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On structures in hypergraphs of models of a theory

Hypergraphs of models of a theory are derived objects allowing toobtain an essential structural information
about both giventheories and related semantic objects including graph ones. In the present paper we define
and study structural properties of hypergraphs of modelsof a theory including lattice ones. Characterizations
for thelattice properties of hypergraphs of models of a theory, as wellas for structures on sets of isomorphism
types of models of atheory, are given.
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Hypergraphs of models of a theory are derived objects allowing to obtain an essential structural information
about both given theories and related semantic objects including graph ones [1-9]. Studying of hypergraphs of
models of a theory is closely related with a series of papers on description of lattices of substructures [10-22].

In the presented paper we define and study structural properties of hypergraphs of models of a theory
including lattice ones. Characterizations for the lattice properties of hypergraphs of models of a theory as well
as for structures on sets of isomorphism types of models of a theory are given.

Preliminaries

Recall that a hypergraph is a pair of sets (X,Y), where Y is some subset of the Boolean P(X) of the set X.

Let M be some model of a complete theory T'. Following [5], we denote by H (M) a family of all subsets N of
the universe M of M that are universes of elementary submodels N of the model M: H(M) = {N | N g M}.
The pair (M, H(M)) is called the hypergraph of elementary submodels of the model M and denoted by H(M).

Definition [8]. Let M be a model of a theory T with a hypergraph H = (M, H(M)) of elementary submodels,
A be an infinite definable set in M, of arity n: A C M™. The set A is called H-free if for any infinite set A’ C A,
A= AN Z™ for some Z € H(M) containing parameters for A. Two H-free sets A and B of arities m and n
respectively are called H-independent if for any infinite A” C A and B’ C B there is Z € H(M) containing
parameters for A and B and such that A’ = ANZ™ and B’ = BN Z".

Note the following properties [8].

1. Any two tuples of a H-free set A, whose distinct tuples do not have common coordinates, have same type.

Indeed, if there are tuples @,b € A with tp(a) # tp(b) then for some formula ¢(Z) the sets of solutions of
that formula and of the formula —¢(Z) divide the set A into two nonempty parts A; and Ag, where at least one
part, say Aj, is infinite. Taking A; for A" we have A; = AN Z" for appropriate Z € H(M) and n. Then by
the condition for tuples in A we have A N Z™ = () that is impossible since Z is the universe of an elementary
submodel of M.

Thus the formula ¢(Z), defining A, implies some complete type in S™(0), and if A is (-definable then (Z)
is a principal formula.

In particular, if the set A is H-free and A C M, then the formula, defining A, implies some complete type
in S*(0).

2. If A C M is a H-free set, then A does not have nontrivial definable subsets, with parameters in A4, i.e.,
subsets distinct to subsets defined by equalities and inequalities with elements in A.

Indeed, if B C A is a nontrivial definable subset then B is defined by a tuple a of parameters in A, forming
a finite set Ag C A, and B is distinct to subsets of Ay and to A\ C, where C C Ay. Then removing from A a
set B\ Ag or (A\ B) \ Ay, we obtain some Z € H (M) violating the satisfiability for B or its complement. It
contradicts the condition that Z is the universe of an elementary submode of M.

3. If A and B are two H-independent sets, where A U B does not have distinct tuples with common
coordinates, then AN B = 0.
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Indeed, if AN B contains a tuple @, then, choosing infinite sets A’ C A and B’ C B witha € A’ and a ¢ B/,
we obtain a € A’ = AN Z™ for appropriate Z € H(M) and n, as so a € BN Z"™ = B’. This contradiction means
that AN B = 0.

Definition [6]. The complete union of hypergraphs (X;,Y;), ¢ € I, is the hypergraph (U XZ-,Y>, where

il
Y = { UZ|Ze YZ}. If the sets X; are disjoint, the complete union is called disjoint too. If the set X; form
i€l
a g—chaein, then the complete union is called chain.

