UDC 517.95

M.T. Jenaliyev!, M.M. Amangaliyeva!, K.B. Imanberdiyev?, M.I. Ramazanov>*

Institute of Mathematics and Mathematical Modeling CS MES RK, Almaty, Kazakhstan;
2 Al-Farabi Kazakh National University, Almaty, Kazakhstan;
3Ye.A. Buketov Karaganda State University, Kazakhstan;
4 Institute of Applied Mathematics, Karaganda, Kazakhstan
(E-mail: muvasharkhan@gmail.com)

On a stability of a solution of the loaded heat equation

Steadily growing interest in study of loaded differential equations is explained by the range of their
applications and a circumstance that loaded equations make a special class of functional-differential equa-
tions with specific problems. These equations have applications in study of inverse problems of differential
equations with important applied interests. In this paper solvability questions of stabilization problems
with a boundary for the loaded heat equation are studied in the given bounded domain Q = (—7/2,7/2).
The task is to choose boundary conditions (controls), that the solution of the obtained mixed boundary
value problem tends to a given stationary solution with the prescribed speed exp(—oot) as t — co. At this
the control is required to be a feedback control, i.e. that it reacted to the unintended fluctuations of the
system, suppressing the results of their impact on the stabilized solution. Stabilization problems have a
direct connection with controllability problems. The paper proposes a mathematical formalization of the
concept of feedback, and with its help it solves the problem of stabilizability of a loaded heat equation by
dint of feedback control given on the part of the boundary is solved.

Keywords: stability, feedback control, loaded heat equation, boundary value problem, inverse problem,
Green function, eigenvalue, eigenfunction.

Introduction. In recent years, an increasing interest in studying loaded differential equations is manifested.
In this both the steadily extending field of their applications and the fact, that the loaded equations are a special
class of equations with specific problems, played a role.

In this paper, the statement of the inverse problem on the stabilization of solutions for the loaded heat
conduction equation using the boundary conditions is given. The theorem on the solvability of the inverse
problem is proved and an algorithm for approximate constructing boundary controls in the form of synthesis
is developed. The numerical calculations have been carried out, that show the effectiveness of the proposed
algorithm (Fig. 1-3).

o
o
o
=3
=]
@™
-
a
-
-
=l
e
=3
-
=
=
w
[
:~

Figure 1. Graphic of uq (¢) Figure 2. Graphic of usy(t)
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Figure 3. Graphics of 1 — ||y(z, 1) 1, (—r/2,7/2)
2 — Cy - exp{—oot}, where Cy = 2,6808 - \/m; « =5, 59 =4,5

Statement of the boundary value problem. Search for such boundary controls us(t),us2(t) € L2(0,00), that
the solution y(x,t) of the boundary value problem

yt(mvt) - ygm(l‘,t) ta- y(()?t) = Ov {I’t} € Q; (1)

y(=7/2,t) = w(t), y(7/2,t) = ua(t), y(x,0) = yo(w), (2)

as t — oo approach zero as follows:

y(@, )| Lo(—m /2,7 /2) < Coe™ 7, (3)

where Q = {z,t] 5F <x < 3§, t >0}, a € C, 0 is the given positive number, yo(x) € L2(5*, §) is the given
function.

Equation (1) is called the loaded equation [1-3]. We note that the vast literature is devoted to the inverse
problems of the differential equations. Among them, we want to acknowledge the recently published textbook
for university students [4], which is apparently the first textbook dedicated to the inverse and ill-posed problems,
and in which there is fairly detailed overview of statements current problems and unsolved problems.

On the solvability of the boundary value problem (1)-(2). We write the problem (1)—(2) in the operator
form:

Ly = {yO’ U, U'?}’

where
L: LQ(Q) —F= LQ(*W/Q,’/T/Q) X LQ(0,00) X LQ(0,00),

and we give the definition of a strong solution.
Definition 1. The function y(z,t) € L2(Q) is called a strong solution of the boundary value problem (1)—(2),
if there exists a sequence

{ys(e, )}, € O (@) N C(Q),

such that
ys(z,t) = y(z,t) in La(Q), Lys — {yo,u1,u2} in E at s — oo.

The following theorem holds
Theorem. For any given controls uy(t),us(t) € L2(0,00) and any initial function yo(x) € Lo(=",5) of
boundary value problem (1)-(2) has the unique strong solution y(z,t) € L2(Q), and y(z,t) € W(0,00), where

W(0,00) = {v|v € Ly(0,00; Wy (—7/2,7/2)),v: € La(0, 00; Wy (—7/2,7/2))}.
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Proof. We transform boundary value problem (1)—(2) to the following loaded integral equation

/2 t /2
vty = [ w©cende—a [y0.0) [ cloge-nasars
—m/2 0 —7/2
t t
+ [ ui(r)Hy(x, t — 7)dT — [ ua(7)Ha(x,t — 7)dT, (4)
/ /

where the Green function G has the form

G(z,¢&,t) Zsmn x +7/2)sinn(€ + 7/2) exp{—n’t},

n=1

and the functions H; and Hy are expressed in terms the Green function by the formulas:

