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Justification of the dependencies for calculating gripping forces
of multifaceted unresharpenable plates in the holder
of a cutoff tool at their lateral installation

In the article mathematical dependencies to determine the gripping force of the cutting plate in the
socket of assembled cutoff tools with the lateral installation of multifaceted unresharpenable plates (MUP)
are proposed for the first time, which makes it impossible to move the plate in any direction while the
cutting forces acting on it. Moreover, the expressions are obtained to determine the minimum height of the
intersection of the cutoff tool socket head, which is important at the stage of creating a methodology for
designing this type of tool.
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Introduction

In modern machining of metals by cutting the most progressive are assembled tools with mechanical
mounting of multifaceted unresharpenable plates. One of the main advantages of this type of tools is that
when one cutting edge is worn, a cutting plate rotates around its own axis to enable the operation of another,
which significantly reduces the time of tool adjustment, since in this case there is no need to remove it from
the tool holder, which is very relevant for modern machine tools with numerical control and automated lines.
Application in industry of assembled metal cutting tools with mechanical mounting of plates allows increasing
productivity of processing, since the cutting speed of these tools is 1,5 — 2 times higher than that of brazed
ones [1-5]. Therefore, the widespread use of assembled metal cutting tools is important for modern machine
building.

However, for modern cutoff tools with mechanical mounting, predominately, single- or double-blade cutting
plates of a specific non-technological complex shape are used. Cutoff tools equipped with multifaceted plates
of three-, four- or five-faced shape [6-8] are used mainly for cutting rods with a diameter of up to 12 mm due
to lateral installation of cutting plates on the tool case (Fig. 1), which significantly restricts the overhang of a
cutting part and, as a result, the scope of their application.

In order to eliminate the disadvantages of listed above, the authors [9-14] for the first time proposed a
new design of assembled cutoff tool with lateral installation of multifaceted unresharpenable plates (Fig. 2),
consisting of a holder 1, hook 2, screw 3, and multifaceted unresharpenable plate 4. In this design of the cutting
tool, locating and fixing of MUP is carried out only on the thrust surfaces, which makes it possible to perform
cutting of rods with a diameter of up to 30 mm.
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Figure 1. Groove cutters with lateral Figure 2. Design of assembled cutoff tool with
mounting of multifaceted plates lateral installation of multifaceted plates

Relevance. The main factors influencing the reliability of assembled metal cutting tools are the installation
scheme, mounting and fixing of multifaceted unresharpenable plates. The provision of the necessary gripping
force is a crucial task, which depends on the performance of the cutting tool under the action of the resulting
cutting force.

Given kind of plate installation is proposed for the first time, in order to ensure the efficiency of this tool, it is
necessary to obtain mathematical dependencies that will enable to determine the required strength of attaching
the plate in the socket, which makes it impossible to move the plate in any direction while cutting forces acting
on it, and to determine minimum height of the intersection of the cutter head socket.

Research results

The clamping of a plate should exclude the movement of MUP under the action of the forces that occur
during cutting. Primarily, their action is determined by the physical and chemical properties of the material
being processed (hardness, chemical composition), on the basis of which the cutting modes are specified, and
by the heterogeneity of the distribution in it of the constituent elements, as well as the structural and geometric
parameters of the cutting part and the conditions of the plate installation.

The cutting plate during the cutting process is exposed to active forces: the resulting cutting force P,
and the force of gripping Fg,. the cutting plate, which are balanced by the reactions R, and R of supporting
surfaces of the plate socket (Fig. 3, Fig. 4). Since the forces acting on the plate form, a balanced plane system,
the algebraic sums of the projections of these forces on the coordinate axis are equal to zero. The plate is under
the action of a system of arbitrarily located forces, for the equilibrium of which the fulfillment of the three
following conditions is required [15-18]:

Z

P

Figure 3. Scheme of active forces acting on the cutting plate Figure 4. Scheme to determine the moments

ZFZ-Z:0;—PZ—Fgr_.cosw+R2~sinx+R1~sinu:0; (1)
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ZFiy:0;Py—Fgr,-sinz/)—Rg-cosx—FRl~c0su=0; (2)

Z(F):O§_Fgr.'h1+R1'h2:0. (3)

From the equation (1) we derive the gripping force Fy, :

7 _Rl-sinu—FRQ-sinx—Pz )
g cos ’

