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Properties of hybrids of Jonsson theories

This work is an introduction to the study of the properties of a new concept, as a hybrid of Jonsson theories.
We define the basic concepts and framework for studying the model-theoretic properties of these concepts.
The main goal of this paper is to study the model-theoretic properties of companions of hybrids of Jonsson
theories. The main objects of study are the Jonsson hybrids and their classes of models. In this paper, the
main task is to consider the various links between such theories. In order to understand more deeply these
connections and ultimately the connection with the primary theory itself, special algebraic constructions of
semantic models of the considered fragments were identified and on this basis hybrids of these fragments
were determined. In this paper, such algebraic constructions are called semantic hybrids.
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This work refers to the model theory a branch of mathematics that is the language of mathematical logic
studies the laws of a general nature of various types of mathematical structures. The most advanced ideas and
concepts of the model theory were interpreted using examples from classical algebra and set theory. Subsequently,
with their help, profound scientific results were obtained in various algebraic structures. It is no coincidence,
because model theory was originally defined as symbiosis of universal algebra and mathematical logic.

In the modern model theory there is a conditional division into «Westerns and «Easterns themes. This
convention appeared by the remark of a well-known expert in the area of model theory J. Keisler. Thus he
divided the studies related to the works of A. Tarski and A. Robinson. The first author lived on the west coast
of the USA, and A. Robinson respectively on the east coast. As a rule, studies related to the eastern theme
are connected with first-order formulas, the prenex of which does not exceed two, and the role of morphisms
that preserve these formulas and compare various models using mappings between themselves is played by
either isomorphic embeddings or various homomorphisms. Moreover, the semantic aspect of such problems is
determined by studying the behavior of class of existentially closed models of some fixed inductive theory.

In the class of inductive theories, a special place is occupied by Jonsson theories, i.e. theories that admit
the properties of amalgam and joint embedding.

It is well known that many algebraic examples are related to Jonsson theories, for example, fields of a
fixed characteristic, Boolean algebras, groups, Abelian groups, various types of rings, polygons, various types of
lattices, various types of orders.

Progress in the study of Jonsson theories was achieved in the case of a perfect Jonsson theory. It turned
out that such theories have a model companion as their center. For example, the center of a field of a fixed
characteristic is an algebraic closed field of the same characteristic. In addition, it is necessary to note the
following semantic fact that in a perfect Jonsson theory the class of existentially closed models coincides with
the class of all models of its center.

Recently, experts on the model theory of the western direction attach great importance to the study of
model-theoretic properties of structural problems of small models in enrichment signature. At the same time,
these enrichments should retain some properties of the objects under study. As a rule, in the case of the study
of the specific model-theoretic properties of the complete theory, they are very rarely transferred to the study
of Jonsson theories. This is primarily due to the fact that the Jonsson theories are not complete theories.
Therefore, the ability to find model-theoretic conditions, when possible, is an important task. In this regard, the
introduction of new concepts and the corresponding technical apparatus is an important moment for studying
the properties of Jonsson theory.

In this work are considered the model-theoretic properties of a new class of Jonsson theories, namely the
theories obtained using various algebraic constructions of semantic models of two different Jonsson theories of
the same language.

Earlier in the study of Jonsson theories, it was noted that due to the incompleteness of the considered
theory, the requirement of V3 completeness, or 3 completeness is a necessary condition for obtaining analogs of
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theorems obtained for complete theories. And also, due to the fact that in a perfect Jonsson theory the class
of the center models coincides with the class of its existentially closed models, the so-called Jonsson sets were
defined, i.e. special subsets of the semantic model of the considered Jonsson theory, the definable closures of
which were some existentially closed submodels of this semantic model. It is well known that the set of all V3
consequences of the true ones in some existentially closed model form the Jonsson theory. The set of all V3
consequences that are true on a definable closure of a Jonsson subset forms the Jonsson theory and is called a
fragment of this special subset.

In this article, the main task is to consideration the various connections between such theories. In order
to understand more profound these connections and ultimately the connection with the original theory itself,
and were determined special algebraic constructions of semantic models of the considered fragments and on this
basis were determined hybrids of these fragments. Such algebraic constructions will be called semantic hybrids.

