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New exact particular analytical solutions of the
triangular restricted three-body problem

The triangular restricted three-body problem is studied in special non-inertial central reference frame with
origin at forces centre of this problem. Masses are arbitrary values. We studied the solutions of dimensionless
differential equations of motion of the triangular restricted three-body problem in rotating reference frame
in the pulsating variables. For the non-circular planar restricted three-body problem we have found out new
exact analytical solutions. In these solutions, all the three bodies form an isosceles triangle with variable
height. Also, we have found new class of analytical solutions of the planar circular restricted three-body
problem in the form of non-isosceles triangle. The basis of this non-isosceles triangle is distance between
the primary bodies, the ratio of sides of non-isosceles triangle is constant and infinitesimal small body
is at vertex of this non-isosceles triangle. Obtained exact particular analytical solutions can be used for
topological analysis of the general three-body problem.

Keywords: restricted three-body problem, non-inertial reference frame, invariant of center of forces, exact
particular analytical solutions.

Introduction

We considered the restricted three-body problem with constant masses my, mo, mg. The condition of the
restricted three-body problem statement is mo < mg, me < my1, ms > my. It is widely known that at random
masses of the primary bodies m; u ms, the restricted three-body problem has the exact particular solutions -
Lagrange solutions, when all the three bodies form an equilateral triangle [1-3]. Also there exist the solution
in the form of isosceles triangle when masses of the primary bodies are equal to each other [1-3]. The problem
has various applications, but the general analytical solution of this problem in finite form is not found. Due-to
this, lot aspects of this problem are studied by different methods and there are plenty publications on this
problem. In [4], there have been done orbit classification with numerical computation of the planar restricted
three-body problem. In the work [5], good review on resonance of the Lidov-Kozai. In the work [6], there have
been considered various applications of the restricted three-body problem to the Earth-Moon system and the
Pluto-Charon system. The libration point orbits of the system the Earth and the Moon is described in the
work [7].

In the work 8], the perturbing planar circular restricted three-body problem is used to study the restricted
n-body problem. In the work [9], the elliptical restricted three-body problem is investigated and energy analysis
has been conducted. In the work [10], the short-term capture of an asteroid is studied in the system Sun-
Moon in the framework of the restricted four-body problem. In the work [11], based on the planar elliptical
restricted three-body problem, calculation method of energy variation for one and two-impulse powered swing-by
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of spacecraft proposed for the Earth-Moon system. In the work [12], the charged restricted three-body problem
is studied, linear stability of planar solutions is investigated and resonance curves are analyzed. In the work [13],
the very long-term evolution of the hierarchical restricted three-body problem with the Lidov-Kozai cycles. In
the work [14], the invariant manifold structures of the collinear libration points of the restricted three-body
problem are investigated. In the work [15], through numerical simulation of the restricted elliptical three-body
problem the borders of stable regions around the secondary body found. In the work [16], the existence and
stability of the non-collinear libration points in the restricted three-body problem when both the primaries are
ellipsoid with equal mass and identical shape are investigated. The two planet three-body problem composed of
a central star and two massive planets is investigated and the authors show that secular dynamics of this system
can be described using only two parameters, the ratios of the semi-major axes and the planetary masses [17].

In the paper [18], the stability of the equilibrium points under the influence of the small perturbations in the
Coriolis and centrifugal forces, together with the effects of oblateness and radiation pressures of the primaries
is investigated. in the work [19], the elliptic isosceles restricted three-body problem with consecutive collision
is investigated and the existence of many families of periodic solutions has been proved. In the paper [20],
circumbinary accretion discs in the framework of the restricted three-body problem is investigated through
numerical solutions of viscous hydrodynamics equations and implicit changes of behavior of the disc near some
mass ratio.

Above mentioned analysis of publications shows that the search for new exact particular analytical solutions
for random masses m; and mg is important task. This work is a continuation of our research done in the
paper [21]. In this work, we study analytically the triangular restricted three-body problem, when three bodies
form triangle during all the time of motion. The problem is studied in the special non-inertial central reference
frame with the origin at the center of forces [2, 21] through using invariant of center of forces.