From the equation (2) we determine the reaction Ra:

Ry -cosp+ Py— Fy - sing

R, 5
2 CoS X (5)
From the equation (3) we determine the reaction Rj:
F r. " hl
Ry = —8&- " 6
1 I (6)
We apply the equation (6) to the equation (5)
. Fgﬁ;hl cos i+ Py — Fy -sinyy  py -Fygr. - cosp+ hy - Py — hy - Fyy - sing "
2 = = ’

COS X ha - cos x

The obtained equations (6) and (7) we apply to the equation (4) to determine the gripping force of a cutting

plate:
sinx(h -Fg, -cospu+ha-Py—hy-Fg, -sint) + Fg;;hl . Sil’lﬂ o Pz

ha-cos x
F. =
s cos '
tgx(hl-Fgr_-cosp+£L§-Py—llz-Fgr_-sind;) + Fg;l;hl . sinu -y
Fgr. = 5
cos Y
h, -F hy - F Fo -h
Fyp. - cosy = tgxﬁ -cosp + Py - tgx — tgxﬁsinw 4oL sinpu — Py
ho hy ha
h; -F hy - F Fy -h
Fyp. - cosp = tgxﬁ - COSpL — tgxgsim/} — e 1, sinp = Py -tgx — P;;
hg h2 h2
_ hy-cosyp —tgx -hy-cosy—tgx-sing) —hy-sinp

Fgr. -

=P, - tgx — P;;
h2 y gx

hy - (Py - tgx — P:)
hy - cosy) — tgx - hy - cospu — tgx -sinyy —hy -sinp’

Fgr. =
We determine the arms of forces according to Figure 4:

b
h1:a~cosz/+§;

hgzb-COST—i—g.

We apply the determined values of the arms of forces to the equation and obtain the mathematical dependency
that allows determining the necessary gripping force of a plate at the given type of its installation (8):

(b-cosT+3)- (Py-tgx — P.)
(b-cosT+ 2) - cosp — tgx - cosp(a - cosv + %) —tgy - sing —sinp - (a-cosv + &)

Fgr. =

However, the disadvantage of this plate mounting scheme (Fig. 4) is the action of the plate gripping force
Fy, upon the front wall of the tool socket [19-22|. In order to eliminate this drawback, the following scheme of
three-faceted plate (Fig. 5) was proposed. According to this scheme, the front socket wall is made at an angle
1 = 40°, and the back one — at an angle x = 20°, which, under the chosen scheme of hook installation removes
the action of the gripping force Fj, on the front socket wall. Thus, the components of the cutting forces P,, P,
and the resulting cutting force P, are fully compensated by the reactions of the supports of the front Ry, R,
Ry, and back R, Rs., Ra, socket walls [23-25].
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1 — hook; 2 — cutter case

Figure 5. Scheme for calculating stresses and the minimum intersection of the cutter head

The equations of interaction of these forces are as follows:
P, =Ry -sinu+ Ry -siny; (9)
P,=—R;-cosp+ Ry -cosx. (10)
From the equation (10) we determine the support reaction Ry of the back socket wall:

B P, + Rycosp
N cos Y '

Ry

Applying it to the equation (9), after performing transformations we obtain:

_ . Py+Rycosp
P, =Ry -sinpy+ eosx

P, cosx = Ry sinpcosy + Py siny + Ry cosusin y =

P, cosx — P, sinx = Ry sinpcos x + Ry cos psin y = (11)
P, cosx — Pysinx = Ri(sin pcos x + cospusiny) =

P, cosx — Pysiny = Rysin (p+ x) -

siny =

From the equation (11) we determine the support reaction R; of the front socket wall:

_ P,cosx — Pysiny

R
' sin (12 + x)

The most dangerous is the bending stress o35 in the minimum intersection of the cutter head on the bottom
of the socket, from the action of the reaction force Ry on its front wall, which we consider to be applied in the
middle of this wall, having a length {; = 14 mm:

Risinp - %ll sin g

Ops — Wg; 5 (12)

where W, — the moment of resistance to the bend of the minimum intersection on the head of the cutter, which
has a height h; and a thickness b; = 2.5 mm:
_ bih?

