MATEMATUKA
MATHEMATICS

DOI 10.31489/2019M4,/8-14
UDC 517.968

D.M. Akhmanova!, M.T. Kosmakova', B.A. Shaldykova?

1Ye.A. Buketov Karaganda State University, Kazakhstan;
2 Rudny Industrial Institute, Kostanay, Kazakhstan
(E-mail: danna.67@mail.Tu)

On strongly loaded heat equations

The article is devoted to the research of boundary value problems for the spectrum - loaded operator of
heat conduction with the moving point of loading to the temporary axle in zero or on infinity. For strongly
loaded parabolic 2k-order equations the adjoint boundary value problems, when order of loaded term is
greater then one of differential part of equation, is studied. In this article we continue a investigation of the
boundary value problems for spectrally loaded parabolic equations in unbounded domains.The boundary
value problem for the spectral-loaded equation of thermal conductivity, which on the one hand is quite close
to the problems with the load containing the second derivative of the spatial variable, and is of independent

interest on the other hand in this work, is considered.

Keywords: loaded heat equation, class of essentially bounded functions, inverse Laplace transformation,

residue.

1 Statement of the problem

We consider the first boundary value problem of heat conduction in the degenerating domain
Q = {z € (0,00), t € (0,00)} the cogeralized boundary value problems for a heavily loaded heat equation

(which generally is called a heat equation order 2k) in the domain :

ou 0%*u 0%k

Lau=fs{ 8 o2 "0 le=a= £,
u(x,0) = 0,u(0,t) = 0;
ov @) (;
R = Y a)@ [y v(Et)dE =g,

Liv=g& ot
u(x,00) = 0,v(0,t) = v(oo,t) =0,

where a = const,a > 0,k > 2, A\ = A + 1Ay € C is the parameter

9%k

fiu€ LI(QLW

oea€ Li(0,00); g0, /0 V(€ 1)dE € Loo(Q).

(1)
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2 Reducing the problem to an integral equation

By inverting the differential part in the boundary value problem we obtain the following (1), we will have:

t T a?k: ( )
u(x,t) = f)\/ erf( \/ﬁ)* ok lp=a dT+
/ / G(x.€,t — 7) (€, 7)dédr, (4)
where 1 (z— &)? (z 1 €)2
G 6.1) = Seap(~ 1) — eap( 20 (5)

Then differentiating (4) = by 2k times and assuming x = a, we contain the integral equation Volterra of the
second kind

K)\# E / ng t*T )dT = fl( ) (6)

where the following notation is used:

an a2k
) = 5ot Lo S (W [ xf,tf)f(m)dﬁdf>

2k
Kop(t—7) = dd {erf<2 t7'>}
|lz=a

or for the kernel Ky(0) , you can use the ratio

K 1 ko 1 .13'2
2k(0) — mdl_m erp Y] |1‘:a

For example, we write the explicit form of kernels for k =2,3,4 :

K _ 1 a\/g 3a a?
90 = g x | a2 T P g )
_ 1 a\f 15a a?
Ke(o) = 8/ T 401172 99/2 Tz |9PP\ Tag |
1 7 21a® 105a3 105 2
Kso) = [ o t s - a}@m(—“)

16y/7 | 8015/2 " 4913/2  2011/2 " 9g9/2 40

Inverting the differential part to problem (2) in the same way as in problem (1), we will have:

v(z,t) 4// Gz, &7 — )0 ®/ v(n, 7)dndédr+

lz=a

+ [T [ G - gl e ™)
t Jo
Integrating the relation (7) over the variable x from 0 to oo and denoting
o) = [ vl tyin ®
we will obtain the integral equation
Kiv = olt) - X/ Kon(r — )o(r)dr = g1(8). )
t

where

N /too /OOO erf(Q\/%)g(f,T)dde.
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8 Laplace transformation. The partition plane of the spectral parameter

The equation (9) is an equation with a difference kernel, so you can use a transformation of Laplace to hear.
In this case we use the following formulas [1-3]:

{/Kt—r )df}_ R(p) - BL(p),
{/ K(t—7)p )dT}:I?(—p)~s2L(p),

o0
= / K (t)eltdt,
0
2k

Kot —17) = dd » {erf (dfmcx2\/ﬁ> }|H = C‘;; {erf(z\/i> }|I_a

Then if we apply the Laplace transform to the homogeneous equation (9), we obtain the following transcendental
equation

where

we also use an easily checkable equality.

BL(p) - [L =X K(-p)] =0. (10)
If we assume @L(p) # 0 then the following equality must hold.

