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On the calculation of rectangular plates
by the trigonometric series

The article is devoted to the question of applying the method of single trigonometric series to solving the
plate bending problems. In this article the structure of this method is described, its main components are
highlighted, the classical approach of calculating rectangular plates hinged supported on two parallel sides
and with arbitrary boundary conditions on each of the other two sides is characterized. The mathematical
apparatus of the method of single trigonometric series is presented in the volume necessary for calculating
the plates. The detailed example of calculating a rectangular plate by the stated method is given. The
article is focused mainly on students and undergraduates engaged in research work in the field of mechanics
and applied mathematics.
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Plate bending problems play an important role in construction, engineering, aviation, shipbuilding, etc.
Construction and technics are the branches of activity of the industrial complex which always were, are and will
remain in demand by the country’s economy; therefore, issues related to the theoretical studies of such problems
remain relevant and have important practical value [1].

Many analytical and numerical calculation methods are used to study the problems of plate bending [2, 3].
An exact solution in analytical form for such problems is possible only in some particular cases of the geometrical
type of the plate, the load and the conditions for its fixation on the supports, therefore, for engineering practice,
approximate, but sufficiently accurate methods for solving the considered boundary value problem are of special
importance.

When considering the plate bending problems, the methods of double and single trigonometric series are
the most interesting because of connection with their possible numerical implementation in the Maple software
package [4].

The solution in double trigonometric series (Navier’s solution) is typically used for rectangular plates, freely
or hinged supported around the entire contour. The solution in single trigonometric series (Levi’s solution)
allows to perform the calculation of a plate hinged supported on two parallel sides and with arbitrary boundary
conditions on each of the other two sides.

We consider the case of a plate 0 < x < a, 0 < y < b, in which only two opposite edges have a hinge support
(for example, © = 0 and x = a) and the other two edges have arbitrary boundary conditions.

We present the desired function of plate deflections W (z,y) in the form of a single trigonometric series

W(z,y) = Z Y, sinw,, (1)
n=1

where w, = %, Y, = Y, (y) is an unknown function, which is chosen so that expression (1) satisfies the resolving
equation of S. Germain
DAAW = q(z,y), (2)

and the conditions of fixing on the edges y = 0 and y = b. Here D is the cylindrical rigidity of the plate, ¢ is
the intensity of the external distributed load, AA W is a biharmonic operator.

The deflection and the bending moment along the hinged supported edges must be equal to zero, so the
boundary conditions have the following form when 2 = 0 and 2 = a [5]
*w o*w B

+v =0; (3)

w=0 Ox2 Oy?
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where v is Poisson’s coefficient. It is obvious that expression (1) satisfies the boundary conditions (3), which are
given on the sides = 0, x = a of the plate.
We present the load function ¢(x,y) in a form of a trigonometric series

(o)
o) = 3 anly) simenr, @
n=1
where 5 o
w0 =2 [ al.y) - sinw,ads o)

Substituting formulas (1) and (4) into the basic differential equation (2), we obtain

M8

1 o0
(WY, — 2W2Y” + V!V sinw,z = b Z qn SIN W, T. (6)
n=1

n=1

Obviously, the relation (6) will be satisfied if
VIV 22V + Wty = %". (7)

The ordinary differential equation (7) allows us to determine an unknown function ¥, for any number n of
expansion. Its general solution can be written as

Yo(y) = A, - chwpy + By, - shwpy + Gy -y - chwpy + Dy, -y - shwny + o0 (v), (8)

where A,,, By, C,, D, are arbitrary integration constants, and ¢,, is a partial integral depending on the type
¢n and, therefore, on a given external load ¢.

To determine the four integration constants A,,, By, C,, D,, the boundary conditions defined at the edges
of the plate y = 0, y = b are used and this boundary conditions, of course, can be different. In the general case,
this leads to the solving a system of algebraic equations with respect to unknowns A,,, B,, C,, D,.

The order of this system will increase if the load is given in the direction of the y-axis by a discontinuous
law. For example, if the load breaks the plate in the direction of the y-axis into k sections. For each section we
will have four unknowns A,,, B,, C,, D,, and their total number will be equal to 4k. Thus, to determine the
integration constants, it is necessary to create a system of 4k algebraic equations here, four of which will reflect
the boundary conditions at the edges of the plate, and 4k-4 other equations will be the conjugation conditions
of the k sections. To overcome the noted inconvenience, the solution of equation (7) should not be represented
in the form of (8), but this solution should be presented in the form of the method of initial parameters. In this
case, for any law of load distribution, to find the integration constants (initial parameters), it will be necessary
to solve a system of only two algebraic equations [6].

