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On structures in hypergraphs of models of a theory
Hypergraphs of models of a theory are derived objects allowing toobtain an essential structural information
about both giventheories and related semantic objects including graph ones. In the present paper we define
and study structural properties of hypergraphs of modelsof a theory including lattice ones. Characterizations
for thelattice properties of hypergraphs of models of a theory, as wellas for structures on sets of isomorphism
types of models of atheory, are given.
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Hypergraphs of models of a theory are derived objects allowing to obtain an essential structural information
about both given theories and related semantic objects including graph ones [1–9]. Studying of hypergraphs of
models of a theory is closely related with a series of papers on description of lattices of substructures [10–22].

In the presented paper we define and study structural properties of hypergraphs of models of a theory
including lattice ones. Characterizations for the lattice properties of hypergraphs of models of a theory as well
as for structures on sets of isomorphism types of models of a theory are given.

Preliminaries

Recall that a hypergraph is a pair of sets (X,Y ), where Y is some subset of the Boolean P(X) of the set X.
LetM be some model of a complete theory T . Following [5], we denote by H(M) a family of all subsets N of

the universe M ofM that are universes of elementary submodels N of the modelM: H(M) = {N | N 4M}.
The pair (M,H(M)) is called the hypergraph of elementary submodels of the modelM and denoted by H(M).

Definition [8]. LetM be a model of a theory T with a hypergraphH = (M,H(M)) of elementary submodels,
A be an infinite definable set inM, of arity n: A ⊆Mn. The set A is called H-free if for any infinite set A′ ⊆ A,
A′ = A ∩ Zn for some Z ∈ H(M) containing parameters for A. Two H-free sets A and B of arities m and n
respectively are called H-independent if for any infinite A′ ⊆ A and B′ ⊆ B there is Z ∈ H(M) containing
parameters for A and B and such that A′ = A ∩ Zm and B′ = B ∩ Zn.

Note the following properties [8].
1. Any two tuples of a H-free set A, whose distinct tuples do not have common coordinates, have same type.
Indeed, if there are tuples ā, b̄ ∈ A with tp(ā) 6= tp(b̄) then for some formula ϕ(x̄) the sets of solutions of

that formula and of the formula ¬ϕ(x̄) divide the set A into two nonempty parts A1 and A2, where at least one
part, say A1, is infinite. Taking A1 for A′ we have A1 = A ∩ Zn for appropriate Z ∈ H(M) and n. Then by
the condition for tuples in A we have A2 ∩ Zn = ∅ that is impossible since Z is the universe of an elementary
submodel ofM.

Thus the formula ϕ(x̄), defining A, implies some complete type in Sn(∅), and if A is ∅-definable then ϕ(x̄)
is a principal formula.

In particular, if the set A is H-free and A ⊆ M , then the formula, defining A, implies some complete type
in S1(∅).

2. If A ⊆ M is a H-free set, then A does not have nontrivial definable subsets, with parameters in A, i.e.,
subsets distinct to subsets defined by equalities and inequalities with elements in A.

Indeed, if B ⊂ A is a nontrivial definable subset then B is defined by a tuple ā of parameters in A, forming
a finite set A0 ⊂ A, and B is distinct to subsets of A0 and to A \ C, where C ⊆ A0. Then removing from A a
set B \ A0 or (A \ B) \ A0, we obtain some Z ∈ H(M) violating the satisfiability for B or its complement. It
contradicts the condition that Z is the universe of an elementary submode ofM.

3. If A and B are two H-independent sets, where A ∪ B does not have distinct tuples with common
coordinates, then A ∩B = ∅.

Серия «Математика». № 2(90)/2018 101



B.Sh. Kulpeshov, S.V. Sudoplatov

Indeed, if A∩B contains a tuple ā, then, choosing infinite sets A′ ⊆ A and B′ ⊆ B with ā ∈ A′ and ā /∈ B′,
we obtain ā ∈ A′ = A∩Zn for appropriate Z ∈ H(M) and n, as so ā ∈ B ∩Zn = B′. This contradiction means
that A ∩B = ∅.