By Property 3 we have the following theorem on decomposition of restrictions of hypergraphs H, representable
by unions of families of H-independent sets.

Theorem 1.1[8]. A restriction of hypergraph H = (M, H(M)) to a union of a family of H-free H-independent
sets A; C M is represented as a disjoint complete union of restrictions H; of the hypergraph H to the sets A;.

Proof. Consider a family of H-independent sets A; C M. By Property 3 these sets are disjoint, and using
the definition of H-independence we immediately obtain that the union of restrictions H; of H to the sets A; is
complete.

Recall that a subset A of a linearly ordered structure M is called convez if for any a,b € A and ¢ € M
whenever a < ¢ < b we have ¢ € A. A weakly o-minimal structure is a linearly ordered structure
M = (M,=,<,...) such that any definable (with parameters) subset of the structure M is a union of finitely
many convex sets in M.

In the following definitions M is a weakly o-minimal structure, A, B C M, M be | A|*-saturated, p, q € S1(A)
be non-algebraic types.

Definition. [23]. We say that p is not weakly orthogonal to q¢ (p L™ q) if there exist an A-definable formula
H(z,y), o € p(M) and By, B2 € ¢(M) such that 8; € H(M,«) and By &€ H(M, «).

Definition. [24]. We say that p is not quite orthogonal to q (p L7 q) if there exists an A-definable bijection
fip(M) — q(M). We say that a weakly o-minimal theory is quite o-minimal if the notions of weak and quite
orthogonality of 1-types coincide.

In the work [25] the countable spectrum for quite o-minimal theories with non-maximal number of countable
models has been described:

Theorem 1.2. Let T be a quite o-minimal theory with non-mazximal number of countable models. Then T has
exactly 3F - 65 countable models, where k and s are natural numbers. Moreover, for any k,s € w there exists a
quite o-minimal theory T having exactly 3 - 6° countable models.

Realizations of these theories with a finite number of countable models are natural generalizations
of Ehrenfeucht examples obtained by expansions of dense linear orderings by a countable set of constants,
and they are called theories of Ehrenfeucht type. Moreover, these realizations are representative examples for
hypergraphs of prime models [1, 3, 5]. We consider operators for hypergraphs allowing on one hand to describe
the decomposition of hypergraphs of prime models for quite o-minimal theories with few countable models, and
on the other hand pointing out constructions leading to the building of required hypergraphs by some simplest
ones.

Having nontrivial structures like structures with some orders it is assumed that «complete» decompositions
are considered modulo additional conditions guaranteing the elementarity for substructures with considered
universes. So we use the conditional completeness taking unions with the properties of density, linearity etc.

Below we illustrate this conditional completeness for structures with dense linear orders.

Denote by (M, Haqio(M)) the hypergraph of (prime) elementary submodels of a countable model M of the
theory of dense linear order without endpoints.

Remark 1.3. The class of hypergraphs (M, Hqio(M)) is closed under countable chain complete unions,
modulo density and having an encompassing dense linear order without endpoints. Thus, any hypergraph
(M, Hq1o(M)) is represented as a countable chain complete, modulo density, union of some its proper subhyper-
graphs. The notion of weak o-minimality was originally studied by D. Machpherson, D. Marker and C. Steinhorn
in [26].

Any countable model of a theory of Ehrenfeucht type is a disjoint union of some intervals, which are ordered
both themselves and between them, and of some singletons. Dense subsets of the intervals form universes of
elementary substructures. So, in view of Remark 1.3, we have:

Theorem 1.4 [6]. A hypergraph of prime models of a countable model of a theory of Ehrenfeucht type
is represented as a disjoint complete, modulo density, union of some hypergraphs in the form (M, Hqo(M)) as
well as singleton hypergraphs of the form ({c},{{c}}).
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Remark 1.5. Taking into consideration links between sets of realizations of 1-types, which are not weakly
orthogonal, as well as definable equivalence relations, the construction for the proof of Theorem 1.4 admits
a natural generalization for an arbitrary quite o-minimal theory with few countable models. Here conditional
complete unions should be additionally coordinated, i.e., considering definable bijections between sets of realizat-
ions of 1-types, which are not quite orthogonal.