—X-E(-p) =0. (11)

Let equation (11) have one simple root -py i.e.

—_ o~

L=X-K(=p)] = (p—po) ¥(p),

where JL(p) # 0. Then equation (10) takes the form @L(p) - (p — po) = 0 , therefore L(p) = d(p — po), a, so
o(t) = €Pol, Rep, < 0. From [2; 390, theorem 146] it follows that functions of this kind are the only solutions of
the homogeneous equation (9) [4-6].

In our case

K(=p) = (=p)*te V7P,
Therefore, we need to find the roots of the transcendental equation
1—X-(—p)f~te V=P =0, Re(—p) > 0. (12)

In contrast to the previously considered case (spectral-loaded, k1), the roots of equations (12) can be found only
approzimately (for each numerically given X), in roots cannot be found clearly. To clarify the existence and
number of roots of equation (12) for concretes — of the values of parameter A we rewrite it as follows:

eV =p
A= T (13)

Considering this equation as a function A = A(p) whose domain is Re(—p) > 0, that, is as a conformal map, we
find in what is displayed (on the complex plane A) the domain of the variable p . By requirement Re(—p) > 0,
—n,/2 < arg(—p) < 7,/ 2,means —7,/4 < arg\/(—p) < 7,4, if z = \/(—p) = x + 1y, means the boundary
of the domain of definition the variable —p is the lines y = +x. According to the law of correspondence of
boundaries it is enough to find the images this line [7-9].

We have

eaz

|22(5=1D) = (2 + y2)F— 1’

]

Al =

(14)

arg A = arg e (@ +2™) _ 9} _ 1)arg z = ay + 2wn — 2(k — 1) arctg %
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Considering y = £z, we have

k-1
arg/\:ax+27m—2(k—1)%:ax—|—(2n— )T,n € Z,

k-1
axr = arg A — (2n — T)w,n €z (15)
Thus, from equation (14) (talking into account (15) and the fact that y = +x) we obtain that the lines defined

by the equation
(a/ﬁ)%—Q

k-1
[A| = 1 -exp|arg A + <2n+2>7r|,
|arg A + <2n—|— — >7T|2k_2

where n = 0, 1,2, ... divide the complex A\ plane into disjoint domains D,,,,m = 0,1, 2, ...

Comment.

Note that in addition to the areal domain Dy, which has only the outer boundary of I'g = 0Dy each of the
domains D,, has a boundarydD,, consisting of I';,, an external I',,_; part:

0D,, =T',_1 U I, where,I'y,_1 ﬂ Ty = (—=1)"exp{mm},

those the external I',,, and internal I',,_; parts of the boundary dD,, of the domain D,, have one common
point, lying on the real axis of the complex plane of parameter A\. Dy is the area into which that part of the
plane of the complex variable p I displayed, for which —7 4 < argp < 7w 4,, those are the exterior of the
angle lying between the lines y = —2 and y = x This just means that if A € Dy, then equation (12) does not
have the roots we need, i.e. such for which Re(—p) > 0.
Obviously, for k =1 we get our previously established picture of the partition of the complex plane A [10].
Difference is that for each domain D,,, that is, when A € D,, equation (12) will have exactly 2m roots, (this
is easy to trace, for example, for real values A, p) [11-13].

4 Solution of integral equations

With VA € D,,,, m = 1,2,..., homogeneous equation (9) has a General solution of the species.
v(t) = X3 ¢p, - P (16)

where ¢y, - is an arbitrary constants, pi- is the corresponding roots of equation (12).
We find a proprietary solution of the in homogeneous equation (9). Applying Laplace’s transformation to it we
get

B(p) - |1 = AN=p)¥'e™ V7| = Gi(p), with Rep <0, (17)

where U(p), g1(p) - is the Laplace transformation, corresponding to the v(t) and g¢;(¢) functions; Since the
function

Ap, ) =1 = A(—p)rte avV=P,

It is determined only at Rep < 0, then we will continue it analytically on the whole complex plane with a
cut along the positive real axis. Suppose that the Laplace transform of functions g(¢) is analytic in the band
—e < Rep < e. Then from equality (17) at VAL,

(m=0,1,2,...,) we get
< (=p)"texp(—ay=p)

o(p) = gi(p) + \—= - 91(p)-
L — A(=p)*~texp(—a\/—p)

Passing in this balance to the originals we get

o(t) = g1 (t) +X/ ry— (t — 7)g1 (T)dr, (18)
t
where "
1 o0 —p)lexp(—a
R e LTS (19)
210 J oo 1= AN—p)*~Lexp(—a/~p)
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If the roots of the equation
1 —X=p)*texp(—ay/—p) = 0.

lie on the imaginary axis integration will perform along the contour, bypassing these points on the left. At the
sometime integral should be understood in the sense of main value for Cauchy. Thus, the General solution of
equation (9) at A € D,, has the form

v(t) = g1(t) + )\/too ra — (t = 7)g1(T)dr + 237 ¢, - PFE, (20)

We formulate the results in the form of the following lemmas.

