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Stochastical problem of Helmholtz for Birkhoff systems

The Helmholtz problem is considered in a probabilistic formulation. By a given stochastic Langevin-It6d
equation in an indirect representation, as the equation of the Hamiltonian structure and the equation of
the Birkhoffian structure are constructed. The functional that takes a stationary value on solutions of a
given stochastic Birkhoff equation, is defined by the method of moment functions. The obtained results
are illustrated by two examples: 1) the plane motion of a symmetric satellite in a circular orbit under the
action of gravity and aerodynamic forces, and 2) the fluctuation motion of a gyroscope in a gimbal caused
by the stochastic fluctuating moment of forces along the suspension axis of the inner ring.

Keywords: stochastic Langevin-Itd equation, inverse problem, equation of the Hamiltonian (or Birkhoffian)
structure.

Introduction

The theory of inverse problems of differential systems is sufficiently fully developed in [1-6, etc.] for
deterministic systems, which are described by ordinary differential equations (ODE). Thus, the work of
N.P. Erugin [1], in which a set of ODE is constructed according to a given integral curve, subsequently turned
out to be fundamental in the formation and development of the theory of inverse problems of the dynamics
of systems described by the ODE. In [2-6], the formulation, classification of inverse problems of differential
systems and general methods for their solution in the class of ODE are presented. Also, in the ODE class,
inverse problems of the automatic control systems’ dynamics are considered [7-9]. It should be noted that one
of the general methods for solving inverse problems of dynamics in the class of ODE is the quasi-inversion method
proposed in [4, 5] and which makes it possible to obtain necessary and sufficient conditions for solvability.

A new stage in the research of inverse problems of differential systems is the increased interest in recent
years in the study of the Helmholtz problem (see, for example, the monograph [10]). In the monograph of
A.S. Galiullin [10], along with a review of works, the Hamilton systems’ generalization in the sense of the
reducibility of the non-conservative mechanical systems’ motion equations to classical equations of dynamics is
considered, and, in particular, the problem of the equations’ Hamiltonization of program motion’s systems is
solved.

The classical Helmholtz problem [11] is the problem of construction the equivalent differential equations in
the form of Lagrange on given second-order ordinary differential equations. Moreover, the equations for which
such transition is possible are called Helmholtz systems. In the works of A. Mayer [12] and G.K. Suslov [13]
independently it is shown that the classical Helmholtz conditions are not only necessary, but also sufficient
conditions for the transition from Newtonian equations to Lagrangian ones.

The solving of the Helmholtz problem [11] in this or that class of differential equations allows us to extend
to this class of equations well-developed mathematical methods of classical mechanics. It should be noted that
the two-volume monograph by R. M. Santilli [14, 15], devoted to the problem of representation of ordinary
differential equations of the second order in the form of Lagrange, Hamilton and Birkhoff, occupies a special
place in the completeness of the material and the variety of Helmholtz problem’s study aspects.

The development of methods for solving inverse problems in the class of partial differential equations is
discussed in [16-18].

In [19-21], inverse problems of dynamics are considered in a probabilistic formulation under the additional
assumption of the random perturbations’ presence, and, in particular, the follow problems: 1) the basic inverse
problem of dynamics, in which it is required to construct a set of second-order stochastic differential equations
of Ito type having a given integral manifold, 2) the problem of reconstructing the equations of motion, in which
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it is required to construct a set of control parameters that enter into a given system of second-order stochastic
differential equations of Itd type from a given integral manifold, and 3) the problem of closing the equations of
motion, in which it is required to construct a set of closed stochastic second-order differential equations of It
type with respect to a given system of equations and a given integral manifold, are solved by the quasi-inversion
method.

In this paper, we consider the Helmholtz problem in the presence of random perturbations of white noise
type for Hamilton systems and Birkhoff systems.

