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Justification of the dependencies for calculating gripping forces
of multifaceted unresharpenable plates in the holder

of a cutoff tool at their lateral installation

In the article mathematical dependencies to determine the gripping force of the cutting plate in the
socket of assembled cutoff tools with the lateral installation of multifaceted unresharpenable plates (MUP)
are proposed for the first time, which makes it impossible to move the plate in any direction while the
cutting forces acting on it. Moreover, the expressions are obtained to determine the minimum height of the
intersection of the cutoff tool socket head, which is important at the stage of creating a methodology for
designing this type of tool.
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Introduction

In modern machining of metals by cutting the most progressive are assembled tools with mechanical
mounting of multifaceted unresharpenable plates. One of the main advantages of this type of tools is that
when one cutting edge is worn, a cutting plate rotates around its own axis to enable the operation of another,
which significantly reduces the time of tool adjustment, since in this case there is no need to remove it from
the tool holder, which is very relevant for modern machine tools with numerical control and automated lines.
Application in industry of assembled metal cutting tools with mechanical mounting of plates allows increasing
productivity of processing, since the cutting speed of these tools is 1,5 – 2 times higher than that of brazed
ones [1–5]. Therefore, the widespread use of assembled metal cutting tools is important for modern machine
building.

However, for modern cutoff tools with mechanical mounting, predominately, single- or double-blade cutting
plates of a specific non-technological complex shape are used. Cutoff tools equipped with multifaceted plates
of three-, four- or five-faced shape [6–8] are used mainly for cutting rods with a diameter of up to 12 mm due
to lateral installation of cutting plates on the tool case (Fig. 1), which significantly restricts the overhang of a
cutting part and, as a result, the scope of their application.

In order to eliminate the disadvantages of listed above, the authors [9–14] for the first time proposed a
new design of assembled cutoff tool with lateral installation of multifaceted unresharpenable plates (Fig. 2),
consisting of a holder 1, hook 2, screw 3, and multifaceted unresharpenable plate 4. In this design of the cutting
tool, locating and fixing of MUP is carried out only on the thrust surfaces, which makes it possible to perform
cutting of rods with a diameter of up to 30 mm.
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Figure 1. Groove cutters with lateral
mounting of multifaceted plates

 

Figure 2. Design of assembled cutoff tool with
lateral installation of multifaceted plates

Relevance. The main factors influencing the reliability of assembled metal cutting tools are the installation
scheme, mounting and fixing of multifaceted unresharpenable plates. The provision of the necessary gripping
force is a crucial task, which depends on the performance of the cutting tool under the action of the resulting
cutting force.

Given kind of plate installation is proposed for the first time, in order to ensure the efficiency of this tool, it is
necessary to obtain mathematical dependencies that will enable to determine the required strength of attaching
the plate in the socket, which makes it impossible to move the plate in any direction while cutting forces acting
on it, and to determine minimum height of the intersection of the cutter head socket.

Research results

The clamping of a plate should exclude the movement of MUP under the action of the forces that occur
during cutting. Primarily, their action is determined by the physical and chemical properties of the material
being processed (hardness, chemical composition), on the basis of which the cutting modes are specified, and
by the heterogeneity of the distribution in it of the constituent elements, as well as the structural and geometric
parameters of the cutting part and the conditions of the plate installation.

The cutting plate during the cutting process is exposed to active forces: the resulting cutting force Pp

and the force of gripping Fgr. the cutting plate, which are balanced by the reactions R1 and R2 of supporting
surfaces of the plate socket (Fig. 3, Fig. 4). Since the forces acting on the plate form, a balanced plane system,
the algebraic sums of the projections of these forces on the coordinate axis are equal to zero. The plate is under
the action of a system of arbitrarily located forces, for the equilibrium of which the fulfillment of the three
following conditions is required [15–18]:

 

Figure 3. Scheme of active forces acting on the cutting plate

 