Definition [6]. The complete union of hypergraphs (Xi, Yi), i ∈ I, is the hypergraph
(⋃
i∈I

Xi, Y

)
, where

Y =

{⋃
i∈I

Zi | Zi ∈ Yi
}
. If the sets Xi are disjoint, the complete union is called disjoint too. If the set Xi form

a ⊆-chain, then the complete union is called chain.
By Property 3 we have the following theorem on decomposition of restrictions of hypergraphsH, representable

by unions of families of H-independent sets.
Theorem 1.1 [8]. A restriction of hypergraph H = (M,H(M)) to a union of a family of H-free H-independent

sets Ai ⊆M is represented as a disjoint complete union of restrictions Hi of the hypergraph H to the sets Ai.
Proof. Consider a family of H-independent sets Ai ⊆ M . By Property 3 these sets are disjoint, and using

the definition of H-independence we immediately obtain that the union of restrictions Hi of H to the sets Ai is
complete.

Recall that a subset A of a linearly ordered structure M is called convex if for any a, b ∈ A and c ∈ M
whenever a < c < b we have c ∈ A. A weakly o-minimal structure is a linearly ordered structure
M = 〈M,=, <, . . .〉 such that any definable (with parameters) subset of the structure M is a union of finitely
many convex sets in M .

In the following definitionsM is a weakly o-minimal structure, A,B ⊆M ,M be |A|+-saturated, p, q ∈ S1(A)
be non-algebraic types.

Definition. [23]. We say that p is not weakly orthogonal to q (p 6⊥w q) if there exist an A-definable formula
H(x, y), α ∈ p(M) and β1, β2 ∈ q(M) such that β1 ∈ H(M,α) and β2 6∈ H(M,α).

Definition. [24]. We say that p is not quite orthogonal to q (p 6⊥q q) if there exists an A-definable bijection
f : p(M)→ q(M). We say that a weakly o-minimal theory is quite o-minimal if the notions of weak and quite
orthogonality of 1-types coincide.

In the work [25] the countable spectrum for quite o-minimal theories with non-maximal number of countable
models has been described:

Theorem 1.2. Let T be a quite o-minimal theory with non-maximal number of countable models. Then T has
exactly 3k · 6s countable models, where k and s are natural numbers. Moreover, for any k, s ∈ ω there exists a
quite o-minimal theory T having exactly 3k · 6s countable models.

Realizations of these theories with a finite number of countable models are natural generalizations
of Ehrenfeucht examples obtained by expansions of dense linear orderings by a countable set of constants,
and they are called theories of Ehrenfeucht type. Moreover, these realizations are representative examples for
hypergraphs of prime models [1, 3, 5]. We consider operators for hypergraphs allowing on one hand to describe
the decomposition of hypergraphs of prime models for quite o-minimal theories with few countable models, and
on the other hand pointing out constructions leading to the building of required hypergraphs by some simplest
ones.

Having nontrivial structures like structures with some orders it is assumed that «complete» decompositions
are considered modulo additional conditions guaranteing the elementarity for substructures with considered
universes. So we use the conditional completeness taking unions with the properties of density, linearity etc.

Below we illustrate this conditional completeness for structures with dense linear orders.
Denote by (M,Hdlo(M)) the hypergraph of (prime) elementary submodels of a countable modelM of the

theory of dense linear order without endpoints.
Remark 1.3. The class of hypergraphs (M,Hdlo(M)) is closed under countable chain complete unions,

modulo density and having an encompassing dense linear order without endpoints. Thus, any hypergraph
(M,Hdlo(M)) is represented as a countable chain complete, modulo density, union of some its proper subhyper-
graphs. The notion of weak o-minimality was originally studied by D. Machpherson, D. Marker and C. Steinhorn
in [26].

