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New singular solutions for the (3+1)-D Protter problem

For the nonhomogeneous wave equation with three space and one time variables we study a boundary
value problem that can be regarded as a four-dimensional analogue of the Darboux problem in R?. Unlike
the planar Darboux problem, the R*-version is not well posed and has an infinite-dimensional cokernel.
Therefore the problem is not Fredholm in the framework of classical solvability. On the other hand, it is
known that for smooth right-hand side functions, there is a uniquely determined generalized solution that
may have a strong power-type singularity at one boundary point. The singularity is isolated at the vertex
of the characteristic light cone and does not propagate along the cone. In the present article we announce
new singular solutions with exponential growth.
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Introduction

In this paper we consider some boundary value problems for the wave equation with three space and one
time variables that were proposed by M.H. Protter. From a historical perspective, Protter formulated these
problems in connection with BVPs for mixed-type equations that describe transonic flows in fluid dynamics.
The topic was extensively studied in the 1950 s and 1960 s with the development of supersonic aircrafts. In
particular, the classical two-dimensional Guderley-Morawetz problem for the Gellerstedt equation of hyperbolic-
elliptic type models flows around airfoils and is well studied. Regarding 2-D mixed-type boundary value problems
and their transonic background we refer to the recent survey by Morawetz [1]. In 1954 Protter [2] formulated
some multi-dimensional analogues of the planar Guderley-Morawetz problem. Initially, expectation was that the
methods used in the 2D case could be applied, with minor modifications, for the problems in higher dimensions.
However, the multi-dimensional case turns out to be quite different and the situation there is still not clear.
Some of the difficulties and differences with the planar BVPs are illustrated by the related Protter’s problems
in the hyperbolic part of the domain, also formulated in [2]. In particular, for the wave equation in R*, with
points (z,t) = (21, x2, x3,t),

Ug oy T Uzozy T Uzgzy — Ut = f(l',t) (1)

Q{(az,t):0<t<1/2,t<\/x%+x§+x§<1t}.

The boundary of €2 consists of two characteristic cones

21_{(I,t):0<t<1/2,\/m_1t}7
22:{(m,t):0<t<1/2,\/m:t}

Zoz{t:O,\/xf—l—x§+x§<1}.

Let us point out that the origin O : x = 0,¢ = 0 is both the center of the non-characteristic part of the boundary
Y9, and the vertex of the characteristic cone 5. We will study the following BV Ps.
Problem P1. Find a solution of the wave equation (1) in Q which satisfies the boundary conditions

the domain is

and the ball

Pl: u|g, =0, ulg, =0.
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One can regard the domain 2 as a four-dimensional analogue of the characteristic triangle
D = {(z1,t) € R?: 0 < t < zy < 1—t} for the string operator Ouv(x1,t) := vy,z, — vy in R? with points (z1,1).
The boundary of D consists of two characteristic —l; = {z1 =1-t,0 <t < 1/2} andly = {z1 =1,0 <t < 1/2},
and a non-characteristic segment — lp = {t = 0,0 < z; < 1}. In fact, the domain Q can be constructed by
revolving D in R* about the t-axis. Then the segments Iy, I; and Iy form 3o, X1 and 3o, respectively. In this
context the Protter problems P1 and P1* are four-dimensional variants of the classical Darboux problems for
the string equation in D C R?: the data are prescribed on one of the characteristics and on the non-characteristic
part of the boundary. On the other hand, unlike the planar Darboux problem, the Protter’s problems in R* are
not well posed. Actually, the homogeneous adjoint problem P1* has smooth classical solutions and the linear
space they generate is infinite dimensional (see Lemma 1 in the next section). Thus, in the frame of classical
solvability the Protter problem P1 is not Fredholm, since it has infinite-dimensional cokernel. Naturally, a
necessary condition for the existence of a classical solution for the problem P1 is the orthogonality of the right-
hand side function f to the cokernel. Alternatively, to avoid imposing an infinite number of conditions on f,
the notion of generalized solution have been introduced.

Definition 1 [3]. A function v = u(x,t) is called a generalized solution of the problem P1 in Q, if the
following conditions are satisfied:

1) ueCt (Q\O), ulspo =0, uls, =0, and

2) the identity

/ (UpWp — Ugy Wy — Ugy Wary — UgyWey — fw) dxdt =0
Q

holds for all w € C1(€2) such that w = 0 on ¥y and in a neighborhood of Y.

