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On mathematical and analytical methods for solving problems
on vibrations of membranes and plates

The problems about determination of the frequencies and forms of natural vibrations of plates and shells
lead to the necessity of partial differential equations integration. The well-researched cases are those where it
is possible to separate the variables. In particular, these include the vibrations of a rectangular plate hinged
on opposite sides, umbrella and fan vibration of circular axisymmetric plates and vibrations of cylindrical
shells, closed or hinged along generating curves. In this work, the vibration of a flat homogeneous membrane
is investigated for the general case of boundary conditions.

Keywords: boundary value problem, membrane, plate, vibrations, spectrum problem, orthonormal system
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Film and membrane structures are highlighted among the thin-walled structures that combine lightness with
high strength. Such thin-walled structures (films, membranes, coatings, etc.) find application in all branches of
production and daily life [1].

To create new films, membranes and coatings with the specified performance and durability, one needs to
investigate how the time and temperature, mechanical (including vibrational), chemical and other exposures may
cause destructive processes in the material structure. Therefore, the necessary quality of films, membranes and
coatings are usually provided by calculating the impact of these effects on the strength and the characteristics
necessary for exploitation of the material [2].

Consider a flat homogeneous rectangular membrane fixed at the edges, with sides b and ¢ in the plane
OXY, 0 <z <b,0 <y < c. Wedenote the deflection function of the membrane, that is, its deviation from
the equilibrium position at the point (z,y) at the time ¢, by u(z,y,t). Let us consider the process when the
vibrations of the membrane are caused by a given initial deviation and a given initial velocity [3].

To find the function w(z,y,t) we have the following boundary value problem: to find the solution of the
partial differential equation describing the process of the membrane vibrations,

Ut = a2(ux.r + Uyy)a (1)

where a2 = L, T is the membrane tension; p is the density of a membrane, in the region 0 < z < b, 0 < y < ¢,
t> 0,
under the initial conditions

u(z,y,0) = ¢(z,y); (2)
ut(xayvo) :w(may) (3)
and boundary conditions
alu(ov Y, t) + ﬂlul‘ (Oa Y, t) = Oa O[gu(b, Y, t) =+ ﬂqu (b7 Y, t) = 07 (4)
yu(z,0,t) + O0ruy(2,0,t) =0, you(z,c,t) + Oauy(z,c,t) =0, (5)

where ¢ and ¢ are the given functions; a;, 3, Vi, 6; are the given numbers, and o? + 32 # 0, 72 + 6? # 0;
i=1,2.
We seek the solution of problem (1)—(5) by the method of variables separation as a function in a form [4]

U({E,y,t) = V(1'7y) T(t) (6)
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This function (6) is not identically equal to zero. Dividing the variables, we obtain an equation for the
function T'(t)

T" +a?0T = 0, (7)
and for the function v(x,y) we get the following boundary value problem
Vg + Vyy +0v =0, (8)
aly(oa y) + 511/1(07 y) = 07 a?”(b7 y) + B2V:E(b7 y) = 07 (9)
yv(z,0) + 01vy(2,0) =0, vev(zx,c)+ Oavy(x,c) =0, (10)

where o is a constant of variables separation. For the ease of calculations we take o with a minus sign, without
assuming anything about its sign. The boundary conditions (9), (10) are obtained by the direct substitution of
(6) in (4), (5)-

To solve problem (8) - (10) we again apply the method of variables separation. We seek a solution of this
problem in the form of a function v(z,y) = X(z) - Y(y) , which is not identically equal to zero. To define
functions X (z) and Y (y) from (8) - (10) we obtain one-dimensional spectral problems

X"+n-X=0, Y'+7-X =0,
a1 X(0) + /1X'(0) =0, 7Y (0) +6,Y'(0) =0, (11)
as X (b) + B2X'(b) =0, | 12Y(c) +62Y'(c) =0,

where 7 is constant variables separation, and 7 = o — 7 [5].
Remark 1. By direct calculation, we determine that the spectral problem for an equation with a parameter v

Z2"+v-Z =0
hZ(0) +g1Z'(0) = 0; (12)
haZ (1) + g2Z' (1) = 0,

where Z = Z(2); 0 < z < I; h;, g; (i = 1,2) are the given numbers, and h? + g2 # 0, i = 1,2, has non-trivial
solutions in the following cases:
1) v = 0 when the condition holds
grha — hi(hal + g2) = 0; (13)

2) v >0.