Any countable model of a theory of Ehrenfeucht type is a disjoint union of some intervals, which are ordered
both themselves and between them, and of some singletons. Dense subsets of the intervals form universes of
elementary substructures. So, in view of Remark 1.3, we have:

Theorem 1.4 [6]. A hypergraph of prime models of a countable model of a theory of Ehrenfeucht type
is represented as a disjoint complete, modulo density, union of some hypergraphs in the form (M,Hdlo(M)) as
well as singleton hypergraphs of the form ({c}, {{c}}).
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Remark 1.5. Taking into consideration links between sets of realizations of 1-types, which are not weakly
orthogonal, as well as definable equivalence relations, the construction for the proof of Theorem 1.4 admits
a natural generalization for an arbitrary quite o-minimal theory with few countable models. Here conditional
complete unions should be additionally coordinated, i.e., considering definable bijections between sets of realizat-
ions of 1-types, which are not quite orthogonal.

Elementarily substructural sets

Let M be a model of theory T , (M,H(M)) be a hypergraph of elementary submodels of M. The sets
N ∈ H(M) are called elementarily submodel or elementarily substructural inM.

Elementarily substructural sets inM are characterized by the following well-known Tarski–Vaught Theorem,
which is called the Tarski–Vaught test.

Theorem 2.1. Let A and B be structures in a language Σ, A ⊆ B. The following are equivalent:
(1) A 4 B;
(2) for any formula ϕ(x0, x1, . . . , xn) in the language Σ and for any elements a1, . . . , an ∈ A,

if B |= ∃x0 ϕ(x0, a1, . . . , an) then there is an element a0 ∈ A such that B |= ϕ(a0, a1, . . . , an).
Corollary 2.2. A set N ⊆ M is elementarily substructural in M if and only if for any formula

ϕ(x0, x1, . . . , xn) in the language Σ(M) and for any elements a1, . . . , an ∈ N , if M |= ∃x0 ϕ(x0, a1, . . ., an)
then there is an element a0 ∈ N such thatM |= ϕ(a0, a1, . . . , an).

Proposition 2.3. Let A be a definable set in an ω1-saturated model M of a countable complete theory T .
Then exactly one of the following conditions is satisfied:

(1) A is finite and contained in any elementarily substructural set inM;
(2) A is infinite and has infinitely many distinct intersections with elementarily substructural sets in M,

and all these intersections are infinite; these intersections can be chosen forming an infinite chain/antichain by
inclusion.

Proof. If |A| < ω then A is contained in acl(∅), and so it is contained in any elementary submodel ofM.
If A = ϕ(M, ā) is infinite, we construct a countable submodel N0 ≺ M containing parameters in ā. Since

A is infinite, the set A ∩N0 is countable. By compactness, sinceM is ω1-saturated, the set A \N0 is infinite.
Adding to N0 new elements of A we construct a countable model N1 such that N0 ≺ N1 ≺M. Continuing the
process we build an elementary chain of models Nk, k ∈ ω, such that Nk ≺M and A∩Nk ⊂ A∩Nk+1, k ∈ ω.

Constructing the required antichain of intersections A∩N with elementarily substructural sets N , it suffices
to use [9, Theorem 2.10] allowing to separate disjoint finite sets, whose elements do not belong to acl(∅).

The arguments for the proof of Proposition 2.3 stay valid for a countable saturated model M. Thus, we
have the following

Proposition 2.4. Let A be a definable set in a countable saturated modelM of a small theory T . Then exactly
one of the following conditions is satisfied:

(1) A is finite and contained in any elementarily substructural set inM;
(2) A is infinite and has infinitely many distinct intersections with elementarily substructural sets in M,

and all these intersections are infinite; these intersections can be chosen forming an infinite chain/antichain by
inclusion.

The following example illustrates that ifM is not saturated then the conclusions of assertions 2.3 and 2.4
can fail.

Example 2.5. Let a set A is defined by a unary predicate P and includes infinitely many language constants
ci, i ∈ I. Then there is, in the language {P} ∪ {ci | i ∈ I}, a structureM having only finite set A0 of elements
in A, which are not interpreted by constants. Since elementarily substructural sets N take all constants, there
are only finitely many possibilities for intersections A ∩N .

In view of aforesaid arguments it is interesting to describe possible cardinalities both for sets H(M) and
their restrictions H(M) � A
 {A ∩N | N ∈ H(M)} on definable sets A ⊆M .