Notice that this definition allows the generalized solution of the problem P1 to have singularity on Ys. Now,
it is known that when the right-hand side f is smooth, there exists a unique generalized solution of the problem
P1 and it turns out that its singularity is isolated at only one point, that is, the origin O. In [4] it is shown
that for each n € N there is a generalized solution that behaves like || =™ near O. The existence of a solution
with exponential growth is announced in [5]. It is interesting that these singularities are isolated at the vertex
O and do not propagate along the characteristic cone Ys. This differs the conventional case of propagation of
singularities, like in Hérmander [6, Chapter 24.5].

In this paper we discuss for right-hand sides f € C'(Q) the behavior of the generalized solution of problem
P1 and the rate of its growth at the point O.

In the special case when the right-hand side function f is a harmonic polynomial, the exact behavior of
the generalized solution of problem P1 is found in [3]|. In [7] the semi-Fredholm solvability of problem P1 is
discussed. A short historic survey and a comparison of various recent results for Protter problems can be found
in [8-10]. Garabedian [11] proved the uniqueness of a classical solution for the problem P1. According to the
classical and singular solutions let us mention here a series of papers by Aldashev (see [12-15]). Some other
multi-dimensional versions of the planar Darboux problem for the wave equation are studied in [16-19]. For
Protter problems for the wave equation but with lower order terms see [20, 21| and references therein. The
existence of bounded or unbounded solutions for some other connected equations is considered in [13, 22].
Regarding results for degenerated hyperbolic equations we refer to [14, 23, 24] for Keldysh-type equations see
[24, 25], and for BVPs for multi-dimensional mixed-type Lavrent’ev-Bitsadze equation see [12, 15]|. For the
Protter’s mixed-type hyperbolic-elliptic problems, uniqueness results for quasi-regular solutions are proved in
[26]. There are a recent series of results concerning existence or nonexistence of nontrivial solutions of related
quasi-linear problems of mixed hyperbolic-elliptic type in the multi-dimensional case, see [27, 28§].

In the present paper new singular solutions of problem P1 with exponential growth at the origin O are
announced. The main Theorem 6 is formulated in the last section. It is based on some previous results from
[10] for the existence and the behavior of the generalized solution, that will be presented and discussed in the
next section.

Ezistence of generalized solutions

Naturally, the behavior of the generalized solution of problem P1 is affected by the correlations of the right-
hand side function f with the solutions of the homogeneous adjoint problem P1*. In order to construct the
latter, we will use in R? the orthonormal system of spherical functions Y, (n € NU{0}, and m = 1,...,2n+1).
The spherical functions are introduced commonly on the unit sphere S? := {(x1,22,23) : 23 + 23 + 22 = 1}
with spherical polar coordinates (see [29]). Expressed in Cartesian coordinates here, one can define them by
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dk
Yfk(xl,xg,xg) = C’n,kd—kPn(xg)Im {(J:l + img)k}, for k=1,...,n
T3
2k+1 ¥ Y
Yo (2, 20, 23) = Cnykﬂpn(.’tg) Re {(xl +ixa) } , for k=0,...,n
T3

where C,, j, are constants and P, are the Legendre polynomials. The Legendre polynomials are given by the
Rodrigues formula as
(3]

1 d"
P,(s) := Zan o s" 2k,

with coefficients
(2n — 2k)!

27kl (n — k)!(n — 2k)!

o = (~1)F (2)
The constants C,, ,,, are such that functions Y, form a complete orthonormal system in L(S?). For
convenience in the discussions that follow, we extend the spherical functions out of S? radially, keeping the
same notation Y™ for the extended function, i.e., Y, (x) := Y,™(z/|x|) for x € R3\O.
Now, let us define for n, k € NU {0} the functions

3

kp 5774‘8

n

Following Lemma 1 from [10] and Lemmas 1.1 and 2.3 from [30] we can construct solutions of the homogeneous
adjoint problem.
Lemma 1 [10]. The functions

n _ |+t |z -1 m
Vg m (T, 1) = |2 Y n—2k—2 ("2, ||2> Y. (x).

are classical solutions from C°°(2) N C(Q) of the homogeneous problem P1* for n € N, m =1,...,2n + 1 and
k=0,1,...,[(n—1)/2] — 2.