Hl(xat) = G(w7§7t)|§:77r/27 H2(:E7t) = G(m7£7t)|§:ﬂ'/2~

9 9
¢ 9¢
In turn, from (4) for the unknown function u(t) = y(0,¢) we obtain the following integral equation

t

w(t) + a/K(t —71)u(r)dr = F(t), t >0, (5)
0

where the kernel of the integral operator has the form
n 1

% Z 2n " exp{—(2n — 1)%1), (6)

the right-hand side of the equation represents the sum F(t) = Fy(t) + Fi(t) + Fa(t),

where
/2

0= 730 ew{-@n 170 [ @ sinan -~ (6 /20 7)
- —m/2
t
Fi(t) = [ Al = ryus(ryar, j=1.2, ®)
0
the kernel A(t) is determined by the formula:
_ % Z 12 — 1) exp{—(2n — 1)%}. )

We note that expressions (6) and (9) are called the Dirichlet series with real exponents [5; 111].
We show, that the function K(t) € Li(0,00), and the functions Fj(t), j = 0,1,2, belong to the space
L2(0,00). Indeed, we have

4 [ [exp{—(dn—3)%)  exp{—(4n — 1)} N
/ t)|dt = WZ:O/{ dt <+

(4n —3) (4n —1)

according to the formula 0.234.4 from [6; 9]: > (—=1)"7'/(2n — 1)3 = 73 /32.

n=1
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We use the Cauchy inequality [7; 28]:

o0 2 o0 o0
(zanbn> Y
n=1

n=1 n=1
where
/2
i = / yo(€) sin(2n — 1)(€ +7/2) d€, by = exp{—(2n — 1)21},
—m/2

&)
and also the equality 0.234.2 from [6; 9]: > 1/(2n — 1)? = 7%/8,
n=1

/ Fo(t)Pdt < C2 - Z_: / exp{—2(2 )t}dt<“yZ”o oo
0 =
where
0o w/2 2
Ci=3| [ wisinzn (& +x/2) e < ol
n=1
—m/2

Further, the functions Fy, F» are square-summable on the positive semiaxis, if the absolute value of functional
series (9) is integrable. To prove the latter we rewrite series (9) as the sum of the differences:

At EZ dn — 3) exp{—(4n — 3)*t} — (4n — 1) exp{—(4n — 1)t}] .

>1

We note that each of these differences

(4n — 3) exp{—(4n — 3)*t} — (4n — 1) exp{—(4n — 1)*t} (10)
represents a alternating function of the variable ¢, which changes sign once from negative to positive at the point

tn = [8(2n —1)]7'In(4n — 1)/(4n — 3), and it is evident that t; > ta > ... > t, > ..., t, = 0+ at n — oo.
So, the integral of the absolute value of each difference (10) on the semiaxis is equal to:

_ / (4 — 3) exp{—(4n — 3%} — (4n — 1) exp{—(4n — 1)°}| dt =

=2 {4711— 3 exp{—(4n — 3)%t,} — — exp{—(4n — 1)%}] — [4n1_ 3 4n1_ J ) (11)

Note that, by simple analysis to the maximum, we have that the following equality holds:

exp{ (4n —1)%*t,} =

exp{—(4n — 3)? n}—

1
4n — 3

exp{—(4n — 3)*t} —

= _1\2
RS [4n -3 7 exp{—(4n —1) t} :

We take the sum of the right hand side of (11) from 1 to co and multiply the result by 2/7 (see formula
(9). As a result, taking into account the well-known equality

Z on—1

n=1
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we have -
13 (! .
AB)dt < =S L exp{—(2n — 1)%,)} — =,
[1atars 3 G expl-on 1) -
) -

where for all odd n : t, = t,,11 = t,. The series on the right side of the last inequality converges by Leibnitz
Theorem for alternating series [8; 302]. A positivity of the right side follows from relation (7).

Now it remains to use the convolution property (8) to obtain the desired properties of functions
F](t) € LQ(0,00) [97 9]

The existence and uniqueness of strong solution. Assume that functions yo(x), u;(t), j = 1,2, satisfy the
conditions of Theorem. And assume that problem (1)—(2) has two distinct solutions y;(z,t) and y2(z,t). Then
the difference g(x,t) = y1(x,t) — y2(z,t) is the solution of the following homogeneous boundary value problem:

{ gt(xvt)_gzm(xat)"_ag(oat) :07 ZL’ﬂfGQ; ( 2)
1
’g(.’IJ, O) = 07 :Ij(—ﬂ'/2,t) = :lj(’]'('/2,t) =0.
By taking a inner product of (12) with §(z,t) in Lo(—7/2,7/2), we have
1d, . - - .
5 7 19@ OIIE + 192(z, O < |V |5(0. )] - [, 8)llo- (13)
Here and further we denote by || - ||o and (-, -)o the norm and the inner product in Lo(—7/2,7/2), respectively.