1 Formulation of the problem and its solving

It is required to construct an equivalent equation of the Hamiltonian (or Birkhoffian) structure by the
equation given in the Langevin-It6 form

iy = F,(x,&,t) + 0,(zx, 2, )& (1)

Here &/ = &) + [ ¢ (y) PO(t,dy), where, following [22], £) is the Wiener process, P° is the Poisson process,
PO(t,dy) is the number of process jumps P° in the interval [0,¢], falling on the set dy, where y = (27, j:T)T
We say that a function g (y,t) from the class K, g € K if g is continuous on ¢ and is Lipschitz on y in the
whole space R?" 5y and satisfies the linear growth condition with respect to y: ||g (y,t)|| < M (1 + ||y||) with
some constant M.
Suppose that a given vector-valued function F' and a matrix ¢ belong to the class K. And since the vector-
valued function F' and the (n x k) matrix ¢ are assumed from the class K, this ensures [22]| the existence

and uniqueness up to the stochastic equivalence of the solution (z7(t), a'cT(t))Tof equation (1) with the initial

T
)r ") = (w7, xg)T being a strictly Markov process with probability 1.

2 (to
This formulation of the problem in the absence of random perturbations (o,; = 0) was considered in the
works of R.M. Santilli [14, 15|, and in a probabilistic formulation the Helmholtz problem it was previously
studied in [23-25], where equations of the Lagrangian structure are constructed from the given equation (1),
and, further, from the stochastic Lagrange equation, a stochastic analogue of the Hamilton variational principle
is determined.
To solve the problem, we will introduce previously a new variable and we will rewrite the given equation

(1) in a form

{ T = Yk N @)
Uk = Fr(z,y,t) + ok (z,y,t)&.

And then, with the help of replacements

condition (x (to

an — 4 Tk 0, =12
k= Yk M = gr j=n+1,n+2,...n+m;

OTLTL Onm
G’“:{E? A:(Akj)Z( 8 % )% o= (0u),

Onxn  Onxm

we rewrite the equation (2) in a form
ar = Gr(a,t) + Axj(a, ). (3)
Further, we rewrite the stochastic equation of the Hamiltonian structure

. _ O
qkfapkv

. 0H /
pszaiqk+o—kj(‘bpat)gja (kilan)

in the form 8H
Zy — aM”aT = 0y, (5)

v

where the following notations are
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P /2 k=1,2,...,n,
b Pk—n, k=n+l,n—|—2,...,2n,

o= (al“/) _ ( 0n><n In><n ) , o= (9,LLV) _ ( O’I’LX’IL O'rlem ) :

_Inxn 0n><n 0'r1><n Onxm

OH

do | _(, oH
oH |  \ "oz /)

Opk
Or, if we introduce a matrix (w,, ) which is the inverse to a matrix (o)

0 — 1

_ -1 __ nxn nxn
(o) = () = (G )
and 2n-dimensional vector

_p;m H = 1727 sy T
Qu-n, H=n+1n+2,..2n )’

p = W2y = (

then the equation (5) will be transformed to the equivalent equation
OH
Oa,

Construction of the Hamiltonian in the indirect representation. We consider the problem of the indirect
representation of equation (3) in the form of an equation of the Hamiltonian structure (6), that is, with the aid

w,uudu - = W,ukgkl/ﬁu' (6)

of a certain matrix I' = (y¥), we consider the relation
. . . 0H -
Yo (= Gi = Mijily) = woplyy — 5= = w0, (7)
or on
Cunar — Dy (a,t) = 1y Arjily) = ol — S~ okt (™)

where C,. =%, D,(a,t) = ~v*G,..
To satisfy the identity (7), it is required the fulfillment of conditions

O = i Dyl 1) = — o Q
vffAkj :w,,kekj7(1/,k: 1,2n,j =1,n+ m); (9)
7]5 = Wyk- (10)
From (9) and (10), it follows that the equality
or; = oy (k=Tom,j =Tm) (11)

takes place.

Hence, we have

Theorem 1. The indirect representation of the stochastic equation (3) in the form of the stochastic Hamilton
equation (6) is possible if and only if conditions (8), (10), (11) are satisfied.