After finding the coefficients A,,, B,, Cp, D, and determining the function Y,,(y) by the formula (8), the
plate deflections can be found by the formula (1) in the form of a series, so bending moments, torque, as well
as, transverse forces will be written as

M, (z,y)=—-D Z(VYT:/ —w?Y,)sinw,z,

n=1
M,(z,y) = —-D Z(Y,;’ — VWY, )sinw,,
n=1
My (z,y) = —D(1 —v) Z wnY, coswn,, 9)

n=1

Qu(x,y) = —D Z wn (Y — W2 Y,,) cos wy,

n=1

Qy(z,y) =—-D Z(YTZ" — WY sinwpz .

n=1
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Consider the case of a uniformly distributed load of the constant intensity ¢ = const. Using the formula (5),
we obtain

O’ ’I’l:2m7 m:l’ 2,
q”_{ffi; n=2m-1, m=1,2 . (10)
Then, taking into account (10), the partial integral of equation (7) can be written as
— O’ n:2m7 m:l’ 2, 1
T My n=2m—1, m=1,2,.. (11)

It can be seen from (11) that for even n, the homogeneous differential equation (7) has only trivial solution,
so in the case of a uniformly distributed load of constant intensity the deflection function W(x,y) takes the
form

o0
W(z,y) = Z [Aom—1chwam—1Y + Bam—15hwam—1y + y (Com—1chwam—1y + Dam—15hwam—1y) +
m=1

+ X
7D(2m — 1)ws,,

where the coefficients A,,, B,,, Cy, D, depend on the given boundary conditions of the plate edges y = 0 and
y=>0.

As an example of calculating the coefficients of the plate A,, B,, C,, D,, we consider the case when one
of the sides of the plate parallel to the z-axis is supported by an elastic contour, and the other side is rigidly
pinched. The elastic contour may be, for example, a beam, bending under the action of pressures applied to it.

Denote by EJ the rigidity of the beam, then on the elastically supported edge of the plate y = 0 the

boundary conditions take the form [5]
0*wW n VGQW
0y? Ox?

| - sinway,_17, (12)

= O’
y=0

PW PW ow
D 2—V) —— =(EJ . 13
o e, (55, )
On the rigidly pinched edge of the plate y = b, the boundary conditions are written as
w - =0 14
=0 5y (14
Note that from the relation -
Z Fn(y) sinwpr = G(ma y)7 (15)

when multiplying (15) by sinwyx, integrating with respect to z from 0 to a and replacing k by n, we receive
2 a
F,(y) = f/ G(z,y) sinw,ade. (16)
aJo

From the boundary conditions (13), (14), taking into account (15), (16) we obtain that the required function
Y. (y) must satisfy the following relations

" — )Wl Y EJ | 4. =
§Z(b§01 0(2 ) W Y10) - B Ya(0) =0, (17)
Y!(b) = 0.

From (17) and (8) we obtain a system of algebraic equations to determine the coefficients A,,, B, Cpn, Dy

(]-*V)WnAn“i’QDn :fla

%m}%~An+(171/)~wn~Bn—(1+V)'Cn:f2,

A, - chw,b+ By, - shw,b+ Cyp, - b - chwp,b+ Dy, - b+ shwpb = f3,

Ay - wy - shwb + By, - wy, - chwpb + Cp(chwpb 4+ b - wy, - shwpb) + Dy (shwpb + b - wy, - chwpb) = fy,