By remark 1, the spectral problems (11) have eigenvalues and eigenfunctions if » = 7 = 0 when the condition
(13) holds for the corresponding parameters, and if n > 0, 7 > 0.

We introduce the notations n = A2, 7 = p? in (11). Solving spectral problems (11), we receive that the

eigenvalues A1,...,An,... and 1, ..., fhm, ... of these problems are the roots of the following equations,
respectively
— A 01 — 110
tg b = (21 a152)2 tgpc = (7261 —m 2)57
araz + B1 822 Y172 + 01021

and the eigenfunctions are functions in the form

Xn(x) = An(ﬁl)‘n COS A\p® — o1 Sin )\nx)a Ym(y) = Bm(el,um COS [y — 71 Sin ,U/my)a

where A,,, B,, are constants.
Since 0 = 7+ 7 = A% + u?, we obtain that the eigenvalues o, , = A2 + p2, correspond to eigenfunctions

Vnm (2, Y) = Apm (B1An €08 Az — aq 8in Ay @) (01 fm, €OS fomy — Y1 SI0 iy y), (14)

where A,,,, = A,, - B,, is a constant. We choose A,,,, = A,, - By, so that the norm of the function v, with a
weight of unit was equal to one, that is, we orthonormalize the functions vy,

b c b c
/ / Vim dedy = Aim/ (B1An cos Az — ay sin A, x)? d - / (01tm €08 iy — 1 8inpmy) dy = 1,
0 0 0 0

1
A

\// (B1An cOs Az — a sin )\nx)2 dx - / (01 o, €OS Ly — 18I0 4 y) dy
0 0
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Calculation of the coefficients A, in the general case, by the formula (15), is laborious and inexpedient.
It is much more convenient and more rational to calculate the coefficients A,,,, in each case of the boundary
conditions of the spectral problem, than to use the cumbersome and hard-to-remember formula obtained in
calculations of the integrals in (15).

Remark 2. We investigate the spectral problem (12) by introducing the notation v = p?. Under different
boundary conditions, from (12) one can obtain nine spectral problems. We carry out the calculations for the
case of boundary conditions of the third kind. Obviously, the remaining particular cases of problem (12) are
investigated in a similar way with more elementary calculations. The general solution of the equation in (12)
is Z(z) = Acospz + +Bsinpz. Its substitution into boundary conditions of the third kind of the problem (12)
gives us a system of equations

B="4
p

h2
A(—psinpl + hcospl + — sinpl) = 0.
p

To obtain non-trivial solutions, from condition A # 0 we receive that p; are the roots of the equation
1/p h
tgpl==-(+~——], 16
ctgpl = 3 (h p) (16)
and the eigenfunctions of the problem are the following functions

—~ h
Zy(z) = Ak<cospkz + p—k sinpkz) = Ak (px cosprz + hsinpgz). (17)

We normalize the functions (17), taking into account the relation (16) in the calculations,

! 2
A
/ Zi(2)dz = 7’“ / [p3(1 4 cos 2py2) + 2pphsin 2pgz + h2(1 — cos 2pg2)] dz =
0 0

1 1
= [pi (l + —sin Zpkl) + h(1 — cos 2pyl) + h? (l — —sin kal)] =
2pi 2pi

ALT 1 dpyh(p} — h?) (pp — h)* — 4pih?
[ (1 + TR )+ T )+
of, L Apph(pi —P*)\ _

+h (l 2Pk (p% — h?2)? )} o

A} 2102 | 1212 2,792 52 2 12\2 2 12\2
= W{pkl(pk'i_h )° + 2pph(py — h7) + h(py +h7)" — hp — h*)*+
HAPE® + WY + )2 = 20° (0 — 1?)] =

2

A
= W {(pi +hA)2(1- (p} + h?) + h) + h(2p), — 2pEh? — pjy + 2pEh*—
k

“hh o 4pPh? — 2h2pR + 2h4)] -
Ai 2 2\2 2 2 4 212 4
:W[(pk'f‘h ) ({l(pk-l-h )+h:| +h(pk+2pkh +h )):| =
k
A? I(p? + h?) + 2h
— st 0k W[ (G 1) 4 2m)] = ap PRI
k

As a result, we obtain

2
A= 55—, Zr(z)=A4 hsi k=1,2,..
k W22+ 2 k(2) & (Dr cos prz + hsinpgz), .2,
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We return to the original problem (1) - (5). We have from (14)