Lemma 1. The A € Dy values are regular numbers of the Ky~ (9) operator.

Lemma 2. The set C \ Dy consists of the characteristic numbers of the Ky« operator (9). And if
A€ DUl 1 \{(-=1)™e™™}, m =1,2,..., then Ker(Ky-) = 2m and the corresponding own functions have
the form:

vak(t) = exp(pit), k=1,...,2m.

where pg- is the corresponding roots of equation (12).

Now counsider the integral equation (6), which is usually called the recovery equation [14, 15]. This name
1s explained by the fact that such equations arise in the theory of restoration - a section of probability theory,
which describes a wide range of phenomena related to with the Failure and recovery of elements of the any
system. The recovery equation is also of great importance in the study of problems of both applied and theoretical
nature in reliability, queueing theory, in the theory of stocks, in the theory of branching processes and so on.
[16-18].

Applying the Laplace transform to equation (6)and using the convolution theorem we obtain

i(p) = f(p) + ’ e”WPL— \pFlem VP f1(p), p=s+io, Rep=s>0,

Using the inverse Laplace transform we have

¢
H(p) = Fi0) ) [t (= D, (21)
0
here the resolvent ry (#) is defined by the formula

1 /c+ioo )\pkflefa\/ﬁ

A 0) =55 [ r=——

=-— -ePdp, p=s+io. (22)
274

—100
Where the integration path is parallel to the imaginary axis of the complex plane, to the Right of all singular
points of the integrand, that is, to the right of all zeros of the function

g(p, A =1-X\-pFleaVP,

In order for the p(t)function defined by equality (21) to be substantially limited, it is necessary and sufficient
that the conditions are satisfied

f1(t) - exp(—pyt)dt =0, 1<k <2m, (23)
0

where py the roots of the function g(p, A) for which Repy > 0 and they coincide with the roots of equation (12)
with the opposite sign. Thus, the right side of equation (6) must be orthogonal to the eigenfunctions (16) of the
conjugate integral equation (9). Thus, the fair

Lemma 3. If X\ € Dy, then the inhomogeneous equation (6) is definitely torn; if A € C'\ Do, A € D,,, then
for the unambiguous solvability of equation (6), it is necessary and sufficient fulfillment of m— the conditions of
solvability (23). The conditions (23) mean that the free member of the integral equation (6) must be orthogonal
to the solutions of the homogeneous conjugate integral (9).

The validity of these statements, as well as conditions (23), can be shown as follows.
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The image of the solution of the integral equation (6) is determined by the equality

u(p) = 1_)\5,1%- (24)

The following options are possible.

1. The A(p,\) =1 — \-p*~le~2VP, function doesn’t have zeros in the right half-plane (this means that the
A € Dy). In this case, the equation for any right part of f(¢) has the only solution, which is expressed through
the 754 (0) resolvent defined by the formula (22)

u(t) = F(t) + /\/O ra o (t—T) i (F)dr, e Ry, (25)

2. Function 2(p7 A)=1—-\-pF~le®P has a py, (k = 1,2,....2m) zeroes in the right half plane (it means
A€ Dy, m=1,2,....). The J/”\l(t) function must then be zero at these points pg. In this Case, the function (24)
again will not have pluses in the Re p > 0 area, so the equation (6) also has the only solution of the species
(25). Condition fl(t) = 0, on the conversion of the fl(t) function to zero at points p = py just is exactly the
some as the condition:

/0 f(t) e PEdt =0, k=1,2,...,2m. (26)

So we proved the following statement.
Lemma 4. On the complex plane C there are no characteristic numbers of the operator Ky« (6).