Then, using the Friedrichs’, Holder’s, Cauchy inequalities to the right side of (13), we have

d . . _ -
%Ily(zyt)llg + 12 (2, )15 < lafm*[lg(z, 1)]l5.
Hence, by Gronwall inequality [10], we have
_ o 1
Y(z,t) =0 € Loo((0, 00); La(—7/2,m/2)) N La((0, 00); Wy (—=7/2,7/2)),

i.e., the boundary value problem (1)—(2) has no more than one solution.

Hence it follows that the integral equation (5) has no more than one solution. Otherwise, if the integral
equation (5) has more than one solution, the boundary value problem (1)—(2) according to relation (4) would
also have more than one solution, which is impossible, as we have just proved. This means that integral equation
(5) in the class L2(0,00) can have only one solution. The uniqueness is proved.

The foregoing proof of the uniqueness without changes holds for the homogeneous boundary value problem
adjoint to (12):

/2
—m/2
p(z,00) =0, p(=m/2,t) = p(m/2,t) = 0.

We transform the boundary value problem (14) to the following loaded integral equation

00 w/2
P t) = —a / GO0, 2,7 — 1) / B(E, t)de dr, (15)
t —m/2

where the Green function G has the form:
2 o0
G, z,t) = — E sinn (€ + 7 /2) sinn(z + 7/2) exp{—n?t}.
T
n=1

Implies that (15) integral equation the corresponding to the boundary-value problem (14) adjoint to the
equation (5)
/2

v(t) +E/K(T —tv(r)dr =0, t >0, where v(t) = / p(&,t)d¢ (16)

—m/2
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and the kernel of the integral operator (in accordance with formula (6) has the form

n 1

% Z T exp{—(2n - 1)%t}.

Since the uniqueness holds for the adjoint boundary value problem (14), then integral equation (16) in
L5(0,00) can have only the trivial solution.

So, according to the theory of integral equations, in Ly(0,00) integral equation (5) has a unique solution
for all F(t) € La(0,00). Consequently, it follows the existence of a unique strong solution of boundary value
problem (1)—(2). It remains to show that under the conditions of Theorem 1 the solution of problem (1)—(2),
represented by formula (4) belongs to the class Lo(Q).

We write a detailed expression for solution (4):

o w/2

v ) =23 [ (e sinn(e + n/2)ds -sinn(a + /2) exp{-n’t}~

s
n:li’n_/2

= 2n—1 )

74?04 Z sin (2n — 1)(17 +7T/2) /exp{f(Qn . I)Z(t o T)}y(O,T) dr+

—l—% Zn -sinn(x + 7/2) /exp{—nQ(t —7)}uy (1) dr+
n=1 0
Z )l s1nn(x+7r/2)/exp{ n2(t — 1) yua (T dT_Zy] (z,1). (17)
n=1 0

Hence the required property of the solution follows. Indeed, the first summand is estimated as follows (using
Cauchy inequality):

o [ 1/2 /o 1/2
a0 = 2|t < 2 (z) (zbz> ,
Vs
n=1 n=1
where
/2 oo
an= [ wo(©) simn(e+m/20dg, Y fanf? < () < oo,
—7/2 n=1
7T3
b (2,t) = sinn(z + 7/2) exp{—n>t}, Zl 1bn (2, 8)12,40) = n Z =
Thus, we obtain:
Hyl(xﬂt)”L*z(Q) < OO,i.e.yl((L'ﬂf) € LQ(Q)
For the second summand ys(z,t) we take:
in (2 1 2 ;
= DT [ exp(—(n = 1200 - D)}y(0.7)

0

Taking into account the recent notations and applying the Cauchy inequality as in the case of the first
summand, as a result of simple calculations, we obtain:

ly2 (2, t)|| 1y (Q) < 00, ie. ya(z,t) € La2(Q).
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We estimate the third summand. For this we rewrite it in the form:

t

ys(z,t) = % Z sinn(z + 77/2)/nexp{—n2(t —7)}up (1) dr =
n=1 0
% Z sin 2ma - Sy, (t Z cos (2m — 1)z - So. (), (18)

where
Sim(t / 1)™2m exp{—4m?*(t — 7)}u, () dr,
0

Som(t) = /(—1)m_1(2m — 1) exp{—(2m — 1)*(t — 7)}us (1) dr.

Further, for the first summand of the right part of (18) we have:

> Sim(t) = Z/ [—2(2n — 1) exp{—4(2n — 1)(t — 7)} +
m=1 n=17
+ dnexp{—16n°(t — 7)}] ui (1) dT = Z S9 (1. (19)

We note that in the last representation each summand in the form of the integrand function enclosed in square
brackets changes sign from positive to negative only once, and the point of changing the sign is determined by
the formula:
= ! 1 2n t1 > tg > >t, =0 at n = o0
W= Pop_p 1Rz :

We estimate the norm of the first sum in (18) taking into account (19):

oo

< \/EZ 1575 ()] 22 0,009 - (20)

L2(Q) n=1

(t)

