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On construction of the comparison function of program
motion in probable statement

In the class of ordinary differential equations the following modification of the inverse problem of differential
systems was previously considered: to construct both a set of systems of differential equations and a set of
comparison functions for the given program motion. In this article, the modification of the inverse problem is
considered in Stochastic case. In this problem it is assumed that random perturbations are from the class of
processes with independent increments. By the given program of motion, two sets are constructed: the set of
first-order Ito stochastic differential equations and the set of comparison functions. It is proved that there is
a stability in probability of the given program motion with respect to the constructed comparison functions.
To solve the problem Lyapunov functions method is used. Using Lyapunov’s second method makes it is
possible to weaken the conditions imposed on the components of the constructed comparison functions, in
contrast to the application of the Lyapunov characteristic numbers method for solving the inverse problem
in the class of ordinary differential equations. The following cases are considered: 1) comparison functions
obviously not depending on time; 2) the set of comparison vector functions depends on y and ¢; 3) the set
of comparison vector functions has the form Q(\,t, where A(y,t) describes an analytically given program
motion; 4) the set of comparison vector functions has the form C(t)A.

Keywords: stochastic differential equations, inverse problems, stability in probability, comparison function,
program motion, random process.

Introduction

At present, possible formulations of the inverse problems for differential systems have been known.
General methods for solving these problems in the class of ordinary differential equations have been well
developed in [1-11]. Generalization of these problems to the class of partial differential equations is investigated
in [12-14]. In the theory of inverse problems of differential systems, an important requirement is the requirement
of stability of the given properties of motion [5]. This requirement is related to the system’s operability and its
non-compliance with perturbations. Therefore, solving of stability problem of the program motion is essential
for the further development of the qualitative theory of inverse problems of differential systems and constructing
of the systems of program motion.

In the theory of stability, the possible perturbed motions of the material system are compared with the
unperturbed motion with respect to the corresponding values of the given kinematic indicators of motion at
each time instant ¢ > ¢g. It is assumed that the kinematic indicators of motion can be described by the vector
function Q(y, t), called the comparison function and given in some domain of the space G(y1, ..., y» ) of the change
in the phase coordinates of the given system. The study of the stability of unperturbed motion is reduced to
establishing the behavior of the difference of the values of this vector function respectively on possible perturbed
motion and on unperturbed motion of system

T = Qperturbed motion — Qunperturbed motion

for all t > tg. In problems of construction of stable systems, the desired system parameters and additional control
forces are also determined from the conditions imposed on this difference. In the established formulations of
the stability problems, the comparison functions are given. Also the unperturbed motion and the equations of
motion of the material system are given. Thus, the solving of the stability problem is reduced to determining the
stability conditions for the given motion of the system with respect to the given comparison functions. However
in many problems of the theory of stability it is useful problem to construct the comparison functions with
respect to which there is a stability of given properties of motion of the mechanical system.
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Galiullin A.S. posed the one of the inverse problems of dynamics namely the problem of construction of the
set of comparison functions in the class of ordinary differential equations [1-3]:
It is required to construct the corresponding set of equations of motion for the material system

y:Y(y7t)7 (1'1)

by the given law of motion
A:y=o(t), ye R, peCH{t >t} (12)

Let the considering equations be the class of equations admitting the existence of the unique solution of
the equation (1.1) with initial condition yl;—y, = (o), {to,¢(to)}. And it is required to construct the
set of n-dimensional vector functions Q(y). Q(y) is holomorphic vector functions in some e-neighborhood
A = {lly — ¢@)|| < €} of the integral manifold A(t) (1.2) for all ¢ > tg. There is stability in the sense of
Lyapunov in relation to the components of Q(y).

The problem of construction of the set of comparison functions is solved by the method of characteristic
Lyapunov numbers in [1-3]. The solution of this problem determines the set of kinematic indicators of motion
(conditions imposed on them), with respect to which the given motion properties of the system are stable.