(18)
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where
flz_ @Z(O)"'V wn * ¢n(0),
nod LS 0) - (2= 0) - #h(0) — B a(0), 19)
= _Spn( )7
After transformations, the system (18), (19) takes the form
An+ Gy, Dn = 91
B, — (11—:;;” Cn— D(21E )2 D, = g2,
(11? sheonb + belund| Cr + | iy shunb — 25 chwnb] Dy = g3, (20)
chwanr bwn, shwny, } C, + [D(l 2ch(,un — mshwnb} D,, = gu,
where
g1 = (1 — V)wn 1
EJ 1
g2 ~Da )2f1+(1 0 nf2,
FE shw,b
g3 [D(l V)2shwnb 1= chwnb} “f1— mh + fa; (21)
EJw, chwyb
g4 [D(l—u)20hwnb — shwnb] fi— 1_Vf2+f4;
7 =2EJ +bD(1—v)?%.
From the last two equations of the system (20), (21), we find the values of the coefficients C,, and D,, :
[Twnchwnb —D(1 - VQ)Shwnb] g3 + {i—D(l — v)chwpb — 7 - shwnb} g4
Cn = B ;
(bTan + —) ch?w,b+ [Db(1 — v)2 — 7] shw,b - chw, b — {%(1 +v)2+ bTwn] sh2w,b
D(1-v) {— [2chwnb + bw,, (1 — v)shw,b] g3 + {H” shwnb 4+ b(1 — V)chwnb} }
D, = (22)

(bnun n ‘jTD) ch2wpb + [Db(1 — 1)2 — 7] shwnb - chwnb — [z(l Y24 bmn} sh2wpb

Using the first equations of the system (20)

2
An - - Dna
n (1-v)w,
1+v 2EJ
Bn = n -D’na
R Ty W > s B

and taking into account (22), we obtain the values of the coefficients A,, and B,, in the following forms

) 9 D(1-v) {f [2chw,b + bw, (1 — v)shw,b] g3 + [1+”shwnb +b(1 - V)chwnb} }
n = g1 — ’ ;
(1= V) (bm}n + j—D) ch2uwnb + [Db(1 — )2 — 7] shunb - chanb — [w%(l U)o+ bmn} sh2wnb
5 . 1+ v [Twnchwnb - D(1 - y2)shwnb] g3 + [%(1 — v)chwpb — 1 - shwnb} g4 .
n = g2 '
(1 =v)wn (brwn + %) ch2w,b + [Db(1 — v)2 — 7] shwyb - chw,b — [W%(l +v)? + bTwn] sh2w,b
2F.T — [2chw,b + bwy, (1 — v)shw,b] g3 + [tr—"”shwnb +b(1 — V)chwnb} g4

LA . @3
1+v (bTwn + %) ch2w,b + [Db(1 — v)2 — 7] shwpyb - chw,b — [w%(l +v)2+ bTwn] sh2wp,b
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Due to the bulkiness of formulas (22), (23) for the determination of the coefficients A,,, B, Cp, D, in the
general case, and, consequently, due to the inconvenience and complexity of further use of these formulas, it
is recommended that all calculations of the constants A,, B,, C,, D, are carried out for specific numerical
values of the system coefficients (20), (21) in each particular case with given numerical parameters.

Substitution of the found coefficients A,,, B,, Cy, D, in (8), (9), (10) gives the function of plate deflections
W (z,y), bending moments and torques, as well as transverse forces in the form of trigonometric series in the
case where one of the sides of the plate parallel to the z-axis is supported by an elastic contour, and another
side is rigidly pinched.

In the case of a uniformly distributed load of constant intensity g, the deflection function has the form (12)
with coeflicients (22), (23).

In principle, the method of single trigonometric series is more accurate than the previously considered
Navier’s method [6], since in this method the required function W(x,y) is approximated by trigonometric
functions only in one direction, and in another direction the function W(z,y) is sought precisely from the
differential equation (7). This can be seen from a comparison of the results obtained by the two methods for
the previously considered problem of bending a square plate, hinged around the entire contour, in Table [6].

It should be noted that with one term of expansion (1) in the single trigonometric series method, not only
the values of the deflection W (x,y) and bending moment M, are significantly clarified, but also the value of
bending moment of another direction M, are greatly improved. Note that in both of the considered methods,
the convergence of the series will be higher and the accuracy will be greater, than better a given load ¢(x,y)
can be represented by expansion in trigonometric functions [6].
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["'A. Ecenbaena, ®.M. Axanos, T.X. Makaxkanosa

TikOypbIITHI IIJIACTUHAJJIAPABI TPUTOHOMETPUSIJIIBIK,
KaTapJiapMeH ecenTey TyPpaJibl