5 Main result

Directly from lemmas and integral representations (4)—(7) follows
Theorem. Boundary value problems (1)-(2) are Noetherian if A € {C'\ Dy} in Addition, if A € D,,, then
dimKer(Ly = 2mm) and dimKer(Ly) = —2m.
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JI.M. Axmanosa, M.T. Kocmakosa, B.A. [lanabikosa

2KbLUTyeTKI3rINTIKTIH, 9/111 »KYKTEJIreH TeHJeyl TypaJibl

Heusire Hemece miekciziikTe »KYKTeMe CBI3BIFBIHBIH YaKBIT OCiHE YKYBIKTaJyMeH OepijireH CIeKTpasIbl —
KYKTEJTeH TapabosaIblK, OIepaTopIap YIMH IMEeKApaJIblK €CeNTePl 3epTTeyre apHaaraH. 2k peTTi KaTTh
JKYKTeJITeH apaboJiajIblK, TeHEY YIINH KYKTeJIreH KOChIHABLIAPD/IBIH TOpTiOl Tenneyniy auddepeHnnaib
GeJIiriHiH, TOPTIOIHEH achIll KETKEH YKafdaiiia YINITaCKAH IeKapaJiblK ecenTep 3epTresai. Makaaga IeKci3
afiMakTap/Iarbl CIEKTPJIIK KYKTEJITeH TapabosaIbIK, TEHAEYep YIMH METTIK eCenTep/ii 3epTTey KaJIFac-
TBIpbUTFaH. 2K bUIYOTKI3MIITIKTIH, CIEKTPAJIIbI->KYKTEJINeH TeHEY1 YIIIH MIEeTTIK ecell KapacThIPBIIIbI, OJI
Gipinmi >KarblHAH €KiHIII PeTTi TYBIHIBIHBI KAMTHTBHIH KYKTeMeJepre »KeTKUIIKT] »KaKbIH KEHICTIKTIK aii-
HBIMAJIBI OOMBIHITIA AHBIKTAJICA, €KIHII YKAFBIHAH 63 OEeTiHIMe KbI3bIFYIIBLIBIKTHL O1IipIi.

Kiam cesdep: »KYKTeJITeH TEHJIEY, MAHBI3IbI IIEKTEJTeH (DYHKIUSIAP KJIACCHI, JlamaacTeiH, Kepi TypJ/ieH-
nipyi, 1mrerepim.

JI.M. Axmanosa, M.T. Kocmakosa, B.A. [Hlamabikosa

O CNJIbHO-HAI'PY2K€HHbIX ypaBHEHUAX TEIIJIOIIPOBOJAHOCTU

JlaHbI TOCTAHOBKM IPAHUYHBIX 3384 JJIsl CIIEKTPAJILHO-HATPYKEHHBIX TapaboInIeCKuX YpaBHEHU B deT-
BEPTHU ITOCKOCTH, KOT/a MOPSITOK MPOU3BOJAHON B HATPYZKEHHOM CJIATa€MOM PaBeH MOPAAKY anddepeniin-
aJIbHOHN YacT! ypaBHEHHS C IBUKYIIEHCA IPOCTPAHCTBEHHON TOYKOM HArPy3KH II0 CTEIIEHHOMY 3aKoHYy. s
CHJIBHO HATPYKEHHOTO TMapaboIMIecKoro ypaBHEeHUsT Topsiaka 2K MCCaeOBaHbl CONMPSI?)KEHHbIE TPaHUYIHBIE
33241 B CJIy4ae, KOTJa MOPSII0K HATPYKEHHOTO CJIAraeMOr0 MPEBBIIIAeT MOPII0K AuddepeHInaabHoi Ja-
CTH ypaBHeHUd. B cTraTbe IIPOJIOIKEHO HCCIIEIOBAHNE KPAEBBIX 33/1a4 JJIs CIIEKTPAIbHO-HAIPYKEHHBIX IIa-
pabomvuecKnx ypaBHEHMI B HEOIDAHMYEHHBIX 00IacTsX. PaccMoTpena KpaeBast 3aja4a Jjisl CIIEKTPAJIBHO-
Harpy?KeHHOT'O yPaBHEHUs TEILJIOIPOBOIHOCTH, KOTOPasi, C OJHOW CTOPOHBI, IOCTATOYHO OJIM3KA K 3aa9aM
C Harpy3KoOii, cofepzkalieil BTOpYIO IIPOU3BOJHYIO IO IIPOCTPAHCTBEHHOI MePEeMEeHHOM, U IpeACTaBIAIoIIasd
CaMOCTOATEIbHBIA HHTEPEC — C OPYTOH.

Karoueswie caro6a: HarpyKeHHOe ypaBHEHHE, KJIACC CYIIECTBEHHO ONPAHMYEHHBIX (DYHKIMIL, 0bpaTHOEe Ipe-
obpazoBanue Jlammaca, BbIIer.
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