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On the calculation of round plates for bending

The article is devoted to the study of bending of round plates, which are the basis for calculating many
problems of mechanics. In the article the structure of this method is presented, its main components are
highlighted; its types are characterized, as well as its classical approaches. In this article the research of
the bending problem for round plates is carried out in particular cases. Methods of bending calculation of
round plates like all analytical methods have a number of advantages, which are also noted in this article.
The article is focused mainly on mechanics, engineers and technical specialists.

Keywords: round plate, plate deflection function, axisymmetric loads, maximum deflection of the round
plate.

Plates are widely used now in various fields of technology: construction, engineering, aviation, shipbuilding,
etc. During operation, the plates are subjected to temperature, chemical, force and other influences. These
effects cause plate deformations. Therefore, the problem of calculating the plates are so diverse and have such
a different character [1-6].

Many structural elements, such as the bottoms of pistons, tanks, apparatus, hatches, various kinds of
covers; flanges; diaphragms, etc. [7], are round plates. The simplest form of deformation for such elements is
their bending [8-12].

We consider the bending of a round plate and several axisymmetric loads: P is the concentrated force at
the center of the plate, T is the ring load, ¢ is the distributed load.

We denote by h the thickness of the plate, which can be constant or variable. The outer radius of the plate
is denoted by R. Vertical linear displacements of the mid-plane points (along the z-axis) are called deflections
and are denoted by the letter W.

For thin plates, the assumptions called Kirchhoff hypotheses are valid [13].

We will distinguish two directions in the plate:

— the radial direction (all parameters of this direction are denoted by the index «r»),

— the circumferential direction (all parameters of this direction will be marked with the index «y»)

According to Kirchhoff’s hypotheses for radial and circumferential deformations, we obtain

dy z

& =2 Ep =

r

Then from Hooke’s law for the plane stress state (o, # 0, 0, # 0, 0, = 0) it is followed

Ez , %) Ez ;P
UT:17u2(¢+V?)’ U“’Zlfﬂ(”“ﬂr?)' (1)

The relationship between the deflection and the angle of rotation is written as

W' = —¢. (3)

Normal stresses o, are grouped in the bending moment M,., and o, are grouped in the bending moment M,
MT=D(<p’+V£), MwZD(w’ﬂLE), (3)
T T

where D is cylindrical rigidity of the plate.
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Tangential stresses from the platform of the unit width form a transverse force @) in the circumferential
section. The normal stresses are easily expressed in terms of bending moments. It is sufficient to substitute
expressions (3) in (1). Then we receive

where J = }f—; is the moment of inertia for a rectangular strip of unit width.

The signs rule of the bending moment for round plates: we assume that the bending moment is positive if
the upper layer of the plate is stretched.

With axisymmetric bending, the problem of calculating a round plate is significantly simplified, since in
all equations and formulas describing the bending of the plate, the derivatives with respect to the angular

coordinate are equal to zero. Therefore, the differential equation of plate bending takes the following form

AW 2dW  1dW | 1dW ¢ @

drt T r a3 2 dr2 3 dr D

The equation (4) is a differential equation of Euler.

In the case of plate equilibrium under the action of efforts M,, M, () and the acting load ¢ on the center
of the plate, it is possible to obtain the differential equation of the problem in a simpler form. Making two
equilibrium equations, we obtain

w”+<ﬂ—%=%- (5)

This is an ordinary second-order linear differential equation of second order with respect to a function for
the angle of rotation, and the resolving equation for axisymmetric bending through the function of deflection is
the equation of the fourth order. The general solution of the equation (5) takes the form

(& R
= — — ds.
. —l—Cgr—i—D/TO " Q(s)ds

¥

The calculation of bending for circular plates with constant thickness

We consider the pure bending of a solid round plate by moments distributed along the hinge-supported
contour. In this case, there is no transverse load. The transverse (cutting) force also equals zero: @ = 0 and we
have M, = M, = m, then the deflection of any point from equation (2) is equal to

m
W=0C-—v-— (r—12).
¢ baT) (r® =)
The constant C' is found from the boundary condition of the contour fixing.

In the case of hinged fastening the contour at r = R we have W = 0. If C equals zero (C = 0) and ro = R,
the condition of the hinged fastening is satisfied. Then the following formula is valid

_ m 2 _ 2
W72D(1—|—1/) (r*—r2).
The greatest deflection (at r = 0) is
mR?