We now estimate each summand represented as a convolution S, (¢):

| t
1520 ()17 5.0,00) < / / (2n — 1) exp{—4(2n — 1)*(t — 7)} +
0 1o

2

+ dnexp{—16n°*(t — 1)} ui(7) dr| dt <

. 2
< Jur ()12, 0,00 - /|_2(2n— 1) exp{—4(2n — 1)*t} + 4nexp{—16n°t}| dt
0
Now we compute the second factor on the right hand side in the last inequality:
(o)

/ |—2(2n — 1) exp{—4(2n — 1)*(t — 7)} + 4n exp{—16n>(t — )} dt =
0
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= / [—2(2n — 1) exp{—4(2n — 1)*(t — 1)} + dnexp{—16n°(t — 7)}] dt+
0

oo

+/ [2(2n — 1) exp{—4(2n — 1)*(t — 7)} — dnexp{—16n>*(t — 7)}] dt =
exp{—4(2n — 1)%*t,,}  exp{—16n>t,} 1 1
:{ o — 1 - 2n }_{2(2n—1)_4n}>0’

since a simple research to maximum of the function shows

ult) = PGP SV ) = s a0}

Taking into account the calculations for the right hand side of (20), we obtain:

VQ/WZHSM [22(0,00) < V 2/ [[u1 ()| £20,00) X

b

x{ i [exp{—4(2n —1)%t,} B exp{—16n?t,}

2n —1 2n

n=1

since the series on the right hand side converge (by the Leibnitz theorem as alternating series).
Analogous calculations (carried out for the first summand of the right part of (18) are valid for the second
summand of the right part of (18). Thus, we obtain the desired estimate for the third summand in (17)

lys()llLa(@) < oo
Now we show, that yy(z,t) in (17) belongs to L2(Q). We have:

ya(z,t) = % > sinn(z +m/2) - Su(t),

where
t

() = / (—1)" T exp{—n(t — 7)}ua(r) dr.

Hence we obtain the following estimate:

1ya(; D)l Lo (@) < \/2/7fz 15 (8| 2 0.00)-

To obtain an estimate for the convolution S, (t) we rewrite it in the form:
oo o0
PIEACEDPEH)
n=1 n=1

where

SOt / [(2n — 1) exp{—(2n — 1)*(t — 7)} — 2nexp{—4n®(t — 7)}] uz(7) dr.
0

By arguing as in the estimate of y3(x,t), we obtain the required estimate |ly4(t)||1,(q) < oo

Thus, the first assertion of Theorem is completely proved.

The next section is devoted to the proof of the second assertion of Theorem, that is to the establishment of
additional differential properties of the solution of problem (1)—(2).
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On additional smoothness of the solution. We note that according to the theorem on traces [11; 32-33,
265-269] for the given functions u;(t) € L2(0,00), j = 1,2, there exists a function w(z,t) € W(0, c0), where

W(0,00) = {v|v € Ly(0, 00; Wy (—=7/2,7/2)),v; € La(0, 00; Wy *(—7/2,7/2))},

such that
w(—m/2,t) = u1(t), w(m/2,t) = us(t).

The boundary value problem (1)—(2) takes the form:

{ (y - w)t(xat) - (y - w)m(z,t) + Oé(y - w)(ovt) = fl(xvt)v {‘Tat} € Q; (21)
(y —w)(@,0) =yi(z), (y —w)(=7/2,1) = (y — w)(7/2,1) =0,
where
{ f1=—wi(z,t) + wee(x,t) — aw(0,t) € La(0, o0; W271(—7T/2,7T/2>); 22)
y1 = yo(z) —w(x,0) € La(—7/2,7/2).

Earlier, in [12] on the basis of a priori estimates established there and the application of Galerkin method it
was proven that boundary value problem (21) for any given functions fi(x,t) and y; (x), satisfying the conditions
(22), has a solution (y —w)(x,t) € W (0, 00), namely corresponding to (21) boundary value problem (1)—(2) has
a solution y(x,t) € W(0, c0).

Hence the second assertion of Theorem follows. Thus, the proof of Theorem is completed.

However, relation (3) requires the choice of boundary controls that would provide the decrease of Lo-average
values of the solution not slower than some exponent by time. Fourier method provides this requirement by
choice of those exponents {exp{—Ait}, k € Z} in the representation of solution through a series, where numbers
Ak, are defined by positive eigenvalues of the corresponding spectral problem, and which are not less than the
exponent of decrease in the exponent of condition (3).

Thus inverse problem (1)—(2) will be solved, if we find a way of constructing the controls w;(¢), j = 1,2,
that provides the existence only the exponents of the form {exp{—Ait}, k € Z} (where A\ > 0¢ in (3)), in the
presentation for the solution in the form of a series.

The following section of work is devoted to constructing and justifying the algorithm of choice of the desired
boundary control functions u;(t), j = 1,2, in the problem (1)—(2) and its numerical realization.