Since in Example 2.5 intersections A ∩ N , taking all constants ci, can include an arbitrary subset of A0,
then for this example we have |H(M) � A| = 2|A0|. The same formula holds for infinite sets A0, but in such a
case the set H(M) � A is transformed from finite one directly to a set with continuum many elements.

Note that for H-free sets A ⊆ M , modulo acl(∅) (i.e., for sets A, whose each subset B ⊆ A \ acl(∅) has a
representation B ∪ (acl(∅) ∩ A) = A ∩ N for some N ∈ H(M)), the equality |H(M) � A| = 2|A\acl(∅)| holds.
Thus, we have the following dichotomy theorem.

Theorem 2.6. For any H-free, modulo acl(∅), set A ⊆M its restriction to any elementary submodelM0 ≺M
satisfies either |H(M0) � A| = 2n for some n ∈ ω, or |H(M0) � A| = 2λ form some λ ≥ ω.
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Similar to Example 2.5, the following example illustrates the dichotomy for hypergraphs of elementary
submodels.

Example 2.7. Consider the structure M of rational numbers, 〈Q, <, cq〉q∈Q, in which every element
is interpreted by a constant. This structure does not have proper elementary substructures, therefore
|H(M)| = 1 = 20. Extending M to a structure M1 by addition of n elements for pairwise distinct 1-types,
defined by cuts, we have |H(M1)| = 2n. If M is extended till a structure M2 by addition of at least two
elements of fixed cut or of infinitely many elements for distinct cuts, then by density the summarized number
of added elements occurs infinite and |H(M2)| = 2λ holds for some λ ≥ ω.

At the same time there are examples of hypergraphs of elementary submodels, for which the conclusion of
Theorem 2.6 fails. For instance, as shown in [13], there are hypergraphs for the theory of arithmetic of natural
numbers such that |H(M)| = 5 and the lattice of elementary submodels is isomorphic to the lattice P5.

Lattice structures associated with hypergraphs of models of a theory

For given structure M we define the structure L(M) = 〈H(M);∧,∨〉 by the following relations for
M1,M2 ≺M:M1 ∧M2 =M1 ∩M2 andM1 ∨M2 =M(M1 ∪M2).

Consider the following question: when the structure L(M) is a lattice?
Clearly, answering this question we have to characterize the conditions M1 ∩M2 ≺ M and

M(M1 ∪M2) ≺M. Assuming thatM is infinite, the structuresM1 ∩M2 should be infinite too, in particular,
M1 ∩M2 6= ∅. By [5, Theorem 3.2], assuming thatM is λ-saturated, it can not contain separated sets A and B
of cardinalities < λ, such that acl(A) ∩ acl(B) = ∅.

By Theorem 2.1 we have the following theorems characterizing the elementarity of substructures.
Theorem 3.1. LetM1 andM2 be elementary substructures of structureM in a language Σ, M1 ∩M2 6= ∅.

The following are equivalent:
(1) (M1 ∩M2) ≺M;
(2) for any formula ϕ(x0, x1, . . . , xn) of the language Σ and for any elements a1, . . . , an ∈ M1 ∩ M2 if

M |= ∃x0 ϕ(x0, a1, . . . , an) then there is an element a0 ∈M1 ∩M2 such thatMi |= ϕ(a0, a1, . . . , an), i = 1, 2.
Theorem 3.2. LetM1 andM2 be elementary substructures of structureM in a language Σ. The following

are equivalent:
(1)M(M1 ∪M2) ≺M;
(2) for any formula ϕ(x0, x1, . . . , xn) of the language Σ and for any elements a1, . . . , an ∈ M1 ∩M2 if

M |= ∃x0 ϕ(x0, a1, . . . , an) then there is an element a0 ∈M(M1∪M2) such thatM(M1∪M2) |= ϕ(a0, a1, . . . , an).
The following examples illustrate valuations of the conditions (2) in Theorems 3.1 and 3.2.
Example 3.3. Consider a structure M in a graph language {R(2)} with a symmetric irreflexive relation R

and elements a1, a2, a3, a4 such that

R = {[a1, a3], [a1, a4], [a2, a3], [a2, a4]}.

