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Constructing the fundamental solution
to a problem of heat conduction

In this article, we discuss auxiliary initial-boundary value problems which will subsequently be used to
solve boundary-value problem of heat conduction with axial symmetry in a degenerating domain. One of
the problems is posed with homogeneous boundary conditions in order to construct a fundamental solution
that is used to determine thermal potentials. The initial condition contains the Dirac function. The solution
to the problems is found explicitly using the Laplace integral transformation. The boundary value problem
is also considered in the absence of axial symmetry. It is shown that this problem splits into families of
boundary-value problems similar to the problems considered above. In conclusion, we state the boundary
value problem of heat conduction with axial symmetry in a degenerating domain, and its fundamental
solution, found above, is written out.

Keywords: equation of heat conduction, fundamental solution, Laplace transformation, axial symmetry,
Bessel equation.

Introduction

Problem I. In the domain Qo = {(r, ) : 0 <r < oo; t > 0} we consider the boundary value problem for

equation

ou a® 0 ou
e N I s 1
ot r Or <T 87“) ’ (1)

satisfying the boundary condition
. u(r, t)

1 =—p(t), t 2
P30 Inr wlt), t>0, 2)
i u(r, ) =0, (3)

Problem II. In the domain Qo = {(r, t) : 0 <r < oo; t > 0} we consider the boundary value problem for
equation (1) under boundary conditions (2), (3) and and initial condition

u(r, 0) =0, r > 0. (4)

It is known that equation (1) follows from the equation
ou o (0?u  O%u
— =aq —+— ],
ot 0x2 = 0y?

passing to polar coordinates.
Problem III. In a case without axial symmetry, we consider the following problem
in the domain
D ={(r;t):0<r<t; 0<a<2m 0<t<T}

du_ a[L0 [, oy, 1o
5‘t_a r Or " or r2 0a2 |’
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satisfying the boundary conditions

u(r, a, t)
_— = t); 0<t<T
A Ty - Wi 0<i<T

Tl_igl_u(r, a, t) =ui(o; t) = ue(z; y; t)|\/W:t; (o t) € O,

where 0€2; is the lateral surface of the cone.
Earlier [1-4] we studied a homogeneous problem for the heat equation in the angular domain
G={(z;t): t>0,0 <2z <t} (as the domain 2):
find a solution to the heat equation
ou  ,0%
at " oz
satisfying the boundary conditions:

w(zx, t)),_o =0, wu(z, t),_,=0.

o=
In the work [5] in the domain G the boundary-value problem of a homogeneous heat equation with boundary
conditions:

Ju
ox

., Ou

=0,—| =0.
z=0 7 Ox

x=t
was considered.

Solving the boundary value problems was reduced to solving the Volterra integral equation of the second
kind with a kernel

1 t+7 (t+7)° 1 t—T
Kt m) = 2aﬁ{(t_T)§ P <_4a2(t—r)> * (t—71)° P <_ 4a? )}

It is shown that the kernels of the obtained integral equations are “incompressible”, that is, the norm of the
integral operator acting in the class of continuous functions is equal to unity. By the Carleman-Vekua method,
solving the integral equation was reduced to solving the nonhomogeneous Abel equation. The explicit form of
the solution of the integral equation has allowed to estimate the solution to the posed boundary value problem
and precisely to determine the uniqueness classes of the solution to the posed homogeneous problem.

In [6], along with the direct problem, the conjugate boundary-value problem for the heat equation in the
weighted functional class was also studied, and it was established that the posed boundary value problem is
Noetherian problem.

We also note that boundary value problems for a spectrally loaded parabolic equation reduce to this kind
of singular integral equations, when the load line moves according to the law x = t [7-11] and problems for
essentially loaded equation of heat conduction [12].

In all works, the boundary of the domain moves at a constant velocity. Attempts to study the solvability of
boundary value problems for the heat equation in non-cylindrical domains with a variable velocity of changing
the boundary were made in works [13-14].

In works [15-17] the second-order Volterra singular integral equation with the above kernel K(t, 7) is
investigated. The multiplicity of eigenvalues and eigenfunctions for the Volterra integral operator is determined
depending on the value of the spectral parameter and its spectrum is found.

In this paper, assuming that the isotropy property is fulfilled in the angular coordinate (axial symmetry),
we study the problem for the heat equation in polar coordinates, to which the two-dimensional problem in the
spatial variable is reduced.