Maxkasa nimacTuHAIAPIBIH Uiyl TypaJIbl €CENITeP/Ii MIENTyTe fapa TPUTOHOMETPUSIIBIK, KATAPJIAP DIICIiH KOJI-
JaHy Moacesiecine apHasFaH. OChl 9/1iC KYPBLIBIMbI KEJITIPL/IIl, OHBIH, HET13T KOMIIOHEHTTEPI KOPCETII, TiK-
OYPBINMITHI TTACTUHAIAP/IBI €CENTEYTe KIACCUKAJIBIK, 9/IICTI CUMTATTAN b, €Ki apasliesib JKaKTapbl TOTICAJIBI
OekiTinreH koHe 6aCKa €Ki yKaKTapbl Ke3 KeJITeH MeKapaJIblK yKarJaiiMeH aHbIKTaIabl. lapa Tpuronomer-
PUSUIBIK, KaTapJiap 9JiCiHIH MaTeMaTHKAJbIK allllapaThl IJIACTHHAJIAPIbI €CENTey YIIH KayKeTTi Kejem/ie
YCHIHBIIFAH. DBepiiren ojiciieH TIKOYPBIMITH TJIACTHHAHBI €CENTEY/TiH, erKei-Ter>Keiii MbICAJIbI KeJITipi-
red. Bynm makasa, HerisineH, MeXaHUKa 2KoHe KOJIIAHOAIBI MATEMATHKA CAJIACHIHIAFBl FHLIBIMU-3€PTTEY
JKYMBICTapPBIMEH afHAJIBICATHIH CTYJIEHTTED MEH MaruCTPAHTTapra OarbITTaJ/IFaH.

Kiam cesdep: TIKOYPBINITH TIJIACTUHAHBIH, UiTyl, MJIACTUHAHBIH WiTy (DYHKIIUSCHI, TIACTUHAHBIH IIIEKapa-
JIBIK, IIAPTTaPhl, TPUIOHOMETPHSIJIBIK, KaTapJap oici, Jlepu merrimi.
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["'A. EcenbaeBa, ®.M. Axanos, T.X. Makakanosa

O pacdere InpaMOYI'OJIbHbBIX ITIJIACTHUH
TPUTIOHOMETPpUYIECCKNMU pddaMn

Crarbsl MOCBAIIEHA BOIIPOCY MPUMEHEHUS METO/a OJUHAPHBIX TPUTOHOMETPUIECKUX PSAJIOB K PEIEeHUIO 3a-
Jad 06 m3rube nacTrH. ABTOpaMU IIPEJCTABJIEHA CTPYKTYpPa JIAHHOI'O METOa, BBIJIEJIEHbI €r0 OCHOBHBIE
KOMIIOHEHTBI, OXapaKTEPU30BAH KJIACCHYIECKUH TI0JIXO0, PACUETA TPAMOYTOJIbHBIX IIJIACTHH, ITAPHUPHO OIlep-
TBIX IO JIBYM HapaJsljIeJIbHbIM CTOPOHAM U C IIPOU3BOJIbHBIMUA I'DAHUYHBIMU YCJIOBUAMU Ha KaxKJIOI U3 IBYX
JAPYTUX CTOPOH. MaTeMaTHYecKuil almnapaT MeTO1a OJUHAPHBIX TPUTOHOMETPUYIECKUX DsAJIOB IIPEJICTABIJIEH
B HEOOXOIMMOM JjIsi pacdéra IiacTuH obbeme. [IpmBenen moapoOHBIN puMep pacdera MPSMOYTOJIBHOMN
IUTACTUHBI M3JI0KEHHBIM MeTo/IoM. J/laHHas cTaTbs OPUEHTHUPOBAHA, TVIABHBIM 0Opa30M, HA CTY/IEHTOB U
MAaruCTPaHTOB, 3aHUMAIOIINXCS HayIHO-UCCJIEJ0BATEIBCKON PAbOTON B 00JIACTH MEXAHUKH U IIPHUKJIATHON
MaTeMaTUKH.

Kmouesvie crosa: m3rud mpsiMOyTOJBbHON IIACTUHBI, (DYHKIUsT MPOTHOA TJIACTHHBI, TPAHUIHBIE YCJIOBUS
ITACTUHBI, METOJT TPUTOHOMETPUYIECKUX PsAIOB, peleHue JleBu.
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