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On the calculation of the rectangular finite element of the plate

The article is devoted to the study of the thin plate bending by the finite element method. The application
of the finite element method to solving the problem of the plate bending leads to the necessity of studying
the rectangular finite element of the plate. All deformation and statics characteristics of the plate are
functions of the displacement in the direction of the normal to the middle surface of the plate, which
is determined by the deflection function. In the article, the formation of the plate deflection function in
explicit form is carried out. The ways for finding the deflection function by division of the variables in
the equilibrium equation of the plate, through an incomplete fourth-degree polynomial and in the form of
Hermite polynomials are presented. The article is focused mainly on mechanics, engineers and scientific
employees of technical specialties.

Keywords: finite element method, rectangular finite element, deflection function, angular displacements,
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Introduction. Thin-walled structures are encountered in many branches of technology, such as civil, mechani-
cal, aeronautical, marine, and chemical engineering. Such a widespread use of plate and shell structures arises
from their intrinsic properties. When suitably designed, even very thin plates, and especially shells, can support
large loads. Thus, they are utilized in structures such as aerospace vehicles in which light weight is essential.

One of the elements of thin-walled structures is a plate, which has an independent and wide application.
Plates represent principal elements of aerospace structures, including fuselages of planes and missiles, control
surfaces, bulkheads, helicopter blades, and others. In construction, the plates are widely used in the form of
decking and panels, reinforced concrete slabs for coating industrial and residential buildings, slabs for foundations
of massive structures and etc.

Mathematical models of calculating plates, closely related to the study of applied problems, have acquired
special relevance in connection with the expanding volume of their applications in various fields of science and
technology. The multiple applications, shapes, and materials found in plate structures dictate the necessity of a
comprehensive approach to their analysis reflected in relevant theories and methodologies. Therefore, questions
related to theoretical studies of the work of plates remain significant and relevant [1].

At calculation of plates by analytical methods in the most general formulation (with arbitrary contour
supports (including elastic supports), with different types of loading) one has to face big mathematical difficulties,
and in the majority of cases it is not possible to receive the analytical solution. It is possible to solve such a
problem using a very efficient finite element method, which for plates is a numerical approximate method, but
gives a sufficiently high accuracy of solutions.

The finite element method usually abbreviated as FEM is a numerical technique to obtain approximate
solution to physical problems. FEM was originally developed to study stresses in complex aircraft structures;
it has since been extended and applied to the broad field of continuum mechanics, including fluid mechanics
and heat transfer and also mechanics of deformable solids and structural mechanics. Because of its capability to
handle complex problems and its flexibility as an analysis tool, FEM has gained a prominent role in engineering
analysis and design.

The name of this method to some extent predetermines its essence: when using the finite element method,
the calculated design is mentally divided into separate elements, the stress-strain state of which is previously
studied in detail and can be considered known. It is supposed that the elements are connected to each other at a
finite number of points, called nodes. At these points, forces characterizing the interaction of individual elements,
or displacements, through which, ultimately, the stresses and displacements of each element are calculated, are
determined. Thus, the problem is discretized and reduced to solving a system of algebraic equations with respect
to unknown forces or node displacements. FEM is characterized by a variational formulation, a discretization
strategy, one or more solution algorithms and post-processing procedures [2].
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According to the method of obtaining the basic resolving equations, the finite element method has four
main types: the direct method, the variational method, the weighted residual method and the energy balance
method.

Depending on what values are taken as unknown, there are three classical approaches used in FEM: the
force method, the displacement method and the mixed method. We note that due to a number of advantages,
the approach based on the idea of the displacement method is the most widespread in the FEM [3].

Replacement of the original construction by a set of discrete elements makes it possible to simplify the
calculation of various construction objects: rod systems, thin-walled and massive structures and real structures
in which rods, plates, shells, arrays are combined. This circumstance makes the finite element method very
universal and explains its increased popularity.

Moreover, the advantage of the finite element method is a comparatively simple implementation on a PC
with the help of a software package. At the same time, it is easy to set any boundary conditions of the plate on
the contour, including elastic ones, and various types of load.

Depending on the type of the considered construction, the type of the finite element is determined. So for
rod systems rods with different supports at the ends, representing the nodes of the element, can be taken as a
finite element. Thin-walled spatial systems consisting of plates and shells are divided into triangular, rectangular
or elements of any other shape with nodes at angular points. Next, we focus on the consideration of rectangular
finite elements and their application in the calculations of plates.