As an example of a semantic hybrid, we can consider the union and intersection, the Cartesian product, the
direct sum, the product of filters and ultrafilters of semantic models of fragments of V — cl-subsets of semantic
model of in the considered Jonsson theory.

It is interesting to study the model-theoretic properties of various companions of a fixed hybrid. These
properties of theories include almost all the classical attributes of the modern model theory, such as stability,
categorical, strong minimality, model completeness, axiomatizability, interpretability, spectral issues, etc. As
for the semantic aspect, there will be interesting various properties related to the concept of definable formula
subsets of the semantic model of a hybrid with respect to the following concepts: atomicity, algebraic primeness,
existential closure, convexity, existential primeness.

Thus, given the above, we can note that the results of this work in their content are related to the «Eastern»
model theory.

We give the necessary definitions of the basic concepts of this article.

Let given a countable language of the first order.

The following definition describes one of the basic concepts of this article.

Definition 1. A theory T is Jonsson if:

1) theory T has infinite models;

2) theory T is inductive;

3) theory T has the joint embedding property (JEP);

4) theory T has the property of amalgam (AP).

Examples of Jonsson theories are:

1) group Theory;

2) theory of Abelian groups;

3) theory of fields of fixed characteristics;
4) theory of Boolean algebras;

5) theory of polygons over a fixed monoid;
6) theory of modules over a fixed ring;

7) theory of linear order.

The following definition of the universality and homogeneity of model allocates semantic invariant of any
Jonsson theory, namely its semantic model. Moreover, it turned out that the saturation or non-saturation of this
model significantly changes the structural properties of both the Jonsson theory itself and its class of models.

Definition 2. Let k > w. Model M of theory T is called k-universal for T, if each model T with the power
strictly less k isomorphically imbedded in M; k-homogeneous for T, if for any two models A and A; of theory
T, which are submodels of M with the power strictly less then s and for isomorphism f : A — A; for each
extension B of model A, wich is a submodel of M and is model of T" with the power strictly less then x there is
exist the extension B; of model Ay, which is a submodel of M and an isomorphism ¢ : B — B; which extends f.

Definition 3. Model C of Jonsson theory T is called semantic model, if it is wT-homogeneous-universal.

As can be seen from the definition of the Jonsson theory, this theory is not complete. But nevertheless,
with the help of its semantic invariant (semantic model) we can always determine the center of Jonsson theory,
which is a complete theory.

Definition 4. The center of Jonsson theory T is called an elementary theory of the its semantic model.
Denoted through T*, i.e. T* = Th(C).

The following two facts speak about the «good» exclusivity of the semantic model.

Fact 1 [1; 160]. Each Jonsson theory T has kT-homogeneous-universal model of power 2*. Conversely, if
a theory T is inductive and has infinite model and w™-homogeneous-universal model then the theory T is a
Jonsson theory.
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Fact 2 [1; 160]. Let T is a Jonsson theory. Two k-homogeneous-universal models M and M; of T are
elementary equivalent.

It is well known from the course of model theory that a saturated model is always a homogeneous-universal
model, the reverse is also true. But this definition of homogeneous-universal model [2; 299] is considered as a
rule in the framework in the study of complete theory. In the framework of the study of Jonsson theory, we are
dealing with a particular case of the definition of a homogeneous-universal model belonging to B. Jonsson [3]. The
concept of a saturated model is the same in both cases. By virtue of a more general situation of homogeneous-
universality in the case of Jonsson theory, we do not have a saturation criterion in terms of homogeneous-
universal as in [2; 299]. Therefore, those Jonsson theories, the semantic model of which is saturated, allocate in
a special subclass of class of all Jonsson theories, and such theories are called perfect. We give a definition of
perfectness of Jonsson theory.

Definition 5. Jonsson theory T is called a perfect theory, if each a semantic model of theory T is saturated
model of T™.

The first author of this article obtained a result describing the perfect Jonsson theory.

Theorem 1 [1; 158]. Let T is a Jonsson theory. Then the following conditions are equivalent:

1) theory T is perfect;

2) theory T* is a model companion of theory T'.