2 Equations of motion of the restricted three-body problem in different
reference frames and invariants of center of forces

2.1. Classical equations of motion of the restricted three-body problem in absolute reference frame.
In an absolute reference frame OX*Y*Z* the differential equations of motion of the restricted three-body
problem with constant masses mj,mo and mg, can be written in the following way [1-3]
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In these equations Ef - radius-vector, ﬁfj (¢ # j) — distances between the bodies. Differentiation in time ¢t is

denoted by dot over symbol. The system of differential equations (1) describes the two-primary bodies problem

with masses mq, m3. From this differential equations system, one can obtain the well-known relation

D * D * ke T % — Tk —
miR] + msR; = a*t +b", a" =const, b" = const. (3)

The equation of motion (2) describes motion of infinitely small body mso in the Newtonian gravity field of
the two primary bodies mi, ms - the classical restricted three-body problem.

2.2. Differential equations of the restricted three-body problem in the special non-inertial central reference
frame and invariants of center of forces.

Then we go to the special non-inertial central reference frame through the formulas ﬁ:‘ = EG +7r,1=1,2,3.
where RG - radius-vector of the forces center GG in the absolute reference frame, 7;- radius-vectors of the bodies
in the special reference frame. The axes of the new reference frame are Gxyz parallel to the corresponding axes
of the absolute reference frame OX*Y*Z*. The differential equations of the restricted three-body problem (2)
in the special non-inertial central reference frame Gzyz have been obtained in the work [21]

Py — Fy =W, (4)
» R e
Fy = f (m1 + ms3 ) R (5)
A3 A
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T (m1 —kmsz) 7 - d 1 L d? 1
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where the dimensionless parameter of the problem is denoted by
Bk =kt) >0, (7)
™

A;; - distances between infinitesimal small body and the primary bodies
Agr = [(w2 — 1) + (2 — 11)* + (22 — 21)*]"/* = Ay,

A23 = [(372 - 333)2 + (yQ - y3)2 + (22 — 2’3)2}1/2 = A327

731 (%31,Y31, 231) - solution of the differential equations of the two primary bodies system, which can be obtained
from the (1)

-, mz+mi
T31 = —f——5—T31.
31
From the integral
731 X T'31 = C31 = const # 0 (8)

one can see that the orbit is planar and the orbit is on the plane Gzyz. The equation (3) can be rewritten in
the following form = .
(m1 +m3)RG+m1F1 + mgiy = ad*t + b", (9)

in order to define the origin of the special non-inertial reference frame, one needs to know the dimensionless
variable k. If one obtains k, then taking into account (7)

—

Fgl :f'l—ngf’l—rg(—é’l):f}—(krl)(—é’l):rl—i-kf’l :(1+k)F1

Therefore
. 1 . ko

= stla r3 = —mrzsr

Then from the equation (9), it is possible to define the origin of special non-inertial central reference frame

- - - mi—km
(m1 + m3) Rg=ad't+b" — (mlf'l + TTL3’I?3) =ad't+b" — ﬁ"%L (10)
Thus, defining the origin of the special non-inertial central reference frame leads to the defining the parameter k.
In accordance to the definition of special reference frame, the forceF5 is directed to center of forces G all the
time - to the beginning of the new reference frame. That is why

Fy x 7% = 0. (11)

The equation (11) defines invariant of center of forces established in our work [21]. Invariant of forces center of
the restricted three-body problem in the special non-inertial central reference frame in scalar form is

ms maq .
—T3 — —71 | Tosina = 0, (12)
(Aﬁs A3 )

where « - is angle between the vectors 7 and 75. Thus, in the special non-inertial central reference frame,
regardless of the primary bodies masses and properties of triangle formed by three bodies, the equation (12) is
right for the restricted three-body problem during all time of motion.

8 The triangular restricted three-body problem.

From mathematical point of view, the equation (12) takes a place in several cases. In this work we study

only one case
ms my

AL A
Other cases of fulfilment of forces center invariant (12) will be considered in another works. In the case (13)
all three bodies form triangle during all time of motion. Size, shape and orientation of triangle changes over

r1 =0, rosina #0. (13)
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time. The equation (13) takes a place in the triangular restricted three-body problem. Taking into account the
equation (7), the first equation in (13) can be rewritten as

A23>3 ms3
T =k—. 14
(Am mi ( )

Thus in the special non-inertial central reference frame, regardless from primary bodies masses and properties
of triangle formed by three bodies, the equation (14) is always right for the triangular restricted three-body
problem.

