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On the finite element method for calculation of rectangular plates

The article is devoted to the study of bending problems for rectangular plates, which are of great applied
importance and are found everywhere in various branches of science and technology. The calculation of
plate bending is performed by the finite element method. In this article the structure of the method for
calculating the deformed and stress state of a rectangular finite element of the plate is described, their main
components are highlighted; the classical approach of calculating rectangular plates is characterized. The
mathematical apparatus of the calculation is presented in the volume necessary for calculating the plates.
This article is focused mainly on mechanics, physicists, engineers and technical specialists.

Keywords: finite element method, bending of a rectangular plate, finite element of a plate, plate deflection
function, coordinate functions.

Plates are rightly considered the most universal and widespread elements in virtually all sectors of the
economy. They are widely used in industry, in construction, in various branches of technology as structural
elements and parts of multifarious devices, numerous mechanisms and machines for diverse purposes.

Among the plates of different shapes, a special place is occupied by a rectangular plate, since the rectangular
plate has a universal shape and is the basis for the calculation of many plate structures [1, 2.

Separate rectangular plates are used in construction in the form of wall panels, wall beams, slabs and
floor panels and coatings, foundation slabs, etc. Connected horizontal and vertical plates form the load-bearing
system, which in relation to the buildings referred to as the wall system. An obliquely positioned plate can
form the span load-bearing structures. The system of rectangular inclined plates, the middle surface of which
is deployed on a plane, is called a fold. Folds are also widely used in construction and engineering.

During operation, the plates and plate structures are exposed to temperature, power, mechanical stress,
wear, etc. All this causes, first of all, the bending of the plate. Therefore, the theory of plate bending is an
important section of the general theory of plates.

To create new plates with specified performance characteristics and strength, it is necessary to investigate
how temperature-time, mechanical (including oscillatory), chemical and other influences can cause destructive
processes in the structure of the material. Therefore, the required qualities of the plates are usually provided
by calculating the effect of such forces on the strength and on the characteristics of the material necessary for
operation [3-6].

When calculating the plate strength for bending, it is necessary to have information about its stress-strain
state. Many various analytical and approximate methods of plate theory are used for this purpose [7-10]. An
exact solution in analytical form for such problems of plate bending is possible only in some particular cases
of the geometrical type of the plate, the load and the conditions for its fixation on the supports; therefore, for
engineering practice, approximate, but sufficiently accurate methods for solving the considered problem are of
special importance.

It should be noted that when calculating the plates by analytical methods in the most general formulation:
with arbitrary boundary conditions (including elastic), different types of load, complex shapes of plates, with
cuts, projections, etc., we have to face with great mathematical difficulties, and in most cases to obtain an
analytical solution is not possible. Such a problem can be solved by applying the very efficient finite element
method, which is a numerical approximate method for plates, but which gives a sufficiently high accuracy of
solutions.

The finite element method [11] is one of the numerical methods for solving the problems of solid deformable
body mechanics. This method is effectively developed in recent years. The name of this method to some extent
predetermines its essence: when using the finite element method, the calculated structure is mentally divided
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into separate elements, the stress-strain state of which is previously studied in detail and can be considered
known. The finite element method is based on two main ideas: discretization of the object under study on a
finite set of elements and piecewise-element approximation of the functions under study.

It is assumed that the elements are connected to each other in a finite number of points, called nodes. At
these points, efforts are determined. These efforts characterize the interaction of individual elements, through
which, ultimately, stresses and displacements of each element are calculated. Thus, the problem is discretized
and reduced to solving a system of algebraic equations with respect to unknown forces or displacements of
nodes.

Depending on which quantities are accepted as unknown, there are three classical approaches used in the
finite element method: the force method, the displacement method, and the mixed method. Note that due to a
number of advantages, the approach based on the idea of the displacement method is the most widespread in
the finite element method.

The type of the finite element is determined depending on the type of the structure under consideration.
So for rod systems, rods with different fastenings at the ends, which are element nodes, can be taken as the
finite element. Thin-walled spatial systems consisting of plates and shells are divided into triangular, rectangular
elements or elements of any other shape with nodes at angular points. Next, we consider a rectangular finite
element of the plate.

The deformed state of the rectangular finite element of the plate is completely determined by the following
parameters [12]

W (x,y) = "TV,

a(z,y) = (@)"V, B,y =(@)"V,
51 (Cﬂ,y) = (Jll)Tva 52 (l’,y) = (622)T‘7a 512 (%y) = (le)TV
r aq aq¢ ?q 0%q 0%q
q1:7q o 0J4q 11 _ 974 12 q 22 07¢ (1)
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where W (x,y) is the deflection function; a(z, y) is an angle of rotation (tilt) along the axis x; 8(x, y) is an angle
of rotation (tilt) along the axis y; & (x,y) is a curvature of the curve along the axis x; &, (z,y) is a curvature of
the curve along the axis y; £12(x,y) is torsion of the curve; ¢ is the vector of plate coordinate functions; Vis
the vector of nodal displacements for the finite element of the plate.