From the above list of Jonsson theories, the following examples 2)-4), 6), 7) are examples of a perfect
Jonsson theory. But, for example, group theory is not such, due to the fact that it does not have a model
companion.

Let Er be a class of all existentially closed models of Jonsson theory T

This class of models in general case for an arbitrary theory can be empty. But the following result [4; 367]
is well known, who says that any inductive theory has a nonempty class of existentially closed models. Since
the Jonsson theory is a subclass of class of inductive theories, we can say that Er is a non-empty class.

In the case of a perfect Jonsson theory, the class of models of center of this theory coincides with Ep. This
follows from the following theorem.

Theorem 2 [1; 162]. If T is a perfect Jonsson theory then Er = ModT™*.

Let L is a countable language of first order. Let T is Jonsson theory in the language L and its semantic
model is C.

Let us turn to the definition of central concept of this article. Namely, the concept of a hybrid of Jonsson
theories. In the beginning, we define a hybrid for two Jonsson theories, and two cases are possible. The first
case is a hybrid of Jonsson theories of one signature. The second case is a hybrid of Jonsson theories of different
signatures. In the first case, we are talking about a hybrid of the first type, in the second case about a hybrid
of the second type. In this article we will deal only with hybrids of the first kind for two Jonsson theories, but
it is easy to understand that this concept of a hybrid is generalized to an arbitrary number of Jonsson theories.
Consider the case of the first type.

Let T be some Jonsson theory in a fixed language and C' its semantic model.

Definition 6. Let X C C. We will say that a set X is V — cl-Jonsson subset of C, if X satisfies the following
conditions:

1) X is V-definable set (this means that there is a formula from V, the solution of which in the C' is the
set X, where V C L, that is V is a view of formula, for example 3,V,V3 and so on.);

2) cd(X) = M, M € Ep, where ¢l is some closure operator defining a pregeometry [5; 289] over C (for
example ¢l = acl or ¢l = dcl).

Lemma 1. Let T be Jonsson theory, Er be the class of its existentially closed models. Then for any model
A € Er the theory Thy3(A) is a Jonsson theory.

Proof can be extract from [1, 4].

Let X7, X5 be V-cl-Jonsson subset of C, where C' is semantic model of theory T

Let M1 = Cl(Xl), MQ = CZ(XQ), where Ml,MQ S ET.

Thys(My) = T1, Thys(Mz) = Ts.

C1 is semantic model of theory 77, C5 is semantic model of theory T5.

We define the essence of the operation of an algebraic construction. Let [ € {U,N, X, +,®, [, [}, where

F U

U — union, N — -intersection; x — Cartesian product; +-sum and @& — direct sum; [] — filtered and [] —
F U
ultra-production.

Let Thys(C1ECy) = H(T1,Ts), where Cy is semantic model of theory T7, Cs is semantic model of theory T5.
The following definition gives a hybrid of the first type for two Jonsson theories.
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Definition 7. A hybrid H(Ty,Tz) of Jonsson theories T4, Ts is called the theory Thy3(Ci E Cy), if it is
Jonsson. Herewith, the algebraic construction (C} [ Cs) is called a semantic hybrid of the theories T, T5.

Note the following fact:

Fact 3. In order for the theory H(T7,T») to be Jonsson enough to (Cy L Cs) € Ep.

Proof. This follows by Lemma 1.

Let us give an example of a semantic hybrid. Linear space is a special case of a module over a field. A well-
known result from linear algebra is related to the dimension of linear space:

dimV = dimVy + dimVa — dim(V; N Va), where V is linear space, a V1, V4 are its subspace and V =V + V4.

It is easy to see that this dependence of the dimensions of these linear spaces can be interpreted in the
language of R-modules, where R is field and V — cl-sets will be considered V3-dcl-sets and acl = dcl. Moreover,
V will be a semantic hybrid of V; and Vs, where the algebraic construction is a direct sum of subspaces, i.e.
[1 = @. This follows from the fact that the theory of modules is a Jonsson theory.