Vnm (2, Y) = Apm (B1An cos Az — a1 8in Ay @) (01 fm, €OS fimy — Y1 SI0 i y),

where the coefficients A, are calculated as in remark 2 in each particular case of boundary conditions.
Let us find the general solution of equation (7) for ,,, = A2 + u2,

Tom (t) = Chm €08 aA/Trumt + Dy, Sin ar/opmt,

where Cppm, Dy are arbitrary constants. Returning to the original problem (1) - (5), we obtain that the
particular solutions according to (6) will have the form

Unm (1‘, Y, t) = Vnm (JZ, Z/) “Trm (t) = Vnm (ZC, y) (Onm COS G/ Tpmt + Dy sin A/ O'nmt)-

By the principle of superposition, the general solution of equation (1) with the boundary conditions (4), (5)
has the form

Z Z 'im COS A\/Trmt + Dy SInay/Tpmt) - Vim (2, y). (18)

Using the initial conditions (2), (3), relation (18) and the property of orthonormality of functions vy, we
find the values of the constants C,,,,, and D,,,,

SIS b c

1 b pc
(E 9,0 Z Z Dnma O'nm’/nm(x y) 1/)(55731), Dypm = a\/m/o /0 Tﬁ(%,y)%m(%y) dwdy

n=1m=1

Hence, we obtain the solution of problem (1) - (5) in the analytical form

:E Y, t) = Z Chrm cos a/Tpmt + Dy sin -/ O'nmt) Vnm(xv y),

n=1 :1

where
Vnm (1‘, y) =A,m, (61>\n COS A\p @ — o1 Sin )\nx) (6‘1,U/m COS [y — 71 Sin ,U/my)y

Omn = A2+ 125 M, ooy A, ... are the roots of the equation tg \b = %, [l eey fbn, ... are the roots of

(7201 —7102)1

the equation tg uc = e T B

1
Anm = 3

b c
\// (B1An cOs Az — aq sin )\nglc)2 dx - / (01 o, €OS Ly — 18I0 o y) dy
0 0

b rc b rc
1
Crm ——/ / (@, Y)Vnm (2, y) drdy, Dnm = / / (@, y)Vnm (2, y) drdy.

Thus, function u(z,y,t) is found in the general case of boundary conditions. This functiondescribes the
deviation of the membrane from the equilibrium position.

Statement and analytical methods of solving the problem on plate vibrations

The Germain-Lagrange equation describing small transverse vibrations of an elastic isotropic plate |z| < a,
ly| < b of constant thickness h, has the form

0w 02 0?

Here w(x,y,t) is the transverse bending of the middle plane of the plate; A is the two-dimensional Laplace
operator; D = Eh?/(12(1—v?)) is bending stiffness of the plate; v is Poisson’s coefficient; F is Young’s modulus;
p is the specific density per unit area ofthe plate; ¢ is time.
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The problem of determining the natural frequencies and vibrations types of a plate with free edges is reduced
to determining the deflection W (z,y) (here and below the harmonic factor e =" is omitted) and the frequencies
k* = phw?/D from the homogeneous boundary value problem

AAW — KW =0 (19)
with boundary conditions for x = +a:
*w n V(?zW —0
Ox2 oy
EW o ZW (20)
Ox3 oy2ox
and for y = +b:
Pw n V82W —0
y? ox2
PW PW

+ — V) = 2].
0 ( )aygax (21)
At present, two analytical approaches to the solution of the boundary value problem (19)—(21) have become
most widely used. These approaches are the Ritz method and the superposition method. In his classic paper,
Ritz pointed out that this boundary value problem is equivalent to finding the minimum value of the integral

a b 2 2 2 5 §
PWN2  PWN2 L OPW OPW H2W \ 2
J—/_a/_b [( Ox? ) + ( 2 ) +2v 912 Oy +2(1_V)<8x8y) ]dxdy (22)
provided that
a b
/ / W2 dxdy = A = const. (23)
—aJ—b

For the particular case of a square plate a = 1, b = 1, Ritz chose the representation

S S
Ws = Z Z Anmum(x)l/n(y)a (24)
n=0

m=0

in which u,,(x) and v, (y) are eigenfunctions of bending vibrations of an elastic rod £ < 1 with both free edges.
In other words, these functions are solutions of the homogeneous equation

d*u 4
with homogeneous boundary conditions
d*u d3u
— =0 — =0 ==+1. 26

The normalization is chosen so that for the solution number m the following ratio holds