Elementarily substructural sets

Let M be a model of theory T, (M, H(M)) be a hypergraph of elementary submodels of M. The sets
N € H(M) are called elementarily submodel or elementarily substructural in M.

Elementarily substructural sets in M are characterized by the following well-known Tarski—Vaught Theorem,
which is called the Tarski-Vaught test.

Theorem 2.1. Let A and B be structures in a language ¥, A C B. The following are equivalent:

(1) A< B;

(2) for any formula @(xg,x1,...,2,) in the language ¥ and for any elements ay, ..., a, € A,
if B = 3xoo(x0,a1,...,a,) then there is an element ag € A such that B = ¢(ag, a1, ..., an).

Corollary 2.2. A set N C M is elementarily substructural in M if and only if for any formula
o(zo,z1,...,2Ty) in the language (M) and for any elements aq,...,a, € N, if M |E Jzo (o, a1, ..., ay)
then there is an element ag € N such that M |= ¢(ag,a1,...,an,).

Proposition 2.3. Let A be a definable set in an wy-saturated model M of a countable complete theory T.
Then exactly one of the following conditions is satisfied:

(1) A is finite and contained in any elementarily substructural set in M;

(2) A is infinite and has infinitely many distinct intersections with elementarily substructural sets in M,
and all these intersections are infinite; these intersections can be chosen forming an infinite chain/antichain by
inclusion.

Proof. If |A| < w then A is contained in acl((}), and so it is contained in any elementary submodel of M.

If A = p(M,a) is infinite, we construct a countable submodel Ny < M containing parameters in a. Since
A is infinite, the set A N Ny is countable. By compactness, since M is wi-saturated, the set A\ Ny is infinite.
Adding to Ng new elements of A we construct a countable model N such that Ny < N7 < M. Continuing the
process we build an elementary chain of models NV}, k € w, such that A}, < M and ANN, C ANNpi1, k € w.

Constructing the required antichain of intersections AN N with elementarily substructural sets IV, it suffices
to use |9, Theorem 2.10| allowing to separate disjoint finite sets, whose elements do not belong to acl(().

The arguments for the proof of Proposition 2.3 stay valid for a countable saturated model M. Thus, we
have the following

Proposition 2.4. Let A be a definable set in a countable saturated model M of a small theory T'. Then exactly
one of the following conditions is satisfied:

(1) A is finite and contained in any elementarily substructural set in M;

(2) A is infinite and has infinitely many distinct intersections with elementarily substructural sets in M,
and all these intersections are infinite; these intersections can be chosen forming an infinite chain/antichain by
inclusion.

The following example illustrates that if M is not saturated then the conclusions of assertions 2.3 and 2.4
can fail.

Example 2.5. Let a set A is defined by a unary predicate P and includes infinitely many language constants
¢i, © € I. Then there is, in the language {P} U {c¢; | i € I}, a structure M having only finite set Ay of elements
in A, which are not interpreted by constants. Since elementarily substructural sets N take all constants, there
are only finitely many possibilities for intersections A N N.

In view of aforesaid arguments it is interesting to describe possible cardinalities both for sets H(M) and
their restrictions HM) | A= {ANN | N € H(M)} on definable sets A C M.

Since in Example 2.5 intersections A N N, taking all constants ¢;, can include an arbitrary subset of Ay,
then for this example we have |[H (M) | A| = 2/40l. The same formula holds for infinite sets Ay, but in such a
case the set H(M) | A is transformed from finite one directly to a set with continuum many elements.

Note that for H-free sets A C M, modulo acl(()) (i.e., for sets A, whose each subset B C A\ acl(()) has a
representation B U (acl()) N A) = AN N for some N € H(M)), the equality |H(M) | A| = 24\l holds.
Thus, we have the following dichotomy theorem.