In [18], the two-dimensional Dirichlet problem for the heat equation with respect to the spatial variable in
an infinite dihedral angle was also considered. Using the Fourier transformation, the problem was reduced to a
one-dimensional boundary value problem with the parameter.

Now we are studying the boundary value problem for the heat equation in the cone. To construct a solution
to the problem we consider two auxiliary problems I and II.

The problem I solved in paragraph 1 is necessary to construct a fundamental solution, which will be further
used in determining the thermal potentials. The solution to the original problem will be further presented as a
sum of thermal potentials.
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The solution u (7, t) to problem IT found in paragraph 2 is used in the integral representation of the original
problem to annul the boundary condition at the boundary x = 0. In paragraph 3, we have formulated a result
that follows from the contents of paragraphs 1 and 2.

In paragraph 4, a boundary value problem is considered in the absence of axial symmetry that is problem III.
It is shown that this problem splits into families of boundary-value problems similar to the problem considered
in paragraph 1.

1 Function of the thermal instantaneous point source

We will seek its solution in the class of originals of the Laplace transformation with respect to the variable ¢,
depending on the parameter r, r > 0.

We introduce the notation for the Laplace image: Llu(r, t)] = u(r, p).

As a result of applying the transformation to the equation (1):

2 2
a a 5
Up = 7(ur+ruw) = 7ur+a Uy

taking into account the property of the Laplace transformation:

ug <+ pu(r, p) —u(r, 0),

and to conditions (2) and (3), we obtain in the domain {r, r > 0} the boundary-value problem for the ordinary
differential equation:

d>n  1du p o(r —ro)
el e T i S S 5
a2 " rdr a2t a?r (5)
o, p)
| =—
o Ty = PO, ©)
lim_w(r, p) = 0. (7)
The homogeneous equation corresponding to equation (5) as a result of the replacement: z = ?r is
transformed to a modified Bessel equation:
d*>u  1du
— 4+ -— —u=0. 8
a2 " zdz ¢ (8)
The solution of equation (8) has the form: ([1], formula 8.494(1))
Uhom(2) = C1 Ip(2) + Co Ko(2), (9)

where ([19], formula 8.447):

X (z 2n > 2n
IO(Z):Z (2) ; Ko(Z):—anIO(Z)+Z22:72w(TL+1),
n=0 n=0

(n)” (n!)

P(z) = 1;/((;) is Euler psi-function.
The following asymptotic formulas and approximations hold [19]:
when 0 < z << 1
Ip(z) = 1; Ko(z) = 1n %, C =~ 0,57721...— Euler const.

when z >> 1
e 1 9 1
I = {14+ — - il
o2) 271’2{ +8z+128z2+<z3>}’
n—1 1 1
™ 1 I'(k+13) T (n+3)
KQ(Z) = — e 7 . 2 _|_(...)3 - 2
2z LZ_O (QZ)k k'T (fk: + %) (22)" n! (fn + %)
Here:

|©3] < 1 and ReO3 > 0, when Rez > 0;
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|©3]| < |co sec(arg z)|, when I'mz = 0;
0 <|©3| <1, when Rez > 0.
Returning to the variable r in (9), we obtain the general solution of the homogeneous equation corresponding

to the equation (5):
p p
Uhom (1, p) = C11o ({7‘) + C2 Ko <\af 7“) .

Then, according to the method of variation of arbitrary constants, we write the general solution of equation

(5) in the form:
i) = i (") + catryza (2. (10)

To determine the functions C4(r), Ca(r) we compose a system of equations:

ol ) I (ﬁ +CL(r) Ko (22 =0,

a

ol (1o (B2)) + cf )k (10 (B2)) = 2,
After some simplifications, taking into account formula 8.486 from [19], we obtain:

cl() 1o (B2) + Chr) Ko (22) =0,

—{(r) 1 (B2) + cf Ky (D) = 2e),

By virtue of formula 8.477 (2) from [19], the determinant of this system is equal to:
s=n () () e () m (5F) =
a a a a /P

Then the solution of the system takes the form:

- a a
1 70 /P
=0+ ?K()( a ) T < To,
0; r>mrg

and

where

_ L[(()<’r\/i))l() rvb ; 0<r<nmg
G<T7 rO?.p): r
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Now we will define the values of the constants. Let be Vp : Rep > 0.
Then, by virtue of asymptotic formulas and approximations, we have:

IO (\/fr) — +00,
r— +00 =
Ko(ﬁr) 0.

a

Therefore, to satisfy condition (7), it is necessary to set C; = 0.
When r — 0 (at Vp : Rep > 0) we get

b (%)

Inr

a

— 0, — -1

Inr

From condition (6) we have

u(r,p) .. Cy 2a o
ll—% In r r1—1>I(IJ1+lnr1n<C\/f)T == 2.