Bending of thin plates. We consider the problem of calculating thin rigid plates. Their thickness should
not exceed the % of smallest side of the plate, and the deflection in bending should not exceed the thickness h
(Fig. 1, a). On the basis of Kirchhoff-Lyava’s hypotheses about the smallness of the normal stresses, perpendicular
to the middle surface of a plate, and the smallness of direct normals to the same surface the technical theory of
a bending of thin plates is constructed [4].

The assumptions derived from accepted hypotheses can be formulated as follows:

1. Normal stresses o, and also tangential stresses 7., 7y, are negligibly small in comparison with stresses
which are considered as the main: o, oy, 7oy (Fig. 1, b). Therefore, we accept 0, = 75, = 7,, = 0.

dy ’

Figure 1. The thin plate

2. The displacements in the direction of the axis z are constant along the thickness of the plate and are
equal to the deflections of the middle surface, which does not deform in its plane. At the same time the external
load must be perpendicular to the plate surface, that is, to the xy coordinate plane.

These assumptions simplify the mathematical model of plate bending, reducing it to a two-dimensional
problem. All deformation and statics quantities of the plate are functions of only one unknown, namely the
displacement in the direction of the normal to the middle surface of the plate.

However, unlike a plane problem, as a classical two-dimensional problem, the deflections of a plate are
described by a fourth order differential equation, but not of the second order, deformations are derivatives
of displacements of the second, but not of the first order. Thus, in the expression for the potential energy
functional, second-order derivatives also appear. When using the finite element method, this leads to some
difficulties related to the approximation of the deflection function w(z,y) .

Firstly, the approximating polynomials used in the bending of plates are much more complicated than for
the plane problem of the theory of elasticity, besides, their form is not unique for a particular finite element.
For example, for a deflection function, a fourth-degree polynomial with twelve indefinite coefficients can contain
different terms, which in turn leads to different stiffness matrices for the elements.

Secondly, the conditions of compatibility between adjacent elements must be fulfilled not only for the
function of deflections, but also for its first derivatives. Nevertheless, in practice incompatible finite elements,
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in which continuity on the boundaries between elements is performed only for deflections, are often applied.
For example, such an element is a four-node rectangular finite element with twelve degrees of freedom, which
provides acceptable accuracy of the solution and is used to calculation of plates having a rectangular shape [3].

The deflection function of a finite rectangular element. We select a rectangular finite element 0 < z; < a,
0 < xg < b from the plate and consider it in the local coordinate system (z1,x2 ).

We number knots of a rectangular final element consistently (clockwise, starting from the upper left node)
and introduce new coordinates x,y so that x = #L, y = 2. The deformed state is completely determined by
nodal displacements. In each node ¢ (i = 1,2, 3,4) of the finite element, there are three displacements: w; is a
deflection, ¢,; is an angle of rotation along the axis x, ¢,; is an angle of rotation along the axis y (Fig. 2).
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Figure 2. Displacements of the finite element in the nodes

o

Angular displacements are defined in terms of partial derivatives of the deflection function as follows
ow ow
= —, -, 1

To determine the deflection function of the finite element, we use the equation of plate equilibrium in the
absence of a transverse external load

V2V2w = 0. (2)
We search the solution of equation (2) in the form
w(z,y) = X(2)Y (y). 3)

Substituting (3) into (2) we obtain an equation which is divided into three independent equations
XV =0 XxX"Y"=0, YV=0 (4)

The first and the third equations are the bending equations for mutually perpendicular beams. The solutions
of the first and the third equations (4) in the coordinate functions have the form

X(z) = fi(x)zi + f2(2)0; + f3(x)25 + fa(2)0;;
Y(y) = 91(v)zr + 92(y)0k + g3(y) 21 + 94(y)01, (5)

0, 9 6n 6

where i, j, k,l — are beam nodes; the values z,, (m = i,j,k,[) are vertical displacements; L, L, 3, ¢ — are

angular displacements of the given beam. The beam coordinate functions for transverse bending have the values
filz) =22 —32° + 1, fo(z) = 2% — 227 + 2,
fa(x) = =22 + 327, fu(x) = 2® — 2% (6)
The functions g, (y) (n = 1,2, 3,4) are obtained from the expressions (6) by replacing x by y
ay) =2y =3y" +1, gy) =y’ - 20" +y;
93(y) = —2° +3y°,  galy) =y* — > (7)

Substituting (5) into (3), we write down the deflection function of the finite element in the following form

4

U)(I’,y) = Z Cijgij(xvy% (8)