Solutions for the homogenous adjoint problem were first found by Tong Kwang—Chang [31]. Some different
representations of the solutions of the homogeneous problem P1* and the functions v}, are given by Khe Kan
Cher [22].

Next we will present some useful conditions from [10] for the function f that are sufficient for the existence
of the generalized solution of problem P1.

Since the spherical functions form a complete orthonormal system in Ly(S?), generally, a smooth function
f(x,t) can be expanded as a harmonic series

oo 2n+1

=Y > el )Y (@) 3)

n=0 m=1

with Fourier coefficients

(e, t) : /fxt z) do, (4)

where S(r) is the three-dimensional sphere S(r) := {x = (x1,22,23) € R3 : |z| = r}. The results from [10]
ensure the existence of the generalized solution of problem P1 assuming that the Fourier series (3) converges
fast enough. They also give a priori estimates for the singularity of the solution. In fact, the behavior of the
generalized solution depends strongly on the Lo(Q)-inner product of the right-hand side function f(x,t) with
the functions vy, (v,t) from Lemma 1 (see also [20, 3]). Accordingly, we denote by 3., the parameters

Bu . = / of (@, 0)f (2, ) dadt, 5)

Q
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where n =0,...,1; k=0,..., [”Tl} and m =1,...,2n + 1. In order to formulate the general existence result,
we need also to introduce for p > 0 and k € N the series

2n-+1

> el v @)

17575 C* 2= (1780 D] oo +Z””

or Q)

and the power series
2n+1 [(n—1)/2]

:i:l Z Z |BEm] | 5

Apparently, the convergence of || f; n?; C¥|| gives information on the rate of convergence of the Fourier series (3).

Theorem 2 [10]. Let the function f(xz,t) belong to C1(Q). Suppose that the series || f; n%; C°|| and || f; n*; C*||
are convergent and the power series ®(s) has an infinite radius of convergence. Then there exists a unique
generalized solution u(x,t) € C1(Q\O) of the Protter problem P1 and it satisfies in Q\O the a priori estimates

C _
el <o (L) + el irntsc?l]

ua,t)| < C [cb (| fH) 1m0 4 |1 01”]

3
> o) + (e 0] < Clal2 [ (22 ) 1 gsns ]
P o]+

where the constants C, C and Cy are independent of the function f(z,1).

In these estimates, the singularity of the generalized solution at the origin O is controlled by the function
®(s), while || f;n?; C*|| bounds the «regular part» of u(z,t).

Notice that the definition of ®(s) involves parameters 3, with index & > [251] — 2 also, and the
corresponding functions Uy, are not classical solutions of the homogenous problem P1*. Nevertheless, these
functions vy, still «control» some discontinuities of the generalized solution and cannot be omitted as seen
from the followmg result from [7]. At the same time, Theorem 3 also suggests that there are no other linearly
independent nontrivial classical solutions of the homogenous adjoint problem P1*.

Theorem 8 [7]. Let the function f(x,t) belong to C*°(Q). Then the necessary and sufficient conditions for
existence of bounded generalized solution u(zx,t) of the Protter problem P1 are

[ ol ) dea = o
Q

forallme N, k=0,..., ["?’1], m = 1,...,2n + 1. Moreover, this generalized solution u(z,t) € C*(Q\0O) and
satisfies the a priori estimates
u(z,8)] < Clfllgrogm)
3
D g (2, 6)] + Jug (2, 1) < C(l2* + )7 | fll crogay -

i=1
where the constant C' is independent of the function f(x,t).

In practice, it is not always easy to compute all the parameters 51?,771 from (5) and therefore to construct
and study the behaviour of the series ®(s). On the other hand, notice that we have

Bt | < C*/? 12" lcoqy -
since directly from the definition of the functions vy, (z,t) we get the estimate |v} | < [Y"| < Cn!/2. This
allow us to formulate the next direct corollary of Theorem 2.

Corollary 4. Let the function f(z,t) belong to C'(Q). Suppose that the series || f;n®; C°|| and ||f;n*; C1||
are convergent and the power series

oo

2n+1
> ||fr71||com)] $
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has an infinite radius of convergence. Then the unique generalized solution u(z,t) € C*(Q\O) of the Protter
problem P1 satisfies near the origin the estimate

Co

0] < 0o (72, (6)

where the constants C' and Cy are independent of the function f(x,t).