1
/ ufndgz 1.
-1

Rayleigh studied the solution of the homogeneous boundary value problem (25), (26) in detail and showed
that the required functions should be chosen as follows

e for even m
chk,, cos k., & + cos ky,chk, &

Vch2k,, + cos? k,,
where k,, is a root of the equation tg k., + thk,, = 0,

Um (E) =

)
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e for odd m
shk, sin k,,& + sin kmshk‘m§

V sh2k,, — sin? k,

where k,, is a root of the equation tgk,, — thk,, = 0.
It was assumed that

U (§) =

Uo(f): ﬁa k0:07

3
. \657 ki = 0.

When an indefinite Lagrange multiplier A = k* is used, the integral J is minimized and the condition (23)
holds, the substitution of the expansion (24) into an quadratic with respect A,,, expression (22) leads to a
homogeneous system of linear algebraic equations with respect to A,,,. Hence A is defined in the standard way
as a value that reduces to zero the determinant of this linear system. Moreover, all the boundary conditions
(20) and (21) are satisfied identically.

For the Poisson’s coefficient v = 0.225 (glass, as in the experiments of Khladny) and for the case of
antisymmetric vibrations with respect to the diagonals of the square y = £z (in this case App = Amn)
Ritz took s = 5 in the representation (24), manually calculated all the necessary integrals and obtained a
homogeneous system of linear algebraic equations of the sixth order. He also managed to find the first two
roots of the determinant of this system.Further, a bold assumption was made that the vibrationstypes of a
plate are determined only by the main summand w,, (z)v, (y) £ up (2)vm (y). In articles Hladni the table is given
for calculating the first 35 eigenfrequencies and their comparison with the experimental data of Khladni. Ritz
also cited figures of nodal lines for vibrations types at natural frequencies corresponding to all four types of
symmetry with respect to the x and y axes. He took s = 5 everywhere, represented the complete expression
(24) with numerical coefficients, and emphasized the defining contribution of the principal terms. It was truly a
titanic work, given the lack of a computer. A different approach, which is traditionally called the superposition
method,represents a general solution of the differential equation (19) as the sum of solutions for bands |z| < a,
ly| < bin the form of trigonometric series. The solution is chosen in such a way as to satisfy the second boundary
conditions in (20), (21) identically and to have enough arbitrariness to meet the remaining two conditions.

There are four types of symmetry of the plate deflection: the function Wg(x,y) is even relative to x and y;
the function Wga(z,y) is even relative to z and odd relative to y; the function Wag(x,y) is odd relative to x
and even relative to y; the function Wy (x,y) is odd relative to « and y. Using the standard method of variables
separation, the solutions of equation (19) can be written in the form

@(cos ky chky) @(cos kx chkm)

k \sinkb shkb k B

(oo}
_1)yn+1,.8
sinka  shka bz( 1" ay Ay, b, a) cos

n=1

Ws =

+aZ 1) yS A(z, b, By) cos By, (27)

Sa , o oo
Wga = b (bm ky Shky) bz )" 23 B(y, b, a,) cos i — aZ(—l)"yfaA(x,a,én) sind,y; (28)

k2 \coskb chkb —
o0 o0
Wa = b3 ()08 By, by sinyaz + 3 (—1)" 2 Bz, a,6,) sin b, (29)
n=1 n=1

where designations are thus introduced

™ ™ _7m(2n—1) _7m(2n—1)
an_ay ﬁn_bv 'Yn— 2@ ) 61’L_ 2b )

E+E-2-1ch/E Kz -k —-(2-1Ech/EC+kz

Alm )= 2k shy/e _kh VETR  shy/E@ 1 kh
Bz, h,€) = E+E2—-(2-v)e? sh\/m,z B k2 —-(2-v)€? sh\/mz

€2 k2 ch\/E& —k2h VE TR ch/E2+k2h
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The expression for W g is not written out because, due to the symmetry of the problem all the corresponding
eigenvalues and forms are constructed by the solution of SA with the substitution x <> y and a < b:

ksA(a/b) = kAs(b/a),
Wsa(z,y,a,b) = Was(y,z,b,a).