Figure 4. Scheme to determine the moments

∑
Fiz = 0;−Pz − Fgr. · cosψ +R2 · sinχ+R1 · sinµ = 0; (1)
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∑
Fiy = 0;Py − Fgr. · sinψ −R2 · cosχ+R1 · cosµ = 0; (2)∑

(F ) = 0;−Fgr. · h1 + R1 · h2 = 0. (3)

From the equation (1) we derive the gripping force Fgr.:

Fgr. =
R1 · sinµ+R2 · sinχ− Pz

cosψ
. (4)

From the equation (2) we determine the reaction R2:

R2 =
R1 · cosµ+ Py − Fgr. · sinψ

cosχ
. (5)

From the equation (3) we determine the reaction R1:

R1 =
Fgr. · h1

h2
. (6)

We apply the equation (6) to the equation (5)

R2 =

Fgr.·h1

h2
cosµ+ Py − Fgr. · sinψ

cosχ
=
h1 · Fgr. · cosµ+ h2 · Py − h2 · Fgr. · sinψ

h2 · cosχ
. (7)

The obtained equations (6) and (7) we apply to the equation (4) to determine the gripping force of a cutting
plate:

Fgr. =

sinχ(h1·Fgr.·cosµ+h2·Py−h2·Fgr.·sinψ)

h2·cosχ +
Fgr.·h1

h2
· sinµ− Pz

cosψ
;

Fgr. =

tgχ(h1·Fgr.·cosµ+h2·Py−h2·Fgr.·sinψ)

h2
+

Fgr.·h1

h2
· sinµ− Pz

cosψ
;

Fgr. · cosψ = tgχ
h1 · Fgr.

h2
· cosµ+ Py · tgχ− tgχ

h2 · Fgr.

h2
sinψ +

Fgr. · h1

h2
· sinµ− Pz;

Fgr. · cosψ = tgχ
h1 · Fgr.

h2
· cosµ− tgχh2 · Fgr.

h2
sinψ − Fgr. · h1

h2
· sinµ = Py · tgχ− Pz;

Fgr. =
h2 · cosψ − tgχ · h1 · cosµ− tgχ · sinψ − h1 · sinµ

h2
= Py · tgχ− Pz;

Fgr. =
h2 · (Py · tgχ− Pz)

h2 · cosψ − tgχ · h1 · cosµ− tgχ · sinψ − h1 · sinµ
. (8)

We determine the arms of forces according to Figure 4:

h1 = a · cos ν +
b

2
;

h2 = b · cos τ +
a

2
.

We apply the determined values of the arms of forces to the equation and obtain the mathematical dependency
that allows determining the necessary gripping force of a plate at the given type of its installation (8):

Fgr. =
(b · cos τ + a

2 ) · (Py · tgχ− Pz)
(b · cos τ + a

2 ) · cosψ − tgχ · cosµ(a · cos ν + b
2 )− tgχ · sinψ − sinµ · (a · cos ν + b

2 )
.

However, the disadvantage of this plate mounting scheme (Fig. 4) is the action of the plate gripping force
Fgr upon the front wall of the tool socket [19–22]. In order to eliminate this drawback, the following scheme of
three-faceted plate (Fig. 5) was proposed. According to this scheme, the front socket wall is made at an angle
µ = 40◦, and the back one – at an angle χ = 20◦, which, under the chosen scheme of hook installation removes
the action of the gripping force Fgr on the front socket wall. Thus, the components of the cutting forces Pz, Py
and the resulting cutting force Pp are fully compensated by the reactions of the supports of the front R1, R1z,
R1y and back R2, R2z, R2y socket walls [23–25].
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1 – hook; 2 – cutter case

Figure 5. Scheme for calculating stresses and the minimum intersection of the cutter head

The equations of interaction of these forces are as follows:

Pz = R1 · sinµ+R2 · sinχ; (9)

Py = −R1 · cosµ+R2 · cosχ. (10)

From the equation (10) we determine the support reaction R2 of the back socket wall:

R2 =
Py +R1 cosµ

cosχ
.