Theorem 2.6. For any H-free, modulo acl(()), set A C M its restriction to any elementary submodel My < M
satisfies either |[H(My) | A| = 2" for some n € w, or |H(My) | Al =2* form some A > w.
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Similar to Example 2.5, the following example illustrates the dichotomy for hypergraphs of elementary
submodels.

Example 2.7. Consider the structure M of rational numbers, (Q,<,¢;)qeq, in which every element
is interpreted by a constant. This structure does not have proper elementary substructures, therefore
|[H(M)| = 1 = 2°. Extending M to a structure M; by addition of n elements for pairwise distinct 1-types,
defined by cuts, we have |H(M;)| = 2™. If M is extended till a structure My by addition of at least two
elements of fixed cut or of infinitely many elements for distinct cuts, then by density the summarized number
of added elements occurs infinite and |H(Ma)| = 2* holds for some A > w.

At the same time there are examples of hypergraphs of elementary submodels, for which the conclusion of
Theorem 2.6 fails. For instance, as shown in [13], there are hypergraphs for the theory of arithmetic of natural
numbers such that |H(M)| =5 and the lattice of elementary submodels is isomorphic to the lattice Ps.

Lattice structures associated with hypergraphs of models of a theory

For given structure M we define the structure L(M) = (H(M);A,V) by the following relations for
My, Mo < M: My AMy =My N Mg and M1V My = M(M1 U Mz).

Consider the following question: when the structure L(M) is a lattice?

Clearly, answering this question we have to characterize the conditions M; N Ms < M  and
M(M; U M) < M. Assuming that M is infinite, the structures M; N My should be infinite too, in particular,
M N My # 0. By |5, Theorem 3.2|, assuming that M is A-saturated, it can not contain separated sets A and B
of cardinalities < A, such that acl(A) Nacl(B) = 0.

By Theorem 2.1 we have the following theorems characterizing the elementarity of substructures.

Theorem 3.1. Let M1 and My be elementary substructures of structure M in a language 3, My N My # .
The following are equivalent:

(1) (M1 NMsy) < M;

(2) for any formula p(xg,x1,...,2,) of the language ¥ and for any elements aq,...,a, € M; N My if
M 3z p(xo,a1,...,a,) then there is an element ag € My N My such that M; = p(ag,a1,...,a,), i =1,2.

Theorem 3.2. Let M1 and My be elementary substructures of structure M in o language ¥. The following
are equivalent:

(1) M(M; U M) < M;

(2) for any formula @(xo,x1,...,2,) of the language ¥ and for any elements ai,...,a, € My N My if
M E Jzg o(z0, a1, ..., a,) then there is an element ag € M (M1UMa) such that M(M1UMs) | p(ag, a1, ..., a,).

The following examples illustrate valuations of the conditions (2) in Theorems 3.1 and 3.2.

Ezample 3.3. Consider a structure M in a graph language {R(Q)} with a symmetric irreflexive relation R
and elements a1, as, as, as such that

R= {[al,ag], [al,a4], [a27a3]; [a27a4]}~

The substructures M; C M and My C M with the universes {a1,aq, a3} and {a;, as, a4} respectively satisfy
the formula (a1, a2) = Fx(R(a1, x) AR(az, ) whereas MMMz does not satisfy that formula since appropriate
elements for x belong to My & Ms.

Ezample 3.4. Consider a structure M of graph language {R(®)} with symmetric irreflexive relation R and
with elements aq,as,ag such that R = {[a1, as], [az,as]}. The substructures M; C M and My C M with the
universes {a1} and {ag} form the substructure M(M; U M3) with the universe {a1, a2} and it does not satisfy
the formula ¢(a1, a2) in Example 3.3. At the same time the structure M satisfies this formula.