Taking into account the formulas of forces and (1)

2 2 2 2 2
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where © = 71, y = %2, x,y are dimensionless coordinates; the stress state of the finite element of the plate is
determined as
My =-D (& +v&)=—-DATV, A =" +vg*?

My =-D (§2+V§1):—DAT‘7 Ay = +Vq'11
My =—-D(1—v)é,=—-DBTV, B=g§?, (2)
Q,=-D Cl V C, = —»111 + 5122’
Qa=-DCIV, Cy=@"+ 72

On the basis of (1) and (2) it is easy to determine the deformation and force characteristics for the finite
element of the plate at any point with a known vector of nodal displacements V.
Considering values of functions [13]

filz) =223 =322+ 1, fo(zx) = 2 — 22° +
fa(x) = 32 — 223, fy(x) = 2 — 22,
eily) =29 =3y + 1, paly) =y’ — 2y

w3(y) = 3y° = 20°, paly) = — o,
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where fi(z),..., fa(z), €1(y), .-
that the plate coordinate functions are equal to [14]

, pa(y) are coordinate functions for bending beams, and taking into account

a1 (2,y) = f1 (@) Vi(y) + w(@)e1(y) — w(@)Vi(y),
a2 (z,y) = af2 (2) Vi(y), ¢ (z,y) = bui(z)p2(y),
1 (2,y) = f3 () Vi(y) — ua(z)ws(y) + ua(z)Va(y),
a5 (z,y) = afs (z) Vi(y), g6 (z,y) = buz(z)p2(y),
g7 (z,y) = f3 (x) Va(y) + uz(z)@s(y) — uz(x)Va(y),
as (z,y) = afs (2) Va(y), @0 (z,y) = buz (z) pa(y),
Q10 (2, y) = w1 () 3(y) — f3(x)Valy) + ua(2)Va(y),
qu (z,y) = afo () Va(y), @2 (z,y) = bui(z)pa(y),
u(z) =1-z, u(z)=z, Vi(y)=1-y, Valy) =y,

where u1, ug, Vi, Vo are coordinate functions of the rod during torsion, we have values of derivatives from

coordinate functions

A= @Dy, @' = @-20-y, d =0
A= -2 (-y), =@ -0y, @ =0,
d = -2y =@y d =0,

1o = ——5 (1 - 22)y, Qiizg(?mf?)y, 15 = 0.
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6i* =3 1=z, ¢*=0, q§2=%(3y—2)w
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q§2=—2(3y2—4y+1), in——i[(6x—6x2)—|—(6y—6y2—1)],
qézf—%(3x272z), qé2:2(3y2—4y+1),

@l = b[(6x—6x 1) + (6y — 6y%)] , q§2:%(3m2—2x),
= (- 2). alf =~ (6 - 657 — 1) + 6y~ 642)]
q}?=%(3$2—4x+1)7 q%%——l(i*»y —2y).

Here, the upper indices of ¢ show the order of differentiation with respect to the corresponding coordinate, and
the lower ones show the ordinal number. The functions of the distribution for transverse forces 21 and @2 can

be written as

6
72(22/71)’

~ab
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Ci‘Z—%( —y) — =5 (1-2y), CfZ%(l—y% C?Z%(?’y—?),
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=Sy (-2, =Ty P =3y,

Ch=(l-2)~ - (Qo-1), G3=-—@3r-2), C§=p(1-u),
Cg—gm—%(l—%‘), 025:—@(?@—1), C’S—b%x,
cr = gm—i—%(l—%s), ng—b(?,m—l), C’S—b%x,

c;oz—g(l—x)—%u—zx), 0211:%(333—2), c§2=b%(1_x).

It is known, stress state is completely determined by internal efforts.
We consider an arbitrary i-th node of the plate. For this node we have three efforts: torsional and bending

moments 2My9;, My;, Mo;.

The vector M of the nodal internal forces for the finite element takes the form

M,
My
My
M,

M=

where
2M9;

Mli )
My;

i, =

B is a matrix of efforts; V is a vector of nodal displacements.

i=1,2, 3,4,

We note that the values of derivatives in the nodes of the finite element were used in the preparation of the

matrix B of efforts (3). The effort matrix B is shown below

M1 1,12
B =
2,1 M12,12
where ;
ma=mN,7="M4,1 = N4,7 = N7,1 = N7,5 = N7,7 = MNo,1 = N10,7 = —%7
t
M,4a = 7MT,10 = N4,4 = N4,10 = N7,4 = 17,10 = 110,4 = 710,10 = %7
t t
M,2 =MN4,5 = N10,2 = *B, 1,11 = M4.8 = 17,8 = 110,11 = 5,
t