The set of equations of motion of the system is constructed in the form

g =¢(t) + (y,1). (1.3)

Here ®(y,t) is some holomorphic vector function in the domain A for all t > to, ®(y,t)|,—,) = 0. Further the
equation of perturbed motion of the first approximation with respect to the vector function Q(y) is compiled.
The equation of perturbed motion is reduced to the system of linear differential equations by some linear
transformation. It is required that the resulting system is correct and that its characteristic numbers are positive.
Then, if the applied linear transformation is Lyapunov transformation, then there is stability of the given motion
(1.2) with respect to the vector function Q(y). Following [2], the set of the required components of the vector
functions Q (y) is determined from the conditions

C,C are limited, detC~* # 0 for all t > tg, (1.4)

here C' = [|oi ||, ! = ly=e()

In the Preface of the J. Kdomian’s book «Stochastic Systems» (Moscow, 1987) the famous scientist Richard
Bellman emphasizes: «It is very important to decide which model to build: deterministic model or stochastic
model. Deterministic models are very useful. But stochastic models are more realistic. The difficulty is that the
analysis of stochastic models by mathematical means is very complicated».

Stochastic differential equations of It6 type describe numerous and important in the application models of
mechanical systems. These models take into account the effects of external random forces. In particular, models
take into account the motion of an artificial satellite of the Earth under the action of the aerodynamic forces
[16] or the fluctuation drift of the heavy gyroscope in a cardan suspension [17] and many others.

As an example showing the importance of taking into account random perturbations, we can cite the inverse
problem of the dynamics of a spacecraft’s flight. For example, the aerodynamic moments of a spacecraft always
have random components [16] generated by density fluctuations of the planet’s atmosphere. In addition, random
changes in the moments of inertia cause thermoelastic vibrations of stabilizing rods, vibrations of liquids in cans,
antennas and solar panels. And the study of the effect of random perturbations on the dynamics of the spacecraft
is so important that ignoring these perturbations can significantly reduce the lifetime of the spacecraft [18].

Inverse problems in the class of stochastic differential systems are considered in [19-21]. Problems of stability
in probability of the given program motion by Lyapunov function method are studied in [22, 23].

Let us consider the probabilistic formulation of the problem posed earlier in the class of ordinary differential
equations [1-3], namely, with the additional assumption of the presence of random perturbations.

i,v=1,..,n and C(t) is the Lyapunov transformation [15].

0Qi(y)
19}

Statement of the problem

It is required to construct the corresponding set of equations of motion for the material system

J=Y(y.t)+o(y,t)¢, €€ R, (2.1)
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by the given program of motion
Ad=y—ot)=0,yc R", o C, o] <L (2.2)

Here &(t) = w(t) + [, c(y)P(t,dy) is random process with independent increments; w(t) is Wiener process;
P(t, A) is Poisson process as a function of ¢ and Poisson stochastic measure as a function of set A; ¢(y) is vector
function mapping R™ into the space of the process values (t) for all .

Let the considering equations be the class of equations admitting the existence of a unique up to stochastic
equivalence of solution of the equation (2.1) with initial condition y|:=¢, = ¢(t). It is also required to construct
a set of s-dimensional vector functions Q(y) so that there is stability in probability of the program motion (2.2)
with respect to Q(y).

Following [3], the equation of perturbed motion of the material system, for which the given motion (2.2) is
possible, is represented as

A= ANy, t) + BAy, t)E. (2.3)

Here A(\;y,t) is a vector function and B(\;y, t) is a n X k-dimentional Erugin type matrix such that A(0;y,t) =
0, B(0;y,t) = 0.

Let LV (A(xz,t), z,t) be generating operator of &(¢) [22].

In the future we need the following definitions:

Definition 1 [24]. A function a(r) is called the function of Khan class a(r) € K if it is continuous and strictly
increasing and satisfies the condition a(0) = 0.

Definition 2 [25]. The program manifold (2.2) of the equation (2.1) is called p-stable in probability if

lim P, {su vo.to () A(t)) > e} = 0.
e o{t>gp(y (t), A(t)) > €}

1 A set of vector functions Q(y) that obviously not depending on time

Theorem 1. Let there exist a Lyapunov function V(\;y,t) on the neighborhood A, = {|ly — p(¢¥)|| < €} of
the integral manifold A satisfying the conditions

a([[A) < V(A y,t) <b([A]]), a,b € K, (2.4)

LV < —c(|\]), c € K. (2.5)

Then the program motion A = y — ¢(t) = 0 of system (2.3) is asymptotically p- stable in probability with
respect to an arbitrary s- dimensional vector function @Q(y), which is continuous on the neighborhood A, for
1 <s<n.