Since in some cases elementary substructures of given structure M form the lattice with respect to the
operations Mj; A My = M1 N My and My V My = M(M; U My), the study of hypergraphs H (M), for these
cases, is reduced to study of the lattices L(M). As Example in [13] shows, the lattices L(M) can be non-
distributive unlike the description in Theorem 2.6, where correspondent lattices are distributive, and for finite
H(My) even form Boolean algebras.

In the given context hypergraphs/lattices with minimal, i.e. least structures play an important role. These
structures can be obtained from an arbitrary structure by addition of constants interpreted by all elements of
the structure. Besides, these minimal structures exist for finite sets H(M).

In [27], the following theorem on dichotomy for minimal structures is proved.

Theorem 8.5. Let Mg be a minimal structure, M be its saturated elementary extension and p € S1(My) be
unique non-algebraic 1-type. Then exactly one of the following conditions holds:
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(I) the structure (p(M), Sem,) is a pregeometry, where Sem,, is the relation of semi-isolation on the set of
realizations of the type p, i.e. the following conditions are satisfied:

(S1) Monotony: if A C B then A C Sem,(A) C Sem,(B);

(S2) Finite character: Semy,(A) = [ J{Sem,(Ao) | Ao is a finite subset of A};
(S3) Transitivity: Sem,(A) = Sem,,(Sem,(A));
(S4) Ezchange property (Symmetry): if a € Sem, (AU {b}) \ Sem,(A) then b € Sem,(A U {a});

(I1) for some finite A C M there exists an infinite set Cy C dcl(AU My) and a definable quasi-order < on
M such that Cy orders a type over A:

(D1) for any ¢ € Cy the set {x € Cy | ¢ < x} is a cofinite subset of Co;

(D2) Cy is an initial segment of M: if c € Cy and m < ¢, then m € Cy.

Basic examples illustrating Theorem 3.5 are represented by ordered structures (w, <) and (w + w*, <). The
conclusion of Theorem 2.6 holds for both structures. Moreover, for M; = (w, <) and My = (w + w*, <) the
structures L(M;) and L(Mz) form atomic Boolean algebras, whose atoms are defined by equivalence classes,
being closures of singletons, not in w + w*, taking all predecessors and successors.

Return to Example 2.7. It is known that the intersection of convex sets is convex, whereas the intersection
of dense orders can be not dense. For instance, any interval [a,b] contains countable dense subsets X,Y
such that X NY = {a,b}. It means that for the structure M’ = (Q, <,¢,)qeq the structure L(M’) forms
a lattice, moreover, a Boolean algebra, if and only if each type in S;(Th(M’)) has at most one realization in
M. Tf M, with the lattice L(M’), realizes A non-principal 1-types, then |L(M’)| = 2*. Thus, the following
proposition holds.

Proposition 3.6. For the structure L(M’) the following are equivalent:

(1) L(M') is a lattice;

(2) L(M’) forms an atomic Boolean algebra;

(3) each type in S1(Th(M”)) has at most one realization in M’, and if M’ realizes A non-principal 1-types,
then |L(M')| = 2.

Proposition 3.6 admits natural modifications for a series of theories with minimal models, for instance, for
models, obtained by replacement of elements in M’ with finite antichains of fixed cardinality marked by unary
predicates P, instead of constants c,. Note that admitting replacement of constants ¢, by infinite antichains P,
the structure L(M’) is not a lattice since P, can be divided by some elementary substructures M}, M5 < M’
into two disjoint parts, whence M} N M, A M.

Clearly, as above, in the general case if there are separable elements in definable sets A C M of structure
M then L(M) is not closed under intersections, i.e., L(M) is not even a lower semilattice. Thus, the following
proposition holds.

Proposition 3.7. If L(M) is a lattice then M does not have definable sets A C M containing elements
separable each other, in particular, M does not contain H-free sets A C M.