Thus, we note that the above definition of a hybrid of Jonsson theories and their semantic hybrid was
defined in the class of fragments of some fixed Jonsson theory. Moreover, we have several parameters regarding
this definition:

1) view formulas from V C L;

2) view of closure operator cl;

3) views of algebraic constructions of semantic hybrids.

In the general case, algebraic constructions of a semantic hybrid can be non-closed with respect to the class
of models of this given theory. In this connection, it is further assumed that the theory under consideration is
closed with respect to the algebraic construction under consideration.

Those, it is necessary to select the following parameter:

4) the closedness of the theory under consideration with respect to an algebraic construction.

By virtue of the fact that the definition of a hybrid is sufficiently general, i.e. it depends on many parameters,
we must always specify these parameters to obtain specific results. In this article, we will deal with a convex
existentially prime Jonsson theory complete for V3 -sentences. As the closure operator, we will consider the
operator dcl and such that it is equal to the algebraic closure, i.e. acl = dcl. As an algebraic construction for
obtaining a semantic hybrid, we will consider a Cartesian product. The above parameters define a sufficiently
wide class Jonsson theories, in particular linear spaces get there. The example of linear spaces was basic for
us in the sense of intuition and ideas. Therefore, in order to preserve some internal ideology of linear spaces
and at the same time not losing generality, we will deal with a certain subclass of class of all Jonsson theories,
which contains the theory of linear spaces and also satisfies the properties of other types of algebras. For this
we consider the following definitions.

Definition 8. The inductive theory T is called the existentially prime if: it has a algebraically prime model,
the class of its AP (algebraically prime models) denote by APr; class Er non trivial intersects with class APr,
i.e. APT mET # 0.

Definition 9. The theory is called convex if for any its model A and for any family {B; | ¢ € I} of
substructures of A, which are models of the theory 7', the intersection (., B; is a model of T'.

Further, the object of our study will be the class of existentially prime convex V3 - complete Jonsson theories.

In the study of this class of theories, we obtained the following results:

Theorem 3. Let T be perfect convex existentially prime complete for V3-sentences Jonsson theory. X, X
are V3-dcl-sets of the theory T, where M;=dcl(X;) € Er, T; = Thya(M;) are also perfect convex existentially
prime complete for V3-sentences Jonsson theories. Cy, Cy are their semantic models, respectively. Then, if their
hybrid H(Ty,T») is a model consistent with T;, then H(T;) is a perfect Jonsson theory for i = 1,2.

Proof. Suppose the contrary. Then, since the hybrid H(7T7,T?) is a Jonsson theory and has a semantic model
M, by the assumption not perfectness of this hybrid H(T1,T5), the considered semantic model M will not be
saturated in its power. And this means that there is such X C M and such type p € S1(X), which is not
realized in M, more precisely in (M, m),¢cx. By virtue of the consistency of type p, this type is realized in some
elementary extension M’ > M. By virtue of the Jonssonness of hybrid H(T},T) and model consistency with
T;, i = 1,2, there is a model A; € ModT;, i = 1,2, such that M’ is a submodel of A. A in turn, is embedded
in the semantic model C;, ¢ € 1,2, but C; is a saturated model of the theory T;, ¢ € 1,2. By virtue of an
isomorphic embedding, suppose f from M’ to A, f(X) C A and since the type of p is realized in M’ it will be
realized in C;. But C; € Er, and since T; are existentially prime convex theories, there exists a countable model
N; € Er,, in which the type p will be realized. By virtue of convexity, the model IV; will be a nuclear model, i.e.
it is algebraically prime embedded in other models from ModT; exactly one time. But by virtue of the model
counsistency of T; with the hybrid H(T;), N; is isomorphically embedded in some model from ModH (T;), i.e. by
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the map g. Since T; are perfect theories, their center is model-complete, i.e. any monomorphism is elementary
between the models of this center. And such, by virtue of perfection, are all the models from Er,. Then the
above isomorphism g will be elementary, i.e. type p is realized in a countable submodel of model M. We got a
contradiction with the assumption of imperfection.

Theorem 4. Let T,Ty, Ty satisfy the conditions of Theorem 3 and 717,75 be w-categorical. Then their hybrid
H(Ty,T,) is also a w-categorical Jonsson theory.