2,j=1

where arbitrary constants ¢;; and functions &;;(z, y) have the form
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c11 = %iZg, C12 = zibg, c13 = 2z, cua =z,
co1 = 2pbi, oo = 00k, co3 = 20;, coa = 0;0;,

c31 = Zj2k, C32 = 20k, c33 =20, c34 = 22,

cqy1 = zply, car = 0;0k, cu3 =205, caa = 0;0;; 9)
€i7j(x7y) = fl(x)gj(y)ﬂ Za] = 1a2,374' (10)

At the nodes of the finite element, we have the following boundary conditions
w(aiaﬂi) = Wi, @z(azaﬂl) :Aia @y(az,ﬂl) = M, 1=1,2,3,4, (11)

ar=a1=0, am=az=1 p1=p5=0, B3=p=1
The values w; — w4 — are the linear displacements of the finite element; Ay — A4 — are angular displacements of
nodes of a finite element along the axis x; 1 — iy — are the angular displacements of the nodes of the element
along the axis y.
Defining the derivatives (1) of the function (8) and substituting them and the function (8) in turn into the
boundary conditions (11), we obtain the values of the arbitrary constants (9) in the form

Cming = Wi, Cpyn, = NG, Cmyp, = Mib,  ©=1,2,3,4; (12)

my=my=n1=ng=1 pr=ps=2, me=mg=ng=ng=3, pr=ps=4
Thus, twelve of the sixteen arbitrary constants from the boundary conditions (11) are calculated.
To determine the remaining four arbitrary constants, we use the second equation in (4) and introduce the
denotation
n(x,y) = X" (2)Y"(y). (13)
For the function n(z,y), from (4) we have the following boundary conditions at the nodes of the finite
element
n(ai718i) = Oa 1= 1727374' (14)
Having determined the second derivatives of (5) and computing their products by (13), and then substituting
in (14) we obtain the following system of equations.
We calculate the second derivatives of (5) and their products by (13). Then substituting these expressions
into (14), we obtain the following system of equations

4cgg + 2c04 + 2¢42 + agq = —dy;
2¢22 + Co4 + 4cao 4 244 = dy;

(15)
2¢2 + 424 + ca2 + 2a44 = d;
o2 + 2¢24 + 2c42 + dagy = —dy;
where the free terms expressed in terms of the known coefficients (12) take the following values
di = 9c11 + 612 — 9c13 + 314 + 6c21 — 6oz — 9e31 + 63z 4+ 9e33 — 3e3a + 3ca1 — 3cas;
da = —9¢c11 — 6¢12 + 9c13 — 3c1a — 31 + 3cag + 9cz1 + 632 — 9Icgs + 3cza — 6car + 6cas; (16)
ds = —9c¢11 — 3c12 + 9¢13 — 6¢14 — 6ca1 + 6ca3 + 9cs1 + 3caa — 9caz + 6¢34 — 3ca1 + 3cas;
dy =9c11 + 3c12 — 913 + 614 + 321 — 323 — 9ez1 + 3ez2 + 9ez3 — 6ezq + 6cqn — 6eys.
Solving the system of equations (15) and considering (16), we find the remaining arbitrary constants
C22 = —C11 — C12 + €13 — €21 + C23 + €31 + €32 — €33
C24 = —C11 + €13 — C14 — C21 + C23 + €31 — €33 + C34; (17)
C42 = —C11 — C12 + €13 + €31 + €32 — €33 — C41 + €43;
C44 = —C11 + €13 — C14 + €31 — €33 + C34 — C41 + C43.
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Taking into account the values of the beam functions (6), (7) and the values of the arbitrary constants (12),
(17), we write the deflection function of the finite element (8) with regard to (10) in the following form

7l's, (18)

T .
o= [7”1 T2 T3 T4 Ts Te 't T8 T9g T10 T11 7’12},

§F=lwir A1 1 wa Ao pio w3 A3 i3 Wy Ay fa] .

Here 77 is the transposed vector of the coordinate functions of the plate; §is the vector of nodal displacements
of a rectangular finite element.
The coordinate functions of the plate have the form

ri(z,y) = filzx)(1—y)+ (1 —2)o1(y) — (1 —z)(1 —y), 7r2z,y) =afo(z)(1-y), r3(z,y)="0(1~—2)ga2(y);

ra(z,y) = fs(@)(1 —y) —2g3(y) +zy, 75(2,y) = afa(z)(1 —y), 7r6(z,y) = brga(y); (19)
rr(x,y) = fs(@)y +xgs(y) + =, rs(x,y) = afa(x)y, ro(x,y) = brga(y);
7"10(93,9) = (1 - x)gg(y) - f3($)y + 2y, T11(I, ?J) = an(I)% 7’12(177y) = b(1 - $)94(y)a

where 1 — z, z, 1 — y, y are the coordinate functions of the linear element (the rod) when the torsion is made
in the direction of coordinate axes.