Remark. Although Corollary 4 is somewhat weaker than Theorem 2, it still gives better estimate than the
previously known general a priori estimates for the singularity of the solution. In particular, Protter problems
in the (2+1)-D case (two space and one time dimensions) were studied in [4]. According to [4, Theorem 5.3| the
sufficient condition for the existence of a generalized solution is the convergence of the series

—1_ (2n
5 110 () (1 lcogay + 12l cny) « or it e >0,

n=1

where Iy is the modified Bessel function of first kind, and f? are the Fourier coefficients for the right-hand side,
and could be viewed as the analogues of the functions f/* given by (4). Using the inequality Iy(s) < e® for s > 0,
one could paraphrase Theorem 5.3 from 4 in somewhat weaken form as follows. Suppose that the power series

32(5) 1= 3 (2l ooy * 1 ongey) 75"

n=1

is convergent for all s. Then for the singularity of the unique generalized solution u(z,t) for the (241)-D Protter
problem P1, near the origin we have the estimate

lu(z, 1)) < OBy (exp (mi])) . (7)

Notice that the exponent in the argument of ®5 in (7) is replaced now in (6) by simply a linear function.

Evidently, Theorem 2 gives only an upper bound, but the generalized solution does not necessarily grows
like ®(C/|z|) near the origin. The paper [3] considers the special case when the right-hand side function f
is a harmonic polynomial, i.e., (3) is a finite sum (f”* = 0 for large n), and the function ®(s) is simply a
polynomial. In [3] the exact asymptotic formula for the generalized solution at O is found. It shows that the a
priori estimate is sharp and the solution can indeed have a power-type singularity as ®(C/|z|). On the other
hand, in the general case f(z,t) € C'(Q) stronger singularities are also possible. Actually, a generalized solutions
with at least exponential growth at the origin was found in [5]. In the present article the existence of solutions
with stronger singularities is announced.

Singular solutions with exponential growth

Regarding the possible singularities of the generalized solution of problem P1 the next question naturally
arises. Given the function ¢(s), can we find a smooth right-hand side function f such that the corresponding
generalized solution grows like ¢(1/|z|) at O? As a possible answer, the following result is given in [10], that
provides a method for finding suitable functions f. Recall that a, o, are the coefficients (2) of the Legendre
polynomials.

Theorem &5 [10]. Let the function f(x,t) belong to C1(€2), the series || f;n%; C°||, || f; n*; C!|| are convergent,
and the power series ®(s) has an infinite radius of convergence. Let the numbers o, > 0, p =0, 1,2, ..., are such
that the series

o(s) := Z aps?

p=0
is convergent for all s € R. Suppose that there is 2* = (27, x5, 23) € R? such that

oo 2p+4k+1
Z Z pan,gkﬁﬁrﬁk pior(z™) > a, forall pe NU{0}. (8)
k=0 m=1
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Then there exists a number 6 € (0,1/2) that the unique generalized solution u(z,t) of problem P1 satisfies the
estimate

* * * 1
lu(tal, tas, tas, t)| > ¢ (2t>

for t € (0,9).

According to Theorem 5 one could try to construct a right-hand side f(z,t) € C*(Q) by choosing suitable
Fourier coefficients f™(r,t). They have to be «small enough» that the required series || f;n?; C*|| and ®(s) are
convergent, but at the same time, satisfy the inequality (8). The main result in the present paper is that it is
possible to apply this procedure to build an appropriate function f such that the corresponding solution grows
like exp(|z|~*) at O.

Theorem 6. Let k € N. Then there exist functions f € C*(Q2) and positive numbers d;, € (0,1/2) and Cy,
such that the unique generalized solutions uy(z,t) = ug(x1,22,23,t) € CH(Q\O) of the problem P1 for the
wave equation (1) with right-hand function fj, satisfy the estimates

u(0,0,t,t) > exp(t %) for t€(0,6),

and
lup(2,t)| < Crexp(2lz|~%)  for (z,t) € Q.