Remark. To construct the Hamilton function, which determines the form of equation (6), it is necessary to
check the Helmholtz conditions for the given equation, which, following R.M. Santilli [14], represent the next
relations:

Cow 4 Cyp = 0; (12)
0C,, 0C,, 9Cy,
= . 1
oa, + da,, + Oa, 0 (13)
9C., 0D, 9D, 14)

ot da, Oay
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Construction of the Birkhoffian in an indirect representation. We consider the stochastic Helmholtz problem
in the following formulation: it is required to construct a stochastic equation of the Birkhoffian structure of the
form

OR,(a,t) OR,(a,t)] . 0B(a,t) = O0R,(a,t) .
- v =T, B 1
day, oa, | da,, AT wili (15)
by the given equation
CMVaV - DV(avt) = Aujﬁﬁ (,u,v = 13277*)7 (16)

where B = B(a,t) is called the Birkhoff function, and W = (W,,,) is the Birkhoff tensor [15] with components
OR,(a,t) OR,(a,t)
Wy = - :
Oay, Oa,

The Birkhoff system (15) is a direct generalization of Hamilton systems (6). Indeed, when a, = ¢, (v =1,n),
ay =py—n (v=n+1,2n); R, =p, (v=1,n), R, =0 (v =n+1,2n); B(a,t) = H(q,p,t) equation (15) takes
the form of the canonical equations (6).

To solve this problem, we consider the relation

Couvity — Dy(art) — Aty = <3Ry(a,t) B aR#(a,t)> . (83(a,t) OR,(a,t)

— Ty,
da, da, da, ot ) il
which is fulfilled identically under the following conditions:

OR,(a,t) OR,(a,t).

Cl“’(a’3 t) = aa aa ) (17)
" v
0B(a,t)  OR,(a,t)
D,(a,t) = + —=£ : (18)
day, ot
AM‘ =Ty;- (19)

Consequently, we have

Theorem 2. The direct representation of the stochastic equation (16) in the form of the stochastic Birkhoff
equation (15) is possible if and only if conditions (17)—(19) are satisfied.

Indirect representation of the stochastic Hamilton equation in the form of a stochastic Birkhoff equation. We
consider the problem of indirect construction of the Birkhoff equation (15) from a given Hamiltonian equation
(6) in the presence of random perturbations.

In other words, we will define R, and B on given functions H and hj; so that the relation

. OH ;. OR,(a,t)  OR,(a,t)\ . 0B(a,t)  OR,(a,t) ;o
b (wapag — =— —TYn;| = - £ v — b —T,.1; 2

n |89 T Han "ﬂ] < day, oa, )¢ da, | ot wils - (20)
be satisfied. The relation (20) turns into an identity when the relations
OR,(a,t) OR,(a,t)

jpWar = - ; 21

fia day, da, (21)
OH  0B(a,t) 0R,(a,t)

o OH _ . 22

P Oay, day, + ot '’ (22)

hyT™ =T,,. (23)

are performed.

Consequently, we have

Theorem 3. The indirect representation of the stochastic Hamilton equation (6) in the form of a stochastic
Birkhoff equation (15)is possible if and only if there exist 4n® functions h$ such that conditions (21)-(23) are
satisfied for given functions H, R,, B, T, T .

Birkhoffian action in the stochastic Helmholtz problem. The Helmholtz problem in the class of Langevin-
Ito stochastic differential equations is divided into two interrelated problems. At the first stage, a stochastic
analog of the Lagrange, Hamilton or Birkhoff equations is constructed from the given equation. And further,
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in the second stage, the required functional (Hamiltonian or Birkhoffian action) must be constructed from the
constructed L, H or B with R.
In this section, one of the options for constructing a stochastic analog of the Birkhoff action is considered.
Let us consider the stochastic equation of the Lagrangian structure

d  OL oL s
—_— —_— = - v J e
dt(aqy) 9g, ~ 7 (¢,4, )¢, (v=1,n), (24)

which is assumed, following the works [23-25], constructed in direct or indirect representation by the given
equation (1).
Then the averaged Lagrangian M L will satisfy [23] the following equation

d ML ML _
dt* 9q, oq,

From the function ML by the Legendre transform, we define the averaged Hamiltonian H= piqi — ML,
which generates the following canonical equation

do _ 0l
dt N 8pi’
dp; OH .
= — = 1
=G =T,

or in variables a = (a1, as, ..., as,) the following canonical equation of the type of equation (6)
Wy — o— =0, (24"

Further, on the basis of Theorem 3 by the equation (24’), we construct a set (R, B) generating the Birkhoff
equation (25)