Wmax = 51 N
2D(1+4v)

We consider a round plate under the action of a concentrated force Py at its center. In this case we have

Qs) = 2

T 271s’

(6)
Substituting (6) into the formula of the particular solution (5), we get

Po T 1
— In — — — 2 _ .2
7= gep [T T2 )
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Then the general solution can be written as

C Py r 1
p= f1—|—02 +ﬁ ln——g(ﬂ—rg). (7)

If r = R, ¢ = 0, then from (7) we find Cs

P /1 R
——In—|.
Gz = 47rD< nro)

As a result, the general solution takes the form

_ Byr lni
47D R
We calculate the bending moments
PO r PO r
Mr:74— {1+(1+V)1H§ , MWZ*E [VJr(lJFV)lnE} :

In the center of the plate, if r = 0 then In ; — oo and therefore, the values of bending moments tend to
infinity. On the edge of the plate, if » = R then In 1 = 0, and we have that the abcolute values of bending

moments are equal to

P, P,
M= M=%
7 47

Infinitely large values of bending moments are only a consequence of the extreme schematization for the
mathematical model of the problem (the concentrated force is applied at the point) [13]. In fact, this does
not happen, the load is distributed over a small platform, and in a small neighborhood of the point of force
application we have M, = M, as in all other cases of loading [14].

We consider the general differential equation of plate bending

d*w 243w 1 dPW 1 dW _q @)

drt rdr3 12 dr? 3 dr D

The general solution of the differential equation (8) has the form
W(r)=C1+ Colnr + Csr + Cyrlnr + Wi (r), (8)

where W1 (r) is a partial solution of the equation (4). To find a particular solution, we present equation (4) as

5120 (- %

D/ dg/ ndn/ 7d</ 7)rdr. (10)

For the case when the plate is under the action of a uniformly distributed load ¢ = const, after integration
(10) we have

After integration (9) we obtain

4

Wir) = o5 (11)

Included in (8) constant of integrations Cy, Ca, C3 and Cy are determined from the corresponding boundary
conditions in each specific problem.
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We consider the problem of bending for a round plate, rigidly pinched along the contour. This plate is under
the action of a uniformly distributed load g. The deflection of the plate is determined by the expression (8),
where the particular solution has the form (11).

In accordance with the physical meaning of the problem in the center of the plate at » = 0 deflection and
internal forces must have finite values. To satisfy this condition, it is necessary to remove the partial integrals
containing the natural logarithm in the general solution (8), putting the constant integrations Cy and Cy4 equal
to zero. Thus, we obtain the following expression for the deflection of the plate

W(r) = 64% 4 Oy + Car?

To determine the constants C; and Cs, we use the boundary conditions on the rigidly clamped plate contour

aw
r=R;, W=0, p=—-=0
dr
Using these conditions, we obtain two algebraic equations with respect to C7 and C5. Having solved these
equations, we receive
. R4 - R?
= 1 ) 02 = a
64D

= 32D

The final expression for the deflection is determined by the following formula
q./,’4 qulr-Q q.R4_ q

W=%D " 30 "D oD

(R2 — 7’2)2 .

Then we get the expressions for the internal forces in the plate in the form

MTZ%(RQ(l-i-V)—T‘Q(?)-‘rV)),
M¢:%(R2(1+1/)77"2(1+3u)),
Q=-%.

In the center of the plate, the bending moments are equal to each other, the transverse force is zero, and
the deflection has a maximum value equal to

_ ¢ R
Wnax = "1
If r = R we find the moments on the plate contour
q- R’ q- R’
Mr(r:R) = - S ; Mg@(r:R) = - S
On the center of the plate, where » = 0, we have
q- R’
M,=M,= 1 .
@ 16 (1+v)
The maximum stress on the plate contour is equal to
6M, 3q-R?
Ormax — — = =
h2 4 h2
In accordance with the condition of rigidity [14]
6- Mr max
Ormax — Ta = [U}bend. -5 %’

we make the adjustment of section thickness h.
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The round plate has a supported edge. Uniformly distributed in a circle of radius b the load P acts on the
plate. In this case, the expression for the function W (z,y) has different forms for » > b and r < b

r (3+v)a® — (1 —v)b?