Solving the problem of stabilization by extension of domain for independent variables. We consider in the
domain @ = {z,t| — 7 < x <7, t> 0} the additional problem

2¢(2,t) — 2gp(w,t) + - 2(0,t) = 0, {z,t} € Qu; (23)

z(—m,t) = z(m, t), z,(—m,t) = zx(m, 1), 2z(x,t)|t=0 = 20(x), (24)

where zo(z) is a function that must be defined.
We will seek a solution of problem (23)—(24) in the form

2a.t) = Y Zult)ou(a). (25)
keZ

where {¢r(x), k € Z} is the basis of the space Lo(—m,7) and Z = {0, £1,£2,...}.
For this, we consider the spectral problem corresponding to problem (23)—(24):
—¢" (@) + a - ¢(0) = Ap(x); (26)

(=) = p(n), ¢'(-m) = ¢'(m). (27)

We introduce the following notation Z’ = Z\{0}. For problem (26)—(27) we consider the following two cases.
19, The case when there is no such k € Z, that o = k?. The general solution of spectral problem (26)—(27)
has the form:

gpk(x) = Akei Ak + Dy, (28)
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and substituting (28) into (26) we find D}, = 24 here we take Ay = 1. Then it is necessary to take A\, = k2,

T Ap—a?
to satisfy conditions (27). Hence we can write the final form of the solution of equation (26)

pr(a) = e+ —— keZ.
k—

For k = 0: pg(z) = const, A\g = «; that is for the eigenvalue Ay = « it is possible to take the eigenfunction

wo(z) = 1.
Thus, we have the following system of eigenfunctions and eigenvalues

{op(x), \p; k€ Z} = {1, Ao =a; eF* 4 a " e =k% ke Z’}. (29)

k2 —

We note that the obtained system of eigenfunctions (29) is complete in the space Lo(—m, ), constitutes
a basis, but it is not orthogonal. Completeness of the system of eigenfunctions (29) follows from the known
theorem of Paley-Wiener [7; 224-227]. For (29) we will find a biorthogonal sequence in the following form

{r(z), k€ Z} = {fo(x), e**, ke Z'},

where fo(x) is unknown function.
Using basis (29) we will seek the unknown function fo(z) in the form:

folz)=Co+ Y C (é’“f + nzo‘ ) :

—
nez’

from orthogonality conditions:

(15 fO(’I)) = 17 (6ikz + a 067 fo(ﬂ?)) = 07 k S Z/'

k2_

From these conditions, we have:

Co + Z Cy (ei”” + nQQQ)] de =27 -

nez’

™

(1 foo) = [

—T

(e%

neZz’

Hence it follows Co = 5= — Y, .5/ Cp - 2> Further

ikx @ inx o _ /.
(6 +m, C0+ch(€ +n2_a>>—0,kez,

nez’

a « 1
. —_— _— = Z/_
Co k2—a+ck+k2—a (27r Co> 0, ke

Here we find C, : C) = — - - e k€ Z'. Using the values Cj we rewrite Cj :

1+ (nia)rz] .

nez’

1
Cy=— -
0 2T

Further, using the value Cy we write the desired function fy:

1 « . 1 « .
= — . |1 - LetnT | — = . einT
fo(2) 2m l Z n2—a ] 2 Z n—a ©

neZz’ neZz

Therefore, for basis (29) a biorthogonal sequence is the following sequence:

1 o inT ikx
{¢k<x),k62}{%zn2_a~e ,ek,kGZ'}, (30)
nez

which defines in the space Lo(—m, ) a biorthogonal basis.
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20. The case when there exists such number k € Z, that o = k*. Let us ko be such number, namely o = k2.
The general solution of spectral problem (26)—(27) has the form:

cpk(x) = Akei Ak + Dy, (31)

and substituting (31) into (26) we find Dy, = A fere we take Ay = 1. Then it is necessary to take A\, = k2,

)\k-*a
to satisfy conditions (27). Hence we write the final form of the solution of equation (26)

or(x) = ™ 4 k€ Z'\{xko}.

[0
)\k—Oé7

For ko : ¢k, () = const, A\, = a = kZ; that is for the eigenvalue A\, = o = k2 it is possible to take the
eigenfunction ¢y, (x) = 1. Further, the system of eigenfunctions and eigenvalues are complete, if we find the
associated functions that satisfy the following conditions

— Py (@) + @ 2y, (0) = kg, () = i (32)
B (=) = B (1), Bl (=) = P (7). (33)

The general solution of spectral problem (32)—(33) has the form
ako (.Z’) =C+ Aleikoz + A2e—ik0x. (34)

Substituting the general solution (34) into (32) we find a(A; + As) = k2, here we take A; + Ay = 1. The
associated functions are {e*i*o},
Thus, we have the eigenvalues and the corresponding eigenfunctions

{on(x), \is k€ Z\{Fko}} =

— {1, Ao :kg; ethr 4 2

- — M=k ke Z’\{iko}} (35)
and the associated functions _
{@1ko(x), Mo} = {eilk(’:’:, Ao = k% = oz} . (36)

Here, the constant is an eigenfunction corresponding to the eigenvalue \g = kZ = a. Furthermore, we note
that zero is not an eigenvalue. In this case, the system of eigenfunctions is not complete and not orthogonal in
the space Lo(—m, ).