OR,(a,t)  OR,(a,t) OB(a,t)  OR,(a,t)
_ - —0, 2
Oay, day “ day, + ot 0 (25)
which is equivalent to the indirect Hamilton equation (26)
. em
h (waﬁaﬂ - 8aa> =0 (26)
under the conditions (27), (28)
o OR,(a,t) OR,(a,t)
hjway = da,, o0, (27)
OH 0B(a,t)  OR,(a,t)
@~ = . 2
it Oag, Oay, + ot (28)

Then the functional taking the stationary value on the solutions of equation (1) is constructed in the form
of an average Birkhoffian action in the form

S = /tz [Ry(a, t)a, — Bla,t)] dt.

ty

Examples. We will consider the problem of constructing the Hamiltonian and Birkhoff functions for specific
stochastic equations using the statements proved above.

Example 1. Let us consider the plane motion of a symmetric satellite along a circular orbit under the
assumption of a pitch change under the influence of gravitational forces and aerodynamic forces [26, 27]

0= f(0,0)+0(0,0)¢, (29)
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where 6 is the pitch angle and the functions f and ¢ have the form
f = Mlisin20 — M[g(0) +nf], o= Mé[g(8) + nd).

In work [23], the problem of indirect construction of the Lagrangian on the given equation (29) was considered

hlo — f(6,0) - o(6,0)§] = 0 (29)
at h = e~ 9", The required Lagrangian for (291) was constructed in the form
1. 1
L= e_Q"t[§92 - Q(élcos 20 + G)], where G = /g(é‘)dG, (30)

which provides a representation (29l) in the form of an equation of the Lagrangian structure

d OL OL ..
2 2 Qnt
& 96 g =€ a(6,0)¢. (31)

We will consider the problem of indirect construction of the Hamiltonian according to given equation (29).
Namely, using the Lagrange function (30) and the Legendre transformation, we will define the Hamilton function
in the form

H = x0— L(6,0,t) )

0=0(0,x.t)
L . .
And since Yy = —, then x = e 970, and, consequently, § = e@7y. Then the canonical equation
corresponding to equation (31) will take the form
. H
0= g—;
X (2)
(=2 50
X - 80 a 7X7 I
where & = 0/(0, 0, t) i) and the Hamilton function is defined in the form
=0(0,x,t
1
H= ieQ"tXQ — e @1 R(h). (33)

To solve the problem of the indirect representation of the Birkhoffian for a given equation (29), we
will use Theorem 3. By the equation (32) constructed above and the Hamilton function (33) from relation

(20) with (hy.) = < g 2 ), functions R, (1 = 1,2) and B are defined in the follow form R, = {x, (1 + h)6},

1
B= iheQ"tXQ — he~ @ 3(0), where h is an arbitrary constant.

Ezxample 2. Let us consider a second-order nonlinear differential equation describing the motion of the inner
ring of a gyroscope in a gimbal [2§]

B+2wp+ f(B) =&, (34)

where 3 is the angle of rotation of the inner ring. Here there is the coefficient at white noise o = 1.
In [23], the problem of indirect construction of the Lagrangian on the given equation (34)

h[B+2vB + f(B)] = € (34)

was considered at h = e?*. And the required Lagrangian for (34l) was constructed in the form

I — e2yt[%ﬁ'2 —4(B)], where %'y(ﬂ) = f(B),

providing the representation (34/) in the form of an equation of Lagrangian structure

d 0L, OL 5.
ﬁ(%)—%—e £ (35)
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Similarly to Example 1, we consider the problem of the indirect representation of the Hamiltonian and the
Birkhoffian. We will define the Hamilton function by the Legendre transformation of the Lagrange function

) ) 1
H = — L , 7t ] — *6_214 2 +62Vt ,
xB—L(B, B )B:ﬁ(ﬁ,x,w 5 b% v(B)

which generates the stochastic Hamilton equation of the form

. OH
X (36)
s _aiH + 62Vté
X = 89 i
that is equivalent to the Lagrange equation (35). Further, according to the equation (36) and the relation (20)

(67

with (hy,) = < 0 aO >, functions R, (u = 1,2) and B are defined in the follow form

1 —al 1%
Ry={x(1+a)8}, B=gac 2 4+ ae®v(B),

where « is an arbitrary constant.
In particular, the unknown functions take the form R, = {x,26}, B=H at a = 1.

