy VIIH XaoC IMeH JIMHAMHWKAJBIK YKYHeJIep/IiH TPaeKTOPHUSIChIH Maiigalany MyMKIiHTIKTepi
TypaJbl KOPBITBIHIBI YKACAJIIbI.

Kiam cesdep: kpunrorpadusi, akaparTbl Kopray, mudpJiey, 6efch3blK, (DYHKINs, IMHAMUKAJIBIK KYiie,
KPUIITOXKYIie, mapaMeTpJiep, TPAeKTOPHs, TYPJIEH DY, XAOTUKAJIBIK, »KYiie, ce3iMTasblK MeJIepi.
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MO,Z[G.TII/I B3aNMOCBA3M1 KpI/IHTOFpa(bI/II/I 1 Xa0TUYeCKOI ANHaAMHNKN

10

11

12

13

14

15

16

17

Kpunrorpadus 3anumaercs npobseMoil 3amuTbl nHOOPMALUK [IyTeM ee IpeodpasoBaHus (cpeicTBaMu
BBIYHC/INTEIbHON TEXHUKHU), T.€. ABJSETCI COBOKYIHOCTBIO COTJIACOBAHHBIX CpeACTB mudposanus. 1o
KPHUIITOCUCTEMON B Y3KOM CMBIC/Ie OyIeM MOHWMATH AUHAMHYECKYIO CHCTEMY C HEJMHEHHOU (QpyHKImeh u
IIPOCTPAHCTBOM COCTOSIHMIA, OOBITHO OHA TIpejicTaBieHa JuddepeHInaJIbHbIM ypaBHeHneM. PaccMoTpenst
HEKOTOPBIE YCJIOBHUsI JUHAMUYECKOU CHCTEMBI, IIOKa3aTeslb JIAImyHOBa KaK Mepa 4yBCTBHTEIBHOCTH. BbI-
sIBJIEHa B3aHUMOCBSI3b MKy OObeKTaMU M3yUeHHUsI B TEOPHH XaocCa M KPUNTOrpaduu; CHeslaHbl BHIBOIBI
OTHOCHUTEJILHO BO3MOKHOCTH UCIIOJIL30BaHUS TPACKTOPUU JUHAMUICCKUX CUCTEM C XaO0COM JIjIsl IIPeJIoCTaB-
JIEHUSI 1 1epeaadu nHMOPMAIAN.

Karouesvie caosa: kpunrorpadus, 3amura nHGOpMaIuy, mudpoBaHne, HeJuHeHAs DYHKIUS, THHAM-
qecKasl CHCTEeMa, KPUIITOCUCTEMA, ITapaMeTPhbl, TPAeKTOPHsl, TPeoOPA30BaHNE, XAOTHYECKAsT CUCTEMA, Mepa
4yBCTBUTEIHLHOCTH.
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