In vector form, the invariant of forces center in the triangular restricted three-body problem can be written

m1A§3’F1 + m3A§1’F3 =0. (15)

Let us consider the equations of motion of the triangular restricted three-body problem (4)—(7) in the special
non-inertial central reference frame, in the general case, when k = k(t) # const, 7o = 7 (z2,y2,22). The
invariant of forces center of the triangular restricted three-body problem (14) or (15) can be rewritten as

my \ V3
Am:( ) Ass. (16)

In our work [21], using invariant of center of forces (16) and geometrical properties of triangle, the differential
equations (4)—(6) can be rewritten as

- 22 o . H2Yy2 o
brt s =W Bt s = W (17)
.. H222
2 oy (18)
with the following designation
/31.1/3\3/2
(m3® +m?PE1/3) ) k
= = . 19
=y 7Y 2T e O (19)
x ) .
W, = Bz% + Daizy + Eoxz1, W, = Bz—i’ﬁl + Dayz1 + Eays1 (20)
31 31

d 1 d2 ]. mi — km3
Dy=2—|—— Ey=—|—— By=—f———. 21
? ﬁ(1+k>’ 2 dﬁ(1+k)’ 2=~ 1)

The equations (17), (18), in accordance to the solution of the two-body problem, in the case (8), describes
the elliptical (in particular circular), hyperbolic or parabolic triangular restricted three-body. The forces center
invariant (16) can be rewritten as

1 ? 1 ? 1 2
<332 1ok +k9€31> + (yz 1k +ky31> + (Zz T1rk +k231> =

2/3 2 2 2
- + Lx + + i + | 22+ i zZ (22)
= s TR 2R 2TIRESY) |

The system of equations (17)—(21) and (22) have four scalar values xs, y2, 22, k, that is why these four scalar
equations represent closed system of equations describing the triangular restricted three-body problem.
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4 The differential equations of the triangular restricted three-body problem,
in the rotating special non-inertial central reference frame in the pulsating variables

Let us consider the problem in the rotating special non-inertial central reference frame G¢n(¢ in the dimen-
sionless pulsating variables. The new axe £ go through the bodies with masses ms and m;. The transition
formulas are following [1-3, 21]

To=r-£cosf —r-nsinf, ys=1r-&sin@+r-ncosh, zo=r1-(, (23)
do = dt, 13 =€ 47+ = (24)

In the analytical expressions (23), (24), the values r = r (t) = r3; and 6 = 0 (t) = 03, are defined by solution
of the two-body problem. In the rotating special non-inertial central reference frame in dimensionless pulsating
variables, the differential equations of the triangular restricted three-body problem are [21]

1 A 1

7 _ 2 / _ 1 _ — B 12 25
¢ n 1+ecos@< (p2+0§)3/2>€ 1+ ecosf tsh (25)

1 A
"og — 1— =25 26
N+ 2¢ 1+ec089< (p2+03)3/2>77 s, (26)

1 A
LA 0+ —M— =0 27
¢ +1+ecos0 (eCOS +(p2+a§)3/2>c ’ (27)

where dimensionless variables are
3/2
[1+ 12/3K1/3] 3/2 (31/3 + 123 (1 — 5)1/3) 1
A= - >0, s=— 28
1+ B)72(1 +v) 1+v T1tk (28)
k—v 1-s(1+v) my 5 9

B = = = — = t>0 =s—s°. 29
T x> Y o~ const >0, o05=s5—35 (29)

In the equations (25)—(27) and further, differentiation in 6 is denoted by stroke. Invariant of the center of
forces of the triangular restricted three-body problem (22) in the pulsating variables £,1,¢ with the denotations
(28), (29), can be written as

Vs
1—s

2/3
c-arrre= (1) [e-arer+e], a-s a=-0-. (30)
Let us denote that the three differential equations (25)—(27) and one algebraic equation (30) consist four variables
&n,C u s that is why the system is closed.