We have obtained a solution to problem (5) — (7)

(1) = o) Ko (“X7) 4 6o, o, ) (1)

By virtue of the formula [20], (p.241; formula No.117)

L |:1 .e4gzt:| = KO (’I" p)
2t a

and
1 a+b a—>b
L {Qtexp < 5 ) Iy ( 57 )} = Ky (w/aer pr) Iy (,/ap— pr)
when Rea > Reb > 0, after applying inverse Laplace transform to (11) and some simplifications, we obtain:
1 r2 + 7“3 7o
u(r, t) = ui(r, t) + 227 P ( 1%t > - Io (m) ) (12)
where ( , )
1 r2 ¢ exp ( —gzz2G—)
t = —_— _—— t = — d . ].
)= (o (< 1)) wot0 = [ =5y ar (13)
(12) is the solution to problem (1)—(3) and the initial condition
S(r —
ul(r,()):w; 0<r<oo, 0<ry<-+oo,

which is verified directly. For example, after replacement z = ﬁ function (13) takes the form

> 1 2 72
Ul(r,t):/T ;6 g0<t4a222>d2§

2aV/t

Then condition (2) can be written as

Y (1) r\
li — =1 Ei |- —
rl—%(p(t) Inr /L z dz r1—1>r%)2lnr ’ <2a\/f> ®),

2a\t

because ([19], 8.214 (1)) from the representation

o0 k
Ei(r) =C+ln(-2)+ Y kf” -
k=0 ’

Ei (— (2;\/2)2) gt

lim = lim
r—0 2Inr r—0 Inr

we have
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2 The first boundary value problem for a semirestricted domain

In the domain Q. = {(r, t) : 0 <7 < o0; t > 0} we consider the boundary value problem for equation (1)
under boundary conditions (2)—(3). This problem occurs in the theory of a diffusion trace behind a drop and a
solid particle.

We will seek its solution in the class of originals of the Laplace transform with respect to the variable ¢,
depending on the parameter r, r > 0. In this paragraph we use the results of paragraph 2.

As a result, we get

wn(r ) = (;t exp <_42;t)> fo(t) = /Otmg(;fg”))@(f)dr (14)

(14) is the solution to problem (1)—(4) and this fact is verified directly.
3 Main result

From the contents of paragraphs 1 and 2, the following theorem is proved.
Theorem. The function

7,2

texXp | ~1a2(e=7) 1 ]
u(r, t):/ wg@(T)dT+exp <T TO) .IO(TTO),
0

2(t — 1) 2a%t 4a?t 2a%t

where ((t) is a continuous function for ¢ € (0, +o0) and |p(t)] < Mt~ | const M > 0, is the solution to the
problem (1)—(4).

4 Case without azial symmetry

In the domain
D ={(r;a;t):0<r<t; 0<a<2m 0<t<T}

find the solution to the equation

ou 521 0 ou 1 d%u
7 - = Rt - 7 1
at " [r or (T 8r>+r2 8a2]’ (15)
satisfying the boundary conditions
u(r, a, t)
—_— = N T 1
50 In(1/r) uo(t); 0 <t <T, (16)
Tlil%lﬁu(r, Q, t) = Ul(OZ; t) = uc(x; Y; t)' /z2+y2:t; (a; t) € ana (17)

where 02 is the lateral surface of the cone.
To the boundary problem (15)—(17) we apply the Fourier method (the method of separation of variables).
We seek the desired solution u(r, a, t) in the form

u(r,a,t) =U(r, t)0(«) (18)
Substituting (18) into (15) we get
1 1
O(a)-Us = a® |- (r- Ur)i () + U - 0/ (a)
T
or )
U= U 0@)
a? U () 7

where A is a non-negative const.