From [5] it is known that there is a right-hand side function f € C°°(Q) such that the generalized solution
grows at least like exp(|z|~!). Obviously this corresponds to the case k = 1 in Theorem 6. Unlike [5] here we
have also an estimate from above, that shows that the solution behalves «exactly» like exp(|z|~*) at O. On
the other hand, the functions f; are only C'-smooth, and is not clear whether, like in [5], one could construct
functions from C*°(Q) with the desired property.
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T.II. Ilouos

ITporrep (3+1)-D ecebiniy »kaHa CUHTYISPJIBIK, IITEMIiMIepi

VakbITKa 6ailTaHBICTHI Oip afHBIMAJIBICHI Oap, YIIT OJIIIEM/Ti KeHICTIKTe OiPTEeKT] eMeC TOJKBIH TeHIEY1 Kapac-
THIpBULIEL. Byi Tergey yimin R? kenicririnzgeri JapGy ecebinin aHAIOTBI GOJIBII TAOBLIATHIH TOPTOIIIEM/ I
eTTiK ecen 3epTTesreH. Bys ecenTiy Ka3bIKTHIKTarbl JlapOy ecebineH MbIHAAN abIPMAIIBLIBIFLL Hap:
R* kenicririnye KapacTHIPLUIATEIH GyJl ecell KOPPEKTLIL eMec yKoHe OHbIH, OJIMeMi aKbIPChI3 KOSLIPOCHL 6ap.
KiraccukaabIk mentiMaiiik TyprbICBIHAH MYHJIa ecell ppearoabMIiK eMec ecell OOJIbI TadbLIa bl ExKinri
JKaFbIHAaH, TEHJIEYIIH OH >KaFbIHJAFbl (DYHKIMsS Teric (DyHKIus OOJFaH Karmaiiza TeHaeyaiH Oearit Gip
JKaJImbLIaMa IerriMi 6ap KoHe Jie OJI MermiM 6ip MeTTIK HYKTele M9PeXkKeTiK TYpP/e €PeKIeIeHTeH OOTyb
MYMKiH. Epekiresnik HyKTeci XapaKTepUCTHKAJIBIK, KOHYCTBIH TOOECIH/Ie OKINayIaHFaH »KoHe KOHYC OONBIH 1A
Tapajmaiiael. By Makasaga 9KCIIOHEHTA TYPIHJIE ©CETIH KaHa CUHTYJISPJIBIK, IIENNM 0ap eKeHiH aHbIKTAJI-
JIBI.

Kiam cesdep: TONKBIH TEHJEY], MIETTIK €CENTep, XKAJINbLIaMa IIEIM, CAHTYJISPJIbIK, MENNMIED, €PEKIIeTiK-
TEPJIiH TapaIybl, apHAWBl DYHKITUSIIAP.

T.I1. Tlomos

Hosbie cunrynsipabie pemenns juis (3+1)-D 3amaun IIporrepa

115t HEOHOPOIHOTO BOJTHOBOTO YPABHEHUS C TPEMsI TPOCTPAHCTBEHHBIME U OJHOW BPEMEHHOM ITepeMEeHHbI-
MU U3ydeHa KpaeBas 33/1a9a, KOTOPYIO MOKHO PACCMaTPUBATH KaK YeThIPEXMEPHBIi aHaJIor 3a7a4u Japby B
R2. B ormmrane or miockoit 3amadu Jap6y, RY-Bepcus me sBsieTCst KOPPEKTHOMN 1 MMeeT GeCKOHETHOMEPHOE
kospo. [TosTomy 3a7ada He siBjisiercs ppearoabMOBOI B paMKax Kjaccuieckoil paspemumoctu. C apyroi
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CTOPOHBI, M3BECTHO, YTO JJIsI TVIAJKUX IIPABBIX YacTell ypaBHEHUsI €CTh OJJHOZHATHO OIpPE IeJIEHHOE 0000IIeH-
HOE DpeIlleHne, KOTOPOe MOXKET UMETh CHJILHYIO0 OCOOEHHOCTH CTEIIEHHOI'O THUIA B OJHONW I'DAHUYHON TOUKE.
OcobGeHHOCTh M30JIMPOBaHA B BEPIIMHE XapaKTEPUCTUYECKOTO CBETOBOI'O KOHYCA M HE PACIPOCTPAHSIETCS
BJIOJIb KOHyca. B HacTosIell crarbe aHOHCUPOBAHbI HOBBIE CHUHIYJISIDHBIE PEIIEHUsI C SKCIIOHEHIUAIbHBIM
pOCTOM.

Karouesvie caosa: BOJIHOBOE ypaBHEHNE, KpaeBble 3a7a4u, 00OOIEHHOE pellleHne, CUHTYJIAPHBIE DENIeHns,
pacopocTpaHeHre 0COGEHHOCTEMN, CIeIuaIbHbIe (DYHKIIAN.
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