Proof. We note that, by virtue of the above Theorem 3, the hybrid H (T}, T») will be a perfect Jonsson theory.
Suppose the contrary, i.e. the hybrid H(T;) is not a w-categorical Jonsson theory. Let A and B be two countable
models from ModH (T;) that are not isomorphic to each other. Then there are A’ and B’ countable models
from Ep(r,y such that A is isomorphically embedded into A’, and B is isomorphically embedded into B’. This
follows from the fact that in any inductive theory any model is isomorphically embedded in some existentially
closed model of this theory. But the theories of T; are mutually model consistent with H(T;) by virtue of the
condition of the theorem. Then A’ and B’ are isomorphically embedded in some countable model D € Er,,
but as T; are convex theories, then the image of A’ and the image of B’ in the model D intersects non-empty.
Let this intersection be a model R. By virtue of the above existential primeness and countable categoricity of
T;, since R € E, it follows that in R | ¢(x) A =p(z), where in A’ = ¢(z), and in B’ = —¢(x). But this is
not true, as T; are w-categorical by condition. Consequently, we obtain a contradiction with the assumption of
non-w-categoricity H(T5).
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A.P. Emkees, H.M. Mycuna

M OHCOH IBIK TeopusiJIapAbIH TMOPUATEPIHIH KacueTrTepi

MakaJraHbIH HEri3ri MakcaThbl — HOHCOH/IBIK, TEOPUSIIAPILIH THOPUATEPiHIH, KOMIAHBOHIAPBIHBIH, MO/IEJIhTi-
TeOpeTUKAJBIK KacueTTepin 3eprrey. Herisri HblcaHmapbl HOHCOHIBIK TMOPHATED MEH OJIapAbIH MOJEJIb-
Jep Kaackl 6osbin Tabbuiaabl. OcblHIal TeopusiIapIbly 9pTypJi Haianpicrapsl KapacTeipbliasl. Our Gaii-
JIAaHBICTAP/bI TEPEHIPEK TYCiHy >KoHe aJIFalllKbl TEOPHUSIMEH OailJIaHBICTBIPY YIIIH KapajraH dparMeHTTiH
CEMAHTHUKAJIBIK MOJIEJIb/IEpiHiH apHaiibl aJreOpasblK KYPBLIbIMIAphl aHBIKTAJIbI »KOHE OChbl Herizme Oyi
dparmenTrepain rubpuarepi Gesrisai Gosapl. 2Kasmsl MyHIal anrebpasiblk, KyPbIIbIMIAP CEMaHTUKAJIBIK
rubpuaTep Jen aTasaibl.

Kiam cesdep: MOHCOHJIBIK, TEOPUsi, CEMAHTUKAJILIK, MOJIE/Ib, TUOPHUI, SK3UCTEHIIMOHAJILI YKail, MOIEIbI
KOMIIAHBOH.
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CpoiicTBa rudbpu10B HOHCOHOBCKNX TEOPMIi

B crathe ocHOBHOI! 3a/1a1€it SIBISIETCST pACCMOTPEHNE PA3IMIHBIX CBSI3€i MEXK Ty WOHCOHOBCKUMU TEOPUSIMU.
st Toro 4Tobbl 6051€e TUIYOOKO MOHSTH 9TU CBS3H M, B KOHEYHOM HTOTE, CBS3b C CAMON IEPBOHAYAJILHON
Teopueil U ObLIN OIIPe/IeIeHbl CIIeIUAJIbHbIE aIredpanvdecKre KOHCTPYKIMN CEMAHTUYECKUX MOZeJel pac-
cMaTpuBaeMbIX hparmeHToB. Kpome Toro, 6b11m onpeaeeHbl THOpUIbl 9TUX (DPATMEHTOB, TaKue ajarebpan-
YecKre KOHCTPYKIIMHM HA3BIBAIOTCH CEMaHTUICCKUMU MUOPUIAMH.

Karouesvie crosa: HTOHCOHOBCKAsT TEOPUS, CEMAHTUYIECKAsI MOJIENIb, THOPHU/I, SK3UCTEHIIUATIBHO IIPOCTAs, MO-
JeJIbHBI KOMITAHBOH.
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