Combining (35) and (36), we obtain the complete system [7; 224-227]:

(,Ok(l'), Ak? kel} = 17 AO :k2, €iik0z, )\0 :kQ = qQ;
0 0

eikr 4 2 = A= k% ke Z’\{iko}}. (37)

2 _
For (37) the biorthogonal sequence is
{r(2); k€ Z} ={fo(x), €™, keZ'},

where it is necessary to find unknown function fo(z) by the following way:

fo(z) = Co + Z Chn <6im+ 2a

> + Ckoezkoa: + C_koefzkoa:’
n® —o
n€Z'\{xko}

from orthogonality conditions
; !
(L, fo(x)) = 1; (dkw + kQ_avfo(CE)) =0, keZ\{*ko};
=0.

(e, fo())
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From these conditions we find:

(1, fo(z)) =27 -

(67

neZ'\{tko}
Co= 4 — Y G e
"7 o " np2—a
neZ'\{xko}

Further

ikx « _ ikx « inx o _N.
<€ +k2_a’f0(x)> = (e tEoa Gt ). G (6 *nz_a>> =0
n€Z’'\{£ko}
ke Z'\{%xko}.
Hence it follows

(e} - 1 o /
Coa—tOtm—- (%_C()) =0, ke Z\{Fko}.
Here we find Cy: .
(e !
Ck =5 13— k€ Z\{Fho}.

Using the values C} we rewrite Cy:

1 « ?
CO_%. L+ Z (n2a)

neZ'\{xko}

Next, using the values Cy we write the desired function fy:

1 o inT
folw) =—5- D ——— e

neZ

So for (37) the biorthogonal system is

2r n? —aq
nez

{¢p(2), keZ}:{ 1 ZL-em, et kez’}. (38)

This system also defines a biorthogonal basis in the space Lo(—m, ).
To determine the Fourier coefficients of expansion (25) we have Cauchy problem:

Z(t) + M Zi(t) = 0, Zg(0) = 2ok, k € Z, (39)

where zgj, are the expansion coefficients of the function zo(z) on system {py(x)}.

The solution of Cauchy problem (39) has the form: Z(t) = zope !, k € Z.

We will further assume that in the space La(—m, 7) we have:

— basis {¢k(x), k € Z}, composed of the system of eigenfunctions (29) or of the system of eigenfunctions
and associated functions (37);

— and the corresponding biorthogonal basis {¢(x), k € Z}, (30) or (38).

Then the solution of original initial-boundary value problem (23)—(24) can be written in form (25):

2
2(x,t) = zo0e” “Fipo(x) + Z zore " Lop(z), (40)
keZz’

where
T

200 = /wk(x)zo(x)dm, keZ,

—T
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are Fourier coefficients zo(z), where ¥y (z), k € Z, are defined by the formulas (30) and (38). From (39) and
(40) it follows directly that if
zon =0 at k% < og (41)

and
z00 70 at Rea > g9; 200 =0 at Rea < oy, (42)

then solution (40) of problem (23)-(24) will satisfy the inequality
[2(2, )] Ly (—mymy < Ce™ 70

We denote by Zg (Zo C Z) the set of indices k that satisfy conditions (41) and (42).
Now, with the restriction operator (_r,, and (/o we find the desired controls

ui(t) = Capafz(z, D)}, ua(t) = Gryofz(z, 1)}

It remains to construct an extension operator of the function yo(x) up to the function zg(z), defined on the
interval (—m, ),
E: LQ(_W/zvﬂ-/2) - LQ(_T“ ﬂ-)a Le. (4(—7r/2,7r/2)EZ/0)(33) = yO(x)v (43)

so that the Fourier coefficients zgx of function zy = Fyg (43) would satisfy conditions (41) and (42). Here we
use the notation ((_r /2 x/2) for the restriction operator {(_r/2,r/2) : Lo(—7,7) = Lo(—7/2,7/2).

By arguing as in the lemma of [13] we obtain the following lemma.

Lemma. For each oy > 0 there exists a continuous extension operator E in (43), that for all yo(z) €
€ Ly(—m/2,7/2) equality holds

/wk(:z:)(Eyo)(x)dx =0, Vk€Zo: |k| <00 (44)

Proof. We define the operator E (43) by the formula

yo(z), x € (—m/2,7/2);
Eyo(z) =

z1(z), ze(—m—n/2)U(n/2,7),

where the function z;(x) to be determined. By virtue (44) z;(x) must satisfy the system of equations:

@) - 21(x)de = — / Dn(@) - yo(x)de = —Go(k), k € Zo. (45)

(=7, —7/2)U(m/2,7) (—7/2,m/2)

We seek the function z;(z) in the form:

z(z) =Y 2(i);(). (46)

J€Zo

Substituting (46) into (45), we obtain a system of equations to determine z3 (j):

> anzi(G) = —To(k), k € Zo, (47)
J€%Zo

where o (k) is defined in (45), and the coefficients ax; are determined by relations:

w= [ R ke (48)
(=7, —7/2)U(7/2,m)

The matrix A = ||ay;]| is positive. Indeed, if

U = {qZk, k€ Zy} and ¢ = Z i (),

keZo
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then by virtue of (48)

A0, 0) = 3 ay by b= ) [ v B d 0 -
k.j€Zo k’jGZO(—ﬂ',—ﬂ/Q)U(W/Q,Tr)
S B M R Serrn
(—m,—7/2)U(r/2,m) I€Z0 k€Zo
- / D@ - b(2)dz = / b (2) 2 > 0. (49)
(=m,—7/2)U(7/2,7) (=7, —7/2)U(r/2,7)

If for some ¥ in (49) the equality holds, then

Y(x) = Z szdzk(x) = 0 and hence @Zk =0, Vk € Zy.

k€Zo

Hence det ||ag;|| # 0 and therefore system (47) and formula (46) uniquely determine operator (43), satisfying
all the conditions of Lemma.