Applying it to the equation (9), after performing transformations we obtain:

Pz = R1 · sinµ+
Py+R1 cosµ

cosχ sinχ =

Pz cosχ = R1 sinµ cosχ+ Py sinχ+R1 cosµ sinχ =
Pz cosχ− Py sinχ = R1 sinµ cosχ+R1 cosµ sinχ =
Pz cosχ− Py sinχ = R1(sinµ cosχ+ cosµ sinχ) =
Pz cosχ− Py sinχ = R1 sin (µ+ χ) .

(11)

From the equation (11) we determine the support reaction R1 of the front socket wall:

R1 =
Pz cosχ− Py sinχ

sin (µ+ χ)
.

The most dangerous is the bending stress σbs in the minimum intersection of the cutter head on the bottom
of the socket, from the action of the reaction force R2 on its front wall, which we consider to be applied in the
middle of this wall, having a length l1 = 14 mm:

σbs =
R1 sinµ · 1

2 l1 sinµ

Wx
, (12)

where Wx – the moment of resistance to the bend of the minimum intersection on the head of the cutter, which
has a height h1 and a thickness b1 = 2.5 mm:

Wx =
b1h

2
1

6
. (13)

After applying the equation (13) to the equation (12), we obtain the following:

σbs =
6R1 sinµ · 1

2 l1 sinµ

b1h2
1

=
3 ·R1 · l1 sin2 µ

b1h2
1

. (14)
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From the equation (14) we obtain the minimum height of the intersection h1:

h1 =

√
3 ·R1 · l1 sin2 µ

b1 [σbs]
,

where [σbs] – maximum allowable bending stresses, MPa.

Conclusions

As a result of the performed researches, mathematical dependencies to determine the gripping force of the
cutting plate in the socket of assembled cutoff tools with the lateral installation of multifaceted unresharpenable
plates, are proposed for the first time which makes it impossible to move the plate in any direction while the
cutting forces acting on it. Moreover, the expressions are obtained to determine the minimum height of the
intersection of the cutoff tool socket head, which is important at the stage of creating a methodology for
designing this type of tool.
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M.В. Бабий, В.О. Настасенко, В.О. Проценко, Д.А. Зинченко

Кескiдегi кескiш ұстағышындағы бүйiрлiк орнатуда
көпқырлы қайта жоңылмайтын пластиналарды бекiту күшiн

есептеуге арналған тәуелдiлiктердi негiздеу
Мақалада алғаш рет кесу күшiнiң әсерiнен болатын пластинаның кез келген бағыттағы қозғалысын
болдырмайтын, бүйiрлiк орнатуда көпқырлы қайта жонылмайтын пластиналарды кескiдегi кескiш-
тер жиынтығының орнына кескiш пластинаны бекiтуге қажеттi күштi анықтау үшiн математикалық
тәуелдiлiк ұсынылды. Сонымен бiрге мұндай құрылғының жобалау әдiстемесiн құру кезiнде маңызды
болатын, кескiш басы орнының қимасының минималды түрде биiктiгiн анықтауға қажеттi өрнек
алынды.

Кiлт сөздер: кескiннiң кескiш жиынтығы, көпқырлы қайта кескiш пластина, механикалық қондырғы.
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Обоснование зависимостей для расчета сил закрепления
многогранных неперетачиваемых пластин в державке

отрезного резца при их боковой установке

В статье впервые предложены математические зависимости для определения необходимой силы за-
крепления режущей пластины в гнезде сборных отрезных резцов с боковой установкой многогранных
неперетачиваемых пластин, которая сделает невозможным движение пластины в любом направлении
при воздействии на нее сил резания. Также получены выражения для определения минимальной
высоты сечения гнезда головки резца, что является важным на этапе создания методики проектиро-
вания данного вида инструмента.

Ключевые слова: сборный отрезной резец, многогранная неперетачиваемая режущая пластина, меха-
ническое крепление.
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