The same form (18) for the deflection function can be obtained if the solution of the equilibrium equation
for plates (2) is sought in a more particular form

4

w(z,y) =Y e fi(x)g; (v), (20)

ij=1

where ¢;; are arbitrary constants to be determined; f;(z) and g;(y) are the beam coordinate functions for
bending along the axes directions and , respectively. Arbitrary constants are defined in a manner similar to that
described above. A complete calculation on finding the deflection function in the form (20) is presented in [5].

The proposed classical method of determining the deflection function allows to obtain this function in
explicit form and to give a physical meaning for it. The analysis of the formulas (19) shows that the coordinate
functions of the finite element of the plate are equal to the product of the coordinate function of the beam
when it is bent to the coordinate function of the rod during torsion. Each coordinate function describes a
finite element deformation caused by a single nodal displacement value. The final form of the defined deflection
function depends on the coordinate beam functions in bending and on the coordinate functions of the rod (linear
element) in torsion.

Thus, the method based on the General solution of the biharmonic equation (2) allows us to obtain the
deflection function of a rectangular finite element in explicit form and to give it a vivid physical meaning: the
deformation of the finite element of the plate is representable through deformations of the beam and the rod.

In the traditional approach, the deflection function is given as an incomplete fourth-degree polynomial. The
following expression of the deflection function

w(z,y) = a1 + azx + azy + aur® + aszy + agy? + arr® + agz’y + agry® + aroy® + anady + arpay?

has certain advantages. In particular, along any line = const or y = const the displacement w(z, y) will change
by cubic law. All external boundaries and boundaries between elements consist precisely of such lines. Since the
third degree polynomial is uniquely determined by four constants, the displacements along the boundary are
uniquely determined by the values of displacements and angles of inclination at the nodal points at the ends of
this boundary. And since for adjacent elements the values at the ends of the boundary are the same, then along
any boundary between finite elements the function w(z,y) will be continuous.

Constants aq, ..., @12 are determined from a system of twelve equations relating the values w(x, y) and angles
of inclination at the node points, which are obtained as a result of substituting the coordinates of these points.
Arbitrary constants are determined (is founded) by inversion of the twelfth order matrix or by other linear
algebra methods [6].

As possible states, deflection functions can be adopted on the basis of Hermite polynomials, sometimes
used in calculations by the finite element method in displacements. For example, in the case of a rectangular

154 Becrnuk Kaparanmguickoro yHuBepcurera



On the calculation of the rectangular finite element of the plate

plate under arbitrary lateral load, the deflection function of a rectangular finite element can be represented as
a polynomial of the fourth degree. Such a deflection function w(x,y) can be obtained in the form of Hermite
polynomials [1]

w(z,y) = 21Ho1 () Ho1(y) — 22H11(2)Ho1 (y) + 23Hoy () H11(y) + 24 Hoz(2) Hoy (y) —

—z5Hio(2)Ho1 (y) + zeHoo () Hi1(y) + 27 Hoo2 () Hoo (y) + 2zsHi2(x) Ho2(y)+
+29Hoz(x)Hi2(y) + z10Hoz2(x)Hoz (y) + 211 Hi2(x)Ho2(y) + z12Hoz () Hi2(y),

where the values of the nodal displacements z1, ..., 212 are equal to the followig values

ow ow

Z23n—2 = w(%ﬁn% Z3n—1 = _7(V7L7wn)7 Z3n = aiy(pann)a n=1,234

ox

M=70=01=04 =V =Vi] =Wy =Ws =p3 =pi12 =73 =T = 0;
V4= =Vs =V =psg =Py =a, O7=2010=ws=wi =Ty =Ti2=D.