_ P e eyt 22
Wr>b_87rD [(T +b)lna+ 2(1+v)a? (a T)}’

b (3+v)a?—(1—-v)b?
Wr - - 2 b21* 2 _ .2 2_b2.
YY) {(r * ) na+ 2(1 4+ v)a? (a " )+T
For a plate with a pinched edge at the same load P for the function W (z,y), we have [15]
P 9 9 rooa?+b? 9
Wr>b87rD{(r +b)lna+ 5,2 (a —7’) ,
b a®+0b?
_ 2,12 2.2 2 2
Wr<b—8ﬂ_l)|:(r +b)1ng+ 2&2 (a —7')"—7' _b:|

General case for bending of round plates
If the load on the plate or the conditions of its fixation are not axisymmetric, then the plate deflection
depends on variables r, ¢ and must satisfy the differential equation

DAAW = q(z,y). (12)

Obviously, we are looking for a solution for a round plate in polar coordinates. The equation (12) in polar
coordinates has the form

(82 1 9 1 02 ) (82W 1 oW 1 82W) _q(r,p)
D

a2 v o TR a2

or? +r Oor +7"2. 0p?

or in expanded form ) ,
W 2 PW 1 oW 2 PW 2 W
ot r2 0r20p%2  rt 9t r Ord 3 Ordp?
1 0*°W n 4 0PW n L oW q(r,e)
r2 or2 ot 9p2 3 9r D
In the general case of round plates bending to obtain a solution, the deflection of the plate can be represented
as a trigonometric Fourier series with respect to the angular coordinate ¢

(13)

W(r,9) = Wo(r) + 3 [6n(r) cos ng + 1 (r) sinng] (14)

where the functions Wy(r), &, (r) and 0, (r) characterize the change in the plate deflection in the radial direction
and they are to be determined.

An arbitrary load ¢(r, @) causing bending of the plate can also be decomposed into a trigonometric series,
similar to the series (14)

q(r,p) = qo(r) + Z [An(r) cos ng + p, (1) sinne] (15)
n=1
where
1 27 1 27
[%ﬁ%—%rl q(r, )dep, AMﬂ—;-A q(r, p) cos npdp,
1 27
un0ﬂ==4*l/‘ q(r, ) sinnpdp.
™ Jo

Substituting (14), (15) into (13) and comparing the coefficients of linearly independent functions 1, cosnp,
sinny we obtain three equations to determine functions Wy(r), &,(r) u n,(r)

AWy 2d3W, 1. d*W, 1dW, qo

: i o _ % 16
dr4 r drd r2 dr? r3 dr D’ (16)
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(17)

where

W'L’,n = i,n(’r)v Wl,n = fvu WQ,n = Tn,
Gin = Gin(T),  Qn =An, Qo =pn; i=1,2.

In equation (16), which describes the plate deflection, the derivatives with respect to the angular coordinate
vanish, since Wy is a function of r as the coefficient of the Fourier series with respect to . Thus, the function Wy
describes the axisymmetric bending of a round plate. Note that the partial differential equation (16) coincides
with the equation (4).

Equation (17) is an ordinary differential Euler equation. By replacing the variables r = e?, equation (17) is
reduced to a linear differential equation with constant coefficients

X

WY — 4w + 22 — )W/, + 4P*W/,, + n*(n® — YW, ,, =

,m 1
D (18)

where W =Win(t); Gin = Gn(t), i =1, 2. The characteristic equation for (18), obviously, has the form
Tin — AT 422 = )72, + 4’7, + 0P (n® — 4) = 0. (19)

In many cases, when solving the problem of bending for a round plate, the accuracy given by the formula
(14) is sufficient if there is only the first term of the series (14). If n = 1, then the characteristic equation (19)
has roots 7,10 =1, 7,3 = 3, 7,4 = —1. In this case, the general solution of the differential equation (17) takes
the form

Lia
Wi’l(r):Allr—i—Bllrlnr—i—Kﬂr 4+ —= —|—W()( ),
where A; 1, B 1, K; 1, L; 1 are constants of integration, Wi()l) is a partial solution of the equation (17). Constants
of integration A; 1, B; 1, K;1, L;1 are usually determined from the given boundary conditions, and a partial
solution Wl(ll) depends on the type of load applied to the plate.
If n =1 the plate deflection in the general case can be written in the form

L
W{(r,¢) = Wo(r) + {Alylr + Biarlnr+ Ky r + % + Wl(’ll)(r)} cos p+

Lo,
|:A2 1’I"+B2 1T1HT+K2 1r+ — +W2(11)( ):|

It should be noted that almost all the problems related to the study of stresses and strains in a plate are
reduced to solving boundary value problems for one or several differential equations. The exact solution of these
equations does not cause difficulties only in some elementary cases. In more complex cases, finding a solution
in analytical form is associated with great mathematical difficulties.