The differential equations of motion (25)—(27) of the triangular restricted three-body problem in general
case corresponding to the parameter s = s(t) # const (k = k(t) # const) in the special non-inertial central
reference frame in the pulsating variables are convenient for establishing exact particular analytical solutions.
The mass parameter v can be included into these equations in accordance to (28), (29).

While studying the solutions of differential equations of motion of the triangular restricted three-body
problem in the special non-inertial central reference frame (25)—(27) and (30), it is convenient to distinguish the
three possible cases:

1. k=my/m3=v = const (31)
2. k= const #v =my/ms = const (32)
3. k=k(t) # const. (33)

In each case it is needed to define the required four scalar values, uniquely satisfying the system of equations
(25)—(27) and (30). Let us consider each case.
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5 The first case - the isosceles non-circular restricted three-body problem.

Let consider particular and important case of the triangular restricted three-body problem (31), when the
equations (25)—(27), (30) can get significantly simplified. Let the following condition take a place

k =my/mz =v = const > 0. (34)
Let us note that in the case (34), the values of masses my u m3 are completely different. In this case, from (30)
Agl = Agg = A. (35)

From the equation (10) it is seen that, at k& = mj/mg3 the special non-inertial central reference frame Gryz
transforms into the barycentric reference frame Goxyz. It is well-known that the barycentric reference frame is
inertial reference frame. At that, radius-vector of the barycenter is defined by the relation (10) in the absolute
reference frame. Accordingly taking into account (35), the vector form of the forces center invariant to be
transformed into the invariant of masses center

mi71 + moia = 0.

In this case from (35) it comes that the triangle formed by three bodies is isosceles during all time of motion and
at vertex of this triangle is massless body. This case is studied by us in the works [22-24], but from different point
of view. The isosceles restricted three-body problem is described in general case and it can be elliptical (circular
in particular), parabolic, hyperbolic and rectilinear isosceles restricted three-body problem. Let us consider the
most interesting case, when the following conditions can take a place in the equations (25)—(27), (30)

e#0, (=0, k=mq/ms=rv=const>D0. (36)
In this particular case we have the planar isosceles non-circular restricted three-body problem and some variables
in the differential equations (25)—(27) will get simply
2 mims

oi=0=—"" - A=1, B=0.
(m1+m3)

In the barycentric rotating reference frame in pulsating variables, the differential equations of motion of the
planar isosceles non-circular (e # 0) restricted three-body problem is

1 1
//72/77 1 — - _
& =2 1+ecos9< (p2+02)3/2>f 0, (37)

1 1
T2 — (1 — =0. 38
LS 1+ecos9< (p2+02)3/2> g (38)

Taking into account (36) and (28)—(29), from forces center invariant (30) expressed in pulsating variables,
one can obtain
ms — 1My

E=¢" = 5 = const # 0. (39)

(ma +m3)

Thus in equations of the planar isosceles non-circular (e # 0) restricted three-body problem (37)—(38) the axe
& is defined. This is constant value and defined by the formula (39). Taking into account (39), the equations of
motion (37)—(38) will get more simply and we obtain dynamical system with one degree of freedom

o £ 1
T =790+ ecosh) <1_ (772+1/4)3/2) ’ (40)

" n 1
=—[(1- — 41
K 1+ ecosf ( (n2 + 1/4)3/2> (41)

From the differential equations system (40), (41), one can obtain integrals identifying new trajectory in the
planar non-circular (e # 0) isosceles restricted three-body problem

&n'+nP=c, o =&+ =const, & #0. (42)
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The differential equation (42), depending on the value ¢;, has three types of solutions. Let us emphasize that
the particular case of the equations system (40), (41) when

e=0, 731 =a=const, c31 =const#0 (43)
is studied by us in details in the works [25, 26]. In these works, the case (43) is studied through different methods.

6 The second case. Reduction to quadrature of solutions of the planar
circular triangular restricted three-body problem.

In the case (32)

k = const #my/m3 >0, (k#v) (44)
all three bodies form non-isosceles triangle during all time of motion
€ — 2 — A _e=p . B0 (45)
1+ ecosf (p2+a§)3/2 ’ ’
1 A
"y 9¢l _ 1— =0 46
n'+ 2 1+ecost9< (,02—1—05)3/2)77 ) (46)
1 A
" 0+ ——— =0 47
¢ +1+ecos€ (ecos +(p2+a§)3/2>c ’ (47)
with .
2 2 2 2 my 2
=&+ +¢°, v=—=const>0, o05;=——-—==const >0,
P & n ¢ ms 2 (1 +/€)2
a1 1/213/2
14 p2/3)1/3 3 E—
A:[ v } = const > 0, Bziyzconst;«éo.