Proof. By definition of stability [3]|, we consider the difference x = Q(y) — Q(¢(t)). By the condition of the
theorem, there is a Lyapunov function with properties (2.4), (2.5). This provides an asymptotically p-stability
in probability of program motion A = 0 [22], i.e.

li P, li Yo,to HAE) =0k =1. 06
P(yoJ\l(rtI;))—m yo{ o Supp(y ( )7 ( )) } ( )

t—o0

And from the continuity of the vector function Q(y) and conditions (2.6) we have

oty i sup QU o, 90) — Qo)) = 0f =1

This means that the motion A = y — ¢(t) = 0 of the system (2.3) is asymptotically stable with respect to
the vector function Q(y).

2 A set of vector functions Q(y,t) depending on y and t
Theorem 2. Let there exist a Lyapunov function V' (A;y,t) on the neighborhood A, of the integral manifold

A with properties (2.4), (2.5).
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Then the program motion A = y — ¢(t) = 0 of system (2.3) is asymptotically p- stable in probability with
respect to an arbitrary s- dimensional vector function Q(y,t), which is continuous in y and ¢ and satisfying the
condition

=]l < BUIAID, B € K. (2.7)
Here z = Q(yvt) - Q(Qp(t)7 t)'

Proof. The existence of a function V(A;y,t) with properties (2.4), (2.5) implies an asymptotical uniform in
{to,yo} p-stability in probability of motion A =y — ¢(t) = 0 [22], i.e.

; P {1. voto (1), A(t =0}:1.
p(yo.A(t0) 0 Hmsup p(y?% (t), A(t))

And we get from (2.6) and (2.7) that

ot Py i sup QU to, ). 1) — Q(e(0). ) = 0f =1.

Consequently, there is an asymptotic stability in probability of the motion A =y — ¢(t) = 0 of system (2.3)
with respect to the vector function Q(y,t).

3 Program motion A(y,t) = 0 and a set of comparison vector functions Q(\,t)
Let the program motion be given as
A(t) : My, t) =0. (2.8)

Here A € R*, y € R™, k < n.
Suppose that it takes place rang {g—;} =k for all y € Ay, t > to on a neighborhood Ay (t) € R"

An(t) = Ay, D) < Ryt > to. (2.9)

The set of equations of the perturbed motion for which the given program (2.8) is one of the possible ones,
can be represented as

A= ANy, t) + By, t)§.

Here A(X\;y,t) 1is a vector function and B(A;y,t) is a n X k-dimentional Erugin type matrix such that
A(0;y,t) =0, B(0;y,t) = 0.
Consider the continuous s-dimensional vector functions Q (A, ¢) satisfying the condition

=] < BUIAID, B € K. (2.10)

Here z = Q(A\(y,t)) — Q(0,t), 1 < s < mn.
Theorem 3. Let there exist a Lyapunov function V' (\; y,t) on the neighborhood (2.9) of the integral manifold
(2.8) satisfying the condition (2.4) and
LV < —c¢(||Al), c € K.

Then the integral manifold (2.8) is asymptotically stable in probability with respect to an arbitrary s-dimen-
sional vector function Q(A,t), which is continuous in A and ¢ and satisfying condition (2.10) for 1 < s <mn.
The proof is similar to the proof of Theorem 2.

4 A set of n-dimensional vector functions of the form C(t)A

Let the equation of perturbed motion (2.3) in the first approximation have the form
A=A (A + Ax(\ t) + BE.

Let us consider the Lyapunov function V() = (A, A) and n- dimensional vector function Q(y,t) = C(t)A.
Here A = y — ¢(t). In this particular case © = Q(y) — Q(¢(t)) has the form

x=C(t)\
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Also suppose that
1) the matrix AT(t) + A;(t) is definitely negative and the vector function A, satisfies the condition
[1Az2[| = o([|A]);
2) the matrix
_9Q

=73,

is continuous and limited for all ¢ > . (2.11)
y=op(t)
Then from properties 1), 2) and Theorem 2 the following theorem holds.
Theorem 4. Let A;(t) and C(t) are continuous matrices such that conditions 1) and 2) hold. Then the
motion A = y— p(t) = 0 of the system (2.3) is stable in probability with respect to an arbitrary vector functions
Qy,t) = C(H)A.