In view of Proposition 3.7 it is natural, for given structure M, along with L(M) to consider for sets X C M
the following relative structures Lx (M). Denote by Hx (M the family of all sets in H(M containing the set X.
Then Lx (M) = (Hx(M; A, V), where for structures My, My < M containing X, My A My = M; N Ms and
M1V My = M(M1 U Mg).

Note that if X is a universe of some elementary substructure of structure M then definable sets A C M
already do not contain elements separable by sets in Lx (M). Then, in any case, M; A Ms is a substructure of
M and the elementarity of that substructure is characterized by Theorem 3.1.

The following example illustrates that apart from the density there are other reasons preventing to consider
L(M) as a lattice.

Ezample 3.8 |28]. Let M = (M; <, P*,U? ¢;)ic., be a linearly ordered structure such that M is a disjoint
union of interpretations of unary predicates P and =P, where -P(M) < P(M). We identify interpretations of
P and —P with the set Q of rational numbers with the natural order.

The symbol U interprets the binary relation defined as follows: for any a € P(M),b € =P(M) U(a,b) <
sSb<a+ V2.

The constants ¢; interpret an infinite strictly increasing sequence on P(M) as follows: ¢; =i € Q.

Clearly that Th(M) is a weakly o-minimal theory. Let

p(x) = {z > ¢ |icwiU{P(a)};

q(y) == A{vt(U(ei,t) =t <y) | i € w}U{=P(y)}.
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Obviously, p,q € S1() are nonisolated types and p /* q. Since there are no (-definable bijections from
p(M’) onto ¢g(M’), where M’ is a model of Th(M) realizing some of these types then Th(M) is not quite
o-minimal.

As shown in [28], Th(M) has exactly 4 pairwise non-isomorphic countable models: the prime model M,
Le., with p(M) = 0 and g(M) = 0; the model M; such that p(M;) has the ordering type [0,1) N Q, ¢(M;)
has the ordering type (0,1) N Q; the model My such that p(Mz) has the ordering type (0,1) NQ, g(M2) has the
ordering type [0,1) N Q; and the countable saturated model Ms.

Therefore M;NMqy A Maj. By this reason as well as by the possibility of violation of density in intersections,
the structure L(M3) does not form a lower semilattice.

Remark 3.9. Along with Example if we consider the known Ehrenfeucht’s example with three models: a
prime model My, a weakly saturated model M;, and a countable saturated model Moy, then the structure
L(Ms) is not a lattice in view of presence of dense definable intervals but includes the three-element linearly
ordered lattice consisting of the universes My, My, Ms.

Lattice structures on sets of isomorphism types of models of a theory

Following Example 3.8 and Remark 3.9 we consider a question on existence of natural lattices associated
with hypergraphs (M, H(M)) which a distinct to L(M). Related lattices are lattices represented by Rudin-
Keisler preorders RK(T') [1] for isomorphism types of prime models of a theory T, over finite sets, or their lattice
fragments.

The description [29] of structures RK(7T') for Ehrenfeucht quite o-minimal theories T' implies that these
structures, for the considered theories, form finite lattices LRK (7)) consisting of 2¥ - 3% elements and, in view of
the main result of the paper [25], the number I(T,w) of pairwise non-isomorphic countable models of T equals
3k.6% k,s € w.

The Hasse diagrams illustrating these lattices LRK(T') are represented in Figures 1-9 for the following values
k and s:

1) k=1,s=0;
Nk=0,s5=1;
N k=2 s=0;
4) k=3, s=0;
5) k=0, s=2;
6) k=0,s=3;
Nk=1s=1;
8) k=2,s=1;
9 k=1,s=2.

l

Figure 1. k=1,s =0 Figure 2. k=0,s =1
ﬁo
Figure 3. k=2,s =0 Figure 4. k=3,5s =0
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Theorem 4.1. Let T be an Ehrenfeucht quite o-minimal theory, I(T,w) = 3% - 6%, k,s € w. Then:

(1) LRK(T) is a lattice;

(2) LRK(T) is a Boolean algebra < k > 1 and s = 0; in such a case the Boolean lattice LRK(T) has a
cardinality 2% ;

(3) LRK(T) is linearly ordered < k+ s < 1.