(1+Kk)Y2(1 +v) (k+1)(1+v)

Taking into account (28), (29) and the condition (44) the forces center invariant (30) can be written as

(=)’ +0* + ¢ = (/) [(€ = &)" +n? + ¢, (48)
& = Hik =const, &3 = Tk = const.

Based on the obtained equations, we can establish exact particular analytical solutions of the planar triangular
circular restricted three-body problem. Let take a place the following condition in the equations (45)—(47)

e=0, (=0, k=const#mi/mgz>0. (49)

Taking into account (49), from the center of forces invariant (48)

n® + & = Ei + Ey, (50)
2(1+ev) (1 —ev?)
Ey=—2oT  _onst, Ey=-—— 2 — const.
S Ao 90T ) const, Ep TEBEE cons
l—e=1—(v/k)*? = const #0
From the equation of motion (45)-(47), the Jacobi integral can be derived

| Be — C — const .
5(5 +77>_§(§ +77)—W— § = C = const. (51)

The existing of the two equations (50) and (51), in the case (49) allows us to reduce to quadrature the
solution of the problem.

The parameter k, in accordance to the inequality (44), is defined from the condition of defining of possible
motion region.
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7 The third case

The general case (33) is most interesting and sophisticated, that is why it shall be investigated in another
work.

8 Conclusion

In this work, the triangular restricted three-body problem is investigated analytically in the special non-
inertial central reference frame with the origin at the center of forces. The solutions of differential equations
of the triangular restricted three-body problem is in the rotating special non-inertial central reference frame in
dimensionless pulsating variables. New exact particular solutions have been obtained.

In the planar triangular non-circular restricted three-body problem (e # 0) there have been found out new
exact particular solutions of differential equations of motion in the form of isosceles triangle with variable height
for arbitrary values of masses. There have been obtained new exact particular analytical solutions of differential
equations of motion of the planar triangular circular restricted three-body problem (e = 0) in the form of non-
isosceles triangle at arbitrary values of masses of the primary bodies. The basis of this non-isosceles triangle is
distance between the primary bodies, and the ratio of lateral sides is permanent. A massless body is on vertex
of this triangle.

We plan to perform detailed analysis of the equations of motion and to investigate stability of obtained new
solutions of the triangular restricted three-body problem. The obtained exact particular analytical solutions can
be effectively used for topological analysis of the general solution.
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IllekTenren ynioyphIIITHL VIO JeHe MOCeJECiHiH >KaHa
HaKThI JiepObec aHAJUTUKAJIBLIK MIelliMaepi

YOy phIITHI MIEKTEJINeH VI JeHE MOCEJIEC] aHAIUTUKAJIBIK YKOJIMEH apHAbl HHEPIUAJILI eMeC IIeHTPAJI-
bl CaHAK, YKYHeciHme KapacThIpblaraln. by canak »kyiieHiH 6achl Kymirep meHTpinge opHasgacagpl. Herisri
€Ki JieHe Maccagapbl Ke3-KeJreH mama. AWHaaMasbl CaHaK, *KYHeCiHIH MyJIbCUPJIEHTeH aflHbIMAJIbIIAPBIHIA
YUIOYPBIIITHI MIEKTEJITEH YIII JIeHe MOCeJIeCiHiH, omeMci3 auddepeHnuaabk Teraeyiepi 3eprresa. [len-
OepJIiK eMec »Ka3bIK IIeKTEreH YII JeHe MaCesIeCiHIe KaHa HaKThI jepbec TeHOyHipi OMiKTiri aifHaaMaJIbl
YHIOYPBINT TYPiHIE AHAJUTUKAJBIK IIEMIMIAECD aHBIKTAJIbI. 2KoHe TeHOYHipJi eMec YIIOYPBIIT TypiHe-
i ’Ka3bIK IIeHOEPJIIK MMEKTE/INeH YIII JIeHe MOCEIECIHIH KaHA aHAJTUTUKAJIBIK, TEHIEYIEP KJIACChl TAOBLIIbI.
Tenbyitipsi emec yOyphIIITHIH, HET13iH €Ki HEri3ri JeHeep apaKaIlbIKThIFBI KYPaliibl, TeHOYHipJIi emec yiir-
OYPBIITHIH OYilip KaObIpFaiapbIHbIH, KATBIHACHI TYPAKTHI I1aMa, YKOHE OChI TeHOYHipJIi eMec YIIOYpPBIIITHIH
TebeciHIe Maccachl IIEKCI3 a3 JieHe OpHajacaabl. TabbLIFaH HAKTHI JIepOec MIEeNiMIep i KaJImbl MICeTeH]
3€pTTEy VIIMiH TOMOJOTUSIJIBIK, TAJIIayFa KOJIIAHyFa OO IbI.