The substructuresM1 ⊂ M andM2 ⊂ M with the universes {a1, a2, a3} and {a1, a2, a4} respectively satisfy
the formula ϕ(a1, a2)
 ∃x(R(a1, x)∧R(a2, x)) whereasM1∩M2 does not satisfy that formula since appropriate
elements for x belong to M1 ⊕M2.

Example 3.4. Consider a structureM of graph language {R(2)} with symmetric irreflexive relation R and
with elements a1, a2, a3 such that R = {[a1, a3], [a2, a3]}. The substructuresM1 ⊂ M andM2 ⊂ M with the
universes {a1} and {a2} form the substructureM(M1 ∪M2) with the universe {a1, a2} and it does not satisfy
the formula ϕ(a1, a2) in Example 3.3. At the same time the structureM satisfies this formula.

Since in some cases elementary substructures of given structure M form the lattice with respect to the
operationsM1 ∧M2 =M1 ∩M2 andM1 ∨M2 =M(M1 ∪M2), the study of hypergraphs H(M), for these
cases, is reduced to study of the lattices L(M). As Example in [13] shows, the lattices L(M) can be non-
distributive unlike the description in Theorem 2.6, where correspondent lattices are distributive, and for finite
H(M0) even form Boolean algebras.

In the given context hypergraphs/lattices with minimal, i.e. least structures play an important role. These
structures can be obtained from an arbitrary structure by addition of constants interpreted by all elements of
the structure. Besides, these minimal structures exist for finite sets H(M).

In [27], the following theorem on dichotomy for minimal structures is proved.
Theorem 3.5. LetM0 be a minimal structure,M be its saturated elementary extension and p ∈ S1(M0) be

unique non-algebraic 1-type. Then exactly one of the following conditions holds:
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(I) the structure (p(M),Semp) is a pregeometry, where Semp is the relation of semi-isolation on the set of
realizations of the type p, i.e. the following conditions are satisfied:

(S1) Monotony: if A ⊆ B then A ⊆ Semp(A) ⊆ Semp(B);
(S2) Finite character: Semp(A) =

⋃
{Semp(A0) | A0 is a finite subset of A};

(S3) Transitivity: Semp(A) = Semp(Semp(A));
(S4) Exchange property (Symmetry): if a ∈ Semp(A ∪ {b}) \ Semp(A) then b ∈ Semp(A ∪ {a});
(II) for some finite A ⊂ M there exists an infinite set C0 ⊆ dcl(A ∪M0) and a definable quasi-order ≤ on

M such that C0 orders a type over A:
(D1) for any c ∈ C0 the set {x ∈ C0 | c ≤ x} is a cofinite subset of C0;
(D2) C0 is an initial segment ofM: if c ∈ C0 and m ≤ c, then m ∈ C0.
Basic examples illustrating Theorem 3.5 are represented by ordered structures 〈ω,<〉 and 〈ω + ω∗, <〉. The

conclusion of Theorem 2.6 holds for both structures. Moreover, for M1 ≡ 〈ω,<〉 and M2 ≡ 〈ω + ω∗, <〉 the
structures L(M1) and L(M2) form atomic Boolean algebras, whose atoms are defined by equivalence classes,
being closures of singletons, not in ω + ω∗, taking all predecessors and successors.

Return to Example 2.7. It is known that the intersection of convex sets is convex, whereas the intersection
of dense orders can be not dense. For instance, any interval [a, b] contains countable dense subsets X,Y
such that X ∩ Y = {a, b}. It means that for the structure M′ ≡ 〈Q, <, cq〉q∈Q the structure L(M′) forms
a lattice, moreover, a Boolean algebra, if and only if each type in S1(Th(M′)) has at most one realization in
M′. If M′, with the lattice L(M′), realizes λ non-principal 1-types, then |L(M′)| = 2λ. Thus, the following
proposition holds.

Proposition 3.6. For the structure L(M′) the following are equivalent:
(1) L(M′) is a lattice;
(2) L(M′) forms an atomic Boolean algebra;
(3) each type in S1(Th(M′)) has at most one realization inM′, and ifM′ realizes λ non-principal 1-types,

then |L(M′)| = 2λ.
Proposition 3.6 admits natural modifications for a series of theories with minimal models, for instance, for

models, obtained by replacement of elements inM′ with finite antichains of fixed cardinality marked by unary
predicates Pq instead of constants cq. Note that admitting replacement of constants cq by infinite antichains Pq
the structure L(M′) is not a lattice since Pq can be divided by some elementary substructuresM′1,M′2 ≺M′
into two disjoint parts, whenceM′1 ∩M′2 6≺ M′.