W, =2 (13)

After applying the equation (13) to the equation (12), we obtain the following:

6 sin y - %ll sing  3-Ri-l sin2u
g = =
bs by h2 by b2

(14)
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From the equation (14) we obtain the minimum height of the intersection hy:

3~R1-llsin2,u

h =
! bl [Ubs]

where [ops] — maximum allowable bending stresses, MPa.

Conclusions

As a result of the performed researches, mathematical dependencies to determine the gripping force of the
cutting plate in the socket of assembled cutoff tools with the lateral installation of multifaceted unresharpenable
plates, are proposed for the first time which makes it impossible to move the plate in any direction while the
cutting forces acting on it. Moreover, the expressions are obtained to determine the minimum height of the
intersection of the cutoff tool socket head, which is important at the stage of creating a methodology for
designing this type of tool.
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M.B. Babwuii, B.O. Hacracenko, B.O. Ilponenko, /I.A. 3unyerko

Keckimeri Keckini ycTarblIbIHAAFBI OYIipJIiK OopHATY/Ia

KOITKBIPJIbI KAlTa >KOHBIJIMAUTHIH MJIACTUHAJIAPALI OeKiTy KYIIIiH

104

ecernreyre apHaJFaH TOYEJAIIKTEpAl HeTi3aey

Makasaza agramt peT Kecy KyIIiHIH dcepiHeH OO0JaThIH IJIACTHHAHBIH K€3 KeJTeH OAFbITTarbl KO3FAJIBICHIH
OOJIIBIpDMAMTBIH, OYHIpJIK OpHATY/Ia KOIKBIPJIbI KaiTa YKOHBIIMANUTBHIH IIJIACTUHAJIAP/IBI KECKieri KecKir-
Tep KUBIHTHIFBIHBIH, OPHBIHA KECKII IJIACTUHAHBI OEKITyre KaXKeTTi KYIITI AaHBIKTay VIIMTH MaTeMATHKAJIBIK
Toyes K YehIHBLIALL. CoHbIMEH Gipre MyH /1Al Ky PBIIFBIHBIH, 2K00aJIay d/1icTeMeciH Kypy Ke3iH e MaHbI3/Ibl
00JIaTBIH, KECKIll 6achbl OPHBIHBIH KUMACBIHBIH MUHUMAJIbI TYpJie OWIKTINiH aHBbIKTayFa Ka’KeTTi epHeK
AJIBIH]THI.

Kiam cesdep: KeCKiHHIH KECKIII XKUBIHTBIFBI, KOIIKBIPJIbI KAWTa KECKIIII IJIACTUHA, MEXAHUKAJIBIK, KOHJIBIPFHI.
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ObBocHoBaHME 3aBUCUMOCTEIl /JisI pacvueTa CUJI 3aKpernJjeHus
MHOT'OT'PAHHBIX HellepeTaunBaeMbIX IJIACTUH B JIep>KaBKe
OTPE3HOro pe3lia Ipu UX ODOKOBOII yCTaHOBKE

B crarbe BIIEPBbIE IIPEIJIO?KEHBI MaTeMaTUIE€CKUE 3aBUCUMOCTU [IJIgd OIIPEAeJICHUA HeO6XO,HPIMOfI CHUJIBI 3a-
KpelieHust pe)Kymeﬁ IIJIaCTUHBI B I'HE3/1e C60prIX OTPE3HBIX PE3IOB C OOKOBOI yCTaHOBKOfI MHOT'OI'PaHHBIX
HerepeTadYuBaeMbIX IIJIACTUH, KOTOPpad caejiacT HEBO3MOXKHBIM JIBU2KEHUE IIJIACTUHBI B J000M HalIpaBJICHUNA
npu BO3IENCTBUN Ha Hee CHUJI pe3anusd. Takxke IIOJIYY€HDBI BbIpazK€HUA JJIgd OIIpeJe/IeHUA MUHUMAJIbHOU
BBICOTHI C€YCHUA I'He3/1a I'OJIOBKU Pe3la, YTO AdBJIAeTCAd BazKHBIM Ha 3Talle CO3JaHud METOAUKU ITPOEKTUPO-
BaHUAd JaHHOTO BUJIAa MHCTPYMEHTA.

Karouesvie crosa: cOOpHBII OTPE3HOI pe3er], MHOTOrpaHHas HellepeTauynBaeMast PeKyIasi IIaCTHHA, MeXa-
HUYECKO€e KpeIlJIEHUE.
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