Note that for this reason, in the case of a square, the eigenvalues for the cases AS and SA coincide.
Substitution of solutions (27) - (29) into the first of the boundary conditions (20), (21) with the subsequent
expansion of incoming functions into trigonometric series on the basis of formulas

chpz 1 2£ i M cosémz mm
shph ph h

) 5 = 7
TYL+p " h

m=1

shpz _ 2p Z )™+ sinn,, 2 _@m-1r
chph n2, + p? b 2h

allows us to obtain homogeneous infinite systems of linear algebraic equations with respect to unknown coeflicients
from the equality under basic functions [6].
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['A. Ecenbaesa, /[.H. Ecbaesa, /1. Baywsipxankssnr, J[.A. Hypraan

MemOpaHaJjap MeH IJIaCTUHAJAPABIH TepbeJtici OoiibIHIITa
MaceJIeJiep/Ii IeITy/IiH MaTeMaTUKAJIBIK, >KoHe aHAJUTUKAJIBIK, 9/1icTepi

IInacrunanap Men KabbIKIIAIAP/IBIH TAOUFHN TepOeTiCcTePiHiH KULTiKTepl MeH HOPMYyIATaAPBIH AHBIKTAY M-
ceJiesiepi KapTbLiail quddepeHnnaiIblK, TeHIeyIepal HHTerpaIIay bl KaKeTTuTirine skeaai. EH »Kakch
3epTTeJITeH KaFaait — OyJ1 aifHbIMaIBLIAPIbI 6eTin amyra 601aThH KaFmait. Qurap eIy inriHge, aTam aifTKaH-
&, Kapchbl »KarblHa OEKITireH TiK OYPBINITHI IJIACTUHAHBIH, TepOeJIici, TOHreIeK 0OChbCUMMETPJIK ILIUTa-
JIapJIaFbl KOJIIIATHIP YK9HE »KeJIJIETKIIT TepbeticTep, NUINHIP KaObIKIIaJIapbIHBIH TePOeJIici, XKaObIK, HeMece
rerepaTopJiapra 6exiriiren. Makasiajia mekapaJsblK Kar aiIap bl XKaJIllbl KarIaibIHIa YKa3blK 01pKeJIKi
MeMOpaHaHBIH Tepbestici 3epTTesiii.

Kiam cesdep: mekapablK ecenTep, MeMOpaHa, IIacTUHA, TePOEIic, CIEKTPJIK eCell, OPTOHOPMAJIIBI (DYHK-
nusiyiap Kyieci, niay GyHKIUACHI.
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['A. Ecenbaesa, [.H. Ecoaesa, /1. Baybipxkankssnr, J[.A. Hypraan

O mareMaTUYeCKUX M aHAJATUYUECKUX METOJaX perieHus:
3a/1a9 0 KoJyiebaHnu MeMOpaH U MJIaCTUH

Bagaun 06 onpejiesieHnn YacTOT U (POPM COOCTBEHHBIX KOJIEOAHUN IJIACTUH U 0DOJIOYEK MPUBOJAT K HEOO-
XOIAMMOCTH MHTEerprupoBanus JnuddepeHnuajlbHbIX YPABHEHNI B 4aCTHBIX NTPOM3BOAHbIX. Hanbosiee xopo-
IO U3yYeHBbI Te C/Iydal, KOT/a OKa3bIBAETCsS BO3MOXKHBIM pa3/iesieHre MepeMeHHBIX. K HUM OTHOCSTCS,
B YaCTHOCTH, KOJIeOaHUs MPAMOYTOJIbHOM IJIACTUHBI, IIAPHUPHO-OIEPTON TI0 IIPOTUBOJIEXKAIIUM CTOPOHAM,
30HTHYHbBIE U BeepHbIE KOJIebaHusi KPYTJIbIX OCECUMMETPUYHBIX IIJIACTUH, KOJIEOAHNS [IUJIMHIPUIECKIX 000-
JIOUEK, 3aMKHYTBIX WJIV IIApHUPHO-3aKPEIIEHHBIX BIOJIb 00pal3ytonmx. B craTbe TpoBEIEHO UCCIeI0BaHNE
KoJIeHGaHUS TIIIOCKON OJHOPOIHON MeMOPAHbI Jjis ODIIEro CJIyvasi TPAHUIHBIX YCJIOBHIA.

Kmouesvie crosa: Kpaepast 3a/a4a, MeMOpaHa, IJIACTHHA, KOJIeDaHUs, CIIEKTpajIbHasl 3a/a49a, OPTOHOPMHU-
poBaHHas cucTeMa (DyHKIMA, GyHKIMs 1poruba.
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