Clearly, as above, in the general case if there are separable elements in definable sets A ⊆ M of structure
M then L(M) is not closed under intersections, i.e., L(M) is not even a lower semilattice. Thus, the following
proposition holds.

Proposition 3.7. If L(M) is a lattice then M does not have definable sets A ⊆ M containing elements
separable each other, in particular,M does not contain H-free sets A ⊆M .

In view of Proposition 3.7 it is natural, for given structureM, along with L(M) to consider for sets X ⊆M
the following relative structures LX(M). Denote by HX(M the family of all sets in H(M containing the set X.
Then LX(M)
 〈HX(M;∧,∨〉, where for structuresM1,M2 ≺M containing X,M1 ∧M2 =M1 ∩M2 and
M1 ∨M2 =M(M1 ∪M2).

Note that if X is a universe of some elementary substructure of structure M then definable sets A ⊆ M
already do not contain elements separable by sets in LX(M). Then, in any case,M1 ∧M2 is a substructure of
M and the elementarity of that substructure is characterized by Theorem 3.1.

The following example illustrates that apart from the density there are other reasons preventing to consider
L(M) as a lattice.

Example 3.8 [28]. LetM = 〈M ;<,P 1, U2, ci〉i∈ω be a linearly ordered structure such thatM is a disjoint
union of interpretations of unary predicates P and ¬P , where ¬P (M) < P (M). We identify interpretations of
P and ¬P with the set Q of rational numbers with the natural order.

The symbol U interprets the binary relation defined as follows: for any a ∈ P (M), b ∈ ¬P (M) U(a, b) ⇔
⇔ b < a+

√
2.

The constants ci interpret an infinite strictly increasing sequence on P (M) as follows: ci = i ∈ Q.
Clearly that Th(M) is a weakly o-minimal theory. Let

p(x) := {x > ci | i ∈ ω} ∪ {P (x)};

q(y) := {∀t(U(ci, t)→ t < y) | i ∈ ω} ∪ {¬P (y)}.
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Obviously, p, q ∈ S1(∅) are nonisolated types and p 6⊥w q. Since there are no ∅-definable bijections from
p(M′) onto q(M′), where M′ is a model of Th(M) realizing some of these types then Th(M) is not quite
o-minimal.

As shown in [28], Th(M) has exactly 4 pairwise non-isomorphic countable models: the prime model M,
i.e., with p(M) = ∅ and q(M) = ∅; the model M1 such that p(M1) has the ordering type [0, 1) ∩ Q, q(M1)
has the ordering type (0, 1)∩Q; the modelM2 such that p(M2) has the ordering type (0, 1)∩Q, q(M2) has the
ordering type [0, 1) ∩Q; and the countable saturated modelM3.

ThereforeM1∩M2 6≺ M3. By this reason as well as by the possibility of violation of density in intersections,
the structure L(M3) does not form a lower semilattice.

Remark 3.9. Along with Example if we consider the known Ehrenfeucht’s example with three models: a
prime model M0, a weakly saturated model M1, and a countable saturated model M2, then the structure
L(M2) is not a lattice in view of presence of dense definable intervals but includes the three-element linearly
ordered lattice consisting of the universes M0, M1, M2.

Lattice structures on sets of isomorphism types of models of a theory

Following Example 3.8 and Remark 3.9 we consider a question on existence of natural lattices associated
with hypergraphs (M,H(M)) which a distinct to L(M). Related lattices are lattices represented by Rudin–
Keisler preorders RK(T ) [1] for isomorphism types of prime models of a theory T , over finite sets, or their lattice
fragments.