This research was supported by the Committee of Science of the Ministry of Education and Science of the
Republic of Kazakhstan (Grant No. AP05131369).
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M.BI. Tiney6eprenos, 1.T. Oximbaen

Bupkrod xkyiiesep ynriH croxacTukaJbiK, 1 eJbMroJbiy ecedi

BlkTumanabik KoibLibiMaa ['eibMrodibln ecedbi KapacThIpbLIabl. Typa eMec kepcerityie 6epinren JlamxeBen-
Nro croxacTukasbik TeHeyi 6oitbiaIma ['aMuabToH KoHe BUpKrod KypbLIbIMIBI TEHJAEYIEP TYPFBI3BLIIbI.
MomenTTik DyHKIHIIAD 9/TiCi apKBLIBI GEPITeH CTOXaCTUKAJBIK, BupKrod TeHieyiHiH memnriMaepiage cra-
IMOHAPJIBIK, MOH KAOBLIAARTHIH (PYHKIIMOHA AHBIKTAJIAbBI. AJIBIHFAH HOTHXKEIED €Ki MBICAJIIA CYPETTEIeI:
1) TapTBHUIBIC KYII MEH a’pOJMHAMUKAJIBIK, KYII 9CepIMeH ajiHaIMaJIbl OpOUTa a8 CUMMETPHSIIBIK, CILy THHK-
TiH YKa3bIK, KO3FAJIBICEHI 2KOHE 2) IMIKi CAKMHAHBIH, 1Ty 0Ci GOMBIHIIA KYIITEP/H CTOXaCTHKAJBIK, (DIIyKTyasa-
TBIH COTIiHEH TYBIHJAFaH KapJaH acIalarbl THPOCKOINTHIH, (DJIYKTYAIUSJIBIK KO3FaJIbIChI.

Kiam ce3dep: croxacrukaiblk Jlam:kesen-Vtonsiy tenzeyi, kepi ecebi, I'amuibron (memece Bupkrod)
KYPBLIBIMJIbI TEHJIEYI.
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CroxactnyeckKad 3ajiada l'erbMmroibiia ajist cuctreM Bupkroda

Paccmorpena 3amada 'enpMronbsia B BepoaTHOCTHOU mocTaHoBKe. 1lo 3amaHHOMY CTOXaCTHYeCKOMY ypaB-
nennio JlamxkesBena-l/ITo B HEIPSIMOM TIPE/ICTABJIEHUH CTPOUTCS KaK yPABHEHUE TAMUIBTOHOBONW CTPYKTYPHI,
TaK U ypaBHEHHE OUPKIropHaHOBOI CTPYKTYPhI. MeTo oM MOMEHTHBIX (DYHKIHI olnpenesisercsa dyHKITO-
HaJI, IPUHUMAIOIUI CTAlHOHAPHOE 3HAUEHHE Ha PEIIeHUIX 3aJaHHOI'O CTOXaCTHYIECKOrO ypaBHEHUsI Bupk-
roda. Ilosryuennbie pe3yabTaThl MIIIOCTPUPYIOTCA HA JBYX OPUMEPAx: 1) IUIOCKOE JIBUXKEHNE CHMMETPUI-
HOI'O CIIyTHHKa [10 KPyrOBO# OpOHTe IOJ| IeiCTBUEM CUJI TSATOTEHHs U a3POAMHAMHUYECKUX CUI U 2) DIIyK-
TyYaloOHHOE JBMKEHNE I'MPOCKONA B KapJAHOBOM IIO/IBECE, BLI3BAHHOE CTOXACTHIECKUM (DIIyKTYHUPYIONIM
MOMEHTOM CHJI IIO OCH IIO/IBECA BHYTPEHHET'O KOJIbIA.

Karouesvie crosa: croxactudeckoe ypaBuenune Jlamxesena-lto, obparnas 3ama4da, ypasuenne ['aMuabToHo-
Boit (mnm BupkroduaHoBoit) CTPYKTYpBHI.
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