Proof. Let I' = 'y UT'5 be a maximal independent set of nonisolated types in S1(T"), where realizations of
each type in I'; generate three models, with prime one, and realizations of each type in I's generate six models,
with prime one, [I'1| =k, T3] = s.

(1) We argue to show that LRK(T) is a lattice. Indeed, for isomorphism types M; and My of prime
model M; and My over some finite sets A and B, respectively, we define sets X, Y C T x {0,1} defining
these isomorphism types such that X = {(p,0) | M; [ p(a) for some a € A, and |[p(M;)| =1orp e I'1} U
{(p,1) | My = p(a) for some a € A,/ |p(M1)] > w,p € T2} and Y = {(q,0) | Mz |= ¢q(b) for some b €
B, and |g(M2)| = lorg € T1} U{(¢g,1) | M2 | q(b) for some b € B,[q(Mz)| > w,q € I'2}. Then the
isomorphism type for M; A M corresponds to the set U C I" x {0,1} consisting of all common pairs of X
and Y, as well as all possible pairs (p,0), if (p,0) € X and (p,1) € Y, or (p,1) € X and (p,0) € Y. And the
isomorphism type for //\/lvl Vv .//\/lvg corresponds to the set VC T x {0,1} consisting of the following pairs:

i) all common pairs of X and Y,

ii) all pairs (p,i) € X such that Y N {(p,0), (p,1)}0,

iii) all pairs (p,i) € Y such that X N {(p,0), (p,1)}9,

iv) all pairs (p, 1) such that (p,0) € X and (p,1) € Y, or (p,1) € X and (p,0) €Y.

Figure 5. k =0,s =2 Figure 6. k =0,s =3

The defined correspondence witnesses that LRK(T) is a lattice.

(2) If s # 0 then LRK(T) is not a Boolean algebra by Stone Theorem, since the cardinality of each finite
Boolean algebra equals 2" for some n € w whereas [LRK(T)| = 2¥ - 3°. If s = 0 then LRK(T) is a Boolean
algebra of a cardinality 2* such that for isomorphism types M and /\r/\g of prime models M; and M5 over some
finite sets A and B, respectively, and for sets X, Y C T such that X = {p(z) € T | M; = p(a) for some a € A}
and Y = {q(z) € T | My = q(b) for some b € B}, the isomorphism type M; A Mj corresponds to the set
X NY, and the isomorphism type ./f\/lvl \Y, /,\/E corresponds to the set X UY.

(3) If k+ s <1 then LRK(T) is linearly ordered as shown in Figures 1 and 2. If £k + s > 1 then |T'| > 1 and
for distinct types p,¢ € I' the isomorphism types of models M,, and M, are incomparable in LRK(T).

The description for distributions of disjoint unions of Ehrenfeucht theories and the arguments for the proof
of Theorem 4.1 allow to formulate the following theorem modifying Theorem 4.1.

Theorem 4.2. Let T be a disjoint union of theories Ty and Ty in disjoint languages and having finite numbers
I(Th,w) and I(T,w) of countable models. Then:

(1) LRK(T) is a (Boolean) lattice < LRK(T1) and LRK(T%) are (Boolean) lattices;

(2) LRK(T) is linearly ordered < LRK(T1) and LRK(T») are linearly ordered, and

min{I(T},w), I[(T,w)} = 1.

Proof. (1) If LRK(T) is a (Boolean) lattice, then LRK(7};) and LRK(7%) are (Boolean) lattices, since
LRK(T}) and LRK(T?) are isomorphic to sublattices L and Ly of the lattice LRK(T'), and elements,/complements
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of elements in LRK(T) are represented as pairs of elements/complements of elements in L; and Lo. If LRK(T})
and LRK(7%) are (Boolean) lattices, then LRK(T) is a (Boolean) lattice again in view of aforesaid representation.