The description [29] of structures RK(T ) for Ehrenfeucht quite o-minimal theories T implies that these
structures, for the considered theories, form finite lattices LRK(T ) consisting of 2k · 3s elements and, in view of
the main result of the paper [25], the number I(T, ω) of pairwise non-isomorphic countable models of T equals
3k · 6s, k, s ∈ ω.

The Hasse diagrams illustrating these lattices LRK(T ) are represented in Figures 1–9 for the following values
k and s:

1) k = 1, s = 0;
2) k = 0, s = 1;
3) k = 2, s = 0;
4) k = 3, s = 0;
5) k = 0, s = 2;
6) k = 0, s = 3;
7) k = 1, s = 1;
8) k = 2, s = 1;
9) k = 1, s = 2.

Figure 1. k = 1, s = 0 Figure 2. k = 0, s = 1

Figure 3. k = 2, s = 0 Figure 4. k = 3, s = 0
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Theorem 4.1. Let T be an Ehrenfeucht quite o-minimal theory, I(T, ω) = 3k · 6s, k, s ∈ ω. Then:
(1) LRK(T ) is a lattice;
(2) LRK(T ) is a Boolean algebra ⇔ k ≥ 1 and s = 0; in such a case the Boolean lattice LRK(T ) has a

cardinality 2k;
(3) LRK(T ) is linearly ordered ⇔ k + s ≤ 1.
Proof. Let Γ = Γ1 ∪ Γ2 be a maximal independent set of nonisolated types in S1(T ), where realizations of

each type in Γ1 generate three models, with prime one, and realizations of each type in Γ2 generate six models,
with prime one, |Γ1| = k, |Γ2| = s.

(1) We argue to show that LRK(T ) is a lattice. Indeed, for isomorphism types M̃1 and M̃2 of prime
model M1 and M2 over some finite sets A and B, respectively, we define sets X,Y ⊆ Γ × {0, 1} defining
these isomorphism types such that X = {(p, 0) | M1 |= p(a) for some a ∈ A, and |p(M1)| = 1 or p ∈ Γ1} ∪
{(p, 1) | M1 |= p(a) for some a ∈ A, |p(M1)| ≥ ω, p ∈ Γ2} and Y = {(q, 0) | M2 |= q(b) for some b ∈
B, and |q(M2)| = 1 or q ∈ Γ1} ∪ {(q, 1) | M2 |= q(b) for some b ∈ B, |q(M2)| ≥ ω, q ∈ Γ2}. Then the
isomorphism type for M̃1 ∧ M̃2 corresponds to the set U ⊆ Γ × {0, 1} consisting of all common pairs of X
and Y , as well as all possible pairs (p, 0), if (p, 0) ∈ X and (p, 1) ∈ Y , or (p, 1) ∈ X and (p, 0) ∈ Y . And the
isomorphism type for M̃1 ∨ M̃2 corresponds to the set V ⊆ Γ× {0, 1} consisting of the following pairs:

i) all common pairs of X and Y ,
ii) all pairs (p, i) ∈ X such that Y ∩ {(p, 0), (p, 1)}∅,
iii) all pairs (p, i) ∈ Y such that X ∩ {(p, 0), (p, 1)}∅,
iv) all pairs (p, 1) such that (p, 0) ∈ X and (p, 1) ∈ Y , or (p, 1) ∈ X and (p, 0) ∈ Y .

Figure 5. k = 0, s = 2 Figure 6. k = 0, s = 3

The defined correspondence witnesses that LRK(T ) is a lattice.
(2) If s 6= 0 then LRK(T ) is not a Boolean algebra by Stone Theorem, since the cardinality of each finite

Boolean algebra equals 2n for some n ∈ ω whereas |LRK(T )| = 2k · 3s. If s = 0 then LRK(T ) is a Boolean
algebra of a cardinality 2k such that for isomorphism types M̃1 and M̃2 of prime modelsM1 andM2 over some
finite sets A and B, respectively, and for sets X,Y ⊆ Γ such that X = {p(x) ∈ Γ | M1 |= p(a) for some a ∈ A}
and Y = {q(x) ∈ Γ | M2 |= q(b) for some b ∈ B}, the isomorphism type M̃1 ∧ M̃2 corresponds to the set
X ∩ Y , and the isomorphism type M̃1 ∨ M̃2 corresponds to the set X ∪ Y .