M,3 = M4,3 = N7,12 = N10,12 = ——,

a
1 v
M2,1 = 15,4 = Ng,7 = N11,10 = —6 o + 3 ) 1= e

4 4

N2,2 =M1,11 = —— M55 =1"188 = —, 1MN33=T66= "7
a a
4v 4v

N3,2 ="M211=——", MNes5="1N98= " T1T23=T56=—

a a
6
2,4 = 75,1 = 18,10 = Th1,7 = LT
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N,6 = MN4,6 = MN7,9 = 110,9 = Py

1 v

= 19,7 = M12,10 = —6 <b2 + aQ) ;

4
M9,9 = 2,12 = D

4v
78,9 ="M1,12 = ?7

6

50 13,10 = T6,7 = 19,4 = 112,1 = bj,
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6v 6v
N3,4 = Te,1 = 19,10 = MN12,7 = §7 N2,10 = M5,7 = 78,4 = M11,1 = b72’
2 2 2 2
N2,s =Mi8 = —— M52 =17811= —, MN312=1769= —7, 796 =17T23= 7,
a a b b
2v 2v 2v 2v
M35 =Mz = """ T2 ="911 = —» "212=1T759= "7 786 =17113= 7~
a a b b

The remaining elements of the matrix are equal to zero. The elements of this matrix depend on the sizes a and
b of the finite element and also depend on the parameter ¢ (3). The multiplier of this matrix is (—D).
Using the expressions of transverse forces and bending moments

Q1 =-DCTV, Q,=-DCITV, M=-D1+0v)ATV,
we write the vector of transverse forces

T

T . Qli

Q= 2 l=—DoV, T;=| Qu |, i=12 3, 4.
Ty i
Ty !

Here C is the matrix of transverse forces, which is determined by the values of derivatives in the nodes of
the finite element; D is the cylindrical rigidity of the plate; V' is a vector of nodal displacements of the finite
element.

M = M, + M,

is the generalized moment at which the value of the shear deflection V~V(x7y) can be found by the following
well-known formula [12] R R

where GF is shear rigidity. 61, C},ff are vectors of the coordinate functions, respectively Q1, Qo and M; i is
the number of a current node for the finite element. The transverse forces matrix C' is presented below

Y11 .- 1,12
C = . ,
Y12,1 .- V12,12
where
_ _ _ _ 6 [ 2 n 1 _ _ _ _ 6 (2 n 1
V1,4 = V4,4 = V7,7 = Y10,7 = a\a2 ERE V1,1 = V4,1 = 77,10 = 7Y10,10 = a \ g2 p2 )
_ _ _ _ 6 (2 n 1 _ _ _ _ 6 (2 n 1
V2,10 = V5,7 = V8,7 = V11,10 = b\ 32 a2 ) V2,1 = V5,4 = 78,4 = V11,1 = b\ 2 a2 )
1 1
Y31 =Y6,4 ="Y9,7 =210 = 6|5+ 5|,
a b
_ DV __6 e _6
71,10 = V4,10 = V7,1 = V10,1 = b2 V1,7 = V4,7 = V7,4 = 7104 = ab?’
_ _ B _ B _ B _ 6
V2,4 = V5,1 = V8,1 = V11,4 = T2 V2,7 = V5,10 = V8,10 = V11,7 = 20

6
V1,2 = Y1,5 = V3,4 = V4,2 = V4,5 = V6,1 = V7,8 = V7,11 = 79,10 = 7Y10,8 = 710,11 = V12,7 = ?7
V2,3 = Y2,12 = 73,10 = V5,6 = V5,9 = V6,7 = V8,6 = V8,9 = V9,4 = V11,3 = V11,12 = V12,1 = bja
4

V1,6 = V2,11 = V4,6 = V5,5 = V7,12 = 78,5 = V10,12 = V11,11 = *%,

4
71,3 = 72,2 = 74,3 = V5,8 = V7,9 = 78,8 = V10,9 = V11,2 = %7
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2
V1,9 = V2,8 = V4,9 = V5,2 = V7,3 = V8,2 = V10,3 = V11,8 = —%7
2
V1,12 = V2,5 = V4,12 = V5,11 = V7,6 = 78,11 = V10,6 = V11,5 = b’
4 4
Y6,5 = Y9,8 = —» 79,9 = V12,12 = T,
a b
2 2 2
Y35 =712,8 = ——, V6,2 = 7V9,11 = —, V3,12 =76,9 = —73, 79,6 = V12,3 = 7 -
a a b b

The remaining elements of the transverse forces matrix are equal to zero.

Replacement of the original construction with a set of discrete elements allows unifying the calculation of
various building objects: rod systems, thin-walled and massive structures and real structures that combine rods,
plates, shells etc. This circumstance makes the finite element method very universal and explains its increased
popularity.