Remark. In Theorem 4 instead of condition (1.4) the weaker condition (2.11) is required.

The work was supported by grant AP05131369 of Ministry of Education and Science of the Republic of
Kazakhstan.
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I"'K. Bacuwauna, M.BI. Tiney6eprenon

bIkTuMmanabl >karmaiigarsl 0argapIaMaJiblK, KO3FAJIbICThIH
CAJIBICTBIPY (PYHIIUSICHIHBIH, KYPbBLIYbI TYPaJIbl

Kait nudpdepeHimaaibik TeHIeyaep KiaacblHaa OypbiH quddepeHnnalIbiK, XKyiegaepail Kepi ecebiHiH, Ke-
Jieci TYpJIeHyl KapacThIPBUIALL: NuddepeHITnaIIbIK, TEHIEYIep XKYe/IepiHiH, }KUBIHTHIFBIH YKOHE OChI Gar-
JapJiaMaJiaHFaH KO3FAJIbIC YIMH CaJbICTBIPMAJIbI (DYHKIMSIAD KUBIHTBIFBIH Kypy. Makasaga Kepi ecenTis,
OyJ1 TYpi BIKTUMAJIIBI >Kargaiaa 3eprresiai. By ecenre Kke3meiicok TypTKijiep Toyesici3 eciMImes i Ke3/1eiCoK
y/epicTep KJIaChIHAH el ecenTesii. bepijren KosraJbic GarmapiaMachblHa COMKec, €Ki KUBIH KYyPbLIaJIbl:
Wronwry Gipinmii perTi cToxacTuKaILIK, AU HEPEHITHATIBIK, TEHICYIED KUBIHTHIFBI XKOHE CAJBICTHIPY PYHK-
OUsIapbl 2KUBIHBI. KypacThIphIIFaH CaIbICTBIPY (DYyHKINSAIApPbIHA KATBICTBI OepijireH OarmapsiaMaJiaHFaH
KO3FAJTBICTBIH, BIKTUMAJIJIBIK, OOMBIHINIA OPHBIKTHIIBIFEI 6ap eKeHi joseaesai. by ecenri menry yomiu Jls-
MyHOB (QYHKIUSIAPBIHBIH OIiCI KOMIAHBIIALI. JISmyHOBTHIH €KiHII 9iCiHIH maligamanys! Kail guddepen-
UAJIIBIK TEeHJIeyJIep KJIaChIHArbl KEPi ecenTepil mienty yiIiH KaxkeT. JIsamyHOBTBIH CAIIATTayIIBI CAHIAPbI
9JIICIH KOJIIAHYIaH alibIPMAIBLIBIFBI AJIBIHFAH CAJIBICTHIPY (DYHKIUSIAPBIHBIH KYpayIbLIapbIHaA €HTI31IreH
mapTTapasl 9jciperyre MmyMKinaik 6eperi. Keseci »karmaitiap KapacTbIPBUIFAH, SIFHA CAJIBICTBIPY BEKTOD-
JIBIK, (DYHKIUSIAPEL: 1) YaKBITTAH HAKTHI TOYEJIIi eMeC; 2) KUBIHTBIFBL Y YKOHE -JIaH ToyeJ ii; 3) >KUBIHTBIFbI
Q(A,t) Typinzme Gomansl, mysga A(y,t) = 0 aHAIMTUKAJBIK Typie GeplireH GarnapiaMalblK KO3FaJbICThI
cunartaiiger; 4) xubaTbrsl C (1) Typinge 6omanpt. KapacTeippuiran karmaiisiapia KypbUIFaH CATBICTBIPY
GYHKIUACHIHA KATBICTHI OariapIaMaJsiblK KO3FaJIbICThIH BIKTHMAJIIBIK, OOUBIHINTA aCHMITOTHKAJIBIK, OPHBIK-
TBUIBIFBIHBIH YKETKIJIIKTI MapTTaphbl aJIbIHFAH.