In such cases, it is recommended to use approximate solution methods: variational methods (Ritz method,
Galerkin method, Treffz method, Kantorovich method, etc.), which give an approximate analytical expression
for the desired function and numerical methods (finite difference method, grid method, variational-difference
method, finite element method, etc.), which determine the numerical values of the function for different values
of the argument.
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['A. Ecenbaena, A.T. Kacumos, B.A. Kacumon

I/Ilﬂy YH_IIH AOHI'eJIEK IIJIaCTHHAJIaApAbl €eCelITey TypaJibl

MakaJjia qeHresek ImjacTHHAJAPILIH HiJIYiH 3€pTTEY MOceseCiHe apHAJFaH, IJIACTUHA MEXaHUKAHBIH KOII-
TereH ecenTeyiH Heri3l 60bin TabblIaabl. ABTOPJIAD OCHI 9JIICTIH KYPBLIBIMBIH OEPreH, OHBIH Heri3ri KoM-
IIOHEHTTEPIH KOPCETKEH, COHMAl-aK OHBIH TYpPJepl MeH KJIACCHUKAJIBIK ToCclimepiH cumarrtaran. Makasama
JKeKe Kapjaiyiapia JeHre/leK MIacTUHAIAPIbIH, Wiy Moceseci OoiibiHIE 3epTTey Kyprisimm. JleHnremex
IUTACTUHAJIAP/IBIH, HiTYiH ecenTey oaicTepi, OApJ/IBbIK, AHATUTUKAJIBIK DJIICTEp CUSKTHI, OipHEIle apThIKINbLIbI-
KTapra ue. Herisinen, makaia MexXaHUKTepre, HHKEHEPJIEPre »KOHE TEXHUKAJIBIK MaMaHIbIKTAPbl MaMaH-
Japra GaFbITTaIFaH.

Kiam cosdep: meHresiek miacTUHA, IJIACTUHAHBIH ULTY (PYHKIHSACHI, OCBCUMMETPUSIIBIK, JKYKTEMEJIED, TOH-
rejieK IJIACTUHAHBIH €H, XKOFaphl UiIyi.
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O pacuere KpyIJIbIX ILIACTUH Ha U3TUO

Crarbst NOCBIIEHa BOIIPOCY MCCIEIOBAHUS U3rnba KPYTJIbIX IJIACTUH, SIBJISIIONIUXCS OCHOBOM pacdeTa MHO-
UX 3aJ[a9 MeXaHUKU. ABTOpaMU MPEJICTABIIEHA CTPYKTYPa JAHHOIO METO/IA, BBIJIEJIEHBI €r0 OCHOBHBIE KOM-
IIOHEHTBI, OXapPaKTEPU30BAHBI BU/IbI, a TAKXKE €ro KJIaCCHYeCKne MOAX0Abl. B cTaThbe IPOBEIEHO UCCIIe 0B~
HEEe 33/1a9u 00 M3rnbe KPYIJIbIX IIACTUH B YACTHBIX Ciaydasx. Merompr pacdera m3rnba KPyIJIbIX IJIACTUH,
KaK M BCe aHAJIMTUYECKNE METOIbI, HIMEIOT PsAJI IPEUMYIIECTB, KOTOPble OTMEYEHBI B CTaThe. [JIaBHBIM 00-
pa3oM, CTaTbsl pacCYMTaHa HAa MEXaHWKOB, WHKEHEPOB U CIEIUAJIICTOB TEXHUYIECKUX CIIEINAJIbHOCTE.

Karouesvie caosa: Kpyriias nacTuHa, OYHKIUA IPOruda MIacTUHBI, OCECUMMETPUYHbIE HATPYy3KH, MaKCH-
MaJIbHBII IpOrn® KPyTJIoi MIaCTUHBL.
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