Kiam cesdep: meKTeJIreH YIII JIEHE MOCEJECi, MHepIUAJIIbl eMeC CaHaK, »Kyiteci, KyITep IeHTpiHiH WHBa-
PUMAaHTBI, HAKTHI JepbeC aHATUTUKAJIBIK, IIeNiMIeD.
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M. /Ix. Munrimubaes, T.M. 2Kymabex

HoBble TouHbIE YacTHbIE aHAJUTUIECKNE peIleHus
TPEyTroJibHOIl OrpaHUYE€HHOI 3aJla4uMl Tpex TeJl

AHanuTUYECKN MCCIe0BaHa TPEYTOJbHAs OIPaHUYEHHAs 3aJ]a4a TPeX TeJl B CHelUaIbHOW HeMHEPIUAJIb-
HOI IIeHTPAJIbHOI CHCTEMe KOODJMHAT C HAJaJOM B IIEHTPe CUJI ucciemyeMoil 3ama4un. IIpm sTom maccsr
OCHOBHBIX T€JI IPOU3BOJIbHBIE. 3ydenHsl perennst 6e3pa3MepHbIX TUdHEPEHITNATBLHBIX YPABHEHUIA JIBIKE-
HUS TPEYrOJIbHOA OrpaHMYECHHOHR 3aa4ud TpexX TeJ BO Bpallalolleiica cucTeMe KOOPDAWHAT B IIyJAbCHPYIO-
IAX IepPeMEeHHBIX. B HEKpPyroBoil INIOCKON OrpaHHMYEHHON 3aJadue TPeX TeJl YCTAHOBJIEHBI HOBBbIE TOYHBLIE
aHAJIMTUYIECKNE YaCTHBIE PEIeHUs], B BUJE PAaBHOOEIPEHHErO TPEYroJbHUKA MMEPEMEHHON BBICOTHI. Takzke
AHAJIMTUYCCKNA HAMJICH HOBBII KJIACC PEIICHUN IIJIOCKOI KPYrOBOM OIPAHWYCHHOHR 3aJadd TPEX TeJI B BHAIE
HepaBHOOEIPEHHOro TpeyroybauKa. OCHOBaHMEM HEPABHOGEIPEHHOI'O TPEYIOJbHUKA SBJISIETCsl PACCTOSHHAE
MeXKJIy OCHOBHBIMH TE€JIAMH, OTHOIIIEHNE OOKOBBIX CTOPOH HEPABHOOEIPEHHOIO TPEYTOJIbHUKA IMOCTOSHHOE,
¥ Ha BEPIIUHE dTOT0 HEPABHOOEIPEHHOTO TPEYTOJbHUKA HAXOIUTCS TEJIO MAJIONH MAacCChl. YCTAHOBJIEHHBIE
TOYHbIE JACTHBIE AHAJMTUYECKNE PEIIEHNs MOXKHO 3(PDEKTUBHO UCIIOIb30BATD /I TOIIOJIOTNIECKOrO aHa-
Jin3a OOIIEro penreHust IPobIeMbl.

Karouesvie caosa: OrpaHuveHHasd 3a/avda TpexX TeJl, HEeMHepIhaJibHad CUCTeMa KOOPAWHAT, UHBapUuaHT II€H-
Tpa CUJI, TOYHbIEC 9aCTHbIC aHAJIUTUYICCKUE DEIIeHUsd.
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