(3) If k+ s ≤ 1 then LRK(T ) is linearly ordered as shown in Figures 1 and 2. If k+ s > 1 then |Γ| > 1 and
for distinct types p, q ∈ Γ the isomorphism types of modelsMp andMq are incomparable in LRK(T ).

The description for distributions of disjoint unions of Ehrenfeucht theories and the arguments for the proof
of Theorem 4.1 allow to formulate the following theorem modifying Theorem 4.1.

Theorem 4.2. Let T be a disjoint union of theories T1 and T2 in disjoint languages and having finite numbers
I(T1, ω) and I(T2, ω) of countable models. Then:

(1) LRK(T ) is a (Boolean) lattice ⇔ LRK(T1) and LRK(T2) are (Boolean) lattices;
(2) LRK(T ) is linearly ordered ⇔ LRK(T1) and LRK(T2) are linearly ordered, and

min{I(T1, ω), I(T2, ω)} = 1.

Proof. (1) If LRK(T ) is a (Boolean) lattice, then LRK(T1) and LRK(T2) are (Boolean) lattices, since
LRK(T1) and LRK(T2) are isomorphic to sublattices L1 and L2 of the lattice LRK(T ), and elements/complements
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of elements in LRK(T ) are represented as pairs of elements/complements of elements in L1 and L2. If LRK(T1)
and LRK(T2) are (Boolean) lattices, then LRK(T ) is a (Boolean) lattice again in view of aforesaid representation.

Figure 7. k = 1, s = 1 Figure 8. k = 2, s = 1

Figure 9. k = 1, s = 2

Figure 10. 6-Element diagram Figure 11. 9-Element diagram

(2) If LRK(T ) is linearly ordered then LRK(T1) and LRK(T2) are linearly ordered, being isomorphic to
substructures of LRK(T ). Here T1 or T2 should be ω-categorical, since otherwise prime models over pairs
(p1, q1) and (p2, q2) occur LRK(T )-incomparable, where p1, p2 ∈ S1(T1), q1, q2 ∈ S1(T2), p1, q2 are isolated,
p2, q1 are nonisolated.

If structures LRK(T1) and LRK(T2) linearly ordered, and min{I(T1, ω), I(T2, ω)} = 1, then LRK(T ) is
linearly ordered, since LRK(T ) ' LRK(T1) for I(T2, ω) = 1, and LRK(T ) ' LRK(T2) for I(T1, ω) = 1.

In Figures 10 and 11 we illustrate Theorem by structures LRK(T ) in [30], for disjoint unions of theories,
which are not lattices.
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Б.Ш. Кулпешов, С.В. Судоплатов

Теория модельдерiнiң гиперграфтарындағы құрылымдар туралы

Теория модельдерiнiң гиперграфиясы теорияларды, сонымен бiрге графикалық объектiлердi қоса,
семантикалық объектiлер туралы маңызды құрылымдық ақпаратты алуға мүмкiндiк беретiн объек-
тiлерге жатады. Осы мақалада құрылымдық, оның iшiнде торлы, модельдiк теорияның гиперграф-
тардың қасиеттерi анықталып зерттелдi. Теория үлгiлерiнiң гиперграфты торын сипаттау, сондай-ақ
теория түрлерiнiң изоморфизм түрлерiндегi құрылымдар берiлген.

Кiлт сөздер: модельдер гиперграфы, элементарлық теория, элементарлық iшкi құрылымдық жиын,
тор құрылымы.

Б.Ш. Кулпешов, С.В. Судоплатов

О структурах в гиперграфах моделей теории

Гиперграфы моделей теории относятся к производным объектам, позволяющим получать существен-
ную структурную информацию как о самих теориях, так и о сопутствующих семантических объектах,
включая графовые объекты. В cтатье определены и исследованы структурные, в том числе решеточ-
ные свойства гиперграфов моделей теории. Дана характеризация решеточности гиперграфов моделей
теории, а также структур на множествах типов изоморфизма теории.

Ключевые слова: гиперграф моделей, элементарная теория, элементарно подструктурное множество,
решеточная структура.
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