Figure 7. k=1,s =1 Figure 8. k =2,5s =1

Figure 9. k=1,s =2

Figure 10. 6-Element diagram Figure 11. 9-Element diagram

(2) If LRK(T) is linearly ordered then LRK(7}) and LRK(7%) are linearly ordered, being isomorphic to
substructures of LRK(T'). Here T7 or T5 should be w-categorical, since otherwise prime models over pairs
(p1,q1) and (p2,q2) occur LRK(T)-incomparable, where p1,p2 € S1(T1), ¢1,q2 € S1(T2), p1,q2 are isolated,
P2, q1 are nonisolated.

If structures LRK(T}) and LRK(7%) linearly ordered, and min{I(71,w), I(T2,w)} = 1, then LRK(T) is
linearly ordered, since LRK(T) ~ LRK(T}) for I(T3,w) =1, and LRK(T) ~ LRK(T3) for I(T,w) = 1.

In Figures 10 and 11 we illustrate Theorem by structures LRK(T) in [30], for disjoint unions of theories,
which are not lattices.
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B.1II. Kynnemos, C.B. Cynomiaros

Teopus monenbaepidiH, runeprpadTapblHAAFbl KYPBLIBIMIAP TYPAJIbI

110

Teopusi Mogenbaepiniy runeprpaduscbl TEOPUIAP/Ibl, COHbBIMEH Oipre rpaduKasblK 00bEeKTiIepal Koca,
CEMaHTHUKAJBIK 00bEKTIIED TypPaJibl MAHBI3AbI KYPBLIBIM/IBIK, AKIAPATThI aJIyFa MYMKIH/IIK OepeTiH 00bek-
Tisepre x)artajbl. Ocbl MaKaaa KyPbLUIbIMJIBIK, OHBIH iIIiHJI€ TOPJIbI, MOJIEJIb/IIK TEOPUAHbIH Tureprpad-
Tap/IbIH, KACUETTEP] aHBIKTAJIBIN 3epTTesai. Teopus yirijepini runeprpadThbl TOPBIH CUIIATTAY, COHIAN-aK
Teopusi TYPJIEPiHiH n30MOpdU3M TYypJepiHeri KypbLibiMaap 6epiireH.

Kiam cosdep: monmenbiep runeprpadbl, 3JIEMEHTAPJIBIK, TEOPUST, SJEMEHTAPJIBIK, IMITKI KYPBLIBIMIBIK, XKIbIH,
TOP KYPBLIBIMBI.

B.1II. Kynmnemos, C.B. Cymomiaros

O crpyKTypax B runeprpadax Mojejeil Teopuu

I'unteprpadsr Mozesieit Teopun OTHOCATCS K MPOU3BOIHBIM O0bEKTaM, IO3BOJIAIONINM TOJIYYaTh CyIeCTBEH-
HYIO CTPYKTYPHYIO HH(MOPMAIUIO KaK O CAMUX TEOPUSIX, TAK U O COMYTCTBYIOIIMNX CEMAHTUIECKUX O0BbEKTAX,
BKJIIO4Yast rpadoBble O0BLEKTHI. B cTaThe ompesesieHbl U UCCIIEI0OBAHBI CTPYKTYPHBIE, B TOM YHCJIE PEIeTOq-
HbIe CBOIicTBa rureprpadoB Moestei Teopun. Jlana xapakTepu3alins PereToIHOCTH runeprpadoB Moieseit
TEOpUH, & TaK¥Ke CTPYKTYP HAa MHOXKECTBAX THIIOB M30MOP(MhU3Ma TEOPUH.

Karouesvie crosa: runeprpad Mojesieil, sjeMeHTapHas TEOPHsI, JIEMEHTAPHO IOJICTPYKTYPHOE MHOXKECTBO,
pelreTovYHas CTPYKTypa.
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