Cepust «Maremarukas. Ne 1(97)/2020 73



M.T. Kosmakova, A.O. Tanin, Zh.M. Tuleutaeva

We get the system of differential equations

0//(a) + M(a) = 0, (19)
Ui~ S (r-U) + 92U =0
The solution to the spectral problem
0//(a) + \0(a) = 0,
6(0) = 0(2m)
is a system of orthonormal eigenfunctions and eigenvalues
1
0,(a) = —— exp(ina); A, =n? ne Z 20
(@) = —=exp(ina) (20)
The solution to problem (15)—(17) has the form
u(r, 00 t) = 3" Un(r, 1) - 0n(a). (21)
nez
When A, = n? for the second equation of the system (19) we obtain
ou, a* 9 oUu, a’n?
_ 9, aN T = 22
ot 7"87‘(71 8r)+r2U 0 (22)
For the function (21) we apply the condition (16):
Uo(r, t) Un(r, t) - 0,(a)
lim + Z ————— | = ().
r—0 | In(1/r) neZ {0} In(1/7)
Expanding the function ug(t) in a Fourier series on the eigenfunctions 6,,(«), we obtain
uO(t) = Z Cn(t) : Gn(a)a
nez
where
27
ealt) = / o () - On(0)dor,
0
From here we get the condition for the unknown functions U, (r,t), n € Z:
UO(T7 t)
= t); 23
N 1/~ Yol (23)
. Un(r, t)
lim——— =0 Z\ {0 24
G 0. nez\(o) (24)
For the function (21) we apply the condition (17):
l:niu(r’ «, t) = llgl}: Un(r7 t) 97,(04) =up (av t)'
nez
Expanding the function u;(«, t) in a Fourier series on the eigenfunctions 6,,(«), we obtain
ui(a,t) = Z Ui (t) - On(a),
nez
where )
Urp(t) = / up(a,t) - 0y (a)da. (25)
0
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Then from the equality

Z (thn(r t) ) . Z un(t

nez nez

we get one more condition for the unknown functions U, (r,t), n € Z

llg}s Un(r,t) = uin(t),
where the functions uy,(t) are defined by equality (25).
We introduce the replacement of an unknown function U, (r,t),

Cl2 2
Ualrot) = wn(rt)esp {3

Then substituting replacement (27) into equation (22) and into conditions (23), (24
boundary value problems for determining a new unknown function v, (r, t):

I.n=0.
ug _a®> 0 (v
at o or \' or )
. UO(Ta t) _
M 1) ~ o)
llgwo(r t) = uyo(t),
where )
wo(®) = [ (a0
0
II.n#0.

- vn(r, t)
r=o0ln (1/r)

7141_}11;%@ t) = u1n(?)

n € Z by the formula

(27)

26), we obtain

(28)

(31)

(32)

(33)

Thus, we have obtained a family of boundary value problems (28)-(30) and (31)—(33), each of which is
a boundary problem of the form (1)—(3). The issues of solvability of these boundary-value problems will be

investigated later.

Solving boundary value problems (28)—(30) and (31)—(33), we find functions {v,(r, t), n € Z}, and further,

using (20)—(21) and replacement (27), we formally construct a series

u(r, a,t) Zvnrtexp{

neZ

n2

It is known that the series (formula 5.4.11.2 from [22], p.585):

o
Zexp{ t—&-ln@z}

ne”Z

converges for V¢ > 0.

t+ma}.

Remark. The justification of the passage to the limit under the sign of the sum in all the series below

follows from the uniform convergence of these series [21].
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Conclusion

In the second part of the research, we solve the problem in the domain of degenerating to a point at the

initial moment of time:

In the domain Q = {(r, ¢) : 0 <r <#¢; ¢t> 0} to find a solution to equation (1)

ou_at o (on
ot ror\'or)

satisfying the boundary conditions (2)

and

lim u(r, 1)
r—0+ In7r

=—p(t), t >0,

lim u(r, t) = —4(t), t > 0.

r—t—

The function G(r,&,t) = £Go(r, &, t), where

2a2t 4a?t 2a2t

7’2 2 T
Go(r,f’t):lexp{— +£ }IO< 5 >7

is a fundamental solution to equation (1), £ is parameter. We note that this function was defined in Theorem.
Thermal potentials will be preliminarily constructed using this fundamental solution.