Kiam cesdep: croxacTuKaJbIK nuddepeHInaiIblK, TeHIeyIep, Kepi ecentep, bIKTUMAJIBIK OONBIHITA Op-
HBIKTBIIBIK, CAJIBICTHIPY PYHKIMSACH, OargapiaMaJIblK, KO3FAJIbIC, Ke3AEHCOK MpoIiece.
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O mocTpoennu (pyHKIUM CpaBHEHUsI ITPOTPaAMMHOTO
JABUKEHNS B BEPOSATHOCTHOI ITOCTaHOBKE

B kiacce 00bIKHOBEHHBIX b depeHIInaIbHbIX YPABHEHNN paHee OblIa pACCMOTPEHa CJIeayomiast Moandu-
Karus 06paTHOit 3aa9n 1uddepeHnnaIbHBIX CHCTEM: IOCTPOUTH KaK MHOYKECTBO CUCTEM JTuddepeHiinaib-
HBIX yDaBHEHUIl, TaK U MHOXKeCTBO (DYHKIUI CDABHEHUs 110 33/IaHHOMY [IPOrPAMMHOMY JIBMXKEHHUIO. B cra-
The JaHHasd MoauduKanus oOpaTHON 3aati PACCMOTPEHa B BEPOSTHOCTHON ITOCTaHOBKe. B mcciemyemoit
3aJlave MPEJIIOJIOXKEHBI CJIyYaiiHble BO3MYIIEHUS U3 KJIACCA MPOIECCOB C HE3aBUCUMBIMU MPUPAIICHUSIMUA.
Ilo 3amanHOll porpamMme JIBUXKEHUSI CTPOSITCS JBAa MHOYXKECTBA: MHOXKECTBO CTOXAaCTUYECKUX auddepeHiy-
aJIbHBIX ypaBHeHuit VITo mepBoro mopsi/ika u MHOXKeCTBO (hyHKIWi cpaBHeHus. JloKka3zaHo, ITO MMeeT MeCTO
YCTORYUBOCTD 10 BEPOSITHOCTH 3a[AHHOTO [IPOTPAMMHOI0 JIBU2KEHUS OTHOCUTEJILHO TIOCTPOEHHBIX (DYHKIIUN
cpaBHeHusi. J[JIsi peleHnsi IIOCTABJIEHHOM 3aJiauu npuMeneH meror, dyukuuit Jlsamynosa. VcnosbzoBanue
BTOPOTO MeTona JIAmyHoBa MO3BOJISIET OCJIA0UTh YCIOBUS, HAKJIAIbIBAEMbIE HA COCTABJIAIONINE ITOCTPOEH-
HbIX (DYHKIUN CpABHEHMs, B OTJUYUE OT IPUMEHEHUs MEeTOJ/a XAPAKTEPUCTHYHBIX 4uces JIsamyHoBa mjist
pertennsi OOpaTHON 3a/1a9u B KJacce OObIKHOBEHHBIX JIuddepeHInalbabiX ypaBHeHuil. 3ydens! ciydan,
KOI'/Ia MHOXKECTBO BeKTODP-(DYHKIUI cpaBHeHUs 1) He 3aBUCHT SIBHO OT BPEMEHH; 2) 3aBUCHT OT Y U t; 3) uMe-
et Buz Q(A, 1), tae A(y,t) = 0, onucbiBaeT aHATUTUIECKN 3aJAHHOE TIPOIPAMMHOE JIBUKEHUE; 4) UMeeT BUL
C(t)\. B paccMOTpEHHBIX CJIydasxX IOJIyYeHbI JOCTATOYHBIE YCJIOBUS ACUMITOTHYECKOH yCTONIMBOCTU IO
BEPOATHOCTH IIPOIPAMMHOIO JIBHXKEHUSI OTHOCUTEIHLHO ITOCTPOCHHON (DYHKINN CDaBHEHUSI.

Kmouesvie caosa: croxactudeckne muddepeHImaibHble ypaBHEHNs, OOPATHBIE 3a/1a9H, YCTONYINBOCTD 110
BEPOSITHOCTH, (DYHKIMsI CPABHEHUSI, IPOIPAMMHOE JIBUKEHUE, CIIyJailHbIi IPOIecc.
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