Today, the finite element method is a powerful tool for engineering analysis and physical research through
the creation of software packages such as ANSYS, MSC.NASTRAN, MSC.MARC, COSMOS, ABAQUS. These
packages of computer programs implement the computational process of the finite element method, and also have
a convenient interface for input of initial data, control of the calculation process and processing of calculation
results [15].
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["'A. Ecenbaena, /I.H. Ecoaesa, H.K. Coi3pikoBa

TikOypsINOTHI IUIACTUHAJJIAPABI €CenTey YIMiH
COHFBI 3JIEMEHTTEP/IIH, 9/1iC1 TypPaJIbl

MakaJsa TIKOYpPBIIITHI [IACTHHAJIAP/BIH, Uiy MoceJeepin 3eprreyre apHaiaraf. IliacruHanapapiy, yiIkeH
KOJIaHOAJIBI MAHBI3bI Oap 2KOHE FHIJIBIM MEH TeXHUKAHBIH 9PTYPJIl cajaiapbIiHIa op kepae Ke3mecemi. [lma-
CTUHAJIAPBIH UiIyiH €CEnITey COHFBI 3JIEMEHTTED 9/IiCiMEeH OPBIHAAJIbI. ABTOPJIAD IJIACTUHAHBIH TiKOYPBIIII-
THI COHFBI JIEMEHTIHIH JedopMalusiIaHFaH »KoHe KEepHEeyJi KYHiH ecenTey oIiCiHIH KYPBIIBIMBIH OGeprex,
OHBIH, HETi3ri KOMIIOHEHTTEPIH aHbIKTaFaH, TIKOYPBIMITHI IIACTUHAIAP/IBI €CENTEY/IiH KIACCUKABIK, TOCLTiH
curarTaraH. MaTeMaTHKAJIBIK eCenTey anmapaThl IJIaCTHHAIAPIbI €CENITeY YIIiH KayKeTTi KeeM/e YChIHbLI-
ran. Makaja MexaHuKTepre, (PU3UKTEpre, WHXKEHEPJIEpre >KOHE TEXHUKAJBIK MaMaHJIBIKTAP/IbIH, MaMaH-
JapbliHa OAFBITTAJIFAH.

Kiam cesdep: coHrbl ssieMeHTTED 91ici, TIKOYPBIIITHI IJIACTUHAHBIH Uijlyl, IJIACTMHAHBIH, COHFBI SJIEMEHT],
IJTACTUHAHBIH ULy (OYHKIUSICHI, KOOPAUHATTHIK, (DYHKIHLIAP.

["'A. Ecenbaena, /I.H. Ecbaesa, H.K. Cor3ipixoBa

O MeTOo/Je KOHEYHbIX 3JIEMEHTOB IIpH1 pacdeTe
IIpAMOYTOJIBHBIX IIJIACTUH

Crarbsi OCBSIIEHA UCCIEIOBAHUIO 331249 N3rHba IPIMOYTOJIbHBIX IIJIACTUH, KOTOPbIE UMEIOT GOJIBIIIOE IIPH-
KJIQJTHOE 3HAYUEHHE M BCTPEYAIOTCS MOBCEMECTHO B CAMBIX PA3JIMYHBIX OTPAC/IAX HAyKW U TEeXHUKHU. Pacder
n3ruba MJIACTUH BBIIOJHEH METOIOM KOHEYHBIX 3JIEMEHTOB. ABTOpAMH IPEICTABJIEHA CTPYKTypPa METOIA
pacyeTa J1edOPMUPOBAHHOI'O U HAIIPSAZKEHHOTO COCTOSHUS IIPSIMOYTOJILHOIO KOHEYHOI'O 3JIEMEHTA IIJIACTUHBI,
BBIJIEJICHBI €0 OCHOBHBIE KOMIIOHEHTBI, OXapaKTEPU30BaH KJIACCUYECKUH ITOAXOJ PACUETa IMPSIMOYTOJIbHBIX
mwractuH. MaTtemaTrdeckunii anmapaTr pacdera MPEeJIOZKEH B HEOOXOAUMOM JJjis PACUETa IJIACTHH OObeMe.
Crarbsi OpUEHTHPOBAHA HA MEXaHUKOB, (DU3MKOB, WHKEHEPOB U CIIEIUAJIMCTOB TEXHUIECKHUX CHEIMaIbHO-
creil.

Kmouesvie caro6a: MeTON KOHEYHBIX 3JIEMEHTOB, U3rN0 MPSIMOYTOJIbHON IJIACTUHBI, KOHEYHDIN 9JIEMEHT I1J1a-
CTHHBI, QYHKIN IPOruda IJIACTUHBI, KOODAUHATHBIE (DYHKIINN.
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