Further, on the basis of the integral representation of the solution of the boundary value problem in the

form of a sum of thermal potentials, we will reduce the study of the original problem to the study of the Volterra
integral equation of the second kind, following [21] and [1-6].
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M.T. Kocmakosa, A.O. Tanun, 2K.M. Tyneyraesa

Bip >XbLTyeTKi3TIINTIK ecebiHiH,
dbyHmaMeHTaIbIbI MIETIMIH KYPY

MakaJstazia OCbTIK CUMMETPUSAIBI XKOUBLIATHIH OOJIBICTAFBI 2KBITYOTKI3TIIMITIKTIH, MIETTIK eCenTepiH HIbIFapy
YIITiH KOJITaHyFa OOJIATHIH KOMEKII OACTAKBI-TIIETTIK eCenTep TaJKbIIAHFaH. BipTeKTi IeKapaJIblK, MmapTTa-
PBIMEH KOMBLIFaH eCenTep/in 6ipeyi KblTy HOTEHIINAIAPBIH AHBIKTAY YIITIiH KOJIIAHATHIH DYHIAMEHTAIb/IbI
merriMal Kypy VImH Koiiblrral. Bacranker maprer Jupak dysxnusaceia kKamtuasl. Ecenriy memivi Jlammac
WHTETPAJIIBIK, TYPJIEHIIPYl KOMeriMeH aiKblH Typ/e TaOblaraH. COHBIMEH KAaTap, OChTIK CHMMeTpus 0OJi-
MaraH JKarJai/Iarel MIETTIK eCell KapacThIPBLIALI. Byl ecerr »Korapbi/ia KAPaCTHIPBLIFAH YKCAC MIEKAPAJIBIK,
ecenTep/iiH MOFbIpbIHa GeJiineTiHi KopceTiireH. KopeIThiHab! GeJ1iMiH/Ie OCHTIK CUMMETPUSIIBI KONBIIATHIH
OOJIBICTAFBI YKBLIYOTKIZTIMTIK MIETTIK ecebiHIH KOMBIIYhl KOPCETIITeH YKOHE OHBIH KOFapbIa TaObLIFaH
dyHIaMeHTAIbIbI TIEeITiMi XKa3blJIFaH.

Kiam cesdep: XKbUTyOTKISMINITIK TeHmey, pyHIaMeHTa bIbl memnriM, Jlammac Typiesaipyi, ocbTiKk cuMMeT-
pusi, Beccenb Teneyi.
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M.T. Kocmakosa, A.O. Tanun, 2K.M. Tyneyraesa

ITocTtpoenmne byHIaMEHTAJIHLHOTO PEIIeHUs
O/IHOI1 3aJIa9M TENJIOIIPOBOAHOCTH

B CTaThbe O6Cy}K,ZI;eHbI BCIIOMOTraTeJ/JIbHbIE Ha9aJIbHO-KPaeBbI€ 3a/1a91, KOTOPbI€ BIIOCJIE€ICTBUA 6y,ZLyT HCIIOJIb-
30BaHbI JJIsI PEIIeHUs KPAeBO# 3a/1a4i TENJIONPOBOJHOCTH C OCEBOM CHUMMeETpPHEil B BBIPOXKIAIOINIEiicst 06-
JIaCTH. O,ILHa U3 3aJa9 C OAHOPOAHBIMU I'DAHUYHBIMU YCJIOBUAMU IIOCTABJICHA I IIOCTPOEHUA (byH,HaMeH—
TAJIbHOT'O peHieHnd, KOTOPO€ UCHOJIb3yeTCs AJId OIIpeaeJIeHUs TEeIlJIOBBIX ITOTEHIINAJIOB. HaFIa.TIbHOe yciioBue
copepxkut byukuo Jupaka. Perenne 3a1a4 HaifleHO B IBHOM BUJIe € TIOMOIIBIO WHTErPAJIBHOTO MPE0s-
paszoBanust Jlamnaca. Takke paccMOTpeHa KpaeBasi 3aJiada IIPU OTCYTCTBUU 0CeBOil cuMmMerpun. [lokasaHo,
qTO 3Ta 3aJada pasbUBaeTCs Ha CeMeMCTBa KPaeBbIX 33/1a4, aHAJIOIMYHBIX PACCMOTPEHHBIM BbIlle. B 3a-
KJIIOYEHUH [IPUBEJIEHA TIOCTAHOBKA KPAEBON 3aJIa4i TeIJIOPOBOIHOCTH C OCEBOH CUMMeTpueil B BBIPOXK1a-
forrelicss 06/1aCTH U BBIMUCAHO €€ (DyHIAMEHTAJIBLHOE PEeIlleHne, HaliIeHHOE BBIIIIe.

Kmouesvie crosa: ypaBHEHIE TEIJIOMPOBOIHOCTH, (DyHIAMEHTAIBLHOE peleHne, mpeobpaszoBanue Jlamaca,
oceBasl CUMMeTpUsi, ypaBHeHue Beccessi.
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