Conclusion. The deflection function of a rectangular finite element determines uniquely the deformed state
of an element by means of its nodal displacements. As it was said above, on the basis of the explicit shape of
the deflection function, all necessary matrices (deformation, stress, stiffness and load) can be obtained. Note
that the deflection function of the finite element forms the basis for calculating the plate by the finite element
method. On its basis it is not difficult to develop an algorithm for calculation with the implementation on a PC.
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I"A. Ecenbaena, JI.H. Ecbaesa, T.X. MakaxxkaroBa

IInacTuHaHBIH, TIKOYPBINITHI COHFBI 3JIEMEHTIH €CenTey TYPaJibl

MakaJta COHFBI 3JIEMEHTTED OJIiCiMeH >KiHIIKe IJIACTUHAHBIH UiJIyiH 3epTTeyre apHaJrad. [lmacTuHaHbIH ni-
JIy ecebiH IIerryre COHFBI 3JIEMEHTTED OIICIHIH KOJIIAHBLIYEI TIJIACTUHAHBIH, TIKOYPBIIITH COHFBI 9JIEMEHTIH
3epTTey KaxKeTTimirine okesemni. AybITKyaap (QyHKIUMAMEH aHBIKTAJIATHIH, [IACTUHAHBIH, 0apJblK, gedop-
MAIHAACH] KOHE CTATHKAJBIK MOHJIEPI KAJIBIITHI OArbITTa IJIACTHHAHBIH OPTa OeTiHJle »KBbLIKY (DYyHKIHA-
cbl 6ostbilt TabbLTa b, Makaaamga mIacTUHAIAPBIH aybITKY/IAp (DYHKIUSICHI affKbIH TYPE KAJBIITACTHIPY
KapacThIPbULIbL. AyBITKynap (QyHKIUACH [JIACTUHAHBIH, Tele-TeH K TeHEYIHIeri afHbIMAaIbl MOHIAEP/I
TOPTIHI JPPEXKEJI TOJBIK eMeC ITOJIMHOM/IBIK, YKoHe DPMHUT HOJMHOMBI TYPiHje 6eJly apKbLIbl Taby omici
Gepinren. MakaJsia HeriziHeH MeXaHUKTepre, WHXKEHepJIep MEH TEXHUKAJIBIK, KbI3MeTKepJiepre 6arbITTaIFaH.

Kiam cesdep: COHFBI 37IEMEHTTED 9/iCi, TIKOYPBIIITHI COHFBI 9JIEMEHT, aybITKY/Iap (DYHKIUICHI, OYPHIMITHIK,
JKBUDKY, DPMUT HOJUHOMBI.
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O pacdere NnpaMOyIroJIbHOT'O KOHETHOI'O 3JIeMEHTa IIJIaCTHUHDbI

CraTbst TIOCBSINEHA UCCIEOBAHUIO N3TNHa TOHKOM TJIACTUHBI METOJOM KOHEUYHBIX 3/1eMeHTOB. [Ipuioxkenne
MeTO/Ia KOHEYHBIX 3JIEMEHTOB K PEIIeHUI0 3a/1a9u 00 n3rube MIACTUHBI IIPUBOIUT K HEOOXOIAUMOCTHU UCCIIe-
JIOBaHMS IIPSIMOYTOJILHOIO KOHEYHOT'O JIEMEHTa, IIACTHHBL. Bee nedopmalinoHHble 1 CTaTHIeCKe BeJIUINHbI
ITACTHUHBI SIBJISTFOTCS (DYHKITUSIMU TIEPEMEIEHUs] B HAIIPABJIEHUYN HOPMAJIU K CPEINHHON MOBEPXHOCTHU TIJIa-
CTHHBI, KOTOpPOE ompeieigercs (pyHkIimen mporubos. B crarbe npusesieHo nocrpoenune (pyHKIUA IPOruboB
IJIACTHH B IBHOM Bu/ie. [IpuBeieHbI criocobbl HaX0XK 1eHust (DYHKIMY [IPOrnbOB pas3/ieJIeHueM [I€PEMEHHBIX B
YPaBHEHUU PABHOBECHS TJIACTHHBI, Y€PE3 HEMOJHBIN TTOJIMHOM Y€TBEPTOM CTENEHN U B BHUJIE TIOJJMHOMOB Jp-
muta. CTaTbsi OPpUEHTUPOBAHA, IJIABHBIM 00pa30M, HA MEXAHUKOB, HHXKEHEPOB M COTPY/IHUKOB TEXHUYECKUX
CHEIUAIbHOCTEI.

Karoueswie c068a: METON KOHEIHBIX 3JIEMEHTOB, IIPSIMOYTOJIbHBIN KOHEUHBIN 9JIEMEHT, (DYHKIHs IPOruboB,
YIVIOBBIE II€PEMEIIEHNsI, IIOJIMHOMBI DPMUTA.
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