An algorithm for solving the inverse problem. The results of the preceding sections allow us to implement
the following algorithms of approximate constructing the boundary control functions (and even in the form
of synthesis, processing their random perturbations), providing monotonic decrease in time, not slower than
the given exponent according to formula (4) in Lo(—7/2,7/2)—norm of the solution. The latter is achieved by
fulfillment of requirements (41) and (42).

Step 1. According to original boundary value problem (1)—(2) at half-strip of the width 7 with non-
homogeneous Dirichlet boundary conditions and initial condition on the interval (—m/2,7/2), given by the
function yo(x), auxiliary boundary value problem (23)—(24) is posed on the extended half-strip of the width
which is equal to 27, with periodicity conditions (instead of the Dirichlet conditions) and the initial function
zo(x) on the interval (—m, 7). The function zo(z) will be defined as the continuation of the given function yg(x).

Thus, in auxiliary boundary problem (23)—(24) it is necessary to complete the definition of function zo(z)
on the interval (—m, 7), so that for the solutions z(x,t) of problem (23)—(24) requirement (4) would be fulfilled.
In this case, condition (4) holds for its restriction y(x,t) and the required boundary controls ui(t) and us(t)
will be determined as traces of the function z(z,t) when x = +7/2.

Step 2. Constructing the complete biorthogonal systems of functions on the interval (—m, ) by solving the
corresponding spectral problems.

Step 3. We find the coefficients of the expansion of the required function zo(x) on the interval (—m,7) by
complete biorthogonal system that constructed in the preceding step, so that conditions (41) and (42) were hold.
We note that conditions (41) and (42) provide the fulfillment of requirement (4) to solve auxiliary boundary
value problem (23)—(24).

Step 4. According to solution z(z,t) that is obtined of auxiliary boundary value problem (23)—(24) we find
the solution y(z,t) of original boundary value problem (1)—(2), satisfying required condition (4). We find the
boundary controls u; (t) and us(t) as traces of the solution z(z,t), that is

ur(t) = 2(2,t)|g=—ny2,  u2(t) = 2(2,1)|p=r/2-

The main step of the algorithm is the third. The constructive realizability of step 3 is mathematically
justified by Lemma.

Conclusion. In this paper the statement of the inverse problem to stabilize the solution of the loaded heat
conduction equation using boundary conditions is given. Theorem on solvability of the stated inverse problem
is proved. An algorithm of approximate construction of boundary controls in the form of synthesis is developed.
Numerical calculations were carried out, that showed the effectiveness of the proposed algorithm. We note that
within this work the load is determined at the point x = 0. This unessential condition, the results can be easily
extended to the case of an arbitrary point in the interval (—m/2,7/2).
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M.T. ?Kuenosiues, M.M. Amanranuena, K.B. manbepaues, M.J1. Pamazanos

2KyKTeJIreH XKbLTYOTKI3TINITiK TeHAeyi IMeImTiMiHiH
CTAOMJIN3AMUACHI TYPaJIbl

ZKykrenren nuddepeHnunaaablK TeHIeyIep/ii 3epTTeyre YHEMI apThIl Kejle KATKAH KbI3bIFYIIbLIBIK YKYK-
TeJITeH TEH/JIeyJIep HAKThl eCenTepre KATHICTHI (PyHKIIHOHAJIBI-TudMEepEeHIINaIIbIK, TEeHIEYIEP/IiH apHaibl
KJIACHIH KAJIBIITACTBIPYHI CHIHIBI KOCHIMITIAJIApPBl MEH KarmasTTapblHa OaillaHbICTBI TYCiHAipizemi. By
TeHJeYIep MaHbI3AbI KOIIaHOAIbI TAPTHIMIBLUIBLIFLL 0ap auddepeHnuaaibK TeHAeYIepIiH Kepi ecenTepin
3epTTeyre apHaJFaH KochiMmnasaapra ne. Makanaga ) = (—m/2,7/2) mexresred o0JIbICHIHIA KYKTEJIIeH
KBITYOTKI3TIMITIK TEH eyl YIITiH MeKapa apKbLIbl CTAOMIN3AIUsIay eCeNTEPiHIH MenIeTiHIir Maceterepi
seprresren. Mocese mekapanblk mapTrapis! (6acKapyabl) Tangay KesiHie aJblHFaH apasac METTIK €CenTiH
mrenniMi ¢ — 0o Gosrana GeplireH exp(—oot) KbULAM/IBIKIIEH Ge/Irisll cTaloHap NIeliMre yMThULY BIHA.
ConbiMeH KaTap 6ackapy Kepi OallylaHBICTBI OOJIYBI TAJIAIl €TiIeMdl, SFHU OJ YKYHeHIH KyTiaMmereH (QJyk-
TyalusIapbliHa >Kayal 0epe OTBIPHII, OJIAP/IbIH, IIEMIMHIH CTAOMTU3AIUICHIHA 9CEP €Tyl HoTUXKeJIepin Oa-
cybl Kepek. Crabunmsanust ecenrepi 6acKapbIMIBLIBIK, MOCEIEIEPIMEH TiKe el baillaHbICTBI. ABTOPIAp Kepi
OallyTaHbIC YFBIMBIH MATEMATUKAJIBIK (DOPMATM3AINIAYIbl YCHIHALI KOHE JIe OHBIH, KOMETIMeH YKYKTEe/TeH
KBLTyOTKIZMIITIK TeHIeyi mekapa aiMarbiHga OepijireH Kepi OailjlaHbICThI 0ACKAPY apPKbLIbI IIEIIiIe]T].

Kiam cosdep: crabuinmsanysi, XKYKTEITEH XKbLIYOTKIZMIINTIK TeHAeyl, MEHIIIKTI MOH, MEHITIKTI OyHKITAS.

Bectnuk Kaparanmauickoro yHuBepcuTeTa



On a stability of a solution of the loaded heat equation

o N O ot

10

11

12

13

M.T. JIxxenanues, M.M. Amanranuesa, K.B. Uman6epaues, M.1. Pamazanos

O CTa.GI/IJII/IBaHI/II/I pernmieHnsa Harpy>keHHOI'o
YpaBHeHHnsd TellJIOIIPOBOAHOCTHA

Ilocrosauo pacTymuit “HTEpeC K M3yYE€HUIO HATPYKEHHBIX AuddEPEHINATbHBIX YPABHEHNH 00bsICHSIET-
Csl UX IPUJIOXKEHUEM M TeM OOCTOSTEJIbCTBOM, YTO HArpyKEHHBbIE ypaBHEHHs 0Opa3yIOT OCOOBIM KJjacc
dyuknonaabHO- UMD GEPEHINAIBHBIX YPABHEHUN ¢ KOHKPETHBIMY 33/1a9aMi. DTH yPABHEHUS UMEIOT IIPH-
JIOXKEHUs TSt M3ydeHnsT OOpaTHBIX 33/7a49 JuddepeHnnaabHbIX YPABHEHUH ¢ BayKHBIMU TPUKJIAIHBIMY WH-
TepecaMu. B cTaTbe ncciie10BaHbI BOIIPOCH! PA3PENINMOCTH 33/1a49 CTaOMJIN3aIUH C TPAHUIE /I HAarpy >KeH-
HOI'O yPaBHEHUs TEILUIOIPOBOIAHOCTU B 33JaHHOI orpaHndeHHoi obiacru ) = (—m/2,7/2). Sanaua 3akimo-
9aeTCsl B BBIOOPE TPAHUYHBIX YCJIOBUI (YUDPABJICHHMIA); PEIICHHE TIOJIyI€HHONW CMEIIAHHON KpaeBoil 3a1aum
CTPEMHUTCSI K 33JIaHHOMY CTAIlMOHAPHOMY PEIIEeHHIO C 3aJaHHON CKOpPOCTbIO exp(—oot) npu t — oo. Ilpn
9TOM TpebyeTcsi, ITOObI yIpaBeHHe ObLIO ¢ 0OPATHON CBA3BIO, T.€. YTOOBI OHO PEArupoBajIO HA HEIPEIy-
CMOTPEHHbBIE (DIIYKTYAIMH CUCTEMBI, TIOJABJISAS PE3YAbTATH UX BO3IEHCTBUS HA CTAOUIN3UPYEMOE PEIlleHueE.
SBajaun crabuimsanyuy UMEIOT HEIIOCPEJCTBEHHYIO CBs3b C IpobieMaMu yrpasisemoctu. B paGore npej-
JIO’KEHa MaTeMaTudecKasl (popMasIi3alis HOHITHS 0OPATHON CBSI3H, U C €r0 IOMOIIBIO PEIIAeTCs 3aatda O
CTaOUIN3UPYEMOCTH HATPYKEHHOTO YPABHEHHS TEILIOMPOBOIHOCTU OCPEICTBOM yIPABJIEHUsI C 0OPATHOMN
CBSI3bIO0, 33/IAHHOTO HA YACTHU I'DAHUIIBL.

Karoueswie caosa: crabunmsaiys, ypasieHue ¢ 00OpaTHO CBSI3bI0, HAIPY?KEHHOE yPABHEHNE TEILJIONPOBO/I-
HOCTH, KpaeBas 3ajia4a, obpaTHas 3aa49a, pyuknus ['puna, cobcTBeHHOE 3HAUEHNE, COOCTBEHHAS (DYHKITHS.
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